Homework \#5

Due: 11/16/06

1. Consider an object with initial magnetization $m_{0}(x, y)=\operatorname{rect}(x / X, y / Y)$.
a. Determine the 2D Fourier transform of $m_{0}(x, y)$.
b. For gradient waveforms $G_{x}(t)=A$ and $G_{y}(t)=0$, determine and sketch the k-space path and give an expression for the received signal, $s(t)$.
c. For gradient waveforms $G_{x}(t)=a / X$ and $G_{y}(t)=a / Y$, determine and sketch the k-space path and give an expression for the received signal, $s(t)$.
d. For gradient waveforms $G_{x}(t)=\frac{a}{X} \operatorname{rect}\left(\frac{t-3 T / 2}{T}\right)$ and $G_{y}(t)=\frac{a}{Y} \operatorname{rect}\left(\frac{t-T / 2}{T}\right)$, where $T=\frac{4 \pi}{a \gamma}$, determine and sketch the k-space path and give an expression for the received signal, $s(t)$.
2. Special pulse sequences can be used to generate usual patterns in the transverse or longitudinal magnetization across the image. We examine one such pulse sequence here. Using a 1D object $m_{0}(x)=1$ that is initially in the equilibrium state, describe the longitudinal, $m_{z}(x)$, and transverse magnetization, $m_{x y, r o t}(x)$, as functions of x at the points labeled (a)-(d). You may neglect relaxation and assume the duration of the gradient is T.

3. In class, we excited a particular slice by applying a gradient in the z-direction applying a band-limited RF pulse with a particular frequency of excitation and a particular bandwidth. Let look at a similar situation - excitation of particular chemical species, for example, water and fat. Different chemical species have different resonant frequencies based on a phenomenon known as chemical shift, in which surrounding electron clouds influence the strength of the B field seen by the nucleus. If we consider water is at some frequency $\omega_{0}=$ γB_{0}, fat is at $\omega_{f}=\gamma B_{0}\left(1-\delta_{f}\right)$, where δ_{f} is the chemical shift of fat relative to water (3.5×10^{-6}).

a. For $\mathrm{B}_{0}=1.5 \mathrm{~T}$, find $\left(f_{0}-f_{\mathrm{f}}\right)$ Assume we are imaging ${ }^{1} \mathrm{H}$.
b. Describe an RF pulse (pulse envelope shape and parameters, amplitude, carrier frequency, etc.) that has the appropriate characteristics for a 90 degree excitation of water but not fat. One common approach is the make the spectrum of the RF pulse symmetrical around the water resonance.
4. Consider a 3D spin-warp pulse sequence as shown in the sketch. Let $\mathrm{T}_{\mathrm{y}}=\mathrm{T}_{\mathrm{z}}=5 \mathrm{~ms}$, and $\mathrm{T}_{\text {read }}=20 \mathrm{~ms}$. Suppose our desired field of views are $\mathrm{FOV}_{\mathrm{x}}=\mathrm{FOV}_{\mathrm{y}}=\mathrm{FOV}_{\mathrm{z}}=20 \mathrm{~cm}$ and $\Delta \mathrm{x}=1 \mathrm{~mm}, \Delta \mathrm{y}=2 \mathrm{~mm}$, and $\Delta \mathrm{z}=5 \mathrm{~mm}$. Assume γ for protons. Determine the following parameters:
a. $\Delta \mathrm{G}_{\mathrm{z}}$
b. $G_{z, \text { max }}$
c. $\Delta \mathrm{G}_{\mathrm{y}}$
d. $G_{y, \text { max }}$
e. $\mathrm{G}_{\text {read }}$
f. Δt

5. Consider a volume coil and a surface coil. Let the volume coil have sensitivity, $S_{v}(x)=1$, and the surface coil have the following sensitivity pattern (as a function of distance from the coil):

$$
S_{s}(x)=\frac{1}{\left(1+\left(\frac{x}{a}\right)^{2}\right)^{3 / 2}} \text {, where } a \text { is the coil radius. }
$$

Let the noise variance of the volume coil be $\sigma_{v}{ }^{2}=1$ and the noise variance of the surface coil be $\sigma_{s}^{2}=0.001 a^{3}$, where a is assumed to be in units of cm .
a. For $a=5 \mathrm{~cm}$, determine for which distance from the object surface it is advantageous (from a signal to noise ratio standpoint) to use the surface coil over the volume coil (and vice versa). SNR $=($ signal magnitude $) / \sigma$, where σ is the noise standard deviation.
b. For $a=10 \mathrm{~cm}$, determine for which distance from the object surface it is advantageous to use the surface coil over the volume coil (and vice versa).

