
Fast Flow-based Random Walk with Restart in a Multi-query Setting

Yujun Yan⇤ Mark Heimann* Di Jin* Danai Koutra*

Abstract

As graph datasets grow, faster data mining methods be-

come indispensable. RandomWalk with Restart (RWR), be-

lief propagation, semi-supervised learning, and more graph

methods can be expressed as a set of linear equations. In

this work, we focus on solving such equations fast and ac-

curately when large number of queries need to be handled.

We use RWR as a case study, since it is widely used not

only to evaluate the importance of a node, but also as a

basis for more complex tasks, e.g., representation learning

and community detection. We introduce a new, intuitive

two-step divide-and-conquer formulation and a correspond-

ing parallelizable method, FlowR, for solving RWR with

two goals: (i) fast and accurate computation under mul-

tiple queries; (ii) one-time message exchange between sub-

problems. We further speed up our proposed method by

extending our formulation to carefully designed overlapping

subproblems (FlowR-OV) and by leveraging the strengths

of iterative methods (FlowR-Hyb). Extensive experiments

on synthetic and real networks with up to ⇠ 8 million edges

show that our methods are accurate and outperform in run-

time various state-of-the-art approaches, running up to 34⇥
faster in preprocessing and up to 32⇥ faster in query time.

1 Introduction

As the amount of data that we generate daily grows
rapidly, so does our need for scalable methods that can
help analysts gain insights into it. Among the various
tasks that apply to large graph data, Random Walk
with Restart (RWR) is a frequently used, fundamental
method that captures relative node importance and dis-
covers local graph structures. It is a basic building block
for numerous tasks, such as sampling in representation
learning [8], ranking [20], community detection [1], used
as a preprocessing step in other tasks, such as feature
extraction [8] and link prediction.

RWR requires solving linear equations, as do other
graph methods, such as semi-supervised learning, Belief
Propagation [13, 6], SimRank [14], and more (cf. Ta-
ble 1). Using RWR as a case study, we focus on the
following problem, and propose methodology that can
be generalized to other graph methods as well:

⇤
University of Michigan, Ann Arbor

Table 1: Graph methods that can be expressed in
the form r = E · r+q. A and D denote the adjacency
matrix and the diagonal degree matrix, resp.

Method To-invert Matrix E Input q Notation

RWR [20] cAD�1

(1� c)e 1-c: fly-out prob

Katz centr. [12] a0AT

indicator vec. e a0 weight for walks

(mincut) SSL [4] �a(D�A) node labels y a: coupling strength

FaBP [13] ↵D�c0A node beliefs ��� ↵, c

0
: homophily

LinBP [6] H2 ⌦D�H⌦A vec(���) H: influence matrix

SimRank [14] c”(AD�1

)⌦(AD�1

) (1� c”)vec(I) c

00
: decay factor

Problem 1. In a multi-query setting, given k parti-

tions of a graph G, we seek to speed up the solution

of graph methods of the form:

(1.1) r = E · r+ q,
where r is the output vector, matrix E captures various

structural properties of the graph, and q is a query.

At a large scale, exact matrix inversion (poten-
tially coupled with LU or QR decomposition) cannot
be applied directly due to its complexity. Often iter-
ative methods are used instead. Most iterative meth-
ods [7, 16, 22, 21] compute multiple matrix-vector mul-
tiplications to achieve speedup. Other iterative meth-
ods belong to domain decomposition methods, such
as Block Jacobi [22] and Additive Schwarz [16], and
GraphLab [15]. The idea is to split the data into dif-
ferent clusters and compute the results iteratively us-
ing the latest values from neighbor clusters, thus re-
quiring frequent cross-cluster communication until all
clusters converge. Iterative methods, however, are in-
e�cient for large numbers of queries since they require
redundant re-computation per query, and many of them
su↵er from ill-conditioned pre-conditioners or weak con-
vergence guarantees. Non-iterative methods [20, 10, 9]
often give approximate solutions without guarantees, or
rely on specialized decomposition methods.

To address these drawbacks, we propose a paralleliz-
able, e�cient, and accurate two-step approach, FlowR
(Flow-based RWR), which can handle very large num-
bers of RWR queries with low response time during the
online query step (second step) by performing an o✏ine
preprocessing step (first step). Intuitively, our method
treats each of the k input partitions as a ‘black box’
with input signals from the other clusters and output

signals from that cluster to the others. In this setting
and unlike the formulation of decomposition methods,

Copyright c� 2018 by SIAM

Unauthorized reproduction of this article is prohibited

each input signal is linked to a node rather than an edge.
The solution has two components: (i) the solution when
there are no cross-edges between partitions, which can
be obtained independently with only local information,
and (ii) the solution that ‘responds’ to the input signals
that flow into nodes with cross-cluster connections. The
input signals depend on the cluster connection topol-
ogy (which can be precomputed and stored to avoid
re-computation) and also on the query vectors.

Additionally, we propose a new strategy using over-
lapping clusters to reduce the computational cost. Un-
like prior work [2] that aims to minimize the communi-
cation frequency, our approach targets the minimization
of boundary nodes. Although this resembles the vertex-
cover problem, it di↵ers in that some boundary nodes
may be counted multiple times.

Our contributions can be summarized as:
• Theoretical Formulation: We introduce a new

two-step formulation for e�ciently solving graph meth-
ods in multi-query settings, and extend it to overlapping
partitions for further speedup in computation.

