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Notes on MRI, Part III 

The 3rd Dimension - Z 

The 3D signal equation can be written as follows: 
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where M(u,v,w) is the 3D FT of m(x,y,z).  In the spin-warp method for 2D acquisition, one line at 

a time is acquired in the 2D Fourier domain (or k-space).  This method is easily extended to 3D 

by using phase encoding in two dimensions (rather than 1) and frequency encoding in the 

remaining dimension: 

 
This results in the acquisition of a cubic data set one line at a time: 
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The sampling requirements and spatial resolution requirements are the same as they would be for 

the 2D spin-warp method (FOVz = 1/Δkz; Δz = 1/Wkz).  If there are Ny and Nz samples in the y and 

z directions, respectively, then the total time to acquire the 3D volume is Ny*Nz*TR.  For 

example, for Ny = Nz =128 and TR = 33 ms, the overall image acquisition time is 9 min – rather 

long! 

 

Slice Selective Excitation 

The most common approach for dealing with the 3rd (z) dimension is to use slice selective 

excitation.  This is done by applying a z-gradient so that the resonance frequency varies in the z-

direction and applying a bandpass RF pulse to excite only the those spins whose resonant 

frequency lies within the band: 

 
We will again solve the Bloch equations for this specific case.  We will let B1 be a time-varying 

magnetic field rotating at ω0.  For this analysis, we’ll let the rotating frame be at ωframe  = ω0.   
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A z-gradient is applied, so the component in the z-direction is: 
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and the net effective applied field is: 
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The Bloch equation for this case reduces to the following: 
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What we would like to know is how the magnetization, Mrot, varies as a function of z position 

following the application of the specified B1 field.  This is, in general, a very difficult equation to 

solve because it is non-linear. 

Small Tip Angle Approximation 

One particularly useful approach to the solution to the above Bloch equation is to use the “small 

tip angle approximation.”  Here, we assume the B1 produces a small net rotation angle, say,  
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In this case, we can assume the z component of the magnetization, mz, is approximately equal to 

m0 during the RF pulse.  Essentially, we are saying that: 
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Under this assumption, 0=
dt

dmz , mz(t) = m0, and thus mz(t) = m0.  The above Bloch equation can 

then be rewritten as: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

0

,

,

1

000
)(0

00

m
m
m

tBzG
zG

dt
d

roty

rotx

z

z

γγ
γ

rotM  

We now would like to solve for mxy,rot(z,t) = mx,rot(z,t) + i my,rot(z,t).  We can then write a 

differential equation using for the transverse component: 
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Observe that iγGzz is a constant with respect to time and thus we have a first order differential 

equation with a driving function iγB1(t)m0.  For initial condition, mxy,rot(z,t) = 0, the solution to 

this differential equation can be shown be: 
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Again, we want the solution to this differential equation at the time of the end of the RF pulse, 

which we define as τ, mxy,rot(z,τ): 

 
We now make a variable substitution, 2/τξ −=s .  We also assume that the RF pulse that is 

symmetrical (even) around τ/2 and that it is zero outside of the interval [0,τ].  The magnetization 

can now be described as: 
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For symmetrical RF pulses, the forward and inverse FT are the same.  Thus, under the small tip 

angle approximation, the slice profile (variation of mxy,rot with z) is related to the spectrum of the 

RF pulse: 
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and zGf zπ
γ
2

=  is the conversion between spectrum and the z location: 

 
We’re almost there, but we still have some undesired phase variation in the z-direction,  

)2/exp( τγ zGi z− , the can lead to undesired phase destruction when integrated by the RF coil. 

 
How is this fixed?  We simply apply a negative Gz for a period τ/2.  This is often called a slice 

rephasing pulse. 

 
This will result in phase accumulation of: 
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and thus: 
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There is a k-space picture to this.  For this, we assume that the RF pulse occurs instantaneously a 

the center of the pulse (at τ/2) and we begin accumulation area in k-z after that point.  By 

applying a negative gradient for the same duration as the last half of the pulse, the areas cancel 

and the k-space location in the z direction is returned to the origin. 

 
Notice for an RF pulse applied along the real (i’) axis, the magnetization will end up along the 

imaginary (j’)axis.  Also observe the flip angle at the center of the slice is: 
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Previously, we discussed the that transverse magnetization after an α pulse was m0sinα, but for 

small α, sinα ~ α.  So here, the transverse magnetization is also m0α. 

