Homework \#11

Due Date: Apr. 18, 2005

1. The following differential equations describe a casual, linear, time-invariant system. For each
i. Determine the poles and zeros. Is this system stable?
ii. Determine the partial fraction expansion or $H(s)$.
iii. Determine the impulse response, $h(t)$.

You may use the Matlab functions, roots and residue, to solve this problem. These are all real valued signals, so don't leave $h(t)$ in terms of complex exponentials
a. $\frac{d^{3} y}{d t^{3}}+4 \frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+2 y=2 \frac{d^{3} x}{d t^{3}}-8 \frac{d^{2} x}{d t^{2}}+10 \frac{d x}{d t}-4 x$
b. $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y=\frac{d x}{d t}+1$
2. O\&W 10.21 (a-d,h)
3. O\&W 10.23. Do only the right sided sequences, e.g. the $1^{\text {st }}, 3^{\text {rd }}$ and $5^{\text {th }} X(z)$.
4. O\&W 10.28
5. O\&W 10.29. Use Matlab to determine $|H(\omega)|$ for ω in $[-\pi, \pi]$. In each case, please try to sketch the shape of the $|H(\omega)|$ prior to plotting with Matlab. You may use any Matlab tool you wish or write your own plotting program.
a. (i) Poles: 0, zeros: $0.9 \mathrm{e}^{i \pi / 4}, 0.9 \mathrm{e}^{-i \pi / 4}$
(ii) Poles: 0 , zeros: $0.5 \mathrm{e}^{i \pi / 4}, 0.5 \mathrm{e}^{-i \pi / 4}$
b. (i) Poles: 0, zeros: 0.9
(ii) Poles: 0 , zeros: 0.5
c. Poles: $0.9 \mathrm{e}^{i \pi / 3}, 0.9 \mathrm{e}^{-i \pi / 3}$, zeros: $0.9 \mathrm{e}^{i \pi / 4}, 0.9 \mathrm{e}^{-i \pi / 4}$
d. (i) Poles: 0.9,-0.9
(ii) Poles: $0.5,-0.5$
e. (i) radius 0.9
(ii) radius 0.5
6. For $6 . \mathrm{a}(\mathrm{i}), 6 . \mathrm{b}(\mathrm{i})$, and $6 . \mathrm{e}(\mathrm{i})$. Determine (to within a constant scaling factor) the impulse response, $h(n)$. All three of these are real-valued, finite length sequences.
7. O\&W 10.33. You may wish to use Matlab's residue function to solve this problem.