• Fast Algorithms: We propose FlowR, a
fast two-step algorithm for the case study on RWR,
and its overlapping counterpart, FlowR-OV. We also
present a hybrid variant, FlowR-Hyb, which combines
the benefits of iterative methods and our overlapping
method for even better performance.

• Experiments: We perform extensive experi-
ments on real-world networks with up to 7.6 M edges to
test the runtime and accuracy of the proposed methods.
We show that our methods outperform the state-of-the-
art approaches by up to 34⇥ in the preprocessing stage
and 32⇥ in the query stage.

The full paper (including the appendices with
proofs, additional experiments, and discussion), the
data, and the code for this work are publicly available
at https://github.com/Yujun-Yan/LINSYS.

2 Related Work

Our work is related to the following topics: iterative
graph methods, distributed computations, and cluster-
ing/partitioning (discussed in Appendix B).

Iterative Graph Methods. Many graph meth-
ods involve solving a linear system, such as computation
of hitting and commute times, MaxCut, random span-
ning tree, and nearest tree, all the cases that we give
in Table 1, and more. A category of iterative methods
for linear equations is based on Krylov subspace meth-
ods. This category includes several methods that we use
as baselines in our experiments [18]: Generalized Mini-
mum Residual Method (GMRES), BiConjugate Gradi-
ent Stabilized Method (BiCGSTAB), Conjugate Gradi-
ent Squared Method (CGS) and Transpose-Free QMR

Method (TFQMR). These generally su↵er from slow
query response time due to redundant re-computations
for each query, and many often do not converge. For
other iterative methods, we refer the reader to the intro-
duction. Unlike these works, FlowR and its variants
avoid redundant computations, combine the strengths
of block elimination and Additive Schwarz methods, and
outperform these approaches in most cases.

Distributed Graph Computations. Most dis-
tributed methods focus on PageRank and random walks
due to their wide range of applications. In general, these
methods exploit the block structure of many real-world
graphs [20] and find approximate solutions. BEAR [10],
speeds up random walks by leveraging block elimination
and a specialized clustering method tailored to networks
with skewed degree distributions. On the message-
passing front, GraphLab [15] is a general, vertex-centric
framework for a variety of algorithms on graphs, but
requires continuous and costly synchronization between
clusters and results in approximate solutions. To re-
duce the communication overhead, it also employs asyn-
chronous communication. Andersen et al. [2] have
shown that trading o↵ some storage and allowing for
overlapping clusters can reduce communication for it-
erative methods. Unlike these works, our solution has
a simple interpretation (system with input/output sig-
nals), gives exact solutions, and involves a one-time
communication between clusters in a distributed envi-
ronment.

Table 2: Qualitative comparison of approaches: (1)-
(2) potential for exact and approximate solutions;
(3)-(4) compatibility with partitions and overlapping
clusters; (5) interpretability; (6) convergence guar-
antees. ’?’ means dependence on the exact method.

E
x
a
ct

A
p
p
ro

x
.

P
a
rt
it
io
n
s

O
v
er
la
p

In
te
rp

r.

C
o
n
v
er
g
.

Krylov subspace [18] 7 3 7 7 3 ?
Decomp. (iter.) [22, 16, 15] 7 3 3 3 7 ?
BEAR [10] 3 3 3 7 7 3
FlowR 3 3 3 3 3 3

3 Notations & Definitions

Let G(V, E) be a graph with n = |V| nodes and m = |E|
edges, organized in k clusters C

i

. Its edges are organized
in an adjacency matrix A, and its node degrees in a
diagonal matrix D. In the general form, we will refer to
a transformed graph represented by matrix E, which is a
function of the adjacency and degree matrices (Table 1).
For RWR, E / AD�1 is related to the transition
matrix. Table 3 gives the most common symbols. Next,
we introduce important concepts for our formulation.

Copyright c� 2018 by SIAM

Unauthorized reproduction of this article is prohibited

Table 3: Major symbols and definitions. Capital
bold letters for matrices; small bold font for vectors;
small regular font for scalars.

Notation Description

G(V, E) graph
V, n = |V| node-set and number of nodes of G, resp.
E , m = |E| edge-set and number of edges of G, resp.
C

i

cluster or partition i
@V, @V

i

set of boundary nodes for G and C
i

, resp.
Vin, Vin

i

set of internal nodes for G and C
i

, resp.
A adjacency matrix of G, with entries a

(ij)

D diagonal degree matrix, d
(ii)

=
P

j

a
(ij)

& d
(ij)

= 0 for i 6= j

I identity matrix
E,E

ij

structual related matrix and cross-cluster matrix (for C
i

and C
j

)
eE
ij

non-zero submatrix of the cross-cluster matrix E
ij

Zi non-singular matrix corresponding to submatrix i, = [I�E
ii

]�1

r solution or posterior values or output
q query or prior values or input
k # of clusters or communities or patterns
t # of iterations
[r

1

; r
2

] vertically stacking column vectors r
1

, r
2

subscript i reference to submatrix or subvector corresponding to cluster C
i

subscript (i) reference to node i
| · | size (number of elements) of set or vector ·

Definition 1. (Boundary nodes (@V)) The bound-

ary nodes of G are defined as

@V = {u 2 V : 9(u, v) 2 E s.t. u 2 C
i

; v /2 C
i

}.