 

Example – the sinc RF pulse 

Consider an RF pulse roughly in the form: 

⎟
⎠
⎞

⎜
⎝
⎛ −

=
T

tAtB 2/sinc)(1
τ  

which has a spectrum: 

{ } TBW
BW

fATsBF /1  where,rect)2/(1 =⎟
⎠
⎞

⎜
⎝
⎛=+τ  

The magnetization will be: 

⎟
⎠
⎞

⎜
⎝
⎛
Δ

=⎟
⎠
⎞

⎜
⎝
⎛=

z
zmi

BW
zGATmizm z

rotxy rect
2

rect)2/3,( 00, α
π

γγτ  



Noll (2006)  MRI Notes 3: page 7 

where the slice thickness is 
zG

BWz
γ
π2

=Δ  and flip angle is ATγα = . 

Putting Slice Selection with the Signal Equation 

Let’s define our slice profile function: 
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Now we go back to the case where we have a 3D distribution of magnetization by substituting 

im0 = m(x,y,z) and putting it into the signal equation (again the RF coil integrates across the 

object): 
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Here we are performing 2D imaging while integrating across the slice profile. 

Larger Flip Angles 

The above analysis was for small flip angles, e.g. α < π/6, but it turns out the pulses created 

using the small tip angle approximation, also perform well for large flip angles (e.g. 90 degrees).  

Here, a better approximation for the transverse component of the magnetization is: 

( ))(sin)2/3,( 0, zpimzm rotxy =τ  

although due to the non-linearity of the Bloch equations, an exact solution would require 

numeric simulation of the RF pulse. 

Mutlislice Imaging 

The most common way to image 3D volumes in MRI uses interleaved slice selective excitation.  

Here, slice 1 is excited and part of the k-space data are acquired, then slice 2 is excited and 

acquired, then slice 3 and so on.  After all have been acquired, we come back to slice 1 to acquire 

additional parts of the k-space data, etc.  When one slice is excited, the others are not perturbed 

and thus each slice has it’s own T1 recovery time (TR).  Slice selection allows the efficient use 

of longer TR’s by simultaneously acquiring many slices: 



Noll (2006)  MRI Notes 3: page 8 

 
For a slice-selective, 2D spin-warp acquisition the overall acquisition time will be Ny*TR.  For 

example, if we are interested in acquiring a T1-weighted image with 20 slices and a 500 ms TR 

and 128 phase encoding lines in k-space, the total acquisition time for these 20 slices is Ny*TR = 

~ 1 minute. 

 

Spin Echo Pulses  

Earlier we described 180 degree RF pulses for purposes of inverting the mz magnetization.  Let’s 

consider the effect of a 180 degree B1 pulse applied to the x’ axis in the rotating frame on a 

magnetization vector, m = [mx, my, mz]: 

 
For t180- and t180+ being the time just before and after the 180 degree pulse, the magnetization 

will be: 

mx,rot(t180+) = mx,rot(t180-) 

my,rot(t180+) = -my,rot(t180-) 

mz,rot(t180+) = -mz,rot(t180-) 
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Now, let’s look at a magnetization vector that is lying in the transverse plane (mz = 0). Suppose 

the vector was originally positioned on the x’ axis and phase, φ(r, t) has accumulated due to ΔB 

terms.  The phase after the 180 degree pulse will be: 

φ(r, t180+) = -φ(r, t180-) 

or equivalently: 

mxy,rot(t180+) = mxy,rot(t180-)* 

 
When imaging, the phase term results from gradients and can be written as: 

φ(r, t) = 2π(k(t).r) 

and thus: 

k(t180+) = -k(t180-). 

What this says is that a 180 degree pulse will invert the location in k-space.  Spin-echo 180 

degree pulses are at times known as “phase reversal” or “time reversal” pulses. 

Spin-echo Spin-warp Pulse Sequence 

Consider this pulse sequence: 
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Here the 180 degree pulse inverts the position in k-space as shown here: 

 

Why do spin-echo pulses? 

Magnetic field inhomogeneity can results in intra-voxel signal dephasing.  Consider a magnetic 

field inhomogeneity function ΔB(r).  The effective magnetic field (rotating frame) will be: 

Bz,eff = G(t).r + ΔB(r) 

and the corresponding phase function is: 

φ(r, t) = 2π(k(t).r) + Δω(r)t 

when integrating Δω(r)t across a voxel some signal may be lost.  The spin-echo pulse brings this 

phase back together again.  Consider the following example: 

 
Ignoring the k-space term, the phase accumulation at the time of the 180 will be: 

φ(r, t180-) = Δω(r)t180 

and just after the 180 is will be: 

φ(r, t180+) = -Δω(r)t180 
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At this point the phase continues to accumulate and if we look at time 2 t180, we will have a total 

phase accumulation of: 

φ(r, 2 t180) = φ(r, t180+) + ω(r)t180 = -Δω(r)t180 + Δω(r)t180 = 0 

That is, all the phase accumulation due to magnetic field inhomogeneity cancels to zero at 2 

times the time of 180 degree pulse, or 2 t180.  

