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Who	
  we	
  are	
  
•  Danai Koutra, CMU 

–  Node and graph similarity, 
   summarization, pattern mining 
–   http://www.cs.cmu.edu/~dkoutra/ 

•  Tina Eliassi-Rad, Rutgers 
–  Data mining, machine learning,  
   big complex networks analysis 
–  http://eliassi.org/ 

•  Christos Faloutsos, CMU 
–  Graph and stream mining, … 
–  http://www.cs.cmu.edu/~christos 
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Roadmap	
  
•  Node Roles 

–  What are roles 

–  Roles and communities 

–  Roles and equivalences (from sociology) 

–  Roles (from data mining) 

–  Summary 

•  Node Proximity 

6	
  



SDM’14	
  Tutorial	
   D.	
  Koutra	
  &	
  T.	
  Eliassi-­‐Rad	
  &	
  C.	
  Faloutsos	
  

What	
  are	
  roles?	
  

•  “Functions” of nodes in the network 
–  Similar to functional roles of species in 

ecosystems 

•  Measured by structural behaviors 
•  Examples 

–  centers of stars 
–  members of cliques 
–  peripheral nodes 
–  … 
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Network Science Co-authorship Graph  
[Newman 2006] 

bridge 
cliquey 
periphery 
isolated 
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Why	
  are	
  roles	
  important?	
  

Task Use Case 
Role query Identify individuals with similar 

behavior to a known target 

Role outliers Identify individuals with unusual 
behavior 

Role dynamics Identify unusual changes in 
behavior 

Identity resolution Identify known individuals in a 
new network 

Role transfer Use knowledge of one network to 
make predictions in another 

Network 
comparison 

Determine network compatibility 
for knowledge transfer 
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Role Discovery 

Why	
  are	
  the	
  roles	
  important?	
  
Role Discovery 

ü Automated discovery 

ü Behavioral roles 

ü Roles generalize 
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  and	
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RolX * Fast Modularity† 

* Henderson, et al. 2012; † Clauset, et al. 2004  

Roles 
(similar structural properties) 

Communities 
(well-connectedness) 
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Roles	
  and	
  Communities	
  

•  Roles 
–  Faculty 
–  Staff 
–  Students 
–  … 
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•  Communities 
–  AI lab 
–  Database lab 
–  Architecture lab 
–  … 

Consider the social network of a CS dept 
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Equivalences 
•  Equivalence is any relation that satisfies 

these 3 conditions:  

1.  Transitivity: (a, b), (b, c) ∈ E ⇒ (a,c) ∈ E  

2.  Symmetry: (a, b) ∈ E iff (b, a) ∈ E  

3.  Reflexivity: (a, a) ∈ E  

13 T. Eliassi-Rad & C. Faloutsos ECML PKDD 2013 Tutorial 

Roles are referred to as “positions” in sociology. 
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Structural	
  Equivalence	
  
•  [Lorrain & White, 1971] 

•  Two nodes u and v are structurally  
equivalent if they have the same  
relationships to all other nodes 

•  Hypothesis: Structurally equivalent  
nodes are likely to be similar in  
other ways – i.e., you are your friend 

•  Weights & timing issues are not considered 

•  Rarely appears in real-world networks 
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u v 
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•  CONCOR (CONvergence of iterated CORrelations) 
[Breiger et al. 1975]  

•  STRUCUTRE [Burt 1976]  
•  Combinatorial optimization approaches 

–  Numerical optimization with tabu search 
[UCINET] 

–  Local optimization [Pajek] 
•  Partition the sociomatrices into blocks based on a 

cost function that minimizes the sum of within block 
variances 
–  Basically, minimize the sum of code cost within 

each block 
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Structural	
  Equivalence:	
  
Algorithms	
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Cross-­‐Associations	
  (XA)	
  	
  
•  [Chakrabarti+, KDD 2004] 
•  Minimize total encoding cost of the 

adjacency matrix  
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Automorphic	
  Equivalence	
  
•  [Borgatti, et al. 1992; Sparrow 1993] 

•  Two nodes u and v are automorphically equivalent if 
all the nodes can be relabeled to form an 
isomorphic graph with the labels of u and v 
interchanged 

–  Swapping u and v (possibly 
along with their neighbors)  
does not change graph distances 

•  Two nodes that are  
automorphically equivalent  
share exactly the same  
label-independent properties 
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u  v  
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Automorphic	
  Equivalence:	
  
Algorithms	
  

•  Sparrow (1993) proposed an algorithm that scales linearly 
to the number of edges 

•  Use numerical signatures on degree sequences of 
neighborhoods 

•  Numerical signatures use a unique transcendental number 
like π, which is independent of any permutation of nodes 

•  Suppose node i has the following degree sequence: 1, 1, 5, 
6, and 9.  Then its signature is  

Si,1 = (1 + π)(1 + π) (5 + π) (6 + π) (9 + π)  
•  The signature for node i at k+1 hops is Si,(k+1) = Π(Si,k + π) 
•  To find automorphic equivalence, simply compare 

numerical signatures of nodes 
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Regular	
  Equivalence	
  
•  [Everett & Borgatti, 1992] 
•  Two nodes u and v are regularly equivalent if 

they are equally related to equivalent others 
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+
Regular Equivalenceg q

� Introduced by Borgatti (1996)

� Definition:
� Two actors are regularly equivalent if they are equally related to 

i l t thequivalent others

President Motes

Faculty

Graduate Students

Hanneman, Robert A. and Mark Riddle.  2005.  Introduction to social network methods.  Riverside, CA:  University of 
California, Riverside ( published in digital form at http://faculty.ucr.edu/~hanneman/ )
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Regular	
  Equivalence	
  (cont’d)	
  
•  Basic roles of nodes 

–  source 

–  repeater 

–  sink  

–  isolate 
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Regular	
  Equivalence	
  (cont’d)	
  
•  Based solely on the social roles of neighbors  

•  Interested in  

–  Which nodes fall in which social roles? 

–  How do social roles relate to each other? 

•  Hard partitioning of the graph into social roles 

•  A given graph can have more than one valid 
regular equivalence set 

•  Exact regular equivalences can be rare in large 
graphs 
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Regular	
  Equivalence:	
  
Algorithms	
  

•  Many algorithms exist here 

–  Maximal Regular coloration [Everett & 
Borgatti, 1997] – a polynomial time alg 

•  Basic notion 

–  Profile each node’s neighborhood by the 
presence of nodes of other "types"  

–  Nodes are regularly equivalent to the extent 
that they have similar "types" of other nodes 
at similar distances in their neighborhoods 
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Stochastic	
  Equivalence	
  
•  [Holland, et al. 1983;  

Wasserman & Anderson, 1987] 

•  Two nodes are stochastically  
equivalent if they are  
“exchangeable” w.r.t.  
a probability distribution 

•  Similar to structural  
equivalence but  
probabilistic 
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u v 

a 

b 

p(a,v) 

p(u,b) p(v,b) 

p(a,u) 

p(a,u) = p(a,v) 
p(u,b)= p(v,b) 
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Stochastic	
  Equivalence:	
  
Algorithms	
  

•  Many algorithms exist here 

•  Most recent approaches are generative  
[Airoldi, et al 2008] 

•  Some choice points 

–  Single [Kemp, et al 2006] vs.  
mixed-membership [Koutsourelakis & Eliassi-
Rad, 2008] equivalences (a.k.a. “positions”) 

–  Parametric vs. non-parametric models 
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Roadmap	
  
•  Node Roles 

–  What are roles 

–  Roles and communities 

–  Roles and equivalences (from sociology) 

–  Roles (from data mining) 

–  Summary 

•  Node Proximity 
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RolX:	
  Role	
  eXtraction	
  
•  Introduced by Henderson et al. KDD 2012 

•  Automatically extracts the underlying roles in 
a network 

–  No prior knowledge required 

•  Determines the number of roles automatically 

•  Assigns a mixed-membership of roles to each 
node 

•  Scales linearly on the number of edges 
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RolX:	
  Flowchart	
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RolX:	
  Flowchart	
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Node × Node 
Matrix 

Recursive 
Feature 

Extraction 

Node × Feature 
Matrix 

Role 
Extraction 

Node × Role 
Matrix 

Role × Feature 
Matrix 

Example: degree, 
avg weight, # of 
edges in egonet, 
mean clustering 
coefficient of 
neighbors, etc 
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Recursive	
  Feature	
  Extraction	
  
•  ReFeX [Henderson, et al. 2011a] turns network connectivity 

into recursive structural features 

 

•  Neighborhood features: What is your connectivity pattern? 