Put simply, the boundary nodes are adjacent to
edges that cross partitions. We will refer by @V

i

to the
boundary nodes of C

i

.

Definition 2. (Internal nodes (Vin)) The inter-

nal nodes of G are defined as Vin = {u 2 V \ @V},
where @V represents the boundary nodes. The internal

nodes of cluster C
i

are denoted by Vin

i

.

Example 1. In Fig. 2, the graph on the left is organized

in two clusters, C
A

and C
B

, and has 3 boundary nodes:

2, 3, and 7. All the other nodes are internal nodes.

Vector and Matrix Representation: The output
and input vectors r and q are stacked by their con-
stituent vectors per cluster, i.e., r = [r

1

; r
2

; . . . ; r
k

] and
q = [q

1

;q
2

; . . . ;q
k

]. Furthermore, these constituent
vectors r

i

are organized such that the entries corre-
sponding to the internal nodes of the cluster come
before the boundary nodes, i.e., r

i

= [rin
i

; r@V
i

] and
q
i

= [qin

i

;q@V
i

]. We reorder the matrix of structural
properties E in a similar way, as shown in Fig. 1. Next,
we define its submatrices.

Definition 3. (Cross-cluster matrix) The cross-

cluster matrix E
ij

= diag(0, eE
ij

), where eE
ij

is |@V
i

| ⇥
|@V

j

| (i 6= j) in Fig. 1, stores the connections between

clusters C
i

and C
j

(i 6= j) and is a submatrix of E.

Each matrix is ordered so that its internal nodes
Vin

i

precede its boundary nodes @V
i

. Since cross-edges
only exist between boundary nodes, the cross-cluster
matrices have only one non-zero block on the diagonal.
For completeness, we define eE

ii

= 0.

Figure 1: Vector and Matrix Representations. En-
tries ordered by cluster and node type (internal
nodes first, then boundary nodes).

Definition 4. (Cluster-matrix ‘inverse’) We de-

fine the cluster-matrix ‘inverse’ as: Z
i

= [I � E
ii

]�1

,

where E
ii

is the submatrix corresponding to cluster C
i

.

We organize it as shown in Fig. 1.

An important notion in our derivation is the ‘flow’
(input) to a cluster C

i

, which captures the one-time
cross-cluster messages. We denote as f

(i)

the ‘flow of
communications’ (or flow) to each boundary node i, i.e.,
the scalar input values from its neighbors that belong to
other clusters. Flow is dependent on the graph structure
and the query. We note that our definition of flow
di↵ers from other definitions [17] in distributed settings
that quantify communication volume; in our case it just
captures the values of the computations performed from
neighboring nodes in other clusters.

Definition 5. (Flow f
i

of cluster C
i

) The flow

(column) vector f
i

of cluster C
i

consists of its boundary

nodes’ flows, as shown in Fig. 1. Mathematically,

the flow vector f
i

of each cluster C
i

is defined as:

f
i

=
P

k

i 6=j,j=1

eE
ij

r@V
j

.

The total flow for the graph is obtained by stacking
the flow vectors of the k clusters: f = [f

1

; f
2

; . . . ; f
k

].

Example 2. In Fig. 2, the flows characterize the total

one-time impact of node 7 to node 2, 3, and the total

impact of nodes 2, 3 to node 7. This is di↵erent

from traditional message passing, where messages

iteratively pass between clusters.

4 FlowR for Distinct Clusters

In the following sections, we present the main results of
our proposed formulation, and introduce our algorithm,
FlowR. For detailed derivations, we refer the interested
reader to the supplementary file (Appendix A).

4.1 Intuition and Key Result. Our key idea is to
find a two-step solution for equations of the form of
Eq. (1.1), which include our target application RWR.
Given k non-overlapping clusters of matrix E (or graph

Copyright c� 2018 by SIAM

Unauthorized reproduction of this article is prohibited

Figure 2: FlowR: ordered computations on a small graph with two clusters (C
A

in green, C
B

in purple).
Subscripts in parentheses refer to nodes and the others to clusters. To solve RWR (after pre-computations),
we (1) find the global flow in Eq. (4.3) and (2) use it to solve the per-cluster Eq. (4.2), in parallel.

G), we analytically decompose the solution into two
parts. The first part represents the solution without
accounting for flow across connections between clusters,
and can be computed in parallel. Since most real-world
graphs have many inter-cluster connections, we need
a second part to ‘correct’ for the previously ignored
cross-cluster communication (part 2). The ‘correction’
is associated with the flows into boundary nodes. In
order to compute the ‘correction’ term in parallel, we
need to first solve for flows via a reduced system that
captures the relationship between them.

Theorem 1.[FlowR] The original linear system
r = Er+q is equivalent to the following two equations:

(4.2)

rin
i

r@V
i

�
= Z

i

qin

i

q@V
i

�
+

ZII

i

ZIV

i

�
f
i

, 8 cluster i = 1, . . . , k

where the |@V|⇥1 global flow f between the boundary
nodes satisfies the condition:

f =

eE ·
⇣
H4 · (f + q@V

) +H3 · qin

⌘
(4.3)

where eE is a block matrix induced on the bound-
ary nodes (with eE

ij

as sub-matrices), H4 =

diag(ZIV

1

, . . . ,ZIV

k

) and H3 = diag(ZIII

1

, . . . ,ZIII

k

). Both
eE and f are arranged by cluster.

Proof. See Appendix A of the supplementary material.

