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ABSTRACT

How can we design a product or movie that will attract, for exam-
ple, the interest of Pennsylvania adolescents or liberal newspaper
critics? What should be the genre of that movie and who should be
in the cast? In this work, we seek to identify how we can design
new movies with features tailored to a specific user population. We
formulate the movie design as an optimization problem over the
inference of user-feature scores and selection of the features that
maximize the number of attracted users. Our approach, PNP, is
based on a heterogeneous, tripartite graph of users, movies, and
features (e.g. actors, directors, genres), where users rate movies and
features contribute to movies. We learn the preferences by lever-
aging user similarities defined through different types of relations,
and show that our method outperforms state-of-the-art approaches,
including matrix factorization and other heterogeneous graph-based
analysis. We evaluate PNP on publicly available real-world data
and show that it is highly scalable and effectively provides movie
designs oriented towards different groups of users, including men,
women, and adolescents.
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1 INTRODUCTION

Creating products that satisfy the market is critical to companies as
it determines their success and revenue [3]. Online services, such as
Amazon, eBay, and Netflix, use data-driven approaches to recom-
mend products to their customers. Recently, however, companies
like Netflix have employed their direct knowledge of user viewing
habits to make licensing and original programming decisions; this
was indeed the case with, e.g. ‘House of Cards’, one of their most-
watched shows [8, 21]. Can we take this decision-making process
one step further, and leverage the large amounts of available data
(e.g. user ratings or (dis)likes, reviews, product characteristics) fo
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Figure 1: Tripartite graph of the target users 7/, their rated
movies M and the movie features 7.

inform the design of new products and services that will likely satisfy
the target customers?

Market fit for products and services [3], team formation [2, 20],
and team replacement [22] are related problems with a similar goal:
designing a new product, service, or team that will succeed, given
a target market or task. The large number of possible choices,
combinations, and constraints, as well as the challenge of assessing
audience demand, make this a considerably hard problem. Currently,
experts use their judgement to estimate solutions to this problem,
but this does not scale or allow leveraging massive datasets.

The goal of this paper is to formalize the movie design problem
and solve it in a tractable and scalable fashion. Our motivation
comes from the movie entertainment industry: We investigate how to
design a successful movie that will attract the interest of an arbitrary
targeted demographic, subject to budget constraints. Specifically,
we tackle the following problem (in short, MD):

PROBLEM 1. [MOVIEDESIGN or MD] Given (a) a set of users,
target users, movies, and features; (b) some user movie ratings;
(c) the feature-movie memberships; (d) a cost per feature, and a
budget per feature type; design a movie which will attract most of
the target users and is within budget.

The MD problem resembles recommender systems [14, 24, 27,
31, 39] and group recommendations [15, 30]. Its main difference
is that it does not aim to find the best existing movie that the target
users are likely to enjoy. Instead, given the user preferences, it
determines the features for a new movie that is likely to attract the
largest number of users.

Solving MD poses several challenges. Clearly, identifying an
effective design relies on how movie features affect user preferences.
As extensively documented in the recommendation literature [5, 17],
and also corroborated by our experiments, “collaborative filtering”



approaches and exploiting similarities between users tend to signifi-
cantly outperform regressing individual user preferences in isolation.
It is not immediately clear how to solve MD by leveraging both ex-
plicit features and user similarities in a principled, tractable fashion.
An additional challenge arises from the fact that the MD problem
can be applied to an arbitrary set of users U. Indeed, different
strategists may wish to attract varied demographics, and our design
should be able to cope with arbitrary, repeated requests. As a result,
we would like to efficiently determine movie designs targeting any
given group.