•  Recursive Features: To what kinds of nodes are you 
connected? 
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ReFeX 

Local Egonet Recursive 

Neighborhood 

Regional 

1411# 0# 1# 2# 1# 0# 0# 0# 1# 1# 0# 1# 0# 0# 1# 1# 2# 2#
1410# 0# 1# 1# 1# 0# 1# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
338# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 1# 0# 0# 0#
339# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
1415# 0# 1# 1# 2# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 1# 1# 1#
941# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1414# 0# 1# 1# 1# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
942# 0# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
1413# 0# 1# 1# 1# 0# 1# 1# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
1412# 0# 0# 0# 0# 0# 0# 0# 1# 2# 0# 1# 1# 0# 0# 1# 2# 0#
940# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 1# 0# 1# 1# 1#
1419# 0# 0# 1# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 1#
945# 0# 1# 4# 3# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 1# 3# 1#
332# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1418# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 2# 0# 1# 0# 1#
946# 0# 1# 1# 0# 0# 1# 0# 1# 0# 0# 0# 1# 4# 0# 1# 1# 2#
333# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1417# 0# 1# 1# 1# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
943# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
330# 1# 3# 2# 0# 1# 2# 2# 0# 2# 2# 2# 0# 3# 1# 0# 2# 5#
1416# 0# 1# 1# 1# 1# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 1# 1#
944# 0# 1# 4# 2# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 3# 1#
331# 0# 3# 2# 1# 0# 1# 0# 0# 2# 0# 2# 0# 2# 0# 1# 2# 5#
949# 0# 0# 0# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 0# 0# 0#
336# 0# 0# 0# 0# 2# 0# 0# 1# 1# 1# 1# 1# 0# 0# 0# 1# 0#
337# 1# 1# 1# 0# 0# 1# 2# 0# 1# 1# 1# 0# 1# 1# 1# 1# 1#
947# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
334# 0# 0# 0# 1# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
948# 0# 0# 0# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 0#
335# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
531# 1# 0# 0# 0# 1# 0# 2# 0# 0# 2# 0# 0# 0# 2# 0# 0# 0#

N
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es
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Features 
1411# 0# 1# 2# 1# 0# 0# 0# 1# 1# 0# 1# 0# 0# 1# 1# 2# 2#
1410# 0# 1# 1# 1# 0# 1# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
338# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 1# 0# 0# 0#
339# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
1415# 0# 1# 1# 2# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 1# 1# 1#
941# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1414# 0# 1# 1# 1# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
942# 0# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
1413# 0# 1# 1# 1# 0# 1# 1# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
1412# 0# 0# 0# 0# 0# 0# 0# 1# 2# 0# 1# 1# 0# 0# 1# 2# 0#
940# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 1# 0# 1# 1# 1#
1419# 0# 0# 1# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 1#
945# 0# 1# 4# 3# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 1# 3# 1#
332# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1418# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 2# 0# 1# 0# 1#
946# 0# 1# 1# 0# 0# 1# 0# 1# 0# 0# 0# 1# 4# 0# 1# 1# 2#
333# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1417# 0# 1# 1# 1# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
943# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
330# 1# 3# 2# 0# 1# 2# 2# 0# 2# 2# 2# 0# 3# 1# 0# 2# 5#
1416# 0# 1# 1# 1# 1# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 1# 1#
944# 0# 1# 4# 2# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 3# 1#
331# 0# 3# 2# 1# 0# 1# 0# 0# 2# 0# 2# 0# 2# 0# 1# 2# 5#
949# 0# 0# 0# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 0# 0# 0#
336# 0# 0# 0# 0# 2# 0# 0# 1# 1# 1# 1# 1# 0# 0# 0# 1# 0#
337# 1# 1# 1# 0# 0# 1# 2# 0# 1# 1# 1# 0# 1# 1# 1# 1# 1#
947# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
334# 0# 0# 0# 1# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
948# 0# 0# 0# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 0#
335# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
531# 1# 0# 0# 0# 1# 0# 2# 0# 0# 2# 0# 0# 0# 2# 0# 0# 0#

N
od

es
 Recursively 

extract 
features 

Automatically 
factorize roles 

ReFeX 

Local Egonet Recursive 

Neighborhood 

Regional 

1411# 0# 1# 2# 1# 0# 0# 0# 1# 1# 0# 1# 0# 0# 1# 1# 2# 2#
1410# 0# 1# 1# 1# 0# 1# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
338# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 1# 0# 0# 0#
339# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
1415# 0# 1# 1# 2# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 1# 1# 1#
941# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1414# 0# 1# 1# 1# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
942# 0# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
1413# 0# 1# 1# 1# 0# 1# 1# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
1412# 0# 0# 0# 0# 0# 0# 0# 1# 2# 0# 1# 1# 0# 0# 1# 2# 0#
940# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 1# 0# 1# 1# 1#
1419# 0# 0# 1# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 1#
945# 0# 1# 4# 3# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 1# 3# 1#
332# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1418# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 2# 0# 1# 0# 1#
946# 0# 1# 1# 0# 0# 1# 0# 1# 0# 0# 0# 1# 4# 0# 1# 1# 2#
333# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1417# 0# 1# 1# 1# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
943# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
330# 1# 3# 2# 0# 1# 2# 2# 0# 2# 2# 2# 0# 3# 1# 0# 2# 5#
1416# 0# 1# 1# 1# 1# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 1# 1#
944# 0# 1# 4# 2# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 3# 1#
331# 0# 3# 2# 1# 0# 1# 0# 0# 2# 0# 2# 0# 2# 0# 1# 2# 5#
949# 0# 0# 0# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 0# 0# 0#
336# 0# 0# 0# 0# 2# 0# 0# 1# 1# 1# 1# 1# 0# 0# 0# 1# 0#
337# 1# 1# 1# 0# 0# 1# 2# 0# 1# 1# 1# 0# 1# 1# 1# 1# 1#
947# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
334# 0# 0# 0# 1# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
948# 0# 0# 0# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 0#
335# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
531# 1# 0# 0# 0# 1# 0# 2# 0# 0# 2# 0# 0# 0# 2# 0# 0# 0#

N
od

es
 



SDM’14	
  Tutorial	
   D.	
  Koutra	
  &	
  T.	
  Eliassi-­‐Rad	
  &	
  C.	
  Faloutsos	
  

Role	
  Extraction:	
  Feature	
  
Grouping	
  

•  Soft clustering in the structural feature space 
–  Each node has a mixed-membership across roles 

•  Generate a rank r approximation of V ≈ GF 

 

 

•  RolX uses NMF for feature grouping  
–  Computationally efficient 

–  Non-negative factors simplify interpretation of roles and 
memberships 
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Features 
1411# 0# 1# 2# 1# 0# 0# 0# 1# 1# 0# 1# 0# 0# 1# 1# 2# 2#
1410# 0# 1# 1# 1# 0# 1# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
338# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 1# 0# 0# 0#
339# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
1415# 0# 1# 1# 2# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 1# 1# 1#
941# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1414# 0# 1# 1# 1# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
942# 0# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
1413# 0# 1# 1# 1# 0# 1# 1# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
1412# 0# 0# 0# 0# 0# 0# 0# 1# 2# 0# 1# 1# 0# 0# 1# 2# 0#
940# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 1# 0# 1# 1# 1#
1419# 0# 0# 1# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 1#
945# 0# 1# 4# 3# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 1# 3# 1#
332# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1418# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 2# 0# 1# 0# 1#
946# 0# 1# 1# 0# 0# 1# 0# 1# 0# 0# 0# 1# 4# 0# 1# 1# 2#
333# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1417# 0# 1# 1# 1# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
943# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
330# 1# 3# 2# 0# 1# 2# 2# 0# 2# 2# 2# 0# 3# 1# 0# 2# 5#
1416# 0# 1# 1# 1# 1# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 1# 1#
944# 0# 1# 4# 2# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 3# 1#
331# 0# 3# 2# 1# 0# 1# 0# 0# 2# 0# 2# 0# 2# 0# 1# 2# 5#
949# 0# 0# 0# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 0# 0# 0#
336# 0# 0# 0# 0# 2# 0# 0# 1# 1# 1# 1# 1# 0# 0# 0# 1# 0#
337# 1# 1# 1# 0# 0# 1# 2# 0# 1# 1# 1# 0# 1# 1# 1# 1# 1#
947# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
334# 0# 0# 0# 1# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
948# 0# 0# 0# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 0#
335# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
531# 1# 0# 0# 0# 1# 0# 2# 0# 0# 2# 0# 0# 0# 2# 0# 0# 0#
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Figure 1: Role discovery and community discovery

are complementary approaches to network analy-

sis. Left: The 4 roles that RolX discovers on the

largest connected component of the Network Science

Co-authorship Graph: “bridge” nodes (as red dia-

monds), “main-stream” nodes (gray squares), etc -

see text. Right: The 22 communities that Fast Mod-

ularity [6] finds on the same co-authorship graph.

