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Ultrasound Notes, Part II - Diffraction 

 

Analysis of the Lateral Response 

As discussed previously, the depth (z) response is largely determined by the envelop function, 

a(t).  In the following sections, we will concern ourselves with deriving the beam pattern 

),( zxxB z− .  Consider the case of a focused US beam.  How small of a spot can the beam be 

focused?  Can it be infinitely small?  What happens in depth planes other than the focal plane?  

What parameters control the resolution? 

 

The answers to these questions are given by a diffraction analysis. 

 

We will examine diffraction several different ways: 

1. First, we consider a “steady-state” analysis, in which we ignore the envelope function.  

We will do this in both rectangular and polar coordinates. 

2. We will then put the envelop function back into the equations and see its effect. 

3. Finally, we go back to the “steady-state” analysis, but will consider an array transducer- 

that is, the transducer will be made of individual elements. 

 

Diffraction  

So, what is diffraction? – Historically, has meant optical phenomena that could not be explained 

by reflection (mirrors) or refraction (lenses).  More generally, it has come to mean phenomena 

that can be caused by an interaction of wavefronts.  The classic case is monochromatic light 

passing through two pinholes: 
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Diffraction in Ultrasound: 

 
In these images, the transducer is indicated by the black line along the left margin and the 

transmitted wave is curved to focus at a particular point.  Previously, we discussed the depth 

resolution was determined by the envelope function (in the case a Gaussian).  The lateral 

localization function is more complicated and is determined by diffraction. 

 

Steady-State Diffraction in Ultrasound.  Our model has the following characteristics: 

1. Every point on the transducer (aperture) can be modeled using a spherical wave model, 

modified by a directional dependence term (cos θ) that corresponds to the transducer 

insertion efficiency.  

2. We start our analysis by assuming a steady state model – that is, we will forget, for the 

moment, that this is a pulsed system and ignore the time propagation of both the pulse and 
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the wavefronts.  By ignoring time, we will, in essence, take a snapshot look at the wave 

fronts.   

3. In this analysis, we will use the analytic signal (complex) representation for the true pressure 

wave, that is, we will use ikre  instead of krcos , where ≡==
λ
πω 20

c
k  wavenumber. The 

steady-state description of the pressure wave is then: 

    θcos)(
r
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where θ is the obliquity angle. 

  

θ
a

-a

Source
Aperture z

 
4. We will neglect attenuation and perform the analysis in 2D (ignoring the y dimension).   
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At some depth position z in the object and at a lateral position xz, the pressure signal will be the 

superposition of all point sources in the aperture.  The superposition of sources of spherical 

wavefronts is known as the “Huygens-Fresnel” principle.  The pressure wave functions is: 
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The variables x0 and xz are coordinates in the source plane and the plane at depth z, respectively.  

Simplifying a little, and we get: 
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For any reflector at position (z, xz) (assume R=1), the pattern reflect to the transducer is exactly 

the same.  This symmetrical relationship is known as the Helmholtz reciprocity theorem.  The 

pressure wave at the source will be: 

( ) ( ) ( )2
0

02
0

2
0

0

000

),()(
z

ikra

a z

rik

z

ikr

zz r
zexd

r
ze

r
zexzpxp

zzz

′
′

== ∫
−

′

 

The received signal can be represented as the integrated complex signal over the transducer: 
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(equivalent to first part of Macovski, 9.25) 

 

Letting x be the position of the transmitter, the above equation represent the combined 

transmit/receive beam pattern for an ultrasound system: 

[ ]2),(),( zz xxzpzxxB −=−  

 

 

Fresnel Zone.  Whenever the depth of a reflector is substantially larger than the lateral 

displacement from all points in the source (transducer aperture):: 
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then the Fresnel approximation holds.  Specifically, the zikre 0  term can be simplified using: 
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[  Here, we used the Taylor series expansion of uuf += 1)(  expanded around u, keeping the 

first two terms uuuf
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In addition to the usual (above) Fresnel approximation, we will simplify the smoothly varying 

scalar term (results are less sensitive to this approximations to this term): 

( ) zr
z

z

1
2

0

≅  

Applying both approximations, we get: 
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Most ultrasound systems are assumed to operate in the Fresnel zone (where this approximation 

holds).  Previously, p(z, xz) was the superposition of spherical wavefronts.  With the Fresnel 

approximation, this is replaced with quadratic wavefronts.   

