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X-Ray Notes, Part II 

Noise in X-ray Systems (part 1) 

In an x-ray system, images typically are created from intensity values that are related to 

the number of photons that strike a detector element in a finite period of time.  The 

photons are generated by electrons randomly striking a source and thus the photons at the 

detector are also random in nature.  We typically describe this kind of random process as 

one having a rate parameter, λ (units: events/time), and an observation time, T.  Let X be 

the random variable (R.V.) that describes the number of events (photons striking the 

detector element) in time T.   

 

X will be a Poisson distributed random variable with parameter λT.  E.g. 

X ~ Poisson(λT) 

Derivation of Poisson Distribution 

Below, we will derive the Poisson distribution from a set of independent Bernoulli  

R.V.’s.  Let Δt be some small time interval and N = T/Δt be the number of independent 

trials.  The probability of an event (photon) in interval Δt will be λΔt.  Each Bernoulli 

trail will then be an R.V.: 

Yi ~ Bernoulli(λΔt) 
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We also assume that Δt is chosen to be small enough so that the probability that there are 

two events is very small (later we will let Δt go to zero, so this is a non-issue). 

 

Now we consider the sum of the N events, which yields a binomial R.V. 
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X ~ Binomial(N, λT) 
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The probability density function is f(x) = Probability{X = x} (the probability that there 

were x events in time T).  For a binomial R.V., this is derived from the following: 
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In a similar fashion we can show that  
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Finally, we will let Δt  0, N = T/Δt  ∞ , p = λΔt  0, and q  1.  In the following, 

keep in mind that q = 1 – p, Np = λT, N = λT/p.  The Poisson probability distribution is 

therefore: 
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Here X is a Poisson R.V. with parameter λT: 

X ~ Poisson(λT). 

SNR of a Poisson Measurement 

In general, the pixel values in an x-ray image are distributed according to a Poisson R.V.  

If the mean value of the photon counts for a pixel is μ, then the signal to noise ratio of for 

that pixel will be: 

μ
μ

μ
σ

===
X

XSNR  

The SNR increases as the square root of the number of photons.  Thus, the SNR increases 

as the square root of the dose to the patient.  Finally, by averaging together two 

neighboring pixels, we can roughly double the photon counts and improve the SNR by 

2 . 
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The above figure shows Poisson distributions as the mean increases from 3 to 50.  We 

can see that the distribution becomes more symmetric and Gaussian. 

 
The above figure takes Poisson distributions and normalizes them by their mean, that is, 

we subtract the mean and divide the x-axis by the mean.  This plot show demonstrates 

that the width of the distribution as a fraction of the mean.  As the mean gets larger, the 

distribution gets proportionately narrower – the std. dev. vs. mean ratio is smaller (SNR 

is higher). 
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Source Issues 

The Parallel X-ray Imaging System 

Earlier, we considered a parallel ray system with an incident intensity I0 that passes 

through a 3D object having a distribution of attenuation coefficients μ(x,y,z) and projects 

to an image Id(x,y): 

 

( )∫−= dzzyxIyxId ),,(exp),( 0 μ  

There are essentially no practical medical project x-ray systems where the source has 

parallel rays.  There are some scanning systems that might be appropriate for industrial 

inspection operations, for example: 

 
but these kinds of systems are too slow for medical applications. 

Practical X-ray Sources 

There are two main issues associated with practical x-ray sources: 

1. Geometric distortions due to point geometry – “depth dependent magnification.”  
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2. Resolution loss (blurring) due to finite (large) source sizes 

 

Point Source Geometry 

First, we will find expressions for the image intensity, Id(xd,yd), for a point source 

geometry: 

 

( )∫−= drzyxyxIyxI ddiddd ),,(exp),(),( μ  

Comments: 

1. (xd,yd) is the coordinate system in the output detector plane. 

2. (x,y,z) is the coordinate system of the object. 
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3. Notice that Ii(xd,yd) a spatially variant incident intensity replaces I0. 