Roles capture node-level behaviors and generalize

across networks whilst communities cannot.

way to determine similarity between nodes by com-
paring their role distributions.1

– Sense-making: The structural roles of RolX can
be understood intuitively by summarizing their
characteristics (NodeSense) and their neighbors
(NeighborSense).

• Automation: RolX is carefully designed to be fully au-
tomatic, without requiring user-specified parameters.

• Scalability: The runtime complexity of RolX is linear
on the number of edges.

We want to emphasize that RolX as a role discovery ap-
proach is fundamentally di↵erent from (and complementary
to) community detection: the former groups nodes of similar
behavior; the latter groups nodes that are well-connected to
each other.

Figure 1 depicts the di↵erence between role discovery and
community discovery for the largest connected component of
a weighted co-authorship network [25]. RolX automatically
discovers 4 roles vs. the 22 communities that the popular
Fast Modularity [6] community discovery algorithm finds.
RolX is a mixed-membership approach, which assigns each
node a distribution over the set of discovered, structural
roles. The node colors for RolX correspond to the node’s
primary role, and for Fast Modularity correspond to the
node’s community. Our four discovered roles represent these
behaviors: “bridge” nodes (red diamonds) representing cen-
tral and prolific authors, “main-stream”nodes (gray squares)
representing neighborhoods of bridge nodes, “pathy” nodes
(green triangles) representing peripheral authors with high
edge-weight, and “tight-knit” nodes (blue circles) represent-
ing authors with many coauthors and homophilic neighbor-
hoods.

The rest of the paper is organized as follows: proposed
method, experimental results for the mining tasks outlined
above, related work, and conclusions.
1
RolX is a mixed-membership approach, which assigns each

node a distribution over the set of discovered roles.

2. PROPOSED METHOD
Given a network, the goal of RolX is to automatically dis-

cover a set of underlying (latent) roles, which summarize the
structural behavior of nodes in the network. RolX consists
of three components: feature extraction, feature grouping,
and model selection.

2.1 Feature Extraction
In its first step, RolX describes each node as a feature vec-

tor. Examples of node features are the number of neighbors
a node has, the number of triangles a node participates in,
etc. RolX can use any set of features deemed important.
Among the numerous choices for feature extraction from
graphs, we choose the structural feature discovery algorithm
described in [15] since it is scalable and has shown good per-
formance for a number of tasks. For a given node v, it ex-
tracts local and egonet features based on counts (weighted
and unweighted) of links adjacent to v and within and ad-
jacent to the egonet of v. It also aggregates egonet-based
features in a recursive fashion until no informative feature
can be added. Examples of these recursive features include
degree and number of within-egonet edges, as well as ag-
gregates such as “average neighbor degree” and “maximum
neighbor degree.” Again, RolX is flexible in terms of a fea-
ture discovery algorithm, so RolX ’s main results would hold
for other structural feature extraction techniques as well.

2.2 Feature Grouping
After feature extraction, we have n vectors (one per node)

of f numerical entries each. How should we create groups of
nodes with similar structural behavior/features? How can
we make it fully automatic, requiring no input from the user?

We propose to use soft clustering in the structural feature
space (where each node has a mixed-membership across var-
ious discovered roles); and specifically, an automatic version
of matrix factorization.

Given a node-feature matrix V
n⇥f

, the next step of the
RolX algorithm is to generate a rank r approximation GF ⇡

V where each row of G
n⇥r

represents a node’s membership
in each role and each column of F

r⇥f

specifies how mem-
bership in a specific role contributes to estimated feature
values. There are many methods to generate such an ap-
proximation (e.g., SVD, spectral decomposition) and RolX

is not tied to any particular approach. For this study, we
chose Non-negative Matrix Factorization because it is com-
putationally e�cient and non-negative factors simplify the
interpretation of roles and memberships.

Formally, we seek two non-negative low rank matrices G
and F to satisfy: argmin

G,F

kV �GFk
fro

, s.t. G � 0, F � 0,
where || · ||

fro

is the Frobenius norm. The non-negativity
constraint generally leads to a sparse, part-based represen-
tation of the original data set, which is often semantically
more meaningful than other factorization methods. While
it is di�cult to find the optimal factorization of a matrix be-
cause of the non-convexity of the objective function, several
e�cient approximation algorithms exist (e.g., multiplicative
update [18] and projective gradient decent [20]). RolX uses
multiplicative update because of its simplicity. It is worth
pointing out that RolX can naturally incorporate other vari-
ants of matrix factorization such as imposing sparseness con-
straint on F and/or G by incorporating some regularization
terms in the objective function [10]). RolX can also use a
general Bregman divergence [8] to measure approximation
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Role	
  Extraction:	
  Model	
  Selection	
  
•  Roles summarize behavior 

–  Or, they compress the feature matrix, V 

•  Use MDL to select the model size r that results in the best 
compression 

–  L: description length 

–  M: # of bits required to describe the model 

–  E: cost of describing the reconstruction errors in V – GF 

–  Minimize L = M + E 

•  To compress high-precision floating point values,  
RolX combines Llyod-Max quantization with  
Huffman codes 

•  Errors in V-GF are not distributed  
normally, RolX uses KL divergence  
to compute E 
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Features 
1411# 0# 1# 2# 1# 0# 0# 0# 1# 1# 0# 1# 0# 0# 1# 1# 2# 2#
1410# 0# 1# 1# 1# 0# 1# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
338# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 1# 0# 0# 0#
339# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
1415# 0# 1# 1# 2# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 1# 1# 1#
941# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1414# 0# 1# 1# 1# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
942# 0# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
1413# 0# 1# 1# 1# 0# 1# 1# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
1412# 0# 0# 0# 0# 0# 0# 0# 1# 2# 0# 1# 1# 0# 0# 1# 2# 0#
940# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 1# 0# 1# 1# 1#
1419# 0# 0# 1# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 1#
945# 0# 1# 4# 3# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 1# 3# 1#
332# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1418# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 2# 0# 1# 0# 1#
946# 0# 1# 1# 0# 0# 1# 0# 1# 0# 0# 0# 1# 4# 0# 1# 1# 2#
333# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1417# 0# 1# 1# 1# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
943# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
330# 1# 3# 2# 0# 1# 2# 2# 0# 2# 2# 2# 0# 3# 1# 0# 2# 5#
1416# 0# 1# 1# 1# 1# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 1# 1#
944# 0# 1# 4# 2# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 3# 1#
331# 0# 3# 2# 1# 0# 1# 0# 0# 2# 0# 2# 0# 2# 0# 1# 2# 5#
949# 0# 0# 0# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 0# 0# 0#
336# 0# 0# 0# 0# 2# 0# 0# 1# 1# 1# 1# 1# 0# 0# 0# 1# 0#
337# 1# 1# 1# 0# 0# 1# 2# 0# 1# 1# 1# 0# 1# 1# 1# 1# 1#
947# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
334# 0# 0# 0# 1# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
948# 0# 0# 0# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 0#
335# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
531# 1# 0# 0# 0# 1# 0# 2# 0# 0# 2# 0# 0# 0# 2# 0# 0# 0#
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extract 
features 

Automatically 
factorize roles 
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Local Egonet Recursive 

