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Computed Tomography Notes, Part 1 

Challenges with Projection X-ray Systems 

The equation that governs the image intensity in projection imaging is: 

( )∫−= dzzyxIyxId ),,(exp),( 0 μ  

Projection x-ray systems are the most inexpensive and widespread medical imaging device, but 

there are some major drawbacks: 

• There is no depth (z) information in the images – we can’t tell where along a particular line 

where a lesion is located. 

• Lack of contrast – large changes in attenuation coefficient may results in very small changes 

in image intensity.  We define contrast as the change in intensity relative to the background 

intensity: 

 

e.g. we can define a contrast SSC /Δ=  and a contrast to noise ratio sSCNR σ/Δ= .    High 

contrast in the attenuation coefficient might yield low contrast in the projection image. 

   

Solution: Computed Tomography  (see Macovski, pp. 113-141) 

Definition: Tomography is the generation of cross sectional images of anatomy or structure. 
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First, we will reduce the dimensionality of the problem through collimation of the x-ray source to 

a single slice through the object (choose a single z location): 

 
The intensity along this 1D row of detectors is now: 

( )∫−= dxyxIyId ),(exp)( 0 μ  

We now define a new function: 

∫∫ === dxyxfdxyx
yI

Iyg
d

),(),(
)(

ln)( 0 μ  

where g is the “projection” through some unknown function f that we wish to determine.  We can 

also describe g as the “line integral” through f in the x direction): 

 
Another way of writing the line integral is: 

∫∫∫ =−= dxRxfdxdyRyyxfRg ),()(),()( δ  

where y = R defines a line along with the integration is to occur (this is the only place where the 

delta function is non-zero). 

 

We can now describe the line integral at an arbitrary angle, θ: 

R 

g(R) 
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with the following expression: 

∫∫ −+= dxdyRyxyxfRg )sincos(),()( θθδθ  

This collection of projections gθ(R) is known as the Radon transform of f(x,y). 

The Central Section Theorem (projection-slice theorem) 

Perhaps the most important theorem in computed tomography is the central section theorem, 

which says:   

The 1D FT of a projection gθ(R) is the 2D FT of f(x,y) evaluated at angle θ. 

Taking the 1D FT of the projection, we get: 
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Observing that the 2D FT of f(x,y) is: 

dxdyvyuxiyxfvuF ))(2exp(),(),( +−= ∫∫ π  

and that (u,v) in polar coordinates is (ρcosθ, ρsinθ), we can see that: 
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To make an image, then, we can acquired projections at many different angles over (0,π) to fill in 

the F(u,v) space and then inverse 2D FT to get the input image f(x,y): 
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Example 1 

Suppose we have an object that has the same projection at all angles: 
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We can see that that: 
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and therefore, 
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Thus, if we project through a circularly symmetric jinc function, we will get a sinc function: 

 

 

Example 2 

We can also use the central section theorem to determine projections through a known object.  

For example, suppose we wanted to know the projection through  

f(x,y) = rect(x)rect(y) at and angle of θ = π/4. 
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Sinograms 

In general, we have data for gθ(R) for many different angles θ that can be placed into a big 

matrix that we call a “sinogram.”  For example, let’s take some point object at (x0,y0), e.g. δ(x-

x0,y-y0), then: 

)sincos(

)sincos()()()(
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and letting y0 = 0, then: 

)cos()( 0 RxRg −= θδθ  

a delta function located at x0 cosθ .  That is, a point traces out a sinusoid in the R-θ space and 

thus the name sinogram.  This is also known as Radon space. 

 
For a more complex object…. 
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In the sinogram, the maximum deviation describes an object’s distance from the origin and the 

point of peak deviation describes the angular location of object.  The three objects above, from 

smallest to largest are located at (r,θ) = (0,0), (113, π/4), and (-200,0) or (200,π). 

 
Finally, observe the symmetry: ),(),( πθθ +−= rprp . 
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Methods for Image Reconstruction 

Image reconstruction from a set of projections is a classic inverse problem.  This a particularly 

rich problem in that there are many different ways to approach this problem and we will present 

several of these below. 

