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Notes on MRI, Part 1 

Overview 

 

Magnetic resonance imaging (MRI) – Imaging of magnetic moments that result from the 

quantum mechanical property of nuclear spin.  The average behavior of many spins results in a 

net magnetization of the tissue. 

 

The spins possess a natural frequency that is proportional to the magnetic field.  This is called the 

Larmor relationship: 

Bγω =  

Any magnetization that is transverse (perpendicular) to an applied magnetic field B will precess 

around that B field at the Larmor frequency. 

 

In MRI there are 3 kinds of magnetic fields: 

1. B0 – the main magnetic field 

2. B1 – an RF field that excites the spins 

3. Gx, Gy, Gz – the gradient fields that provide localization 

 

The major steps in a 1D MRI experiment are (we’ll do 2 and 3 acquisitions later): 

1. Object to be imaged is placed into the main field, B0.  Subsequently, the object develops a 

distribution of magnetization, m0(x,y,z), that is to be imaged.  This magnetization is aligned 

with B0 (in the z-direction). 

 
2. A rotating RF magnetic field, B1, is applied to tip the magnetization into the plane that is 

transverse to B0.  While in this plane, the magnetization precesses about the main field at a 
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frequency proportional to the strength of the main field (ω = γB).  This precessing 

magnetization creates a voltage in a receive coil, which is acquired for subsequent 

processing. 
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3. Gradient magnetic fields are applied to set-up a one-to-one correspondence between spatial 

position and frequency.  For example, if we apply an x gradient, Gx, the magnetic field 

distribution is: B(x) = B0 + Gx
.x, and thus: 

  ω(x) = ω0 + γGx
.x. 

By performing Fourier analysis on the received signal we can localize the magnetization in 

1D: 
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4. Following excitation, the magnetization in the transverse plane (x-y)decays away with time 

constant T2, e.g. 2/
0)( Tt

xy emtm −= , and the z-component recovers with time constant T1, e.g. 

)1()( 1/
0

Tt
z emtm −−= .  After this, the steps is repeated many times. 

 
 

NMR Physics 

The physical basis of Nuclear Magnetic Resonance (NMR) centers around the concept of a 

nuclear “spin,” its associated angular momentum and its magnetic moment. 

 

What is nuclear spin?  “Spin” is a purely quantum mechanical quantity with no direct classical 

analogue (though we will talk about one anyway).  We call it spin because this quantity give 

nuclei a net angular momentum (it also gives a nucleus its magnetic moment as well). 

 

Consider a proton or hydrogen (1H) nucleus.  Spin will give this nucleus a “spin angular 

momentum,” s, and a magnetic moment, μ, which are related though a proportionality constant, 

γ, in the following equation: 

μ = γ s 

s and μ are vector quantities and like many things in quantum mechanics, they can only take on 

discrete values. 

 

This analogy is suspect, but I’ll give it anyway.  The classical analogue to the nuclear spin is a 

small charged sphere (representing a proton).  The mass of the spinning particle give the angular 
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momentum and the charge on the surface give the net magnetic moment. The net magnetic 

moment can be viewed as a small magnetic dipole or bar magnet. 
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What nuclei exhibit this magnetic moment (and thus are candidates for NMR)? 

 

Nuclei with:  odd number of protons 

   odd number of neutrons 

   odd number of both 

 

Magnetic moments:  1H, 2H, 3He, 31P, 23Na, 17O, 13C, 19F 

 

No magnetic moment:  4He, 16O, 12C 

 

Spin Physics 

Before talking about spins in a magnetic field, it is useful to review the behavior of a top in a 

gravitational field.  And before talking about that, let’s review the cross product operator. 

 

Cross-product.  We start with a review of the cross-product operator: 

nAB ˆsinα=× BA  

where n̂  is the unit vector perpendicular to A and B.  The sign of n̂  is determined by the “right 

hand rule.” 
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Equations of motion for a top in a gravitational field 
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In this drawing, the force generated by the mass of the top and the gravitational field (F = mg) 

appears to be acting at the center of mass of the top, which is located at position r, a distance r 

from the tip of the top.  The angular momentum of the top is L (F, L, g, and r are all vector 

quantities).  The simplified equation of motion for this top, describes the torque on the angular 

momentum: 
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The tip of the angular momentum vector move at a speed given by: 
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θsinrmg
dt
d