4. Notice that the integration is along some path r with variable of integration dr. 

Intensity Variations 

The incident intensity is maximal at the center of the coordinate system and falls off 

towards the edges.  This has two components – an increases in distance from the source 

and the rays obliquely striking the detector. 

 
Intensity has really power/unit area.  We can write an expression for the intensity Ii as: 

π4 time)surearea)(expo(unit 
E)photon mean (photons)( Ω

==
a

kNIi  

where k is a scaling coefficient, N is the number of photon that are emitted during the 

observation time (we assume here that photons are emitted isotropically over a sphere), 

and Ω/4π is fraction of the surface of a sphere that is subtended by pixel area a.   

[Ω is known as the solid angle and has units of steradians of which there are 4π over the 

surface of a sphere.  This is similar to there being 2π radians over circumference of a 

circle.] 

For a pixel of area a at some position angle θ away from the origin, the part of a sphere 

covered will be acos θ.  Thus: 
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We now define the intensity at the origin to be I0.  At the origin, θ = 0 and the distance 

from the source to the detector is r = d, thus Ω = a/d2 and: 
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Note that the intensity, I0, falls off with 1/d2 as the detector moves away from the source.  

The constant k can now be found in terms of I0: 

N
dIk

2

0
4π

=  

Substituting: 

2
2

0
cos

4 r
dI

a
kNIi

θ
π

=
Ω

=  

Observing that 
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we can put this expression in the coordinate system of the detector using 222
ddd yxr +=  

and 222
drdr += : 
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The cos3θ term (or its other representations) is called the incident intensity obliquity term 

and this has two components: the cos2θ term for an increase in distance from the source 

to the detector and the cosθ term for rays obliquely striking the detector.  The cos2θ term 

is really a 1/r2 term, the inverse square law for fallout of intensity.  The cosθ term can be 

easily visualized if you think of a flashlight beam hitting a wall obliquely – the oblique 

beam spreads the photons over a larger area of the wall. 

Oblique Path Integration 

If we look at some point in the object (x,y) at depth z, we see that it will strike the 

detector at a position ( ) ⎟
⎠
⎞

⎜
⎝
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z
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where 
z
dzM =)(  is the magnification factor for an object at depth z.  We can now write 

the attenuation coefficient at location (x,y) in terms of the output coordinate system: 
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Also, instead of integrating along the path r, we can rewrite the expression to integrate in 

z: 
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This expression says that if with integrate in z instead of r, the integral will need to be 

increased by 
2

1 ⎟
⎠
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⎜
⎝
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d
rd  in order to account of the longer path length in r (than z).  This 

term is sometimes known as the pathlength obliquity term. 
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Finally, we put it all together and we get an expression for the output intensity from a 

point source: 
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Example 

For the example, we will reduce the dimensions of the problem to 2 – y and z, and thus  

rd = yd.  Now, let’s look at a rectangular object at depth z0: 
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The expression for the image intensity will be: 
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The use of the magnification factor allowed the function of y to be converted to a 

function of z for each location yd in the detector plane.  The first rect in the above 

expression has width dL/yd and is centered at z=0.  The second rect has width W and is 

centered at z=z0.  The integral is the area under the overlap of these two rect functions. 
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The integral is: 
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If we ignore all obliquity terms, we get the following: 

 
Including the pathlength and incident intensity obliquity terms we get: 
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Under a parallel ray geometry we get the following: 

 
As we can see, the depth dependent magnification has significantly distorted the 

appearance of the object in the image.  We can define a fractional transition width be: 
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Thus, we can minimize the geometric distortions by placing the object as far from the 

source as possible (make z0 large). 

Finite (Large) Sources 

To gain an understanding of this issue, we will first consider a “thin” object.  