1. Direct Fourier Interpolation Method  

This method makes direct use of the central section theorem.  The steps in the image 

reconstruction are: 

1. 1D FT each of the projections:    { } ),()()(1 ρθρθθ FGRgF D ==  

2. Interpolate F(ρ,θ) to ),(ˆ vuF (polar to rectangular coordinates – e.g. you could use Matlab 

functions interp2 or griddata) 

3. Inverse 2D FT 

 

2. Backprojection-Filtering 

Backprojection means that we “smear” the projection data back across the object space. 

 
The backprojection operator for a single projection looks like this: 

∫
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and the total backprojected image is the integral (sum) of this over all angles: 
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then the backprojected image can be written as: 
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This is nearly the inverse FT formulation of in polar coordinates, but two changes are needed: 

a. limits of integration should be (0, 2π) and (0, ∞ ), and 

b. we need ρdρdθ for an integration in polar coordinates 

We can address the first issue by recognizing that F(-ρ, θ) = F(ρ, θ+π) and we can address the 

second issue multiplying and dividing by ρ. 
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This says that the backprojected image is equal to the desired image convolved with a 1/r 

blurring function. 
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Up until this point, we’ve only done the backprojection.  In order to get the final image, we need 

to undo this blurring function.  Thus, the steps in backprojection-filter method are 

1. Backproject all projections, gθ(R) to get fb(x,y). 

2. Forward 2D FT to get 
ρ

θρ ),(F  
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3. Filter with ρ (or |ρ|) to get F(ρ, θ).  This is a “cone”-like weighting, 22),( vuvuH += , 

applied to F(u,v) 

   

4. Inverse 2D FT to get ),( yxf
)

. 

One disadvantage to this method is that it is often necessary to backproject across an extended 

matrix because the blurred image extends beyond the original object due to the long extent of the 

1/r function.  In addition, the deblurring filtering done in the Fourier domain will lead to artifact 

if the object isn’t padded out. 

3. Direct Fourier Superposition and Filtering Method 

This method makes use of the fact that backprojection is mathematically equivalent to adding a 

line to the Fourier data.  We show this by examining looking at the backprojection operator in a 

rotated coordinate system where: 
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The backprojection operator is: 
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The 2D FT in the rotated frame is: 

)()(),( rrrr vuGvuB δθθ =  

and substituting back to the standard coordinate system, we get: 

)cossin()sincos(),( θθδθθθθ vuvuGvuB +−+=  

This is the FT of the projection, Gθ(ρ), positioned along a delta line at angle θ.  The steps in this 

method are then: 

1. 1D FT each projection to get Gθ(ρ). 

2. Place data directly into Fourier matrix (add or superimpose each Gθ(ρ)). 

3. Filter with ρ (or |ρ|) to get F(ρ, θ). 

4. Inverse 2D FT to get ),( yxf
)

. 

4. Filtered Backprojection Method 

In this method, we reverse the order of backprojection and filtering.  The steps are: 

1. Filter the backprojection with a |ρ| filter.  This is sometimes called a “ramp” filter. 

a. Fourier method: 

  { }{ })()(' 1
1

1 RgFFRg DD θθ ρ−=  

b. Convolution method 
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2. Backproject for all angles to get ),( yxf
)

. 

 

Putting it all together, we get: 
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and changing the limits of integration to (0, 2π) and (0, ∞ ), we get: 
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One example: 

 
And then backprojecting… 

 
Now, let’s look at the convolution function, c(R). 

{ }ρ1)( −= FRc  



Noll (2006)  CT Notes 1: Page 15 

does not exist.  However, we can find the FT of a variety of functions that approach |ρ| in the 

limit.  For example: 

{ }
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Thus,  

- for small R, c(R) will approach 2/ε2  

- for large R, c(R) will approach –1/2π2R2 

 

Above, the function )exp( ρε−  clips of the high spatial frequency parts of |ρ|, with an 

approximate cutoff frequency of ρ0.  There are numerous other functions that can do that.  For 

example, we could clip off the high spatial frequencies using a rect function. 
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This filter has substantial ringing artifact.  One can also apply a Gaussian or Hanning filter: 
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The filter resulting from a Hanning apodized ramp filter is: 

 
 

 

5. Algebraic Reconstruction Technique (ART) 

This is like regular backprojection, but this method uses iterative corrections.  There are 

numerous variants, but I will discuss the simplest “additive” ART.  Here, we let gi be the 

measured projections and fij
q be the image at iteration q.  Then: 
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Here’s an example for a noise free object.  Consider the object with 4 pixel values and 6 pieces 

of projection information.  We initialize the data to all zeros (e.g. f1
0=0, f2

0=0, …).  Looking at 

the projections from top to bottom, we can find the pixel values at q = 1: 
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Now, looking at the left-right projections: 