=
L  

where θ is the angle between the axis of the top and the direction of the gravitational field 

(vertical axis).  The direction the tip moves is perpendicular to the plane containing the axes of 

both L and g (the top and gravitational field).  This is always true and the thus as the position of 

the top changes, so does the direction of movement.  The locus of points traced out by the tip of 

the L vector form a circle. 
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These relationship works out so that the top precesses around the gravitational field.  It can be 

shown that the precession frequency is: 

Ω = (rmg)/L (units are radians per second) 

Thus the top will precess around g at a rate proportional to the mass of the top, the strength of the 

gravitational field, the distance from the tip to the center of mass and inversely proportional to 

the angular momentum (which is related to the distribution of mass). 

 

Classical description of a spin in a magnetic field. 

Since the spin had angular momentum, it does not just snap to alignment with the field (like the 

needle on a compass).  This is much like a top in a gravitational field – the gravitational field 

exerts a torque on the top causing it to precess rather than fall in the direction of the gravitational 

field. 

 

A spin (characterized by s and μ) in a magnetic field B, behaves as follows: 
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The second expression follows from μ = γ s.  For the case where μ and B are perpendicular, then 

the magnitude of dμ/dt (speed at which the tip of μ moves) is |γμB| = γμB. 

μ y
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dμ=γμB dt

 
Given that the circumference of the circle here is 2πμ, the time for one cycle of precession is 

2πμ/γμB, and the frequency of precession is thus, f =γB/2π or ω =γB.  The latter is the most 

important relationship in NMR and MRI.  It is known as the Lamor relationship: 

 ω =γ B 

The parameter γ is the “gyromagnetic ratio” and is nuclei dependent.  For protons (1H), γ/2π = 

42.58 MHz/T (4.258e7 s-1T-1 – I often use this notation for to mean 4.258 x107 s-1T-1). 

 

A word about terminology.  In MRI, the quantity, B, is usually called the “magnetic field 

strength,” which engineers traditionally call “magnetic flux density.”  Units of flux density are 

Telsa (T) = 104 Gauss (g) = Webbers (Wb)/m2, where Wb = Ampere-Henry (A H).  The flux 

density is related to a quantity, H, known as “magnetic field intensity” in the following 

relationship: 

B = μ0 H 

Where μ0 is the permeability of free space (μ0 = 4πe-7 H/m) and H has units of A/m.  In any 

substance other than free space (vacuum), we have to consider the magnetic susceptibility: 

B = μ0 (1 + χm)H 
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Where χm is the magnetic susceptibility (unitless) – the ability of a substance to produce an 

internal magnetic field in response to an applied magnetic field. χm can be positive or negative 

(paramagnetic or diamagnetic). 

 

Some useful units conversions: W=J/s (power), V=Wb/s, J/T = Am2 (magnetic moment), Am2/m3 

= A/m (magnetization), kg m /(A2 s2) = H/m (permeability), Wb = A H = J/A,  

T = Wb/m2 = AH/m2 = J/(A m2). 

 

Quantum mechanical (QM) description of a spin in a magnetic field. 

With no applied magnetic field, all spins are in the same energy state (E=0).  Their magnetic 

moments are randomly oriented are do not form any coherent magnetization.  When placed in an 

applied magnetic field, the spin will tend to align with or opposite to the direction of applied 

magnetic field.  These two states are known as “spin up” and “spin down,” respectively.  The 

spin-up state (in alignment) is slightly preferred, and thus has a lower energy level.  The spin-

down state is at a higher energy.  A spin-up nuclei can absorb energy and transition to a spin-

down and a spin-down nuclei can give up energy and transition to spin-up.  These energy states 

are similar to electron energies in a neon atom, except here there are only two possible energy 

states. 

 

B=0, ΔE= hγBB=0, ΔE=0

 
 

The energy difference between these states is determined by the strength of the applied magnetic 

field, which will we will call B0, in the following relationship: 

000 hfBE ===Δ ωγ hh  

where γ is the gyromagnetic ratio, h is Plank’s constant (h = 6.63e-34 J s = 4.14e-15 eV s) and 

π2/h=h .   
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If we inject energy into this system (excite the system) at a frequency f0, we should be able to 

induce spin-flip transitions between the two energy states.  As we shall see later, this system is 

very selective to that specific energy level – higher and lower frequencies won’t work.  

