## Homework \#1

Due Date: Jan. 19, 2005

1. Consider the following 2 discrete domain signals:
I. $x(n)=3 \sin (2 \pi n / 10)$
II. $x(n)=\left\{\begin{array}{cc}\sin (2 \pi n / 20) & 0 \leq n \leq 10 \\ 0 & \text { otherwise }\end{array}\right.$

Do the following:
a. Plot these signals in Matlab. Label all axes and put a title on the plot.
b. Are these signals periodic and if so, determine the period.
c. Are these power or energy signals? If power, determine $P_{\infty}$, and if energy, determine $E_{\infty}$ and $P_{\infty}$.
2. Consider the following 2 continuous domain signals:
I. $x(t)=3 \sin (2 \pi t / 10)$
II. $x(t)=\left\{\begin{array}{cl}\sin (2 \pi t / 20) & 0 \leq t \leq 10 \\ 0 & \text { otherwise }\end{array}\right.$

Do the following:
a. Plot these signals in Matlab using at least two different values of time increment, dt . Label all axes and put a title on the plot.
b. Are these signals periodic and if so, determine the period.
c. Are these power or energy signals? If power, determine $P_{\infty}$, and if energy, determine $E_{\infty}$ and $P_{\infty}$. Determine these values both analytically and numerically. For numerical integration, use the approximation $\int f(t) d t \approx \sum_{k} f(k \cdot d t) d t$ and try at least two different values of $d t$.
3. $\mathrm{O} \& \mathrm{~W}$, problem 1.21 using the following figure.

4. O\&W, problem 1.22.
5. O\&W, problem 1.27 (examine all properties, except stability)
6. O\&W, problem 1.34
7. Using the approximation $\delta_{\Delta}(t)=\frac{1}{\Delta} \operatorname{rect}\left(\frac{t}{\Delta}\right)$ as $\Delta \rightarrow 0$, show that $\delta(2 t)=\frac{1}{2} \delta(t)$ and $u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau$.
8. O\&W, problem 1.44(a).