To address these challenges, we propose a graph-theoretic ap-
proach for the MD problem and contribute:

o Problem Formulation: We formally pose MD as a problem for
designing successful new movies for a target audience. Moreover,
we adopt an approach that separates the problem solution into two
phases: user-feature preference inference, and model-based design.
This separation allows us to infer user preferences and efficiently
handle arbitrary “design queries”, as defined by targeted user groups.
o Path-Based Training: To infer the user-feature scores, we pro-
pose a novel model based on predefined walks on a heterogeneous
graph consisting of users, movies, and features, which treats “dis-
likes” in a natural way. This methodology allows us to leverage
both features and user similarity. Although we focus on the setting
of movies, our method is generalizable to any setting where user
ratings and product features are available.

o Model-Based Design: Having inferred user-feature preferences,
we formulate the selection of features that compose a movie as
an optimization problem with capacity and other constraints, and
establish conditions under which the problem solution is tractable.
o Experiments: By using real-world data with ~5 million movie-
ratings and 175 000 movie-features, we show that our model of user
behavior succeeds in describing user preferences with very high
accuracy. In addition, combined with our optimization method, it
results in movie design choices that significantly outperform those
of our competitors.

The remainder of this paper is organized as follows. We describe
our proposed method, PNP, in Section 2. A description of our
datasets and our experimental evaluation can be found in Sections 3,
and 4, respectively. Finally, sections 5 and 6 present related work
and our conclusions.

2 PROPOSED METHOD: PNP

In the MD problem, we assume that the data input consists of a
set of users U, a set of movies M, and a set of movie features ¥ .
In addition, the feature set ¥ is partitioned into types (e.g. actors,
directors, genres): we denote by 7 the set of types, and by Fy € F
the set of features of type £ € 7.

Relations between the above entities are also part of MD’s input.
These relations consist of: (a) the user-movie ratings, containing
tuples of the form (i, ,r;;), where i € U and j € M, and are
organized in a u X m matrix R, with zeros indicating absent ratings;
(b) the movie-feature memberships stored in a m X f binary matrix F,
where a non-zero entry (j, k) means that feature k belongs to movie j.
Throughout the paper, following observations in the literature [12],
we say that user i ‘likes’ movie j if the rating r;; is larger than i’s

Table 1: Symbols and Definitions. Bold capital: matrices; Low-
ercase: vectors; Plain font: scalars.

Symbol  Description

G tripartite input graph

Uu,u’ the set of users and target users, resp.

M, F,T the set of movies, features, and types, resp.

u,u’ number of users and target users, resp.

m, f,t number of movies, features, and types, resp.

R u X m matrix of user-movie ratings, with elmnts. r;;

F m X f movie-feature membership matrix, with elmnts. f;;
w inferred u X f matrix of user-feature preferences

Q proposed u X m matrix of user-movie ratings, with elmnts. g;;
T threshold in the linear threshold model

S the set of chosen features

G(S) user conversion function

X 1 X f binary characteristic vector of S

Ck cost per feature k (e.g., salary)

By budget per type ¢ (e.g., budget for actors)

average rating 7; among non-zero entries in R. Table 1 summarizes
our notation.

The goal of the MD problem (Problem 1) is to design a new
movie by selecting its features so that it is within budget and is liked
by as many of the people in the target audience as possible. To make
the problem tractable, and handle the challenges that we described in
the introduction, we reduce it to solving two separate subproblems.
We tackle these subproblems in Sections 2.1, and 2.2, respectively.

PROBLEM 2. [Inferring User-Feature Scores] Given (a) a set of
users U, movies M, and features ¥, (b) the user movie ratings
R, and (c) the movie-feature memberships F; find the user-feature
preference scores.

The first subproblem amounts to learning user-feature preference
scores, capturing the propensity of a given user to like a movie that
contains a given feature; the higher the score, the more likely a user
is to like this movie. In the second subproblem, we use these scores
to formulate the objective of maximizing the number of users liking
the movie, among a targeted set.

PROBLEM 3. [Designing the Movie] Given (a) a set of target
users U’, features ¥, and types 7, (b) the user-feature prefer-
ences, and (c) costs ¢ per feature k and budgets B, per feature
type ¢; select features for a new movie s.t. is within budget and
the number of users who will probably like it is maximized.

Next, we discuss our proposed solutions to these two problems.

2.1 Step 1. Inferring user-feature scores

The first constituent problem of MD, Problem 2, can be approached
as a classification problem, in which binary ‘like’ labels of every
user are regressed from movie features. Traditional methods (e.g.
random forests, matrix factorization) can be used to solve such a
problem; as a byproduct, these methods often quantify the effect
of each individual feature on a user’s decision. However, these
methods do not perform well (cf. Section 4) as they either ignore
commonalities between users or make use of latent features which
cannot be used to identify user-feature preferences.
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Figure 2: MD: Proposed pipeline for designing a new movie based on user ratings and movie features.
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Figure 3: Combination of three types of predefined walks on the heterogeneous tripartite graph. The red arrows show the predefined

direction of each walk.