Excitation must be a this specific frequency in order to “resonate” with the nuclei – this 

frequency selectivity is the origin of the term resonance in nuclear magnetic resonance. 

 

The spin (and associated magnetic moment and angular momentum) is probabilistic in nature 

(much in the same way that electrons surrounding the nucleus travel in probabilistic volumes (or 

shells)).  Thus, each spin doesn’t really align with the B, but rather exists in a probabilistic cone 

and spin-up and spin-down implies that probabilistic cone faces up or down.   

Spin-up Spin-down

 
The spin and magnetic moment exist in all directions simultaneously, but average behavior is 

non-zero in only one of the directions: 

γγμμμ hh ==== μ;;0 2
1

zyx  

Question: What is the population distribution (of nuclei) in these two energy states and how 

many more are in the lower state? 

 

These are governed by thermal equilibrium condition, which are characterized by the Boltzmann 

distribution.  Letting N+ be the higher energy state (spin-down) and N- be the lower energy state, 

Boltzmann dictates that: 

kTEe
N
N /Δ−=

−
+  

where 

k = Boltzmann’s constant (8.62e-5 eV/K or 1.38e-23 J/K) 

T = temperature (human body temperature = 310 K) 

ΔE = γh B0 

 



Noll (2006)  MRI Notes 1: page 10 

In general, the exponent is extremely small and N+ and N- are nearly the same and 

approximately ½ of the total number of nuclei.  Using the first two terms of the Taylor series 

expansion of the exponent, we get: 
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Important!  Please note that ΔN, then number of excess nuclei in lower vs. upper energy states is 

proportional to B0.  It is also proportional to γ. These excess nuclei are the source of 

magnetization for all MRI experiments.  It follows then, that a larger magnetic field, B0, will 

generate larger magnetization to perform our imaging experiments and different nuclei will 

develop differing amounts of magnetization depending on their concentration in the body (NT) 

and their γ. 

 

What fraction are spin-up vs. spin-down?  ≈
kT
B0γh

7e-6 (for 310K, B0 = 1 T).  That is, for every 

million nuclei in the spin-down state, there are about 1 million plus 7 extra nuclei in the spin-up 

state. 

 

How big is NT?  Consider water – one gram of water contains 1/18 mole of water molecules and 

1/9 mole of 1H.  Given Avogadro’s number (6.023e23), for 1 cc (1 gm) or water, NT = 6.68e22. 

 

Thus, for every cc of water (tissue is mostly water) at 1 T, ΔN ≈  2.2e17 (!). 

 

Connection between QM and classical descriptions. 

 

We cannot observe individual spins, only the ensemble average.  Fortunately, it can be shown 

that the ensemble average equations of motion is: 

Bμμμ
×== γ

dt
d

dt
d  
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We now define two more quantities.  The “net magnetic dipole” is: 

m = ΔN μ  

And the “magnetization” is the magnetic dipole/unit volume: 

M = m/dV 

Since only the z-component of the spins shows a preferential direction, the net magnetic dipole is 

created in this direction: 

|m| = ΔN zμ = ΔN γh2
1 = ΔN (1.4e-26 J/T) 

For, 1 g of water at 310K and 1 T, the net magnetic dipole is 

|m| = 3.1e-9 Am2 

One gram of water occupies 1 cc (10-6 m3), thus the nuclear magnetization of water is: 

|M| = 3.1e-3 A/m 

Important!  This is the nuclear magnetization.  There are other things (notably electrons) that 

lead to further magnetization of materials.  It is the 3 unpaired electrons (not the nucleus) in iron 

and gadolinium that give these substances their very large magnetic properties. 

 

Behavior of magnetization in the presence of applied magnetic fields 

The main result is “Bloch Equation” (named for Felix Bloch, the Nobel laureate who co-

discovered MR in 1946): 

BM
M

γ×=
dt

d  

which says that the magnetization M will precess around a B field at frequency ω = γB. 

 

Now consider M lying a plane perpendicular to the main magnetic field B, which has strength 

B0.  We first define a coordinate system in which the applied field is assumed to be in the z-

direction, thus B = B0k, where (i, j, k) are the unit-length vectors in the (x, y, z) directions.  For 

this system, M will precess in the x-y plane at frequency ω0 = γB0 as shown below: 
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If we place a small loop of wire near this precessing magnetization, we will induce a voltage in 

the coil, v(t), at frequency, ω0 = γB0.   

