Homework #7

For practice, not to be handed in.

- 1. Consider a x-ray system with a planar source distribution, $s(r) = \exp(-ar^2)$ and a recording plane a distance *d* form the source with impulse response, $h(r) = \exp(-br^2)$. Determine at what distance z_0 that a transparency object t(x,y) should be placed so as to maximize the relative response at a spatial frequency ρ_0 in the transparency. Discuss the optimal distance z_0 when $a \gg b$ and $b \gg a$. Neglect all obliquity factors.
- 2. Consider the object below with a small lesion of thickness *w*. Let $(\mu_2 \mu_1)w \ll 1$.

- a. Calculate the CNR of the x-ray photons emerging from the object where the size of a resolution element is $A \text{ cm}^2$.
- b. Calculate the CNR of the recording where the phosphor screen has a capture efficiency η and produces *L* light photons per x-ray photon, and *R* events per light photon are emitted. Also consider that only light photons contained in a solid angle Ω strike the detector.