 
The size of the signal in the transverse plane (|mxy|) will look like this: 

 
As shown here, the signal comes back together again in an “echo” at 2 t180.  The more rapid 

decay of the signal due to T2 decay plus inhomogeneity effects is given another decay term – 

T2*.  When all dephasing is cancelled by the spin-echo, however, the T2 decay still remains. 

Noise in MRI 

Sources of noise in MRI 

- Thermal noise from body – thermal vibration of ions, electrons, etc. [Dominant source of 

noise in most MRI systems] 

- Quantization noise in the A/D devices 
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- Preamp/electronic noise 

- Thermal noise in RF coil 

 

Some comments on thermal noise: 

- Not related to the NMR  

o Present with or without B0, RF, Gradients 

- Uniform spectral density (near ω0) – white 

- Comes from the whole body – amount of noise depends on the amount of the body to 

which the receive coil is sensitive 

 

Noise in Spin-warp imaging – consider the frequency encoding gradient, Gx, and assuming that 

the field of view is FOVx, then the bandwidth of the receiver will be set to: 

t
FOVGBW xx Δ

==
1

2π
γ . 

 
Noise characteristics: 

- Noise is zero-mean and additive ntktkMts yx += ))(),(()(  

- Samples are independent (due to the whiteness of the spectrum) 

- Gaussian distributed (it results from large numbers of vibrating particles) 

- Bi-variate - independent noise in real + imaginary (the channels of the complex 

demodulator are orthogonal) (n = ni + i nq) 
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- Noise variance for each sample is proportional to the presampling bandwidth BWn ∝
2σ : 

   
- A 1D image is reconstructed by an N point DFT: 
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where Xm are samples with independent noise having variance 2
nσ .  The noise in image 

pixels xn will also be zero-mean, additive, independent, bi-variate Gaussian noise, but 

with variance Nn /2σ .  The derivation of the variance is: 
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- A 2D image is reconstructed by a Nx by Ny inverse 2D DFT.  Again the resultant noise in 

the image will be zero-mean, additive, independent, bi-variate Gaussian noise, but with 

variance )/(2
yxn NNσ . 

 

Signal to Noise Ratio 

- The noise/pixel in a 2D image will be then be: 
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where TA/D is the total time the A/D is sampling. 
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- The signal (xi,j) represents the total amount of magnetization in a particular voxel (recall 

that ∑∑ == )0,0(0,0, MXx ji .  Thus the signal is proportional to m0V where V = 

ΔxΔyΔz is the “voxel” volume and Δz is the slice thickness. 

- The signal to noise ratio is then: 

  DA
n

TVmsignalSNR /0=∝
σ

 

(m0 is proportional to ρ - the concentration the nucleus of interest, B0, and γ.) 

 

Examples 

Case 1: Suppose we find that we have an image that is too noisy, so we average together 

neighboring pixels to achieve Δy’ = Δy*2 (all other dimensions remain the same and Δt hasn’t 

changed either).  Since by averaging in image domain, we effectively are discarding samples in 

k-space, TA/D’ = TA/D/2 and: 

orig
DA SNRTyxSNR 2

2
2' / =ΔΔ=  

That is, we’ve improved the SNR by sqrt(2). 

 

Case 2: Suppose we knew in advance that the SNR of an image was too noisy, and we 

compensated by acquiring a lower resolution Δy’ = Δy*2 (all other dimensions remain the same) 

but we’ve compensated so as to preserve the original acquisition time TA/D’ = TA/D.  Thus: 

origDA SNRTyxSNR 22' / =ΔΔ=  

From these two examples, we see that it is preferable to anticipate the SNR that is necessary for a 

given image an set the acquisition accordingly.  We don’t achieve as good of an SNR by 

smoothing the image after it is acquired than if we had acquired at the appropriate resolution 

originally. 

 

Case 3: Suppose we average each k-space sample 2 times (and thus increase our image 

acquisition time by a factor of 2).  There the resolution is the same and TA/D’ = 2 TA/D, and: 

origDA SNRTyxSNR 22' / =ΔΔ=  
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Averaging increases the SNR by sqrt(N) where N is the number of averages. 

 

Case 4:  Suppose we increased the field strength by a factor of 2, B0’ = 2 B0.  Then  

origSNRSNR 2'=  

Keeping resolution constant, we can use this additional SNR to reduce the number of averages 

(and thus overall imaging time) by a factor of 4!  (Keep in mind that in medical imaging 

time=money.) 