5.3
2

)5.45.5(85.4      ;5.4
2

)5.45.5(85.5

5.5
2

)5.45.5(125.4     ;5.6
2

)5.45.5(125.5

2
4

2
2

2
3

2
1

=
+−

+==
+−

+=

=
+−

+==
+−

+=

ff

ff
 

 
Now, we look at the diagonal projections: 
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which we can see is consistent with all of the projections.  While this procedure may look fine, in 

the presence of noise (that is, the projections aren’t exactly consistent), this method converges 

very slowly, and in some cases, not at all.  Usually, one goes thought the entire set of projections 

multiple times. 

 

Practical Considerations in CT 

Sampling 

CT (the “C” meaning “computed”) relies on the sampling of projection data for processing on a 

computer.  There are 2 kinds of sampling – radial sampling (along the projection in R) and 

angular sampling (θ).   

 

 
Sampling in R (e.g. Δx) depends on the spatial frequency content that you wish to represent in 

your final image.  Subsampling in this domain results in the relatively benign spectral aliasing.  

Sampling in θ is a more complex, though, since it is really a sampling in the Fourier domain of 

the object and as such subsampling will results in aliasing of spatial information in the image. 
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Recall, that the mimimum sampling distance in the Fourier domain is dictated by the field of 

view.  For example, 

0
max 2

11
RFOV

k =≤Δ  

where R0 is the maximum extent of the object.  Also, recognize that  

maxmax ρθ ⋅Δ=Δk  

but the maximum spatial frequency that can be represented by a discretely sampled projection is: 

xΔ
=

2
1

max  

and thus: 

0R
xΔ

≤Δθ  

For example, if our device has 512 samples across the field of view ⎟
⎠
⎞

⎜
⎝
⎛ =

Δ
5122 0

x
R , then: 

256
1

≤Δθ  

and the number of projections will be: 

804256minmax ≈=
Δ
−

= π
θ
θθ

projN  

Thus approximately 804 projections would be required to fully sample the object for a final 

image of size roughly 512 by 512.  Of course, we can always sample fewer angles and filter 

(smooth) the data to reduce maxρ  which reduces spatial resolution. 

Fan-Beam Geometry 

Our analysis of CT to date was for a parallel ray x-ray source, while in practice, we have a small 

source that projects a fan of x-rays: 
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For a given angle of the CT gantry, we actually collect a projection where were the angle of 

projection varies as a function of R.  Observe that if the fan width is ϕ then the maximal R 

location will actually have an angle of (θ + ϕ/2), while the R = 0, will have an angle of θ and the 

minimal R will have an angle of (θ - ϕ/2): 

 
Question: Does the 1D FT of this projection result in a curved line in the Fourier domain?  No – 

it results in a curved line in the sinogram space (Radon space): 
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In order to be able to reconstruct the image we need to fill in the Radon space completely (recall 

the FT of horizontal lines will give lines in the Fourier domain and incomplete lines will limit 

our ability to fill in the Fourier domain).  In order to fully sample the Radon space, we will need 

to sample projections over angles [ ]2/,2/ ϕπϕθ +−∈  or over a (π + ϕ) range. 

 
One way to reconstruct this data will be to resample the above to: 
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and then reconstruct using the usual methods.  There are also filtered backprojection methods 

and iterateive (e.g.) ART formulations that deal directly with fan beam data (see Kak book, for 

example). 

Circular Convolution 

When performing filtering, it is often convenient to do this filtering in the Fourier domain.   

 

 
One problem that arises is circular convolution.  Because the DFT assumes that the object is 

periodic, the convolution function (which has long tails) will extend into the replicated versions 

of the object: 
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The typical solution to this problem is to zero pad the object prior to Fourier transformation for 

filtering: 

 

Beam Hardening 

Beam hardening manifests itself as an apparent decrease in μ as the beam passes through the 

object.  Thus, for short paths through the object (e.g., near the edge) the apparent μ is higher than 

for long paths through the object (e.g., near the center): 

 
One effect of this is a “cupping” of the images of μ, which results in an apparent reduction in 

image intensity at the center of the object: 

 
 