Intuitively, Eq. (4.2) shows the exact decomposition
of the solution: the first term represents the case when
no connections exist between clusters; the second term
represents the correction for the cross-cluster flows.
Equation (4.3) defines a reduced-size linear system
that determines the flow between the boundary nodes
of di↵erent clusters. Assuming that the number of
boundary nodes is small compared to the total number
of nodes in the original graph, this system can be solved
e�ciently. Once Eq. (4.3) is solved, it can be substituted
in Eq. (4.2), which can then be solved independently
(and in parallel) for each cluster. Given that each of the
linear systems is significantly smaller than the original
one and the majority of them can be solved in parallel in
a distributed environment, this approach is expected to
yield significant speedup, without trading o↵ accuracy.

4.2 Proposed Algorithm: FlowR. Based on our
analysis, we propose an e�cient algorithm, Alg. 1,
for solving linear equations in a multi-query setting.
Following prior work [10], our method, FlowR, can be
split into (i) an o✏ine preprocessing stage that does
not depend on the input vector and focuses on matrix
reordering and the storage of intermediate matrices, and
(ii) an online and fast query stage that solves the linear
system for a given query q by finalizing the computation
of the main FlowR equations (i.e., Eq. (4.2) and (4.3)).

In FlowR, we assume that the k input clusters
are non-overlapping, while in Sec. 5 we take advantage
of the benefits of overlapping clusters in distributed
computations, and propose a strategy for minimizing
the boundary nodes. In Line 6 and 10, LU invert

involves first LU decomposition and then the inversion
of the L and U matrices. This step can be replaced by
other approximate methods for further speedup.

Algorithm 1 FlowR

1: // 1: Preprocessing Stage

2: Input: graph G(V, E), structure-based matrix E0, k
clusters: {C

1

, . . . , C
k

}
3: Output: eE, H3, T, T1

4: E = reorder(E0) . as shown in Fig. 1
5: For i = 1, . . . , k
6: Zi = LU invert([I�E

ii

]) . parallelizable
7: H3 = diag(Z1

III, . . . ,Zk
III) . matrices shown in Fig. 1

8: H4 = diag(Z1
IV, . . . ,Zk

IV)

9: T1 = eE ·H4 . eE= mat E induced on boundary nodes
10: T =LU invert(I�T1) . from Eq. (4.3)

11: // 2: Query Stage

12: Input: query q, graph G(V, E), eE, H3, T, T1

13: Output: r

14: yr =reorder(q) . as shown in Fig. 1

15: b = T1q
@V
r

+ eE(H3q
in

r

)
16: f = T · b . compute flow from Eq. (4.3)
17: r

r

=Eq. (4.2) . compute the result per cluster
18: r =map(r

r

) . map back to original node IDs and get
the final result

Copyright c� 2018 by SIAM

Unauthorized reproduction of this article is prohibited

5 FlowR-OV for Overlapping Clusters

As shown in Appendix D of the supplementary material,
the dominant factor in the runtime of FlowR is the
number of flows during the preprocessing step (or the

size of eE, which is equal to the number of boundary
nodes in the non-overlapping case). To further speed
up the solution of Eq. (1.1), we propose a method,
FlowR-OV, that aims to minimize the number of
flows by replicating selected nodes in the appropriate
clusters (thus resulting in overlapping clusters). Our
optimization di↵ers from edge cut minimization (the
typical goal in clustering), and the vertex-cut problem
(some boundary nodes are counted multiple times due
to replication). Inspired by [2], which uses replication
to reduce cross-cluster communication frequency, we
propose a new replication strategy to achieve a di↵erent
goal, namely flow minimization.

Next, we (i) define concepts specific to the overlap-
ping case, (ii) extend our formulation to this case and
introduce FlowR-OV, (iii) propose a fast node repli-
cation technique for flow minimization, and (iv) speed
up the solution via a hybrid approach that combines the
strengths of FlowR-OV and iterative approaches.

5.1 Definitions. In the overlapping case, boundary
nodes are further divided into replicated and non-

replicated nodes, while internal nodes are split into over-
head and pure internal ones. This distinction matters
because overhead nodes do not contribute to the number
of flows (as boundary nodes do), but they are still in-
volved in more computations than pure internal nodes.
Fewer flows can reduce the preprocessing and query time
if the overhead nodes are controlled. Intuitively, if a
node is replicated from cluster C

j

to C
i

, its neighbors
in both clusters will become overhead nodes (converted
from boundary in C

i

or internal nodes in C
j

). Formally:

Definition 6. (Replicated boundary nodes (@Vr))
The replicated boundary nodes of G are defined as @Vr =

{u 2 @V and 9i 2 {1, . . . , k} with i 6= j : u 2 C
i

;u 2 C
j

}.

Definition 7. (Overhead nodes (ov)) The over-

head nodes of G are the internal nodes that are

connected to at least one replicated boundary node (or

an instance thereof) in @Vr

: Vov = {u 2 Vin : 9v 2
@Vr s.t. (u, v) 2 E ;u, v 2 C

i

for some i}.

Definition 8. (Pure Internal nodes (pin)) The

pure internal nodes of G are its internal nodes that are

not overhead nodes, i.e., Vpin = {u 2 Vin \ Vov}.

Example 3. In Fig. 3, if we replicate node 7 to Cluster

A (i.e., @Vr = {7}, then nodes 2 and 3 become overhead

nodes (from boundary), and nodes 4 and 5 in Cluster B

also become overhead nodes (from internal). Also, in

this case @V = {7}.