 

Induction of a voltage in a coil from magnetization precessing in the x-y plane is the basis of 

signal reception in MRI. 

 

Solutions to the Bloch Equation: 

Let’s define M = [mx, my, mz] and let the initial condition of M(0) = [m0, 0, 0].  

 

 
 

Let i, j, and k be the unit vectors in the x-, y- and z-directions.  Thus: 

B = B0 k     and    M(0) = m0 i 

The Bloch equation then becomes: 
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This can be rewritten as a matrix differential equation: 
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We can start out by solving the last row of this equation: 
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zz
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To solve the first two lines, we define a new term, mxy = mx + i my: 
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The solution to this simple linear differential equation is: 
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Here magnetization, m0, precesses around B0 at frequency ω0=γB0.  The Bloch equations, have 

the Larmor relationship built right in! 
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The quantity, mxy = mx + i my, is a transformation the x-y components of M into the complex 

plane.  This allows us to have a simplified expression for the magnetization: 

M

y (imaginary)

x (real)

 
 

Now, let’s consider a non-constant B: B(t) = [B0 + ΔB(t)]k (the B field is still applied along the 

z-axis).  As before, M will still precess around B, but now the frequency of precession will vary 

with time: 

ω(t)  = γ[B0 + ΔB(t)] 
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The direction that the M points (the phase of M) is given by the time integral of the frequency 

function: 
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Rotating Frame of Reference 

One of the more useful tools in simplifying MRI concepts is the rotating frame of reference.  

Here we consider that our coordinate system for observation of the magnetization is rotating at a 
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frequency, ω0 = γB0.  In particular, the coordinate system is rotating about the z-axis in the same 

direction that M rotates about B.  The z coordinate does not change, but we now must define a 

new x and y coordinate system.  The “laboratory” frame of reference is the usual frame of 

reference with coordinates (x, y, z). The “rotating” frame of reference has coordinates (x’, y’, z).  

If we have magnetization precessing at ω0, it will appear to be stationary in the rotating frame of 

reference. 

M
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M
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Conceptually, we can think of this as being similar to riding on a carousel.  If we are on the 

carousel, other objects on the carousel appear stationary, but to someone on the ground, the 

objects are spinning by at ωcarousel=ω0. 

 

For a rotation frame at ω0, the coordinate axes are transformed in this way: 
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Thus, when B = B0k, the apparent B in the rotating frame is:   
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The x-y components of the magnetization are then: 

mxy.rot(t) = mxy(t) exp(i ω0 t) = m0 

which is stationary.  We now have a simple conversion of magnetization in the rotating frame 

and the lab frame.  If M = [mx, my, mz] and Mrot = [mx,rot, my,rot, mz,rot], then 

mxy.rot = mx,rot + i my,rot = mxy exp(i ω0 t) 
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mz,rot = mz 

Let’s now consider B(t) = [B0 + ΔB(t)]k.  Here the magnetization in the rotation frame will 

appear to be precessing at  

ωrot(t)  = γ[B0 + ΔB(t)] – ω0 =  γΔB(t) 

 

Thus, the apparent B in the rotating frame (ωframe=ω0) is: 
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The direction that the Mrot points is given by the time integral of this frequency function: 
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The Bloch equation can now be rewritten for use in the rotating frame: 

effrot
rot

dt
d

BM
M

γ×=  

where M can be derived from Mrot using:  

mxy =  mxy,rot exp(-i ω0 t) 

mz = mz,rot 

 

Excitation 

The preceding discusses the behavior of M when it is a plane perpendicular to B = B0k.  That is, 

the magnetization is the plane transverse to the main field.  Earlier, we described placing the 

spins in a magnetic field and developing a magnetization in the same direction as B.  So the 

obvious questions is, how does one get the magnetization that points along the z-axis to lie in the 

plane perpendicular to this axis? 

