Homework #5

Due Date: Feb. 14, 2005

- 1. O&W 3.28.
- 2. (a) For the function in Figure P3.28(b), use Matlab to numerically determine the Fourier series coefficients for $0 \le k \le 5$. Compare to analytic determination from problem 1.
 - (b) Matlab's FFT function implements the following formula: $X(k) = \sum_{n=0}^{N-1} x(n)e^{-i\frac{2\pi}{N}nk}$.

Also, Use Matlab's FFT function and determine fft(x)/N. Compare to part a.

- 3. O&W 3.31
- 4. O&W 3.35
- 5. O&W 3.36
- 6. Consider the function $x(n) = \cos(\omega_0 n) + 2\cos(3\omega_0 n)$ where $\omega_0 = 2\pi/16$.
 - a. What is the fundamental period (*N*) and what are the Fourier Series coefficients?
 - b. Create about several periods of this function and apply as an input to the function f4.m. Plot the input and output signals.
 - c. Determine the impulse response to f4.m and from that determine the frequency response of the system, $H(e^{ik\omega_0})$, for k = 0, 1, 2, 3.
 - d. Use the result of part c. to determine the periodic output function and plot several periods of this function. Compare to the result of part b.