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DFS, DTFT, and DFT 
 
Herein we describe the relationship between the Discrete Fourier Series (DFS), Discrete Time 
Fourier Transform (DTFT), and the Discrete Fourier Transform (DFT).  Why?  The real reason 
is that the DFT is easily implemented on a computer and is part of every mathematics package, 
so it would be nice to know how to determine or approximate the DFT and DTFT on a computer. 
 
First, the definitions:  )(~ nx  is a periodic function (period N) and x(n) is a non-periodic function. 
 
Discrete Fourier Series (DFS): 
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ka  is discrete and periodic with period N. 

 
Discrete Time Fourier Transform (DTFT): 
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)(ωX  is continuous and periodic with period 2π. 

 
Discrete Fourier Transform (DFT) of length N: 
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The DFT and inverse DFT are implemented in Matlab by fft and ifft, respectively.  You’ll 
observe that the formulae are very similar to the DFT formulae and as such the input and output 
can be seen as periodic if it is convenient to do so.  Matlab also includes a functions fftshift 
and ifftshift that change the domain of the output or input, respectively, for fft and ifft 
from [0…N-1] to [-N/2…N/2-1].  E.g. for even N: 

fft(ifftshift(x)) is defined for x(n) for n in [-N/2…N/2-1], k in [0…N-1] 
fftshift(fft(x)) is defined for n in  [0…N-1], k in [-N/2…N/2-1] 
fftshift(fft(fftshift(x))) is defined for n in [-N/2…N/2-1], k in [-N/2…N/2-1] 
ifft(ifftshift(X)) is defined for n in [0…N-1], k in [-N/2…N/2-1] 
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For odd N, fftshift changes the output from [0…N-1] to [-(N+1)/2…(N+1)/2] and 
ifftshift changes the output from [-(N+1)/2…(N+1)/2] to [0…N-1]: 
 

fft(ifftshift(x)) is defined for x(n) for n in [-(N+1)/2…(N+1)/2], k in [0…N-1] 
fftshift(fft(x)) is defined for n in  [0…N-1], k in [-(N+1)/2…(N+1)/2] 
fftshift(fft(fftshift(x))) is defined for n in [-N/2…N/2-1],  
                     k in [-(N+1)/2…(N+1)/2] 
ifft(ifftshift(X)) is defined for n in [0…N-1], k in [-(N+1)/2…(N+1)/2] 

 
fftshift and ifftshift are exactly the same for even N.  With my fading memory, I can’t 
always remember when to use fftshift or ifftshift, so I often choose to use N even and 
then it just doesn’t matter. 
 
DFS and DFT 
First, the relationship between the DFS and DFT is quite clear – we merely apply the DFT to one 
period [0…N-1] of )(~ nx  and scale the output of the DFT by 1/N to get the DFS coefficients, e.g. 

 )(1 kX
N

ak =  

Similarly, we can determine 1 period [0…N-1] of )(~ nx  from ka  by taking the inverse DFT of 

kNa  for k in [0…N-1].  One can use [-N/2…N/2-1] for the interval of )(~ nx  or ka  by using 
ifftshift. 
 
DTFT and DFT 
To relate the DFT and DTFT, we will need to truncate the DTFT to a finite range of N samples.  
In doing so, one would like to insure that the power of the signal in the excluded (truncated) 
portion is insignificant, e.g. one would not want to approximate the DSFT with the DFT for 

)4sin()( nnx π= , which will have significant power in any truncated portion.  This is equivalent 
to saying that the DTFT of x cannot have any delta functions. 
 
Next, one needs to determine if the range of x(n) should be [0…N-1] or [-N/2…N/2-1].  That will 
determine if ifftshift needs to be used.  Now suppose we have a function that is zero for all 
negative n and we determine a length N over which we’d like to examine.  We can now 

approximate )(ωX  as )(kX d , where k
N
πω 2

= . 

 
Note that the continuous )(ωX  is now discretized or sampled.  Locations of samples are either 

]1...0[2
−∈ N

N
πω  or ]12/...2/[2

−∈ NN
N
πω  depending of whether fftshift has been used.  

This range is approximately [0..2π] or [-π…π], respectively.  This introduces a second criterion 
on selection N.  If )(ωX  appears to be sampled too coarsely, then N should be increased, even if 
it means adding zeros to ends of the definition of x (know as zero padding). 
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The inverse is relationship is also tricky.  First, let’s assume that we have defined a continuous 
)(ωX .  Obviously, )(ωX  cannot have any delta functions as these cannot be represented on the 

computer.  This can be sampled at locations ]1...0[2
−∈ N

N
πω  or ]12/...2/[2

−∈ NN
N
πω  and 

one them implements the inverse DFT (ifft) to get a signal x(n).  The tricky part arises from 
the observation that the DFT is DFS are closely related.  This means that by sampling )(ωX , we 
have created a periodic x(n).  This creates an ambiguity as to whether x(n) is defined for n in 
[0…N-1] or [-N/2…N/2-1].  If we know (e.g. based on causality or whatever) that the output will 
be zero for negative n, then we can use the output of the DFT for n in [0…N-1].  If we don’t 
know, it might be wise to use fftshift and define n for [-N/2…N/2-1].  N should be chosen so 
that x(n) had decayed to near zero at -N/2 and N/2-1.   
 
Examples 
Consider the following example: 

 
This is the continuous DTFT of a non-periodic signal x(n).  If we wish to approximate this by the 
DFT, we can taking fft(ifftshift(x))  and the result looks like this: 
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Observe that X(ω) is now sampled at the locations  ]1...0[2
−∈ N

N
πω  or 

]12/...2/[2
−∈ NN

N
πω  on the left after we have used fftshift.  Because x(n) is zero outside of 

the specified bounds, these samples are exact – there is no error. 
 
If we want to know X(ω) more finely, we increase N, yielding 

 
 
Example 2 
In this example, we use a signal that is not limited in time, in our case, we will use  
x(n) = sinc(n/2).  Here we show a short range of x(n) as well as the true X(ω): 

 
Now we take fft(ifftshift(x)) and the result looks like this: 
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Clearly, X(ω) is not only sampled rather coarsely, but also has a substantial amount of error.  
This error results from truncation of x(n) in our DFT approximation of the DTFT.  We can 
reduce error and improve sampling by increasing N as shown here: 

 
Example 3 
In this example, we use a causal system response: x(n) = (0.9)n u(n).  Here we show a short range 
of x(n) as well as the true X(ω), which has a peak signal of 10 (real part – blue, imaginary – 
green): 
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If we us a range of input signals from -N/2 and N/2-1 for N = 32, we get the following 
approximation to the DTFT (real – blue, imaginary – red): 

 
Observe that there is quite a bit of error due to the truncation of the time series.  We could 
increase N, or in this case, we could defined n to go from 0 to N-1.  If we do the latter, we then 
do not need the initial ifftshift operation.  Here the error is much reduced: 

 