 

The make our solution more general, we now replace the source function with a potentially 

complex driving function:  
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Our new pressure function for position (z, xz) is: 
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This says that the pressure pattern can be represented by the convolution of the driving function 

with a z-dependent, quadratic phase function (equivalent to Macovski, 9.31).  This form is not 

particularly useful, but we can rewrite the pressure function so are more useful expression: 
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Fraunhoffer Zone.  Even farther away from the transducer, another approximation can be made.  

For the “Fraunhoffer approximation,” we require that: 
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With a simple substitution, zxu z λ= , we get: 
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(equivalent to Macovski, 9.39) 

 

That is, the field pattern in the Fraunhoffer zone (often call “far field”), is Fourier transform of 

the aperture (transducer) function.  In this zone, the wavefronts arriving at (z, xz) from any point 

on the transducer will no longer look spherical or quadratic, but will look planar (linear in 2D 

case).   

 

Is the Fraunhoffer zone common?  Let’s look at an example:  For a = 1 cm and f0 = 1.5 MHz, 

we’ll get λ = 1 mm and the Fraunhoffer zone will be for z > 40 cm (outside the body). 

 

Fresnel Again.  While most ultrasound systems do not function in the Fraunhoffer zone, but it is 

instructive to examine the equations governing the Fraunhoffer zone because by a simple 



Noll (2006)  US Notes 2 page 7 

modification, the Fresnel zone can be analyzed using this approximation.  For this, let’s define an 

effective aperture (transducer) function: 

z
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Keep in mind, that the effective source function is z-dependent.  The Fresnel approximation can 

now be represented as: 
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Beam patterns 

The beam pattern changes as one moves from near field to far field (Fresnel to Fraunhoffer 

zones). 

 
The approximate widths of these regions is given here: 
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- In US we work mainly in the Fresnel zone, though in some cases also the Fraunhoffer zone.  

For example, for a 2 cm transducer (a=1 cm), f0=1.5 MHz, λ = 1mm, the far field starts 

roughly at z = (2a)2/λ = 40 cm.  Also, consider that at z = 40 cm, λ z/2a = 2 cm. 

- For RADAR and especially, radio telescopes  Fraunhoffer zone. 

 

Complex Transducer Functions 

Topic 1: Focussing 

Let’s consider a true complex driving function in the Fresnel zone: 
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This is the same result as the Fraunhoffer zone! 

 

One main difference between the Fresnel and Fraunhoffer zones is that in the Fresnel zone 

wavefonts from different parts of the transducer arrive at a point in front of the transducer at 

different times, whereas in the Fraunhoffer zone they are assumed to arrive at the same time. 
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A complex, focusing transducer function will lead to all wavefronts arriving at the same time at a 

point at depth z0, in a manner similar to the Fraunhoffer zone.  In essence, we are attempting to 

focus our wavefronts to a point: 

 
- By pre-encoding the phase of the wavefront, we can eliminate the quadratic phase at depth z0 

in the object (but only for depth z0).  That is to say, we can focus only a single depth plane. 

- How well can we focus?  To a point?  No, the size is diffraction limited by the shape of  

     { }
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Consider the preceding example of a 2 cm transducer (a=1 cm), f0=1.5 MHz, λ = 1mm, and a 

far field z > (2a)2/λ = 40 cm.  Now let z0=5 cm.  The width of the response is roughly 

5.2
2

0 =
a
zλ mm.  This is a much smaller beam cross section than the roughly 2a = 2 cm that 

we had for the uniform wavefront case in the Fresnel zone. 

- For depth planes away from z0, we have: 
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and we will have a new beam pattern that might look something like this: 
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- Any drawbacks?  Yes – worse performance in the far field. 