We propose to solve the MD problem by handling both con-
stituent problems via a graph-theoretic approach, which cleverly
leverages both explicit features and user similarities, and, most im-
portantly, its resulting scores also lead to a tractable movie design
optimization for an arbitrary set of target users (Section 2.2). We
model the input data as an undirected, heterogeneous, tripartite net-
work where the nodes are users, movies, and movie features, and
edges represent the relationships between them. The relationships
or edge types are ‘rated-by’ (for user-movie edges), and ‘belong-
to’ (for feature-movie edges). We give a pictorial overview of our
approach in Figure 2.

Specifically, our proposed method, PNP (Positive / Negative
Paths), infers the user-feature scores by performing walks of fixed
length on the tripartite graph of users, movies and features, thus
leveraging information about user-movie ratings as in ‘collaborative’
approaches, as well as movie ‘content’ (features). PNP is based
on meta-paths, which was first introduced for similarity search in
heterogeneous information networks [34]. Informally, a meta-path
consists of a sequence of relations between node types. Formally:

DEFINITION.
erogeneous graph G with object types Aj, A, ...
R], Rz, cooo

Ry R3 Ry—1

R
P=Ay ... A = A —5 Ay —5 Ay =5 ... 5 4,

A meta-path or predefined-path P on a het-
and relations

defines a composite relation R = R, o Ry o - - o Rs_; between the
source node type A; and the target node type A, where o is the
composition operator on relations.

In our setting, the object types include users U, movies M, and
features F, and there exist two types of relations: ‘rated-by’ and
‘belongs-to’, as well as their inverses.

To capture user-feature preferences, we propose a random-walk-
based score restricted over predefined paths starting from F and
ending in U. We view the proximity of a user to a feature through

such a path as an indication of the user’s possible ‘preference’ to-
wards this feature. For example, a 2-step path via movies captures
direct user-feature preferences based solely on the movies they have
rated. Unlike our approach, the original path similarity [34] is com-
puted as a normalized count of paths between entities. For different
types of preferences, we consider three predefined paths:

o 2-step Path: The path P = FMU (i.e., starting from a feature
and ending to a user via a movie) in Figure 3(a) finds the preferences
of each user based on her ratings, and, thus, does not exploit a col-
laborative setting. It computes accurate preferences for the features
that appear in movies she has rated, but does not infer preferences
for other features.

o User-based 4-step Path: The path P = FMUMU in Fig-
ure 3(b) computes the user preferences based on the user’s input,
as well as that of other users who are similar to her. The similarity
between users is defined via the common movies they have watched;
two users who have rated the same set of movies with comparable
scores are similar.

o Feature-based 4-step Path: The path P = FMFMU in Fig-
ure 3(c) finds the user preferences based on the user-movie ratings
and similar movies to the ones she rated. The similarity between
movies is feature-based, i.e., captures commonalities in content.

One way to compute a user-feature score is through the probability
that a random walk starting at a given node, restricted to follow
only paths of the above three forms, terminates at a given feature.
Computing this probability corresponds to matrix multiplications
involving the transition matrices induced by each bipartite graph (i.e.,
user-movies and movie-features). PNP improves upon this approach
in two ways, by considering ‘positive’ and ‘negative’ random walks,
and incorporating edge weights, as described below.

Positive and Negative Walks. One issue with a random walk ap-
proach for preference inference is that the random walk model cannot
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Figure 4: Toy example of POSITIVE and NEGATIVE user rat-
ings graphs for our proposed method, PNP.

handle ‘dislikes’ or ‘negative’ weights. Constructing the user-movies
graph by creating an edge for each rating results in feature scores
that only increase in magnitude despite the fact that a rating may be
below average, indicating a ‘dislike’. However, this is not desired
in our MD problem; we want the features that contribute to movies
disliked by a user to be penalized by receiving smaller scores than
features that contribute to her favorite movies.