Specifically, we will let the attenuation coefficient be: 

)(),(),,( 0zzyxzyx −= δτμ  

and then: 



Noll (2006)  X-ray Notes 2: Page 13 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+−= ∫

)(
,

)(
1exp

)(
)(

,
)(

1exp),(

00

2

0

2

zM
y

zM
x

d
rI

dzzz
zM

y
zM

x
d
rIyxI

ddd
i

ddd
iddd

τ

δτ

 

We let 00 /)( zdzMM ==  the object magnification factor, and we will ignore the 

pathlength obliquity term to get: 
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where t = exp(-τ) is the transmission function.  Ignoring all obliquity terms we get: 
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Now we consider a finite source function s(x,y) and a very small pinhole transmission 

function: 

 
The image will now be an image of the source with the source magnification factor, 
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where k is a scaling factor that is proportional to the area of the pinhole, 1/d2, etc.  If we 

want the above Id to represent the impulse response of the system, we need to make the 

pinhole equal to δ(x,y) and account for all of the scaling terms [t(x,y) = δ(x,y) is not a 

realizable transmission function since t can never exceed 1, nevertheless, we will allow it 

for mathematical convenience.]   

 

The area of the pinhole is ∫∫ = 1),( dxdyyxδ .  The capture efficiency of the pinhole is the 

fraction of all photons emitted from the source that pass through the pinhole.  This will be 

equal to: 
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Letting the total number of photon emitted be: 
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and the total number of photons to get through the pinhole will be: 
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This must be the same number at the detector: 
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The scaling coefficient will therefore be: 
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Now we let the pinhole be at position (x’,y’), that is, t(x,y) = δ(x-x’, y-y’): 



Noll (2006)  X-ray Notes 2: Page 15 

 
The image of the source is not located at (xd=Mx’, yd=My’) where M is the object 

magnification factor.  Thus, the impulse response function is: 
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Now we can calculate the image for an arbitrary transmission function using the 

superposition integral: 
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Thus, the final image is equal to the convolution of the magnified source and the 

magnified object.  The object is blurred by the source function.   

The frequency domain equivalent is: 

{ } ),(),(
4

1),( 22 MvMuTmvmuS
z

yxIF dddD π
=  

 

Consider 2/0 dz =  which yields M=2 and |m|=1.  The object is magnified by a factor of 

2 and is blurred by the unmagnified source. 

 

 



Noll (2006)  X-ray Notes 2: Page 16 

Comments: 

1. The least blurring come when |m| is made small.  Thus, it is desirable to make the 

depth plane as far from the source as possible: z0  d.  Then |m| = (d-z)/z  0 and  

M  1.  As we was above, making z0  d also reduces geometric distortions.  The 

common practice for x-ray imaging, then, is to position the subject immediately next 

to or on top of the detector. 

2. If the thickness of the body is a limiting factor, then let d, z  ∞ .  This will make the 

system close to a parallel ray geometry with |m| =  0 and M  1.  The main 

problem with this approach is 2
0 /1 dI ∝   0 and SNR 0I∝   0. 

3. We would also like the make s(x,y) as small as possible to reduce blurring, but 

∫∫∝ dxdyyxsI ),(0  and making it small might reduce the number of photons created 

and thus reduce SNR. 

4. For a complex object, we can make ∑ −= )(),(),,( ii zzyxzyx δτμ  and each plane 

will have its own magnification factors.  This is not particularly useful, but it can give 

you some idea of how blurring and magnification might affect different parts of a real 

object differently. 

 

Overall System Response 

Now we can add the detector response to the other system elements: 
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The impulse response function will then be: 
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or for a circularly symmetric source function: 
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Object Blurring 

One issue is how much does the detector response blur the object.  It is important to 

realize that the detector blurs the magnified object.  Our intuition would be to make the 

object as large as possible by making M = d/z very large.  This would dictate moving the 

object as close to the source as possible, which is exactly opposite as what we would like 

to do to minimize source blurring. 