Neighborhood 

Regional 

1411# 0# 1# 2# 1# 0# 0# 0# 1# 1# 0# 1# 0# 0# 1# 1# 2# 2#
1410# 0# 1# 1# 1# 0# 1# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
338# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 1# 0# 0# 0#
339# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
1415# 0# 1# 1# 2# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 1# 1# 1#
941# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1414# 0# 1# 1# 1# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
942# 0# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
1413# 0# 1# 1# 1# 0# 1# 1# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
1412# 0# 0# 0# 0# 0# 0# 0# 1# 2# 0# 1# 1# 0# 0# 1# 2# 0#
940# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 1# 0# 1# 1# 1#
1419# 0# 0# 1# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 1#
945# 0# 1# 4# 3# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 1# 3# 1#
332# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1418# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 2# 0# 1# 0# 1#
946# 0# 1# 1# 0# 0# 1# 0# 1# 0# 0# 0# 1# 4# 0# 1# 1# 2#
333# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1417# 0# 1# 1# 1# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
943# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
330# 1# 3# 2# 0# 1# 2# 2# 0# 2# 2# 2# 0# 3# 1# 0# 2# 5#
1416# 0# 1# 1# 1# 1# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 1# 1#
944# 0# 1# 4# 2# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 3# 1#
331# 0# 3# 2# 1# 0# 1# 0# 0# 2# 0# 2# 0# 2# 0# 1# 2# 5#
949# 0# 0# 0# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 0# 0# 0#
336# 0# 0# 0# 0# 2# 0# 0# 1# 1# 1# 1# 1# 0# 0# 0# 1# 0#
337# 1# 1# 1# 0# 0# 1# 2# 0# 1# 1# 1# 0# 1# 1# 1# 1# 1#
947# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
334# 0# 0# 0# 1# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
948# 0# 0# 0# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 0#
335# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
531# 1# 0# 0# 0# 1# 0# 2# 0# 0# 2# 0# 0# 0# 2# 0# 0# 0#
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•  Role transfer 
•  Role sense-making 
•  Role query 
•  Role mixed-memberships 
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Details in Henderson et al. KDD 2012 
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  Transfer	
  
•  Question: How can we use labels from an external 

source to predict labels on a network with no labels? 

•  Conjecture: Nodes with similar roles are likely to 
have similar labels 
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Target Network 

External Network 

Target Network 

r1 r2 r3

n1 .5 .5 0

n2 .2 .2 .6

n3 .25 .25 .5
...

r1 r2 r3

m1 .4 .4 .2

m2 0 0 1

m3 .2 .2 .6
...

Classifier 

f1 f2 f3 f4 …

r1 .4 1 0 3

r2 1 .2 0 0

r3 .1 1 5 0
...

Role Definitions 

(3) Role 
Assignment 

(1) RolX (2) Learning 

(4) Inference 

Role 
Memberships 

Role 
Memberships 

class

n1

n2

n3
...

P(class | role membership) 
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IP-A1 IP-A2 IP-A3 IP-A4 IP-B 

# Nodes 81,450 57,415 154,103 206,704 181,267 

% labeled 36.7% 28.1% 20.1% 32.9% 15.3% 

# Links 968,138 432,797 1,266,341 1,756,082 1,945,215 

(# unique) 206,112 137,822 358,851 465,869 397,925 

Class 
Distribu-

tion 

IP#A1&Class&Distribu1on&

Web$ DNS$ P2P$
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Figure 4: RolX provides better generalization per-

formance between enterprise IP networks A and

B (mean accuracy of RolX =85%, Feat=71%, p-

value=0.01).
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Figure 5: RolX chooses a high accuracy model size

of 9 roles, in the middle of the peak accuracy range

of 7-11 roles. The Y-axis depicts the mean classifi-

cation accuracy using RolX (over all 4 test sets) by

model size.

is right in the middle of the peak accuracy range shown in
Figure 5. Figure 6a shows that the model selection crite-
rion used by RolX is highly correlated with classification
accuracy (Pearson correlation is -0.91). Figure 6b shows the
default RolX model selection criterion decomposed into its
constituent parts. Model cost is the cost associated with
representing the model itself while error cost is the cost of
representing the di↵erences between the original feature val-
ues and the estimated feature values reconstructed using the
model. As expected, we see a consistent increase in model
cost and a consistent decrease in error cost as the number
of roles increases.

Figure 7 shows that IP tra�c classes are well-separated
in the RolX “role space”, with as few as 3 roles (extracted
from the original 373 structural features). Note that we
achieve even better separation with the automatically se-
lected model size of 9 roles (see Figure 4), but we can only
clearly visualize up to 3.

We omit for brevity the “sensemaking” table for the 3-role
IP experiment. It shows that Roles 1 and 2 are lower-volume
IPs while Role 3 is high-volume servers or P2P nodes. Role
3 contains nodes of all three types (Web, DNS, P2P). This
Role is overloaded since the model size of 3 is not as predic-
tive as larger model sizes (see Figure 5).

Reality Mining Device data: Using the Reality Mining
Device dataset, we conducted two sets of transfer learning
experiments. The first set of experiments involves a binary
classification task where we try to predict whether a given
subject is a business school student or not. The second
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Figure 6: RolX ’s model selection is e↵ective: (a)

Classification accuracy is highest when RolX selec-

tion criterion is minimized. Red markers indicate

the peak performing model sizes of 7-11 roles (b)

RolX ’s model selection criterion balances model size

and reconstruction accuracy.

set is similar, where we try to predict whether a subject
is a graduate student in the Media Lab or not. As train
and test sets, we used each pair of consecutive months in
our dataset. In Figure 8, we show the accuracy of RolX .
The Baseline is a classifier that learns to always predict the
majority class of the training set on the test set. The time
labels denote the month for the train data, and the month
following that is used as the test data. We also use all the
data in 2004 and 2005 as train and test data, respectively.
Notice that RolX outperforms the baseline classifier most of
the time with an average of 83% and 76% accuracy for the
two experiment sets, respectively. We notice that RolX ’s
accuracy drops when September and May data is used as
training, possibly because these months correspond to the
start and end of the school semesters; the behavior of the
subjects would be generally di↵erent than usual in these
months, thus providing not as much predictive information
as the other months would.

4. STRUCTURAL SIMILARITY
Here we describe experiments in which RolX is used for

its most basic task: grouping nodes based on their structural
similarity.

4.1 Network Sciences Coauthorship data:
Our first data set is the weighted Network Science Co-

authorship Graph with 1589 authors (from the network sci-
ence community) and 2743 weighted edges [25]. Figure 9
shows (a) the role-colored graph (where each node is col-

Roles generalize across disjoint networks & 
enable prediction without re-learning 
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is right in the middle of the peak accuracy range shown in
Figure 5. Figure 6a shows that the model selection crite-
rion used by RolX is highly correlated with classification
accuracy (Pearson correlation is -0.91). Figure 6b shows the
default RolX model selection criterion decomposed into its
constituent parts. Model cost is the cost associated with
representing the model itself while error cost is the cost of
representing the di↵erences between the original feature val-
ues and the estimated feature values reconstructed using the
model. As expected, we see a consistent increase in model
cost and a consistent decrease in error cost as the number
of roles increases.

Figure 7 shows that IP tra�c classes are well-separated
in the RolX “role space”, with as few as 3 roles (extracted
from the original 373 structural features). Note that we
achieve even better separation with the automatically se-
lected model size of 9 roles (see Figure 4), but we can only
clearly visualize up to 3.

We omit for brevity the “sensemaking” table for the 3-role
IP experiment. It shows that Roles 1 and 2 are lower-volume
IPs while Role 3 is high-volume servers or P2P nodes. Role
3 contains nodes of all three types (Web, DNS, P2P). This
Role is overloaded since the model size of 3 is not as predic-
tive as larger model sizes (see Figure 5).

Reality Mining Device data: Using the Reality Mining
Device dataset, we conducted two sets of transfer learning
experiments. The first set of experiments involves a binary
classification task where we try to predict whether a given
subject is a business school student or not. The second
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Figure 6: RolX ’s model selection is e↵ective: (a)

Classification accuracy is highest when RolX selec-

tion criterion is minimized. Red markers indicate

the peak performing model sizes of 7-11 roles (b)

RolX ’s model selection criterion balances model size

and reconstruction accuracy.

set is similar, where we try to predict whether a subject
is a graduate student in the Media Lab or not. As train
and test sets, we used each pair of consecutive months in
our dataset. In Figure 8, we show the accuracy of RolX .
The Baseline is a classifier that learns to always predict the
majority class of the training set on the test set. The time
labels denote the month for the train data, and the month
following that is used as the test data. We also use all the
data in 2004 and 2005 as train and test data, respectively.
Notice that RolX outperforms the baseline classifier most of
the time with an average of 83% and 76% accuracy for the
two experiment sets, respectively. We notice that RolX ’s
accuracy drops when September and May data is used as
training, possibly because these months correspond to the
start and end of the school semesters; the behavior of the
subjects would be generally di↵erent than usual in these
months, thus providing not as much predictive information
as the other months would.