To handle this case, we introduce the concept of POSITIVE and
NEGATIVE walks. Since the movie ratings, which incorporate ‘dis-
like’ information, appear in the bipartite user-movie graph, we focus
only on this part of the tripartite graph. To obtain the POSITIVE
graph from the original bipartite graph, we derive a graph that cap-
tures ‘like’ relations [12], i.e. edges with weight (rating) above the
corresponding average user rating. Similarly, we obtain the NEG-
ATIVE graph by capturing only ‘dislike’ relations. The process of
generating the POSITIVE and NEGATIVE graphs is illustrated in
Figure 4.

Edge Weights. To better leverage the user preferences, we assign
weights to edges between users and movies on both the POSITIVE
and NEGATIVE graphs, so that the walker performs a walk over a
weighted graph. Since user ratings are often biased [17] (e.g. some
users give high scores objectively, even if they did not enjoy the
movie), we do not directly use the ratings as edge weights, but we
center user i’s rating for movie j through r;; — 7;, where 7; is the
user’s average rating. That is, we adjust the ratings according to each
user’s average movie rating and refer to it as a ‘Centered Rating’
(CR). Second, to emphasize big deviations from the average user
rating, we use a non-linear reweighing schema:

CIij — 25*(CR) — 25-|rl—j—fi| (1)

which puts more weight on very low and very high ratings. Note
that, as ratings are centered around the mean, the notions of low
and high are subjective for each user. We denote the resulting
u X m weighted adjacency matrix by Q, and consider random walks
over the corresponding weighted graph. We study the effect of the
reweighing schema and its non-linearity in Section 4.

PNP Score Computation. Putting all this together, PNP proceeds
as follows. It computes the probability that a random walk starting at
a user reaches a feature under the following assumptions: the walk is
(a) constrained to occur only over paths of the three proposed prede-
fined types, and (b) occurs on either the POSITIVE or the NEGATIVE
graph, with edges appropriately weighted through Equation (1). Let
wp " and wp ™~ be the probability vectors over features, for path type
panduseri € U. Then, we define wp, = wp* —wp ™ as the weighted
user-feature preference vector over path type p. It is clear that, as
desired, PNP penalizes features in movies that are disliked by a user
by subtracting some value from their preference score. We define the
final weighted feature vector of PNP for i, which represents i’s pref-
erence over features in ¥ as a linear combination of the weighted
user-feature vectors over the three predefined path types:

W = o Wogtep + S Wastep-usr T ¥ Wistep-feat @)

where w = (wt — w™). In matrix form, the feature preferences
for all users are:

W=a WZslep +p W4slep—usr +Yy w4step—feala 3)

where a,B,y € R are the combination parameters satisfying the
equation a+f+y=1, and W is a u X f matrix.

2.2 Step 2. Designing the movie

The second constituent problem of MD, Problem 3, tackles the actual
selection of features, S, for a new movie so that the number of users
who will likely enjoy it is maximized. We propose to formulate
Problem 3 as an optimization problem with cardinality constraints
and, if available, budget constraints. Following the literature on
node-specific threshold models for influence maximization [10, 16],
we consider a user i converted with respect to (i.e., ‘likes’) a movie
consisting of features S if Y rcs wir > 7;, Where wjy is user i’s
preference score for feature k and 7; is the user-specific threshold.
Treating 7; as a random variable, we define the user conversion
function, G(S), as the expected number of users in the target set U’
that are converted:

G(S)= ) PIY wik >mil= ) Flwix'] “
i€’ keS iel’

where x € {0, l}f is the characteristic row-vector of set S (i.e.,
xp = 1iff k € 8), and w; is the row vector that encodes user i’s
feature preferences. Based on these assumptions, we frame the MD
task as a general optimization problem:

G(S) = G(x) = Tjeqr Flwix"] ®)
Zkeﬁ b xp < By, foreachleT, (6)
xe{0,1).

Maximize

subject to

In the special case where by = 1 for all k € F, the above prob-
lem effectively amounts to maximizing G(S) subject to a cardinality
constraint |S N F¢| < By. For example, for type {=actor, the quan-
tity |S N Facror| is equal to the number of selected actors which
is bounded by the maximum number of actors, Bgcror. Such con-
straints also make sense as, e.g., no more than one director is needed
per movie. If the cost c; per feature is available, then we can set



Table 2: Dependencies between movie factors do not seem to correlate with movie success. Analysis of frequent ‘itemsets’ that have

appeared in at least ten movies.