 

Consider also, that the magnified source also blurs the magnified object (source and 

object have different magnification factors).  One way to look at this is to examine the 

response in the coordinate system of the object (x,y) rather than the detector (xd,yd): 

( ) )(**,**,),( dMrhyxt
m

My
m

MxksyxI ⎟
⎠
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⎜
⎝
⎛=  

the effective magnification of the source is: 

d
zd

M
m −

=  

and the effective magnification of the detector response is: 

d
z

M
=

1  

These are in competition: 

– to make the source blurring small, make z  d  

– to make the detector response small, make z  0 

Comments: 

1. For most film systems, the detector response is very small and the source is 

almost always bigger.  Therefore, we would like to make z  d. 

2. For other kinds of systems, e.g. digital fluoroscopy systems, the detector 

resolution is much larger (e.g. 0.5 mm) and for these systems an intermediate z 

may be appropriate. 
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Detector Issues 

Earlier, we discussed the effect of source size and location on spatial resolution and 

magnification distortions in x-ray imaging.  Now we will discuss detector issues.  In 

selecting detector characteristics, we will have a resolution/SNR trade-off – this come 

primarily from the fact the thicker detectors have better SNR, but a larger impulse 

response. 

Conversion of x-Rays to Film 

Photographic films are generally not very sensitive to x-rays, so x-rays must first be 

converted to visible light by a scintillating screen: 

 
We will now develop expressions to represent the impulse response of the detector.  

Suppose we have a x-ray photon enter the scintillating screen and it interacts at some 

depth (which we’ll call x) and generates a shower of light photons isotropically from a 

point of which some eventually strike the detector.  The geometry is essentially the same 

as a point x-ray source striking the detector.  Notably: 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
=

=

rx
xh

hrh θ

 

but 2)0( −∝ xh  by the inverse square law, thus: 

( ) 2/322
)(

rx
xkrh

+
=  

The corresponding frequency domain equivalent is: 
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)2exp(2)( ρππρ xkH −=  

Without loss of generality, we will select k to normalize this expression to have a peak 

frequency response of 1.  

)2exp()( ρπρ xH −=  

Notice that right next to the film (x  0): 

),()(
1)(

yxrh
H

δ
ρ

→
→

 

Finally, we can calculate an average frequency response by taking: 

∫=
d

dxxpxHH
0

)(),()( ρρ  

where p(x) is the probability density function for an interaction occurring at depth x.  To 

determine this, we first recognize that the scintillating screen has its own linear 

attenuation coefficient μ.  The number of photons that pass through at any depth x is: 

)exp()0()( xNxN μ−=  

and the number absorbed will be: 

( ))exp(1)0()( xNxNabs μ−−=  

The total fraction absorbed in the detector is: 

)exp(1 dμη −−=  

where η is “detector efficiency”, which increases with d.  We can define the cumulative 

distribution function as: 

η
μ )exp(1)( xxP −−

=  

and thus, the probability density function is: 

)exp()( x
dx
dPxp μ

η
μ

−==  

The average frequency response is then: 

( )))2(exp(1
)2(

)exp()2exp()(
0

μπρ
μπρη

μ

μρπ
η
μρ

+−−
+

=

−−= ∫

d

dxxxH
d
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For large ρ, this expression looks like: 

πηρ
μρ

2
)( →H  

The high spatial frequencies play a large role in dictating the shape of the impulse 

response close to the peak (e.g. )(rh  near r = 0) and the low spatial frequencies will 

dictate the appearance of the tails of )(rh .  Thus, near r = 0, the average impulse 

response will take on the shape: 

r
rh

πη
μ

2
)( ≈  

(recall the inverse Fourier-Bessel transform of 1/ρ is 1/r.) 

The average impulse response, then, is very peaked (infinite in amplitude).  One 

consequence of this is the common measures of resolution or blurring (e.g. like FWHM – 

Full Width at Half Maximum) have no meaning. 