4. STRUCTURAL SIMILARITY
Here we describe experiments in which RolX is used for

its most basic task: grouping nodes based on their structural
similarity.

4.1 Network Sciences Coauthorship data:
Our first data set is the weighted Network Science Co-

authorship Graph with 1589 authors (from the network sci-
ence community) and 2743 weighted edges [25]. Figure 9
shows (a) the role-colored graph (where each node is col-
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•  Introduced by Sean Gilpin et al. 

•  RolX is unsupervised 

•  What if we had guidance on roles? 
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•  Constraints on columns of G (i.e., role assignments) or 

rows of F (i.e. role definitions) are convex functions 

•  Use an alternative least squares (ALS) formulation 
–  Do not alternate between solving for the entire G and F 
–  Solve for one column of G or one row of F at a time 

•  This is okay since we have convex constraints 
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the formulation into a series of convex programming prob-
lems, which are generally easy to solve.

minimize
G,F

||V �GF||2

subject to gi(G)  dGi, i = 1, . . . , tG

fi(F)  dFi, i = 1, . . . , tF

(2)

where gi and fi are convex functions.

An ALS Formulation.

Rather than alternating between solving for the entire ma-
trices G and F, we can instead solve for one column of G or
one row of F at a time. This is possible if convex constraints
can be specified in terms of these columns, which is the case
in this work. Without loss of generality, Equation 3 shows
an individual sub-optimization problem in terms of one of
the columns of G, denoted x.

Gk = minimize
x

||R� xFk||2

subject to: gi(x)  dGi, i = 1, . . . , tG
(3)

In Equation 3, R represents the residuals of all other fac-
tors not being solved for (sum of outer products of corre-
sponding columns of G and rows F). Fk is the k

th row
of the role/feature explanation matrix that corresponds to
the k

th column of the role assignment matrix. So with this
formulation, we alternate between learning single role as-
signments, followed by learning a role definition. Next we
explain how we solve the convex constrained problem shown
in Equation 3.

Solving The Constrained Least Squares Problem.

Our projection method is as follows. First, solve Equation
3 with all constraints removed using standard least squares
solvers. Second, find the closest point to the unconstrained
solution, that satisfies the given constraints. This projec-
tion method takes advantage of standard and very fast least
squares solvers and the subsequent nearest feasible point
problem is relatively simple to solve. In addition, Lemma 1
shows that performing these two steps will exactly solve the
original problem in Equation 3. Applications of this theorem
and its proof can be found in [6][13].

Lemma 1. Projection Equivalence Result. The following
constrained optimization problem:

minimize
x

||B� xa||2

subject to: ci(x)  di, i = 1, . . . , n
(4)

where ci are convex functions on x, is equivalent to:

minimize
x

||x⇤ � x||2

subject to: ci(x)  di, i = 1, . . . , n
(5)

where x⇤ is the optimal to the optimization problem in Equa-
tion 4 without contraints.

This leads to the following algorithm for convex constrained
NMF presented in Figure 1. Like ALS for unconstrained
NMF, this heuristic is not guaranteed to meet a global opti-
mum, even though all subproblems are solved exactly. How-
ever, each step will lead to a reduction in the global objective

(Equation 2). Thus, in practice the algorithm will find local
minima that meet all specified constraints.

Inputs:

• V: Node feature matrix containing n nodes described
by f topological structure features.

• gi(x),fi(x): Convex constraints on columns of G and
rows of F respectively.

• r: Number of roles (methods for learning r described
in previous work [14]).

Outputs:

• G: Role assignment matrix that satisfying all con-
straints.

• F: Role definition matrix that satisfying all con-
straints.

Algorithm:

while reconstruction error decreases do
{

for k = 1 . . . r //Recalculate each role.
{

1. Calculate R = V �G•( 6=k)F( 6=k)•

2. Calculate G•k by solving for x as follows:

(a) x⇤ = argmin
x

||R� xF
k•||2

(b) G•k = argmin
x

||x⇤�x||2 s.t. gi(x)  ✏i : 8i

3. Calculate Fk• by solving for x as follows:

(a) x⇤ = argmin
x

||R� xG•k||2

(b) Fk• = argmin
x

||x⇤�x||2 s.t. fi(x)  ✏i : 8i

}
}

Figure 1: Our algorithm that will be used to encode
all guidances described in Section 4. The algorithm
uses a least squares approach and allows additional
convex constraints to be added to the NMF formu-
lation.

The advantage of solving for one role at a time rather than
the entirety of G or F as is generally done with ALS, is that
it allows the problem to be broken down into smaller parts
that then fit into fast solvers. In general, projection meth-
ods have been found to be better suited to larger problems
and we found this to be the case as well. Using this method
allows us to solve much larger problems than we had previ-
ously been able to using standard constrained optimization
solvers [8]. The final constrained optimization problem (i.e.,
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Guidance 
Type 

Effect of increasing guidance 

on role assignment (G) on role definition (F) 

Sparsity 
Reduces the number of nodes 
with minority memberships 

in roles 

Decreases likelihood that 
features with small explanatory 

benefit  
are included 

Diversity 
Limits the amount of 
allowable overlap in 

assignments 

Roles must be explained with 
completely different  

sets of features 

Alternative 
Decreases the allowable 

similarity between the two 
sets of role assignments 

Ensures that role definitions are 
very dissimilar between the two 

sets of role assignments 
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closest constrained point problem) is simple enough that we
find for even medium-sized problems we could utilize high
level solvers such as CVX [7][12], which makes experiment-
ing with new types of constraints very simple.

4. FRAMEWORK FOR FLEXIBLE SUPER-
VISION

In the previous section, we discussed a novel and general
algorithm that can easily handle convex constraints. Convex
constraints can encode a variety of useful guidances. In this
section, we show how they can be used to enforce sparsity,
diversity and alternativeness. In the experimental section,
we show applications which exploit these forms of guidance.

4.1 Sparsity
The area of sparsity has recently attracted much atten-

tion. In a general context, sparsity has been shown to have
two main benefits: (1) parsimony and (2) improved predic-
tive performance, with the later being motivated by Occam’s
razor. Sparse learning formulations exist for many learning
settings such as linear regression (LASSO), Kernel methods
(SVM) and covariance estimation.

In our work, we can place sparsity constraints on both the
G or F matrices leading to an objective function of:

argmin
G,F

||V �GF||2

subject to: G � 0,F � 0

8i ||G•i||1  ✏G

8i ||F
i•||1  ✏F

where ✏G and ✏F define upperbounds for
the sparsity constraints (amount of
allowable density).

(6)

Previous works have shown the e↵ectiveness of using L1
norm as a penalty in model learning. In our formulation the
L1 penalty is encoded as a constraint rather than a penalty
in the objective, but it is known that these formulations are
theoretically equivalent [5]. However, another twist to our
formulation is that we do not constrain the entire matrix
but instead constrain each column of G and each row of
F. This was done because our solver requires constraints
to be formulated only over one role vector at a time. The
e↵ect of this technical di↵erence is that the sparsity must
be more uniformly spread across each role definition or role
assignment which is a benefit of this method.

Sparsity constraints on G and F have easy to understand
intuitive interpretations. If G is sparse, it means that nodes
are assigned to as few roles as possible; and it is possible
for some nodes to be assigned to no roles. If F is sparse,
it means that the roles are defined with respect to as few
features as possible. Both of these extensions allow for a
simple explanation of the data, and lead to improved pre-
diction performance.

4.2 Diversity
In the NMF forms of role discovery, nothing prevents the

roles to which nodes are assigned (i.e., the G matrix) and
the role definitions (i.e., the F matrix) to be highly overlap-
ping. This can be undesirable particularly for the F matrix
since it means all roles are highly similar. This can be over-
come by enforcing a diversity requirement so that each role

Figure 2: Visualization of diversity constraints on
role explanation matrix F (roles ⇥ features) for
DBLP dataset. The top matrix shows the uncon-
strained result; the bottom matrix is constrained to
be completely diverse (✏ = 0); and the middle matrix
shows a middle ground. From the top matrix to the
bottom matrix, the number of black cells (i.e. zero
values) increases since roles definitions must be ex-
plained with completely di↵erent sets of features.

uses a di↵erent set of features (for the F matrix) and nodes
are assigned to di↵erent combinations of roles (for the G
matrix).
Our formulation for role allocation diversity (G matrix)

and role definition diversity (F matrix) makes use of orthog-
onality as follows:

argmin
G,F

||V �GF||2

subject to: G � 0,F � 0

8i, j GT
•iG•j  ✏G i 6= j

8i, j Fi•.F
T
j•  ✏F i 6= j

where ✏G and ✏F define upperbounds on
how angularly similar role assign-
ments and role definitions can be to
each other.