Answer: RF excitation. 
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RF (radiofrequency) magnetic fields are applied.  These are rotating magnetic fields applied in 

the plane transverse to B0k.  This field is usually called B1 (B0 is the “main magnetic field”).  If 

the frequency of the RF pulse is ωRF, then the applied RF field can be written as: 

B1x = B1 cos(ωRF t) and B1y = -B1 sin(ωRF t) 

Equivalently: B1xy = B1 exp(-i ωRF  t) 

 

Let’s look at a special case, where ωRF = ω0.  Here, the total applied B field is: 
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Again, in a frame rotating at ω0, B1,eff will appear stationary.  Thus: 
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Which is constant:  no time dependent variations, rotations, etc. 
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Behavior of M in the presence of B1 

Recall, we said that the Bloch equation, which describes the motion of M in the presence of a B 

field, dictates that the magnetization will precess around the B field at frequency γB.  Here, 

again, is the B field includes B0and B1: 
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As you might guess, determining the motion of M in the case can be quite difficult.  But 

fortunately, we have a tool to make this analysis easier: the rotating frame and the rotating frame 

version of the Bloch equation:   

roteffrot
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Also, let’s consider the magnetization starting in its equilibrium position occurs from placing the 

object in the large magnetic field (aligned to the main magnetic field): M(0) = m0k.  The above 

matrix differential equation can be solved in a manner very similar to the case for M precessing 

around B0k, by creating myz = my,rot + i mz and solving for the solution of these linked terms.  

Since the B1,eff is applied along the x’ axis, Mrot will precess around x’ in the z-y’ plane and will 

precess at frequency ω1 = γB1.  Thus: 
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If we go back to the lab frame, then motion of M is rather complex – simultaneously precessing 

about B1 at ω1 and about B0k at ω0.  Using the relationships that related rotating frame to lab 

frame we get: 

mxy,rot = i m0 sin(ω1 t) = mxy exp(i ω0 t) 

mxy = i m0 sin(ω1 t) exp(-i ω0 t) 

And thus: 



Noll (2006)  MRI Notes 1: page 19 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

)cos(
)cos()sin(
)sin()sin(

)(

10

010

010

tm
ttm
ttm

t
ω

ωω
ωω

M  

These equations for M trace out the path along the surface of a sphere that is spiraling downward 

as shown above.  It can be shown that this M satisfies the Bloch equation: 

)( 10 BkMM
+×= B

dt
d γ  

Usually, B1 is much smaller than B0.  Typical ranges of values: ω1 ~ 1 kHz and ω0 ~ 10’s to 

100’s of MHz, thus B1 is about 5 orders of magnitude smaller than B0. 

 

Now, if we want the magnetization to end up in the transverse (x-y) plane, we can apply the B1 

field for a period of time and then stop.  If we have a constant B1 for a period of time T, then we 

want: 

ω1T = γB1T = π/2 

This RF pulse is known as a π/2 or 90 degree pulse.  Example – suppose  

B1 = 0.2 g = 2e-5 T.  Then 

ω1 = γB1 = 2π(852) s-1 

For a 90 degree pulse, T = 294 μs. 

 

We don’t have to just stop at 90 degrees – indeed, we can stop at nearly any point along the way.  

The angle between the z axis and the magnetization after the RF pulse, φ, is called the “flip 

angle” or “tip angle” and is given by: 

TB1γφ =  

or for the general case of a time varying B1(t), we have: 
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Finally, we derive the Bloch equations, in the rotation frame for the general case of a time-

varying B1 and a non-zero field in the z-direction: 
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which, in the rotation frame is: 
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Here, the Bloch equation can be written as: 
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Later in the class we will work on solutions to this equation. 

 

So why do we have RF pulses?  We cannot detect M if it is aligned along B0. 

• It is not moving and thus does not induce voltage in a coil.   

• It is small relative to B0. 

• Nuclear magnetization might be obscured by other magnetization (e.g. from electrons). 
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When M is in the transverse plane, it induces a voltage in a coil at ω0 and the size of the 

magnetization is proportional to the size of the magnetization, m0.. 

 

The process is goes by several names: 

• RF pulses 

• B1 fields 

• Excitation 

• Transmission (vs. detection) 

 

The resonance condition 

What happens if ωRF ≠  ω0?  We now have the rotating frame version of B1 described as B1xy,eff = 

B1 exp(-i (ωRF - ω0) t), a more slowly rotating B1 vector.   

y’

x’

z

(ωRF - ω0)

Rotating Frame

B1

 
In this case, as M gets tipped away from the z-axis B1 has moved relative the M and the axis of 

rotation has now changed. 

Rotating Frame

y’

x’

z

B1,eff

dM

M

Top View

x’

y’

B1,1

B1,2

B1,3

B1,4

B1,5

dM1

dM2
dM3

dM4dM5
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Under this condition, the M vector never gets far from the z-axis because the B1 vector moves to 

a position that causes the change in M (e.g. dM) to move back towards the z-axis. 