 

One way to evaluate the performance of the detector system is to define a cutoff 

frequency, ρk, as the frequency at which the response falls to )0(Hk .  For smaller values 

of k, this is: 

 

kk πη
μρ

2
=  

This, in essence, give the maximum spatial frequency that can be detected where k 

represents the level of detectability.  For example, k = 0.1 is a common value and having 

a higher cutoff frequency, ρk, is desired to improve spatial resolution.  We can now begin 

to see the SNR resolution trade-off.  As d increase, the detector efficiency η, increases 

which leads to more x-ray photons being detected and thus the SNR improved.  This, 

however, causes ρk to be smaller resulting in lower spatial resolution.  
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Recall that the SNR is proportion to the square root of the number x-ray photons and in 

order to see them, they must be detected – so the SNR is proportional to the root of the 

number x-ray photons that are detected.  SNR is therefore proportional to η . 

Example 

Let’s look at a detector with the μ = 1.5 mm-1 and d = 0.25 mm, and we will use k = 0.1. 

18
31.0

−=

=

mmkρ

η
 

and the limiting spatial resolution is approximately: 

m
k

μ
ρ

1251
=  

Now if we double the thickness to d = 0.5 mm: 

15.4
53.0

−=

=

mmkρ

η
 

and the limiting spatial resolution is approximately: 

m
k

μ
ρ

2201
=  

Comments:   

1) In general, increasing m improves both η and ρk. 

2) What happens if we put the film on the back of the scintillator?  Is the response 

better or worse? 

Two Screen Detectors with Double Emulsion Films 

To ease the tradeoff between resolution and SNR, we can use a double emulsion film 

with a two screen scintillator: 
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We assign a coordinate system here to ease our analysis: 

 
Since no interaction occur in the film, we can neglect its thickness: 

 
For interactions occurring in the first screen ( 10 dx ≤≤ ): 

( ) 2/322
1

1)(
rx

xkrh
+

=  
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which yields a frequency response of: 

))(2exp(
)2exp(),(

1

1

xd
xxH

−−=
−=

πρ
πρρ

 

For interactions occurring in the second screen ( 21 dxd ≤≤ ): 

))(2exp(
)2exp(),(

1

2

dx
xxH

−−=
−=

πρ
πρρ

 

Finally: 

⎩
⎨
⎧

<≤−−
<≤−−

=
211

11

for  )),(2exp(
0for  )),(2exp(

),(
dxddx
dxxd

xH
πρ
πρ

ρ  

where d = d1 + d2.  The detector efficiency is again:  

)exp(1 dμη −−= . 

We can now find the average frequency response in a similar manner as before: 

⎥
⎦

⎤
⎢
⎣

⎡
−

+−−−
+

−
−−−

=
μπρ

μρπμ
μπρ

ρπμ
η
μρ

2
)2exp()exp(

2
)2exp()exp()( 2211 dddddH  

For large ρ, this expression looks like: 

[ ])exp()exp(
2

)( 21 ddH μμ
πηρ
μρ −+−→  

If we take d1 = d2 = d/2, then:  

[ ] [ ]2/12/1 )1(2
2

)exp(2
2

)( η
πηρ
μμ

πηρ
μρ −=−→ dH  

and the cutoff frequency will be: 

[ ]2/1)1(2
2

η
πη
μρ −=

kk  

where [ ]2/1)1(2 η−  is the improvement factor over the single emulsion film system. 

Example 

Let’s look at the previous example with a detector with the μ = 1.5 mm-1, d = 0.25 mm, 

d1 = d2 = d/2, then and we will use k = 0.1. 

[ ]
1

2/1

13
7.1)1(2

31.0

−=

=−

=

mmkρ

η

η
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and the limiting spatial resolution is approximately: 

m
k

μ
ρ

761
=  

Alternatively, we can hold ρk constant by setting 4.0≈d  mm: 

m

mm

k

k

μ
ρ

ρ

η

1251

8

45.0

1

=

≈

=

−  

 