(7)

When ✏ = 0, our constraint will exactly match the def-
inition orthogality, and when ✏ � 0 the constraint can be
viewed as limiting the angular similarity between two vec-
tors. The e↵ect of combining this constraint with non-
negativity constraints is that no role definitions will have
any common features and no role assignments will have over-
lapping populations for ✏ = 0. This is so since GT

•iG•j = 0
if and only if these two vectors do not share any non-zero
entries. Figure 2 shows such an example, where none of the
three roles have any overlapping features. In the context of
our solver which solves for one vector at a time, this con-
straint will be linear (a weighted sum).

4.3 Alternative Role Discovery
Recent work on another unsupervised problem, clustering,

has explored the area of alternativeness [24, 9]. In that liter-
ature, the term alternativeness and orthogonality are used
interchangeably, but we only use the term alternativeness
for clarity.
The motivation for alternativeness in unsupervised learn-

ing is strong. Most interesting problems are on large data
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closest constrained point problem) is simple enough that we
find for even medium-sized problems we could utilize high
level solvers such as CVX [7][12], which makes experiment-
ing with new types of constraints very simple.

4. FRAMEWORK FOR FLEXIBLE SUPER-
VISION

In the previous section, we discussed a novel and general
algorithm that can easily handle convex constraints. Convex
constraints can encode a variety of useful guidances. In this
section, we show how they can be used to enforce sparsity,
diversity and alternativeness. In the experimental section,
we show applications which exploit these forms of guidance.

4.1 Sparsity
The area of sparsity has recently attracted much atten-

tion. In a general context, sparsity has been shown to have
two main benefits: (1) parsimony and (2) improved predic-
tive performance, with the later being motivated by Occam’s
razor. Sparse learning formulations exist for many learning
settings such as linear regression (LASSO), Kernel methods
(SVM) and covariance estimation.

In our work, we can place sparsity constraints on both the
G or F matrices leading to an objective function of:

argmin
G,F

||V �GF||2

subject to: G � 0,F � 0

8i ||G•i||1  ✏G

8i ||F
i•||1  ✏F

where ✏G and ✏F define upperbounds for
the sparsity constraints (amount of
allowable density).

(6)

Previous works have shown the e↵ectiveness of using L1
norm as a penalty in model learning. In our formulation the
L1 penalty is encoded as a constraint rather than a penalty
in the objective, but it is known that these formulations are
theoretically equivalent [5]. However, another twist to our
formulation is that we do not constrain the entire matrix
but instead constrain each column of G and each row of
F. This was done because our solver requires constraints
to be formulated only over one role vector at a time. The
e↵ect of this technical di↵erence is that the sparsity must
be more uniformly spread across each role definition or role
assignment which is a benefit of this method.

Sparsity constraints on G and F have easy to understand
intuitive interpretations. If G is sparse, it means that nodes
are assigned to as few roles as possible; and it is possible
for some nodes to be assigned to no roles. If F is sparse,
it means that the roles are defined with respect to as few
features as possible. Both of these extensions allow for a
simple explanation of the data, and lead to improved pre-
diction performance.

4.2 Diversity
In the NMF forms of role discovery, nothing prevents the

roles to which nodes are assigned (i.e., the G matrix) and
the role definitions (i.e., the F matrix) to be highly overlap-
ping. This can be undesirable particularly for the F matrix
since it means all roles are highly similar. This can be over-
come by enforcing a diversity requirement so that each role

Figure 2: Visualization of diversity constraints on
role explanation matrix F (roles ⇥ features) for
DBLP dataset. The top matrix shows the uncon-
strained result; the bottom matrix is constrained to
be completely diverse (✏ = 0); and the middle matrix
shows a middle ground. From the top matrix to the
bottom matrix, the number of black cells (i.e. zero
values) increases since roles definitions must be ex-
plained with completely di↵erent sets of features.

uses a di↵erent set of features (for the F matrix) and nodes
are assigned to di↵erent combinations of roles (for the G
matrix).
Our formulation for role allocation diversity (G matrix)

and role definition diversity (F matrix) makes use of orthog-
onality as follows:

argmin
G,F

||V �GF||2

subject to: G � 0,F � 0

8i, j GT
•iG•j  ✏G i 6= j

8i, j Fi•.F
T
j•  ✏F i 6= j

where ✏G and ✏F define upperbounds on
how angularly similar role assign-
ments and role definitions can be to
each other.

(7)

When ✏ = 0, our constraint will exactly match the def-
inition orthogality, and when ✏ � 0 the constraint can be
viewed as limiting the angular similarity between two vec-
tors. The e↵ect of combining this constraint with non-
negativity constraints is that no role definitions will have
any common features and no role assignments will have over-
lapping populations for ✏ = 0. This is so since GT

•iG•j = 0
if and only if these two vectors do not share any non-zero
entries. Figure 2 shows such an example, where none of the
three roles have any overlapping features. In the context of
our solver which solves for one vector at a time, this con-
straint will be linear (a weighted sum).

4.3 Alternative Role Discovery
Recent work on another unsupervised problem, clustering,

has explored the area of alternativeness [24, 9]. In that liter-
ature, the term alternativeness and orthogonality are used
interchangeably, but we only use the term alternativeness
for clarity.
The motivation for alternativeness in unsupervised learn-

ing is strong. Most interesting problems are on large data
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Goal: Find role assignments or definitions  
that are very different from each other 
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Figure 3: Comparison of role discovery techniques for identity resolution across graphs. Role definitions are
learned from the KDD co-authorship graph; then, authors from the other (conference) co-authorship graphs
are assigned to these roles using various techniques. In particular, we show results for ReFeX (features only),
RolX (unconstrained role discovery), GLRD-Sparse (role discovery with sparsity constraints), and GLRD-
Diverse (role discovery with diversity constraints). Authors from each conference are paired with increasing
number of nearest neighbors from KDD conference (x-axis) and the resulting recall is reported (y-axis).
Across most settings role definitions using sparsity and diversity constraints lead to better identity resolution
results than standard unconstrained RolX. For graphs that are most similar in nature to KDD (e.g. ICDM,
SDM, CIKM) the transfer of role definitions lead to better results than simply using structural features of
nodes directly. Note that the recall values are relatively low because the set sizes (on the x-axis) are small
compared to the population size in each graph.

Network |V| |E| k |LCC| #CC
VLDB 1,306 3,224 4.94 769 112
SIGMOD 1,545 4,191 5.43 1,092 116
CIKM 2,367 4,388 3.71 890 361
SIGKDD 1,529 3,158 4.13 743 189
ICDM 1,651 2,883 3.49 458 281
SDM 915 1,501 3.28 243 165

Table 2: Information about DBLP co-author
networks for each conference. Data was col-
lected for five years (2005-2009). |V|=number
of vertices, |E|=number of edges, k=average de-
gree, |LCC|=size of largest connected component,
#CC=number of connected components.

standard RolX [14] as well as the sparse and diverse ver-
sions of GLRD. For each of these competing role definitions,
we assign each vertex from each graph to the roles whose
function they most exhibit. As a baseline, we also explore
author identification without roles by using the raw graph
features as described in ReFeX.
We use the role assignments to resolve the identities of

vertices from each graph (namely, ICDM, SDM, CIKM, SIG-
MOD, and VLDB) to the vertices in the KDD graph. With-
out loss of generality, assume we are resolving identity of au-
thors from the KDD graph to the authors in ICDM graph.
For each author in both conferences, we select the corre-
sponding row vector from the node by role matrix Gkdd and
find the k closest neighbors (row vectors) from Gicdm. If
the original author from KDD graph is present in the set of
k closest neighbors, we count the result as a match. We re-
peat this experiment using sparsity and diversity constraints
on Fkdd. We also repeat the experiment using the ReFeX
features, comparing author feature vectors from Vkdd and
Vicdm. Figures 3 and 4 shows how the di↵erent decompo-

DBLP Co-authorship Networks from 2005-2009 
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Figure 4: Comparison of role discovery techniques
for identity resolution experiments. Authors from
each conference paired with the nearest 32 neighbors
from KDD conference; the resulting recall accuracy
is reported. The percentage number (on the x-axis)
is the fraction of authors that overlap between the
two conferences. Nearly all experiments show better
results with sparsity and diversity constraints except
when the authors do not share similar roles in the
two conferences (SIGMOD and VLDB).

sition methods compare in this setting for all graphs paired
with KDD.