Lasso Regression (5-fold C.V.)

Linear Regression (5-fold C.V.)

Features MSE (std) non-0 coeff. (total) Singletons Pairs Triplets MSE (std) non-0 coeff.
singletons 1.0395 (0.0533) 211 (621) 211 n/a n/a | 1.5448 (0.0467) 620
singletons + pairs 1.0303 (0.0328) 207 (969) 161 46 n/a 3.025 (0.3498) 899
only pairs 1.1103 (0.0327) 141 (348) n/a 141 n/a | 4.0232 (17.3369) 100
singletons + pairs + triplets | 1.0452 (0.0526) 235 (1104) 179 45 11 2.9254 (0.8767) 951

by = ¢k, and, thus, capture budget constraints. We note that the opti-
mization problem has a linear constraint, and the objective depends
on the inner product of scores with x; so, it does not model dependen-
cies between features. Next, based on evidence from the real-world
data, we explain why we do not model such dependencies.

Why not model feature dependencies? We followed a data-driven
approach to evaluate whether dependencies between movie features
correlate with movie ratings (e.g. two actors should always play
together because then they lead to successful movies, while indepen-
dently they do not). Using the IMDB dataset described in Section 3,
we performed: (1) frequent item mining (a priori algorithm) to find
frequent k-itemsets that have appeared in at least ten movies; and
then (2) linear and lasso regression with 5-fold cross validation to
select the k-itemsets (singletons, pairs or triplets of features) that are
most predictive of the movie rating.

Frequent item mining showed that only 1% of the features are
frequent (with support > 0.5%), half of which contribute to frequent
pairs, and 20% contribute to frequent triplets. The results of lin-
ear and lasso regression are summarized in Table 2. In general,
regression on the dataset with frequent singleton features is better or
comparable (in terms of error and model compactness) to regression
on datasets that capture feature dependencies. Specifically, the MSE
(Mean Squared Error) of linear regression is minimum when the
input dataset has only singleton features. The MSE of lasso regres-
sion becomes slightly smaller when we consider frequent pairs of
features rather than only frequent single features (1.04 vs. 1.03).
However, the majority of selected features are singletons, and the
number of selected features are almost the same.

OBSERVATION 1. The feature dependencies are very few and do
not affect the predictability of user-movie ratings significantly.

Uniform Threshold Model. Given its success in modeling influ-
ence propagation in networks, we propose to use a linear threshold
model where each user i picks her conversion threshold 7; uniformly
atrandom [16], i.e., we assume no background information about the
user conversion thresholds. Since the PNP user-feature preferences
computed are in [—1, 1], we set the thresholds to follow the uniform
distribution in the same interval, i.e. 7; ~ U[—1,1]. Under these
assumptions, the user conversion function (4) becomes

_ 1.7 U’
f$) = 517w+

PROOF. Starting from Equation (4) and applying our assump-
tions, we obtain:

ri~U[-1,1]
f8) = Ziew P[Ereswik > il =
= Zie’L{’%(ZkeSWik +1) =
1 " W= . TW;
= EZkeSZie(LI’ Wik + % i Zé‘u ik

1 u’
= 5 XkeSWk + o
Hence, under the uniform threshold model, we want to pick the

movie features that maximize } g W. O

In this case, the problem reduces to knapsack under separable
constraints, which, though NP-hard, can be solved with an FPTA
scheme [37]. In the unit-cost (i.e., cardinality) case, the problem is
solvable in polynomial time: sorting features k € ¥ in decreasing
order of costs wy, and picking the top B, features, is optimal.

Sigmoid Threshold Model. The uniform threshold model has the
advantage of resulting in an easy-to-solve optimization problem.
To further leverage background information that might be available
in the data, data-driven models may be considered for the user-
specific thresholds. For instance, if the average rating score per user
follows a sigmoid distribution and it is being used as the user-specific
threshold, then F in Equation (4) can be replaced with the CDF of
the logistic distribution, Fg.