 

If excitation B1 occurs at a frequency that resonates with the magnetization M, then M is tipped 

from the z-axis into the transverse plane where it can be observed. 

 

How close must ωRF be to ω0? 

If |ωRF - ω0| < ω1, then excitation is effective. 

If |ωRF - ω0| >> ω1, then no excitation occurs. 

 

Comment. We’ve talked about tipping M into the transverse plane and making M precess faster 

or slower depending on B0 + ΔB(t).  All this was done using classical equations of motion.  

Please keep in mind that in the quantum mechanical description, all that is going on is flipping of 

the magnetization between energy states.  This is done in a manner that preserves coherences in 

the magnetic dipoles to produce a net magnetization that behaves as described.  Also bear in 

mind that if the applied RF is not at 0BE γh=Δ , then the RF will be very inefficient at flipping 

between energy states.  This is another way to view the resonance condition requiring ωRF to be 

close to ω0. 

 

Other RF pulses. 

1. Small flip angle pulses.  We described a 90 degree or π/2 pulse above.  If the flip angle is less 

than 90 degrees, is there still rotating magnetization that is detectable?  Yes – the amount that 

is observable is the component in the transverse plane.  Consider a flip angle of φ degrees.  

The magnetization can be describes as follows: 

mxy = i m0 sin(φ) exp(-i ω0 t) 

mz = m0 cos(φ) 

where mxy is the detectable part. 
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Rotating Frame

Mxy
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Mz M

 
2. 180 degree or π pulses.  Here the RF pulses is applied for a duration and amplitude that leads 

to a precession angle, f, of 180 degrees.  There are two variants of 180 degree pulses: 

inversion and spin-echo pulses.  In an inversion pulse, M starts aligned to the z axis and is 

inverted to the -z axis. In an spin-echo pulse, M starts in the x’-y’ plane and is flipped 

(around the axis of B1) to a new position in the x’-y’ plane.  We’ll talk more about both of 

these later… 

y’

x’

z

π
M

Inversion Pulse

Rotating Frame

y’

x’

z

M

Spin Echo Pulse

Rotating Frame

π

B1
B1

 
 

Relaxation 

So far, we’ve manipulated M as if it were a constant length vector at all times – in practice, it is 

not.  There are thermal processes that will tend to bring M back to its equilibrium state (that is to 

the Boltzmann distribution in the spin-up/down energy states). 
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Consider the inversion pulse just described – the spin populations are all switched so that then 

higher energy state has a larger population than the lower energy state.  By spins giving up 

energy (e.g. heat) into the surrounding molecular matrix, the spins will eventually return to the 

Boltzmann distribution. 

 

In fact, there are two distinct processes going on: 

1. Recovery of M back to m0k (the thermal equilibrium state with the Boltzmann distribution). 

2. Decay of mxy. 

 

“T1 relaxation” or “spin-lattice relaxation.”   

This is characterized by the growth of mz towards m0 with time constant T1. Examples: 

• Polarization the tissue when place in B0. 

• Recovery from an inversion. 

• Recovery from any reduction in mz by RF excitation (including a 90 degree pulse which 

would make mz = 0). 

 

This is governed by the differential equation: 

1
)( 0

T
mm

dt
dm zz −

−=  

(This differential equation comes from relationship that dN, the number of state changes in 

interval dt, is proportional to the number of spins not in equilibrium, (N – ΔN), where ΔN 

corresponds to the equilibrium magnetization, m0.) 

 

The general solution to the differential equation is: 

mz(t) = m0+ (mz(0) – m0)e-t/T1 

Specific cases:  

1. After a 90 degree pulse: 

mz(0) =0; mz(t) = m0 (1 - e-t/T1) 

2. After an inversion pulse: 

mz(0) = -m0; mz(t) = m0 (1 - 2e-t/T1) 

3. After an α pulse: 
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mz(0) = m0 cos α; mz(t) = m0 (1 – (1- cos α)e-t/T1) 

 

Recovery mechanism 

• Spin gives up energy into the surrounding molecular matrix as heat 

• Transitions from higher (spin-down) energy states to lower (spin-up) energy states (quantum 

mechanical view) 

 

Spontaneous E state transitions are rare – usually these transitions need to be stimulated by 

something - in most cases, this is a fluctuating magnetic field.  As nuclei tumble and move 

around, their local magnetic environment is always changing as electrons and other nuclei come 

in close proximity to the spin of interest. 