Our method of utilizing role discovery results for the au-
thor identification task is described formally in the following
set of steps:

1. Extract features from co-authorship graphs to get graph
features (e.g. Vkdd,Vicdm) using ReFeX.

2. From the graph features matrix Vkdd perform role dis-
covery to obtain Gkdd and Fkdd.

3. Transfer the role definition matrix Fkdd (role by fea-
ture matrix) to other graphs (e.g. Vicdm) by solving
Equation 9.

Gicdm = min
G

||Vicdm �GFkdd||2 s.t. G � 0 (9)

Our experiments with graph identity-resolution show that
diversity and sparseness constraints almost universally im-
prove the quality of learned role-definition matrix. This is
not unexpected since there is a long tradition in machine
learning of using sparsity to prevent overfitting. As men-
tioned previously we can view diversity as enforcing sparsity
since a diverse set of roles as per our definition do not share
many overlapping features and hence each role definition is
concise.

Figure 3 shows that role definitions learned using sparsity
and diversity outperform standard unconstrained role dis-
covery (RolX) in almost every setting and problem parame-
terization. Figure 4 more clearly shows the general trend by
considering the results for a particular problem parameteri-
zation. In that figure, we observe that diversity constraints
lead to the most improvement over RolX, while sparsity im-
provements are lesser. We also observe that transferring the
KDD role definitions to some graphs (like VLDB and SIG-
MOD) does not compare well to the baseline method that
does not use any roles (such as ReFeX). We believe this is
because the same participants in conferences such as VLDB

and SIGMOD do not have a similar role to the ones they
play in KDD; and hence, using the raw features (without
roles) produces better results.
We believe that sparsity improves the quality of role defi-

nitions by reducing the ability of unconstrained NMF-based
role discovery to overfit the problem. Features that only
slightly add to the definition of a role are more likely to be
explaining noise; and by forcing those values to zero, we end
up with more robust definitions. Furthermore, the diversity
constraints help by removing redundancy in role definitions,
which leads to definitions that are more easily comparable.
For example, if a feature is used to define every role, then it
is not essential in defining any of them.

5.2 Alternative Roles
In this section, we show that our alternative role discov-

ery formulation (presented in Section 4.3) can discover sig-
nificantly di↵erent role definitions, as well as show that the
formulation can be used to improve the role definitions when
there are ground-truth communities. In Table 3, we show
the di↵erence between an alternative role discovery result
and an original role definition found using unconstrained
role discovery (via RolX). In Table 4, we show that we can
use our formulation to get more consistent assignments of
roles when ground-truth communities are known.
In our first experiment, we explore the di↵erence between

the roles of the original and alternative role discovery. Using
the KDD co-authorship graph, we find a set of roles and con-
strain a new solution to have a significantly di↵erent role def-
inition (F matrix). We then compare the results by assign-
ing each vertex to its most dominant role in both results to
create two separate partitions of the vertices. We then mea-
sure the di↵erence between the two partitions using Jaccard
distance. Table 3 shows that all of the Jaccard distances are
far from 0 meaning that the alternative role assignments are
very di↵erent than the original ones. Figure 5 illustrates the
alternative roles found in the largest connected component
of the KDD coauthorship graph. Note, the reader can zoom
in on this figure to read the names of each author. The fol-
lowing is a description of the original roles and the roles that
GLRD(Alternative) found. These description are based on
sense-making analysis [14]. As the descriptions show these
roles are capturing alternative concepts.

R1(alt) R2(alt) R3(alt) R4(alt)
R1 0.946 0.510 0.762 0.913
R2 1.000 0.971 0.810 0.739
R3 1.000 0.7942 1.000 1.000
R4 0.345 0.991 1.000 0.982

Table 3: Jaccard distance matrix comparing original
role assignments (rows) to alternative role assign-
ments (columns). Jaccard distance of 0 represents
an exact match between clustering and 1 represents
no overlap. The relative error for the two decom-
positions was similar: 0.12% and .5% (where relative
error is error = ||V �GF||/||V||).

Original Roles:

Role 1: Nodes here have high eccentricity. These are
periphery nodes.
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Figure 1: A multi-relational graph represented using
an order 3 tensor. The PARAFAC tensor decompo-
sition is a rank 1 simplification of the graph and is
the natural analog to the earlier used [8, 7] NMF for-
mulation of role discovery. However, it has signifi-
cant limitations for role discovery in multi-relational
graphs.

Role Discovery in Multi-relational Graphs. Our ap-
proach to extending role discovery to multi-relational graph
is to model the graphs as a tensor. This is done by extract-
ing features from each relation and appending the resulting
feature matrices into a single tensor V of dimension n⇥f⇥r.
Just as NMF is used to decompose a feature matrix V , tensor
decompositions can be used to decompose a feature tensor
V. One natural choice of tensor decompositions to decom-
pose a feature tensor would be nonnegative PARAFAC [6].
PARAFAC like NMF is a rank one decomposition see Fig-
ure 1. However, PARAFAC is not an ideal model to find
complex patterns in graphs, as is desired for role discovery,
because it is too simplistic in its assumptions. In particu-
lar it will only allow each group of entities to play only one
role for only one group of relations. See the introductory
section for a more indepth explanation of the limitations of
PARAFAC.

argmin
G,F,R

||V �
X

k

gk � fk � rk||Fro

subject to: G � 0,F � 0,R � 0

(2)

Instead we use the Tucker decomposition (shown in Equa-
tion 3) that allows us to find the complex interaction be-
tween E-groups, the roles they play, and R-groups they play
those roles in. The diagrammatic explanation of Tucker de-
composition in Figure 2 shows how it models these interac-
tions. Like PARAFAC and NMF, it is a rank one decomposi-
tion which allows for an intuitive interpretation. A column
in G corresponds to a group of people and is a length n

indicator vector showing E-group membership. Similarly a
column in F corresponds to a role definition which is a group
of features and a column in R corresponds to a group of re-
lations which we refer to as an R-group. Unlike PARAFAC
and NMF, any factor can be any combination of the columns
in G, F , and R. The core of the Tucker decomposition allows
this complex interaction and requires more explanation. It
too is a order 3 tensor except the modes are now directly
interpretable as E-groups, roles, and R-groups. An entry
in the core at i, j, k means that E-group i plays role j for
R-group k. Understanding and simplifying this core is crit-
ical to the success of multi-relational role discovery using a
Tucker decomposition.

argmin
G,F,R,H

||V �
X

i

X

j

X

k

h

ijk

⇤ gk � fk � rk||Fro

subject to: G � 0,F � 0,R � 0,H � 0

(3)
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Figure 2: The Tucker decomposition for role dis-
covery. The factor matrices can be interpreted as:
groups of features (role definitions), groups of enti-
ties (E-groups), and groups of relations (R-groups).
The Tucker core shows how the roles/E-groups/R-
groups interact in the multi-relational graph and can
be viewed itself as a hyper-graph which we call an
example of an interaction graph.

3. MRD ALGORITHM
Tucker model has most often been described as a higher

order analog of principal component analysis or singular
value decomposition and is traditionally defined with fac-
tor matrices being orthogonal. Among the most popular
tensor toolboxes, the Tucker model is often implemented
with orthogonality constraint on the factor matrices (Ten-
sor Toolbox [3, 2]) or with no constraint enforced on the core
(Nway Toolbox [1]). Other recently proposed algorithms for
nonnegative Tucker model [10, 14] extend the classical multi-
plicative update procedures proposed for NMF [12], which is
known to converge slowly near stationary points [13]. Since
the alternating least squares (ALS) method is known as the
“workhorse” algorithm for PARAFAC [11] and is empiri-
cally demonstrated to be competitive among many existing
methods [15], we implement our own version of nonnegative
Tucker decomposition using an alternating nonnegative least
squares (ANLS) scheme.
Let V be the tensor to be decomposed. Denote the fac-

tor matrices by G,F and R and the core tensor by H. In
each iteration we optimize over each of G,F,R and H in
turn while fixing all others as constants. When G is being
optimized, the objective can be written as:

argmin
G�0

kV
G

�GH
G

(R⌦ F)T k
Fro (4)

where V
G

is the matricization of V in the first mode and
⌦ is the Kronecker product. The subproblems when F and
R are being solved for have the exact same form but with a
di↵erent variable being optimized. In addition it is generally
desirable for the entries in the core to indicate the weights
of each coupling of factors. Thus we normalize the columns
of G,F and R once they are solved. When we solve for the
core H, rewriting the tensors in vectorized form turns the
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E-group 1
Name Party Exp

Millender-McDonald D 11
Obey, David D 38
Tsongas, Niki D 0
Speier, Jackie D 0

Faleomavaega, Eni D 18
Meehan, Martin D 14
Edwards, Donna D 0
Visclosky, Peter D 22
Hoyer, Steny D 26
Foster, Bill D 0

(a) Democrat seniority. Hoyer was the
majority leader. Characterized by large
number of collaboration with many
representatives largely in 3rd R-group
(Ways and Means).