Figure 3: Example: FlowR-OV on two clusters.

Figure 4: Vector and matrix representations for
overlapping clusters.

We use similar vector and matrix representation
that we presented in Sec. 4, but the internal nodes are
further organized in subtypes as shown in Fig. 4.

The previous definition of flow is extended to f
i

=P
k

i 6=j,j=1

eE
ij

r@V+ov

j

, as the boundary nodes also receive
input signals from overhead nodes in other clusters.

5.2 Proposed Formulation. The general idea is
similar to the non-overlapping case. We treat each
cluster C

i

as a small system and compute the flows
before solving each small system independently. Based
on a carefully designed replication policy (discussed
below), we reduce the number of boundary nodes by
turning a subset of them into overhead nodes. Then,
by extending Theorem 1 to include the new node
definitions, we obtain the main equations of FlowR-
OV. Figure. 5 shows the preprocessing bottlenecks for
FlowR and FlowR-OV, and the reduction of the
linear system size for the latter.

Theorem 2.[FlowR-OV] In the overlapping case,
the linear system r = Er + q is equivalent to the
following two equations:
(5.4)

2

4
rpin
i

rov
i

r@V
i

3

5
=

2

64
ZII,pin

i

ZII,ov

i

ZIV

i

3

75 f
i

+ Z
i

2

4
qpin

i

qov

i

q@V
i

3

5 , 8 cluster i = 1, . . . , k

where the global flow f between the boundary nodes
satisfies the condition:

f =

ˆE · (diag(

ZII,ov

1

ZIV

1

�
, . . . ,

ZII,ov

k

ZIV

k

�
)(f + [q@V

1

; . . . ;q@V
k

])

+diag(

ZI,ov

1

ZIII

1

�
, . . . ,

ZI,ov

k

ZIII

k

�
)qin

).

(5.5)

Ê is the induced matrix E on @V and Vov.

Proof. See Appendix A of the supplementary material.

Copyright c� 2018 by SIAM

Unauthorized reproduction of this article is prohibited

Figure 5: Preprocessing barrier of FlowR vs. FlowR-
OV. FlowR-OV leads to a smaller linear system.

Although replicated nodes have multiple flows
(one per cluster in the overlap), perhaps counter-
intuitively the flow size is smaller than in the non-
overlapping case. For example, in Fig. 3, the number
of flows is reduced from 3 (in the non-overlapping case)
to 2 in the overlapping case (one flow for node 7 in
each of its clusters). At a high level, we only replicate
boundary nodes that reduce the size of flow by convert-
ing other boundary nodes to overhead nodes (cf. policy
below). Let @Vold be the boundary nodes in the non-
overlapping case. By denoting the set of overhead nodes
that were previously boundary nodes as {@Vold ! Vov},
we can express the set of boundary nodes in the overlap-
ping case as @V = @Vold \ {@Vold ! Vov}. We omit the
algorithm since it is similar to Alg. 1. The main changes
include (i) the new vector and matrix representations;

(ii) Ê instead of eE in Alg. 1 (line 9); and (iii) extended
definitions for H3 and H4 (lines 7 & 8).

5.3 Proposed Policy. We conjecture that finding
a clustering method which minimizes the boundary
nodes while imposing a maximum threshold for the
size of each cluster is a hard problem, and provide
details in Appendix C. Thus, we focus on providing a
heuristic policy for replicating boundary nodes to create
overlapping clusters. Intuitively, by focusing on one
cluster at a time, our policy copies into that cluster the
set of nodes from other clusters (i) which are connected
to multiple nodes in C

i

, and (ii) without which some
boundary nodes in C

i

would have been internal.
To illustrate this, we present the replication of

boundary nodes from other clusters in cluster C
i

. Let
degcc(v) be the number of cross-cluster edges of node
v (i.e., its degree induced on the adjacency matrix of
all the boundary nodes). For node u in C

j

, we define
N i

1d

(u) as the number of its neighbors in cluster C
i

(j 6= i) that have cross-cluster degree 1. Put di↵erently,
this is the set of u’s neighbors (in cluster C

i

) that would
have been internal if it were not for their cross-cluster
connection to u. Formally:
(5.6)

N i

1d

(u) = |{v 2 C
i

: (u, v) 2 E, degcc(v) = 1}|, 8u 2 C
j

, j 6= i

Our policy copies all the boundary nodes u 2 C
j

with N i

1d

(u) > 1 into cluster C
i

(i.e., all the nodes
whose replication eliminates at least two boundary

Algorithm 2 FlowR-Hyb- Query Stage (only)

1: Input: query q, graph G(V, E), Ê, H3, T1

2: Output: r

3: yr =reorder(q) . reorder y
4: b = T1q

@V
r

+ Ê(H3q
in

r

) .

H3 = diag(

ZI,ov

1

ZIII

1

�
, . . . ,

ZI,ov

k

ZIII

k

�
)

5: f =PowerMethod(T1,b) . Eq. (5.5)
6: r

r

=Eq. (5.4) . compute the result per cluster
7: r =map(r

r

) . map to original node IDs for final results

nodes in C
i

). For k clusters, this policy takes time
O(k|@V|max

i

|C
i

|) in the worst case, but O(k|@V|) in
practice when most vertices do not have high degrees.