- A fixed focus system can be done using mechanical material properties.  For example, 

focusing can be accomplished by using materials with fast propagation velocities at the 

transducer edges and slower velocities at the center.  This will lead the edges having the 

phase be advanced relative to the center. 

- For a fixed (mechanical) focus system, the beam pattern is the same for transmit and receive: 

    [ ]2),(),( zz xzpzxB =  

- In an array system, focusing can be done electronically.  Here it is possible to have different 

aperture functions for transmit and receive, e.g. sT,eff(x0) and sR,eff(x0).  Then: 
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and similarly for hR. 

 

Topic 2: Beam Steering 

Suppose we wish to shift the focal point laterally in xz.  Let’s choose some depth plane (z0) and a 

lateral shift (xz0) and introduce another new complex driving function with a linear phase 

variation across the phase of the transducer: 
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- At z= z0, the response pattern is shifted by xz0. 

- For arbitrary z, the response is shifted by g(xz) = 0
0

zx
z
z , a line through the center of the 

transducer: 
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Steady-state diffraction  

 

The steady-state approximation results from fixing a point in time and allowing the pressure 

wave to exist over all space.  In the plots below, we can see that we are building the diffraction 

pattern from an assumption of spherical waves emanating from points on the transducer.  As we 

add more elements, the beam pattern takes shape.  By adding phase to these patterns, we can 

steer the beam in one direction or another. 

 

 
 

Along this line (at the focal depth), we have a 

Fourier transform relationship between the 
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Diffraction in Polar Coordinates.  We start out with the same basic equation for a steady-state 

spherical wave: 

θcos)(
r
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ikr
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where ≡==
λ
πω 20

c
k wavenumber, and θ is the obliquity angle.  Again, we will neglect 

attenuation and perform the analysis in 2D (ignoring the y dimension).   
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At some depth position z in the object and at a lateral position xz, the pressure signal will be the 

superposition of all point sources in the aperture. The pressure wave functions is: 
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Fresnel Zone.  Whenever the depth of a reflector is substantially larger than the lateral 

displacement from all points in the source (transducer aperture):: 

2
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then the Fresnel approximation holds.  Specifically, the zikre 0  term can be simplified using: 
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We will use the Taylor series expansion of uuf += 1)(  expanded around u, keeping the first 

three terms: 
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by keeping only the quadratic terms.  Thus:  
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In addition to the usual (above) Fresnel approximation, we will simply the smoothly varying 

scalar terms (results are less sensitive to this approximations to this term): 
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Applying both approximations, we get: 
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In the above expression, we can think of the three exponential terms in the following way: 

• ikre  - This is the propagation term; phase accumulation with distance from the transducer. 

• θsin0ikxe−  - This is the lateral deflection or beam steering term. 

• 
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r
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- This is the wavefront curvature (quadratic) or focusing term. 

 

 

Fraunhoffer Zone.  In the far field, the wavefront curvature term can be neglected if: 

( )
π

θ
<<<

r
ak

r
x

k
22

cos 22
0    or equivalently,   

λ

2ar >>  

and thus: 

{ }
λ

θ

θ

θ

θθ

sin

0
sin

0

)(cos

)(cos),( 0

=

−

ℑ
⋅

=

⋅
= ∫

u

ikr

ikx
ikr

xs
r

e

dxexs
r

erp

 

In the far field, the beam pattern is the Fourier transform of the aperture function evaluated in 

angular coordinates.  Clearly for small angles, 1cos ≈θ , zr ≈ , and z
xz≈θsin , which makes this 

representation identical to the Cartesian version of the Fraunhoffer approximation. 
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Focusing and Beam Steering in Polar Coordinates in the Fresnel Zone 

To focus at depth r0 and steer to angle θ0: 

 
a complex aperture function must be used.  For example, let  
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The amount of phase applied across the face of the transducer for focussing is related to 