E-group 2
Name Party Exp

Hensarling, Jeb R 4
Boehner, John R 16

Thornberry, Mac R 12
Broun, Paul R 0

Shadegg, John R 12
Hastert, Dennis R 8
Scalise, Steve R 11
Latta, Robert R 6
Flake, Je↵ R 6

McCrery, Jim R 14
(b) Republican seniority. Boehner
was minority leader at the time.

E-group 3
Name Party Exp

Cooper, Jim D 16
Johnson, Henry D 0

Ryan, Tim D 4
DeGette, Diana D 10
Engel, Eliot L. D 14
Doggett, Lloyd D 12
Pastor, Ed D 16

Meek, Kendrick D 4
Murphy, C. D 0

Crowley, Joseph D 8
(c) Active largely in R-group (5th)
but with multiple roles. The 5th R-
group is dominated by the agricul-
ture committee.

E-group 4
Name Party Exp

Hall, Ralph R 16
Rodgers, Cathy R 2
Myrick, Sue R 12
Issa, Darrell R 6

Drake, Thelma R 2
Kuhl, Randy R 2
Poe, Ted R 2

Boozman, John R 6
Conaway, Michael R 2

Wamp, Zach R 12
(d) Working with many representa-
tives (high degree) but not often (low
weight) on R-group 5.

E-group 5
Name Party Exp

Jackson-Lee, Sheila D 12
Cohen, Steve D 0
Hare, Phil D 0

Grijalva, Raul D 4
English, Phil R 12

Honda, Michael D 6
McCotter, Thaddeus R 4

Filner, Bob D 14
Hinchey, Maurice D 14
Gonzalez, Charles D 8
(e) Mixed party membership

Figure 7: Samples of congressional representatives from each E-group (found in in the 110th Congress
Cosponsorship Graph) along with their party a�liation and years of service in U.S. House of Representatives
at beginning of congress (2007).
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Figure 8: R-groups for 100th congress. Each bar plot corresponds to a single R-group and the bars show
how much each relation contributes to the respective relation R-group.
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Figure 8: R-groups for 100th congress. Each bar plot corresponds to a single R-group and the bars show
how much each relation contributes to the respective relation R-group.
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sition, as is commonly done (see Algorithm 1), we can see
which relations are less distinguishing in terms of role anal-
ysis by looking at those relations that show up in multiple
R-groups (e.g., ‘Transport and Infrastructure’ is assigned to
every R-group).
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Figure 6: Sense making of roles discovered in the
110th Congress Cosponsor Multi-Relational Graph.
Roles are redefined in terms of a set of reference
features each of which is normalized for comparison
purposes. Role 3 are the power brokers.

Interactions Between E-groups, Roles and R-groups.
We now explain the Interaction Graph which is shown in
Figure 10. As previously mentioned E-groups are largely di-
vided by party even though party was not part of the data
set. It can be argued then that this role discovery formu-
lation discovered communities rather than roles. However
the reason these groups divided along party lines is because
parties are playing di↵erent roles in di↵erent R-groups. De-
pending on di↵erent factors such as which party is the ma-
jority, we expect the parties to play di↵erent roles, so our
analysis matches our expectations.

While there is much overlap in the R-groups that both
parties participate in, the parties play di↵erent roles in those
R-groups. For example the Republican groups participate
largely in R-groups 3,4,5 while the Democrat groups partic-
ipate largely in R-groups 1,2,3,5. However E-group 4 (Re-
publican) and E-group 5 (Democrat) play di↵erent roles in
R-group 5 (Agriculture). This is an example of a Role Tie

from Figure 4.
There are also some roles and E-groups that are unique

to a party. For example role 2 is exclusive to Republicans
(many collaborators, but not many collaborations). And
R-group 1 (Ways and Means) is more strongly associated
with the Democrat E-groups. This makes sense, because the
Ways and Means committee is one of the most prestigious
to participate in and relates to tax legislation. It therefore
makes sense that the majority party would be most active
in this committee.

Though the direct view of the interaction graph is use-
ful, as discussed earlier there are other methods to under-
stand the interaction. We can slice the core tensor either
by E-group, role, or R-group and directly compare. Figure
9 shows such a comparison across E-groups. We can see
that E-groups 1 and 3 both play role 5 but on di↵erent R-
groups, also E-group 1 plays mainly one role, but E-group
3 plays multiple roles in the graph. Finally, we can embed

this graph into a metric space as shown in Figure 10.
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Figure 9: Tucker core found in in the 110th Congress
Cosponsorship Graph sliced by E-group. Each slice
represents an E-group while the rows correspond
to R-groups and the columns correspond to roles.
Light colors correspond to high values and black cor-
responds to zero value.

5.2 Studies Across Multiple Multi-Relational
Graphs

We also performed multi-relational analysis across a to-
tal of 15 consecutive congresses and report the results here.
There were two experiments we performed, to analyze these
multi-relational graphs and to gain insight into them. First
in Figure 12 we analyzed how the macro-properties of the
learned interaction graphs, as discussed in Section 4.3, var-
ied throughout the congress (see Figure 12). And second
we determined how well roles definitions learned from one
congress can transfer to others, as discussed in Section 4.5,
the results of which are presented in Figure 13.
Figure 12 shows the results of our analysis of macro-properties

of the learned interaction graphs from the 96th-110th con-
gresses. These results contain an immense amount of in-
teresting insights and we focus on just a few due to space
restrictions. The first unusual property is we note is a great
spike of instability in the 101st congress. This is due to the
election of a new President Bush following a very popular
bipartisan President Regan. In addition many controversial
bills were passed that crossed party lines such as the Amer-
icans With Disabilities Act. In contrast the 99th congress
was very stable given it was Regan’s second term and most
bills were supported across partisan lines. Of particular note
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5.2 Studies Across Multiple Multi-Relational
Graphs

We also performed multi-relational analysis across a to-
tal of 15 consecutive congresses and report the results here.
There were two experiments we performed, to analyze these
multi-relational graphs and to gain insight into them. First
in Figure 12 we analyzed how the macro-properties of the
learned interaction graphs, as discussed in Section 4.3, var-
ied throughout the congress (see Figure 12). And second
we determined how well roles definitions learned from one
congress can transfer to others, as discussed in Section 4.5,
the results of which are presented in Figure 13.
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of the learned interaction graphs from the 96th-110th con-
gresses. These results contain an immense amount of in-
teresting insights and we focus on just a few due to space
restrictions. The first unusual property is we note is a great
spike of instability in the 101st congress. This is due to the
election of a new President Bush following a very popular
bipartisan President Regan. In addition many controversial
bills were passed that crossed party lines such as the Amer-
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Roadmap	
  
•  Node Roles 

–  What are roles 

–  Roles and communities 

–  Roles and equivalences (from sociology) 

–  Roles (from data mining) 

–  Summary 

•  Node Proximity 

•  Summary 
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Summary	
  
•  Roles  

–  Structural behavior (“function”) of nodes 
–  Complementary to communities 
–  Previous work mostly in sociology under 

equivalences 
–  Recent graph mining work produces mixed-

membership roles, is fully automatic and scalable 
–  Can be used for many tasks: transfer learning,  
   re-identification, anomaly detection, etc 
–  Extensions: including guidance, modeling dynamic 

networks, etc 
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Roles:	
  Regular	
  Equivalence	
  vs.	
  
Role	
  Discovery	
  

Role Discovery Regular Equivalence 

Mixed-membership over roles ✓ 

Automatically selects the best 
model ✓ 

Can incorporate arbitrary 
features ✓ 

Uses structural features ✓ 

Uses structure ✓ ✓ 

Generalizes across disjoint 
networks 

(longitudinal & cross-sectional) 
✓ ? 

Scalable (linear on # of edges) ✓ 

Guidance ✓ 
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