5.4 Further Speedup via Hybrid Approach
FlowR-Hyb. The bottleneck of our method in pre-
processing is the LU decomposition and inversion for

T1 = Ê · (diag(

ZII,ov

1

ZIV

1

�
, . . . ,

ZII,ov

k

ZIV

k

�
). However, some-

times, the size of T1 may not be su�ciently small, ren-
dering the preprocessing of the decomposition and in-
verse costly (Alg. 1, line 10). Therefore, we introduce
FlowR-Hyb, a hybrid method that only precomputes

T1 and defers Eq. (5.5) to be solved iteratively in the
query stage. This approach combines the benefits of it-
erative methods and FlowR-OV (lower preprocessing
and query time, respectively). Algorithm 2 describes
the modified query stage.
6 Experimental Analysis

We conduct experiments on both synthetic and real-
world datasets to answer the following questions: (i) Is
FlowR e�cient? (ii) What is the benefit of FlowR-
OV over FlowR? (iii) Is our proposed strategy e↵ec-
tive? (iv) What is the benefit of FlowR-Hyb over
FlowR-OV? (v) How do the methods perform with
respect to baseline approaches?

Baselines. Direct is a simple baseline for solving
Eq. (1.1) by directly computing the inverse of [I�E], but
it is not feasible in any of our datasets, except for Net.
Instead, we compare our methods with BEAR, which
is based on block elimination, and significantly outper-
forms QR decomposition and LU decomposition [10].
Although our methods are exact, we also consider 6
approximate, iterative approaches for RWR (Sec. 2):
POWER (power method), GMRES, BiCGSTAB, CGS,
TFQMR and MLDIVIDE, a method combined with
Cholesky factorization and Gaussian Elimination pro-
vided by Matlab. Some of these methods often fail to
converge. Although our method can be easily paral-

lelized, considering our competitors are sequential, we
use the sequential version to compare with them.

Copyright c� 2018 by SIAM

Unauthorized reproduction of this article is prohibited

(a) E↵ect of boundary
nodes

(b) Scalability (c) Min-cut partitions (d) Hub-spoke parti-
tions

Figure 6: Synthetic Experiments: E↵ect of di↵erent parameters on FlowR and BEAR.

Table 4: Real graph data from [19].

Name Nodes Edges Description

Net 34 761 171 403 undir. Internet connection graph
Amazon 334 863 925 872 undirected co-purchase graph
RoadPA 1 088 092 1 541 898 undirected road network
RoadTX 1 379 917 1 921 660 undirected road network
Web-Stan 281 903 2 312 497 directed web graph
Google 875 713 5 105 039 directed web graph
Web-Berk 685 230 7 600 595 directed web graph

Experimental setup. We ran our experiments on an
Intel(R) Xeon(R) CPU E5-1650 at 3.50GHz, and 256GB
memory. For RWR, we set the fly-out probability 1�c =
0.15. In both stages, FlowR benefits from a small
number of boundary nodes. Given that there are no
such methods in the literature, among fast partitioning
methods, we chose Louvain [3], which usually generates
10% fewer boundary nodes than METIS [11]. We choose
the highest level from the hierarchical partition of
Louvain. Note that although Louvain is not guaranteed
to produce balanced clusters, it facilitates FlowR as
long as a) no giant clusters are generated and b) the
structural matrices of output clusters are invertible.For
the iterative baselines (except GMRES) and our hybrid
method FlowR-Hyb, we set the stopping condition as
error 10�9 (convergence). GMRES’s threshold is set
to 10�6 due to convergence issues. To reduce variance,
we average query time over 1000 queries and report this.

Data. The real datasets are described in Table 4.
The synthetic graphs are characterized by the following
parameters: the number of clusters k, the probability of
a node being a boundary node P

b

, the probability of two
nodes having an in-cluster edge P

in

, and the probability
of two nodes having a cross-cluster edge P

cross

. The
number of nodes per cluster is generated by a uniform
random variable ranging from 20 to 180. By default, the
synthetic graphs mimic the community structure of real
graphs with P

in

= 0.3, P
cross

= 0.04 and P
b

= 0.1 (i.e.,
many intra-cluster and few inter-cluster connections,
and small portion of boundary nodes).

6.1 Experiments on Synthetic Networks. In
Fig. 6, we show how the computation time is a↵ected by
di↵erent factors. To study how boundary nodes a↵ect
FlowR and BEAR, we change the expected number of

boundary nodes from 1000 to 6000 while keeping the
size of the graph unchanged. To study the scalabil-
ity of the methods, we change the number of clusters
(thus more nodes) while leaving the number of bound-
ary nodes unchanged (on average). To show that the
min-cut partitions and the minimum-boundary parti-
tions achieve their optima asynchronously, we vary the
probability of two internal nodes forming an edge. To
study how the hub-and-spoke like graphs a↵ect the ef-
ficiency of our proposed and other methods, we control
the expected in-cluster edges for internal nodes and ex-
pected cross-cluster edges for boundary nodes.