 

The probability of a transition is related to amount of magnetic pertubation at ω0, and thus is 

related to the amount of energy (heat) in the overall system and the frequency content of the 

interactions.  If the duration of these interactions has a frequency content near ω0, then the 

probability of a transition is increased. 

 

Correlation time.  The correlation time, τc, describes the average length of time for an interaction 

between a nuclear spin and an external pertubation of the magnetic field.  If 1/τc, the approximate 

frequency content of the interaction, is close to ω0, then the probability of a transition is 

increased. 

 

Examples: 

a. Water-water interaction - τc ~ 10-12 s and thus 1/τc >> ω0.  Poor efficiency at stimulating 

transitions resulting in long T1’s. 

b. We can help the process along by adding ions to the water (ions have unpaired electrons with 

large magnetic moments (an electron has a magnetic moment that is 700x larger than that of 

a nucleus).  This skews the magnetic field over a much larger region increasing the efficiency 

of simulating an transitions.  Thus, adding ions to water usually results in a shorter T1. 

c. Extreme case – very large (macroscopic) pertubations of magnetic field.  Suppose we have a 

large source of magnetic susceptibility that skews the field over a much larger region (e.g., 
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like the iron in a large blood clot).  Since the field pertubation is so large, the amount of field 

fluctuation it can induce is at too low a frequency to stimulate E state transitions (T1 

relaxation). 

Water-water Interactions

τc very small

Water-Macro Susceptibility
 Interactions

Large Susceptibilty Source

τc very large

Water-ion Interactions

Gd 3+

τc ~ 1/ω0

 
 

In general, T1 properties result from a complex interaction of different mechanisms with 

different kinds of spin motion.  Here are some factors that influence T1: 

1. Viscosity – affects τc 

2. Temperature– affects τc, energy in system 

3. State (solid, liquid, gas) – affects τc 

4. Ionic content – affects τc 

5. B0 – affects ω0. 

 

More examples: 

d. Tissues with restricted diffusion of 1H have longer affects τc’s, which makes 1/τc’ closer to 

ω0, which results in a faster (shorter) T1’s  (e.g. white matter, fat) 

e. Solids – very long T1’s – no motion of nuclei 
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This figure shows some examples of viscosity/state and temperature influences on T1: 

 
(taken from Biomedical magnetic resonance imaging : principles, methodology, and applications / edited by Felix 

W. Wehrli, Derek Shaw, J. Bruce Kneeland, New York, N.Y. : VCH, c1988.) 

 

“T2 relaxation” or “spin-spin relaxation.”   

This is characterized by the decay of mxy towards 0 with time constant T2.  

 

This is governed by the differential equation: 
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2
,,

T
m

dt
dm rotxyrotxy −=  

(This differential equation comes from relationship that dN, the change in the number of exicited 

in interval dt, is proportional to the number of spins in the excited state, N.) 

 

The general solution to the differential equation is: 

mxy,rot(t) = mxy,rot(0)e-t/T2 

Specific cases:  

1. After a 90 degree pulse: 

mxy,rot(0) = m0; mxy,rot(t) = m0 e-t/T2 

2. After an inversion pulse: 

mxy,rot(0) = 0; mxy,rot(t) = 0 

3. After an α pulse: 

mxy,rot(0) = m0 sin α; mxy,rot(t) = m0 sin α e-t/T2 

 

Decay Mechanisms 

1. The T1 component – the approach to thermal equilibrium reduces mxy. 

2. Phase incoherence – remember that the observable magnetization, M, is the ensemble 

average of all nuclei – if the little μ’s get out of phase with respect to each other we get 

reduced signal. 

 

The phase for a spin is: 

∫ Δ=
t

rot dBt
0

)()( ττγφ  

where ΔB(t) represents the time varying, random field fluctuations generated by other nuclei, 

electrons, ions, and larger sources of magnetic field susceptibility.  The signal is then the average 

across all spins. 

∫=
V

ti demts rot r)(
0)( φ  

 

Examples: 
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a. Spins are tumbling rapidly in a homogeneous media.  Then 0)( ≅Δ≅ tBtrot γφ  for all spins.  