( )2
00 cosθx  rather than 2

0x  for an off-axis focal point.  This is because the transducer face 

appears smaller by a factor of cosθ0 due to obliquity. 
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The expression for the pressure for the Fresnel zone at depth r0 is then: 
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Again, this is just like the expression for the Fraunhoffer zone.  Not that the origin of the beam is 

now at located where (sinθ – sinθ0) = 0, which occurs at (θ = θ0) for –π/2 < θ  < −π/2.  For 

example, if |s(x)| = rect(x/2a), then 
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Diffraction Viewed as Propagation Delays 

Thus far, we have studied diffraction in the steady state, that is, we have examined the effect of 

wavefronts adding constructively or destructively.  We will again look at diffraction from a 

slightly different viewpoint – that of diffraction being caused by differences in propagation delay 

from the source positions to reflector: 

 
- This formulation is a preview to see how one might focus in an array system. 

 

We define the propagation delay as: 
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After lumping a bunch of terms into a constant K’, we get the following description of the arrival 

of a pulse at some point in the object: 
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Suppose we add some delay (τ’) to the pulse for each position along the transducer to focus at a 

point (xz=0, z0): 
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If we looking direction that the focal point, (xz=0, z0): 
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all wavefronts come together to add constructively. 

 

Looking at and (z0, xz): 
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Observe that similarities between this and the formulation of the Fraunhoffer zone expression 

from the first diffraction handout: 
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In essence, we have the same formulation result as focussing in the Fresnel zone (same as 

Fraunhoffer zone), but with the inner part of the diffraction integral weighted by shifted versions 

of the envelop function, a(t). 

 

Thus, focussing/complex driving functions can be induced by delays at the transducer (for both 

transmit and receive). 

 

Broadband or Wideband Diffraction 

Just a few comments the above diffraction formulation: 

- The FT diffraction relationship depends on the summation (either constructive or destructive) 

to produce the field pattern.  Thus, the beam cross-section is no longer exactly the FT of the 

aperture function (unless the pulses, a(t), are much longer than the integral function (in which 

case it can be pulled outside the integral.   

- For very short pulses, non-alignment of the envelope ( a(t) ) functions will lead to incomplete 

interaction of the wavefronts and the beam pattern is thus changed.  The pulses, a(t), will 

tend to reduce the integral which might lead to less perfect suppression of out of beam 

signals. 

- Thus, as we make the pulse shorter, we increase degradation in the lateral diffraction pattern, 

but get much improved depth localization.   

- While the lateral resolution is somewhat degraded by short pulses, a bigger issue is that as we 

move off-axis, the pulses no longer overlap and this leads to a change in the point spread 

function to something more like an “X” pattern.  

- Here is a description of the effect: 

- Close to axis, the envelopes overlap and we get the expected pattern of the steady state 

approximation. 
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- Off-axis, at the focal depth, we get fewer overlapping envelopes and weaker suppression.  

When we move far enough off-axis so that the number of envelopes gets smaller and the 

response is quite weak.  For some pulse lengths, this response can be a bit cleaner than 

the steady-state approximation. 

- Off-axis and in the arms of the “X” pattern in particular, we have even fewer overlapping 

envelopes for the transducers at the edges of the array and we get even weaker 

suppression (interference) of the pulses.  This can be seen in this figure: 

 

 
- Macovski, also does an analysis of this effect (see Wideband Diffraction, pp. 191-195).  The 

results are summarized in this figure (same as above, but linearized): 

    

End A 

End B 

Along this line, there is 
incomplete cancellation of 
the wavefront from the end 
transducer B.  This leads to 
more signal along this arc. 

Along this line, there is 
incomplete cancellation of 
the wavefront from the end 
transducer A.  This leads to 
more signal along this arc. 
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where t’ is the depth axis and φ is the angle away from the focal point.  This has the 

appearance of a “X”-like pattern.   

- We will see examples this artifact for point objects in the US project. 

 

Broadband Diffraction 

In the following figures, we can see how the point spread function degrades as the pulse length 

gets shorter.  For the shortest pulses, there is no wavefront interaction since there is fewer than 

one cycle in the pulse function. 

 

 
 