Due to the limitation in space, Figure 6 shows the
preprocessing time because similar patterns are revealed
for the query time. In Figure 6a, we observe that if
the inherent number of boundary nodes increases, the
computation time of both FlowR and BEAR will in-
crease accordingly, with FlowR running consistently
faster than BEAR (due to a smaller system of linear
equations for FlowR). Figure 6b shows that the pre-
processing time of both FlowR and BEAR changes
slowly with the increase in the number of clusters, with
FlowR having a smaller increase rate, or equivalently
better scalability. Figure 6c shows that if the tradi-
tional clustering structure (more within-cluster edges
than cross-cluster edges) is inverted (e.g. the probability
of forming an internal edge is below 0.1 in our experi-
ments), the partition method based on min-cut criterion
is a bad choice for our algorithms. This is expected as
fewer internal edges will mislead min-cut methods to
split the clusters and create many unexpected bound-
ary nodes. Inversely, this experiment also suggests that
a method tailored to boundary node minimization is
expected to produce better results for our methods. Fi-
nally, Figure 6d depicts how the graph structure can
lead to poor performance for our competitors. We ob-
serve that when the probability of forming cross-edges
is low, FlowR outperforms BEAR significantly. This
is because the tailored clustering method (SlashBurn)
in BEAR has di�culty detecting hub nodes when the
boundary nodes have low degrees. FlowR overcomes
this issue and maintains promising performance regard-
less of the the probability of forming cross-edges.

Copyright c� 2018 by SIAM

Unauthorized reproduction of this article is prohibited

(a) FlowR vs. Direct (b) FlowR-OV vs. Direct
Figure 7: Our methods are exact and give identical
scores to DIR.

6.2 Experiments on Real Networks
Accuracy of FlowR. To show that FlowR and

FlowR-OV are accurate, we use the Direct method
to compute the accurate RWR scores per node and com-
pare with the scores of our (exact) proposed methods.
Figure 7 shows FlowR and FlowR-OV’s results on
Net compared with the actual results. The scores of
the FlowR variants are identical to those of the Direct
method (the pairs of <FlowR scores, actual scores>
lie on the y = x line). The results are similar for other
small datasets, but we omit the plots for brevity.

Runtime. In this experiment we evaluate the
e�ciency of our proposed method by comparing the
variants of FlowR with the baselines in terms of both
preprocessing time (excluding the clustering time) and
query time. We run the variants of FlowR and all
baselines on 6 real-world graphs in Table 4.

The preprocessing time is illustrated on the left in
Fig. 8. Our first observation is that our proposed meth-
ods work best on most real-world datasets (Amazon,
RoadPA, RoadTX, and Google). Specifically, FlowR-
Hyb is 34⇥ faster than BEAR on Amazon and 15⇥
faster on Google. In addition, FlowR-OV is 6⇥ faster
than BEAR. Also, unlike FlowR-OV and FlowR-
Hyb, BEAR runs out of memory for two datasets.

As shown in Table 5, the preprocessing time of our
variants and BEAR is decided mainly by the number
of critical nodes (boundary nodes for FlowR, flows
for FlowR-OV, hub nodes for BEAR) and maximum
cluster size (especially for FlowR-Hyb). In most real
graphs, the maximum cluster size is smaller than that
of other critical nodes, and thus FlowR-Hyb achieves
best performance. Due to our e�cient replication pol-
icy, FlowR-OV also achieves overall better results than
BEAR, with the exception of Web-Stan and Web-Berk.
These two graphs have hub-and-spoke structure, for
which BEAR optimizes and thus produces fewer crit-
ical nodes than our methods. However, our methods
are suitable for di↵erent kinds of graphs and produce
stable and satisfying results. We believe that if the orig-
inal partition aimed at minimizing boundary nodes, the
performance of FlowR would be even better.

The right chart in Figure 8 illustrates the query
time for di↵erent datasets and methods. We observe
that FlowR outperforms all baselines with the smallest

Table 5: Summary of crucial nodes for BEAR,
FlowR and FlowR-OV and FlowR-Hyb

.
Number of critical nodes

Datasets BEAR FlowR FlowR-OV FlowR-Hyb
(hubs) (|@V|) (|f |) (max |Ci|)

Amazon 53,440 64,915 57,360 15,517

RoadPA 154,496 19,241 18,119 7,740

RoadTX 153,069 18,417 17,522 8,525

Web-Stan 16,017 27,902 12,353 25,253

Google 117,250 40,726 35,668 14,622

Web-Berk 50,005 98,792 26,810 47,481

query time in four datasets and second best (very close
to the best) in the remaining. Specifically, FlowR
achieves up to 32⇥ speedup in query time, when the
baselines do not run out of memory and have at least

60% queries that converge. In many cases, baselines
fail to complete or converge in the majority of queries.
Through a carefully-designed precomputation stage, our
methods are faster in the query stage and, thus, more
e�cient in multi-query settings.

We note that FlowR-OV achieves improved re-
sults due to replication: it runs faster than FlowR in
both the preprocessing and query stages in four out of
six datasets. For Amazon, by successfully reducing the
boundary nodes, FlowR-OV can return a result while
the non-overlapping method, FlowR, runs out of mem-
ory due to the large number of boundary nodes. This
demonstrates that our replicating policy helps not only
with speedup, but also with runtime memory cost.

As Fig. 8 shows, our hybrid method FlowR-
Hyb e↵ectively enhances both preprocessing and query
performance of FlowR-OV, especially for graphs that
take a long time in preprocessing. For instance, the
preprocessing time is improved by ⇠ 30⇥ for Amazon,
and its speedup varies in the other datasets. Thus,
FlowR-Hyb has the strength of iterative methods. At
the same time, it has the strength of FlowR-OV: its
query response is significantly faster than that of all
iterative methods in five out of six datasets and beats
BEAR in four datasets. We perform further analysis to
support and explain the last claim in Appendix E.