That is, the integral over time gives the time average of ΔB(t) which is nearly 0.  In this case, 

there is very little field induced dephasing and thus, T2 ~ T1.  (e.g. distilled water) 

b. If large paramagnetic ions are present, then φrot varies much more from spin to spin and the 

signal decays much more rapidly.  Here T2 << T1.  (e.g. water doped with ions) 

c. Solids – there is virtually no tumbling which leads to a fixed relationship with the ΔB’s.  

Here there are other mechanisms that can lead to T2 relaxation in addition to accumulation of 

phase from ΔB.  In general, solids have T2’s that are very small.  Most solids can’t be 

imaged with normal MRI techniques because the T2’s are so small (e.g. μs regime). 

 

In most biological tissues, T2 << T1, usually by an order of magnitude.  

 

Full Bloch Equation with T1 and T2 

The full Bloch equation with T1 and T2 is: 
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Pulsed NMR Experiments 

The vast majority of MRI experiments use repeated pulsing of the spin system.  Following each 

RF pulse the transverse signal behaves according to: 

0
2

0 )0(   and   )1( mmm
T

i
dt

dm
xyxy

xy =+−= ω  

and thus: 
2/

0
0)( Ttti

xy eemtm −−= ω  

This decaying oscillating signal is often known as the free induction decay (“free” – no 

interference from other RF pulses, “induction” – Bloch’s original term for precession around B0, 

and “decay” for, well, T2 decay).   
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First, we note that different tissues have differing concentrations of hydrogen, the m0 is 

proportional to the hydrogen density, ρ.   

 

Since different biological tissues may have different T2’s, it is often useful to select an 

observation time following the RF pulse.  This observation time is known as the “echo time” or 

TE.  Looking in the rotating frame at this observation time we get: 
2/

0, )( TTE
rotxy emTEm −=  

 

A long TE results in T2-weighted images.  In T2-weighted images, tissues with long T2’s appear 

bright while tissues with short T2’s are dark (their signal has completely decayed away). 

 

 
 

As described previously, the z component of the magnetization recovers after a 90 degree 

excitation pulse according to: 

mz(t) = m0 (1 - e-t/T1) 

The time between excitation pulses is referred to as the “repetition time” or TR.  If TR is not 

long compared to T1, then all of the magnetization will not have recovered an the initial 

magnetization available to rotate into the transverse plane will not be m0, but will be m0 (1 - e-

TR/T1). 

 

A short TR results in T1-weighted images.  In T1-weighted images, tissues with short T1’s 

appear bright while tissues with long T1’s are dark (very little magnetization has recovered for 

the next excitation pulse). 

T2 

Weighting

Spin 

Density 



Noll (2006)  MRI Notes 1: page 31 

 
 

Finally, the signal intensity, for a particular tissue this thus a function of tissue parameters ρ, T1, 

and T2, and imaging parameters TE and TR: 

signal intensity 2/1/ )1( TTETTR ee −−−∝ ρ  

 

Typical T1’s, T2’s and ρ’s for Brain Tissues at 1.5 T 

 T1 T2 Rel. density 

Distilled water 3 s 3 s 1.0 

Cerebro Spinal Fluid 3 s 300 ms 1.0 

Gray matter 1.2 s 60-80 ms .98 

White matter 800 ms 45 ms .80 

Fat 150 ms 35 ms 1.0 

 

T1 

Weighting

Spin 

Density 
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Steady State Magnetization for α pulses  

The above description of signal intensity holds for 90 degree RF pulses.  Occasionally, it is 

desirable to use a short TR (10 to 100 ms).  This means that signal intensity would be very small 

for all tissues.  In these cases, it is useful to use an RF pulse with a “tip angle” or “flip angle” less 

than 90 degrees.  Here, we can examine what happens to the z magnetization before and after an 

α degree pulse: 

αcos−+ = zz mm  

The z magnetization recovers according to T1 for a period of time TR: 
1

00 )( -TR/T
zz emmm(TR)m −+= +  

Under steady state conditions, −= zz mTRm )( , and thus: 

[ ] αcos)1( 1
0

1 -TR/T-TR/T
zz ememm −+= ++  

which can be solved to yield: 
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The transverse component following an α degree pulse is: 
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The above relationship can be differentiated to yield the optimal α (in terms of maximal signal): 

( )1/arccos TTR
opt e−=α  

This is known as the “Ernst Angle” (in recognition of Nobel Laureate, Richard Ernst). 

 