7 Conclusions

In this paper, using RWR as a case study, we focus on
fast, distributed solutions for a general form of linear
systems that is widespread in graph methods, such as
di↵usion processes, semi-supervised learning, and more.
We derive a two-step solution and propose FlowR to
solve RWR exactly and e�ciently. Motivated by the
the benefits of data replication across clusters and those
of iterative methods, we further extend our solution to
these settings, and introduce two more e�cient variants,
FlowR-OV and FlowR-Hyb. Our experiments on
large, real networks show that FlowR and FlowR-

Copyright c� 2018 by SIAM

Unauthorized reproduction of this article is prohibited

Figure 8: Comparisons of performance for di↵erent methods: FlowR-OV performs better or equally well
in most real datasets.

OV outperform by up to 34⇥ and 32⇥ the best existing
RWR approaches in preprocessing and query time,
respectively (when these baselines do not run out of
memory and have > 60% queries converge).

Our positive results show that our proposed method
is promising even without operating on partitions with
a minimum number of boundary nodes (which would be
optimal). This opens up a new future direction: par-
titioning a graph to minimize the number of boundary
nodes instead of edge cuts.
Acknowledgements: This material is based upon work sup-

ported by the University of Michigan.

References

[1] Reid Andersen, Fan Chung, and Kevin Lang. Local
graph partitioning using pagerank vectors. In FOCS,
pages 475–486, 2006.

[2] Reid Andersen, David F. Gleich, and Vahab Mirrokni.
Overlapping Clusters for Distributed Computation.
WSDM, pages 273–282. ACM, 2012.

[3] Vincent D Blondel, Jean-Loup Guillaume, Renaud
Lambiotte, and Etienne Lefebvre. Fast Unfold-
ing of Communities in Large Networks. JSTAT,
2008(10):P10008, 2008.

[4] Avrim Blum and Shuchi Chawla. Learning from
Labeled and Unlabeled Data Using Graph Mincuts. In
ICML, pages 19–26. Morgan Kaufmann, 2001.

[5] Ulrik Brandes Daniel Fleischer. Vertex bisection is
hard, too. JGAA, 13(2):119–131, 2009.

[6] Wolfgang Gatterbauer, Stephan Günnemann, Danai
Koutra, and Christos Faloutsos. Linearized and Single-
Pass Belief Propagation. PVLDB, 8(5):581–592, 2015.

[7] David F Gleich, Andrew P Gray, Chen Greif, and Tracy
Lau. An inner-outer iteration for computing pagerank.
SISC, 32(1):349–371, 2010.

[8] Aditya Grover and Jure Leskovec. node2vec: Scalable
feature learning for networks. In KDD, pages 855–864.
ACM, 2016.

[9] Jinhong Jung, Namyong Park, Lee Sael, and U Kang.
Bepi: Fast and memory-e�cient method for billion-
scale random walk with restart. In SIGMOD, pages
789–804, 2017.

[10] Jinhong Jung, Kijung Shin, Lee Sael, and U Kang.
Random Walk with Restart on Large Graphs Us-
ing Block Elimination. ACM Trans. Database Syst.,
41(2):12:1–12:43, 2016.

[11] George Karypis and Vipin Kumar. Multilevel k-way
Hypergraph Partitioning. pages 343–348, 1999.

[12] Leo Katz. A new status index derived from sociometric
analysis. Psychometrika, 18(1):39–43, 1953.

[13] Danai Koutra, Tai-You Ke, U Kang, Duen Horng
Chau, Hsing-Kuo Kenneth Pao, and Christos Falout-
sos. Unifying Guilt-by-Association Approaches: The-
orems and Fast Algorithms. In ECML PKDD, pages
245–260, 2011.

[14] Cuiping Li, Jiawei Han, Guoming He, Xin Jin, Yizhou
Sun, Yintao Yu, and Tianyi Wu. Fast Computation
of SimRank for Static and Dynamic Information Net-
works. In EDBT, pages 465–476. ACM, 2010.

[15] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos
Guestrin, Aapo Kyrola, and Joseph M. Hellerstein.
Distributed GraphLab: A Framework for Machine
Learning and Data Mining in the Cloud. PVLDB,
5(8):716–727, 2012.

[16] Ivo Marek and Daniel B Szyld. Algebraic schwarz
methods for the numerical solution of markov chains.
Linear Algebra and its Applications, 386:67–81, 2004.

[17] Sivasankaran Rajamanickam and Erik G Boman. Par-
allel partitioning with zoltan: Is hypergraph partition-
ing worth it? Graph Partitioning and Graph Cluster-
ing, 588:37–52, 2012.

[18] Yousef Saad. Iterative methods for sparse linear sys-
tems. SIAM, 2003.

[19] SNAP. http://snap.stanford.edu/data/index.html#web.
[20] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan.

Fast Random Walk with Restart and Its Applications.
In ICDM, pages 613–622, 2006.

[21] Abderezak Touzene. A new parallel block aggregated
algorithm for solving markov chains. J Supercomput,
62(1):573–587, 2012.

[22] Yangbo Zhu, Shaozhi Ye, and Xing Li. Distributed
pagerank computation based on iterative aggregation-
disaggregation methods. In CIKM, pages 578–585,
2005.

Copyright c� 2018 by SIAM

Unauthorized reproduction of this article is prohibited