This results in a sigmoidal programming problem [36], which
is NP-hard even in its relaxed form with non-integral solution. By
formulating the problem as the maximization of };cqs Fs[yi], we
introduce |¥ | additional constraints y; = wixT, which can be solved
approximately by using the branch-and-bound based method in [36].
The (possibly) fractional solutions can then be converted to integral
values solutions by using pipage rounding [1]. However, the approx-
imation error of the solution depends on the number of constraints,
and the method may solve many convex optimization problems,
which suggests that the method will be impractical for the MD
problem with thousands of constraints.

2.3 Complexity of PNP

Naive approach. Performing the walks over the 2-step and 4-step
predefined paths on the positive and negative graphs is computa-
tionally expensive and is dominated by sparse matrix and sparse-
dense matrix multiplications (e.g., QF for P = FMU, or QQT QF
for P = FMUMU, where Q,QT,F are u x m, m x u, and m X f
transition matrices). If we assume naive matrix multiplications, the
complexity of performing the walks on the 2-step, user-based 4-step,
and feature-based 4-step paths would be: ©(fmu), O(fmu + 2u*m)



and ©(3fmu). We note that these computations can be trivially
parallelized, so the complexity corresponds to the maximum of the
three. Moreover, the output is a dense u X f matrix W that captures
the user-feature preferences. Although the bulk of the computation
can happen offline, we can support quick query processing by just
summing up the rows in matrix W that correspond to the target users
U’ and performing linear feature selection in O(u’ f) after sorting
the scores in decreasing order in O(f log f). Next, we show that we
can significantly speed up the computation and reduce the storage
requirements.

Fast approach. The first step of inferring all the user-feature scores
results in a dense u X f matrix W. In the proposed second step of
designing a movie, we observe that the uniform threshold model
simplifies the problem mathematically, and requires only the sum
of the target users’ feature preferences (i.e., a 1 X f vector that has
the sum of all the inferred preferences for all target users U”’). This
observation helps us to significantly speed up the computations and
reduce the storage requirements. By using a u X 1 indicator vector
x for the users in U’, all the walks can be re-designed (backwards)
as fast sparse matrix-vector multiplications. For example, for the
predefined path P = FMUMU, instead of computing QQT QF in
the first step and the aggregate score for the target users in the
second step (as in the naive approach), we can directly compute
FT(QT(Q(QTx))) in ©((3 nnz(Q) +nnz(F))u’), where nnz() is
the support size (i.e., number of non-zeros) of the corresponding
matrix. The intermediate and final computations generate and store
vectors of variable lengths. Similar computations can be derived for
P = FMU and P = FMFMU. The feature selection can be done in
O(flog f + f). As we show in Section 4.1.3, the fast approach is
very scalable and up to 100X faster than the naive approach.

3 DATA

We compiled our data from two different and publicly available
sources: (i) the Flixster website [40], a social movie site allowing
users to watch and rate movies, from which we obtained user-movie
ratings, and (ii) the MGO website [35] which has information about
movie features. The Flixster and MGO datasets consist of 66 726
and 83 017 movies, respectively. In addition to the user ratings, the
Flixster dataset provides some user demographics, including their
gender, age, and location (as free text).

To merge the two datasets, first we dropped the movie remakes.
In order to be able to infer the user-feature or user-movie preferences
(Problem 1) using 5-fold cross validation, we iteratively filtered the
data so that: every movie has been rated by at least 20 users and
has at least 2 features; every user has rated at least 20 movies; every
feature has appeared in at least two movies. The resulting user-
movie-feature tripartite graph has 66 407 nodes and 4 567 253 edges
(Table 3). The movie features include: 25 721 actors, 1322 directors,
4305 producers, 654 studios, and 27 genres. The user ratings are
between 1 and 5, with 0.5 increments.

For our dependency analysis we used an IMDB dataset consisting
of 1893 movies, their features (947 directors, 5 231 producers, 1209
studios, 51 500 actors, 27 genres, and 4 seasons), and average movie
ratings. IMDB is based on the ratings of millions of users, allowing
us to observe more global patterns and feature dependencies.

Table 3: Movie data stats (based on Flixster and MGO).

Movies 5,881
Users 28,482
Features 32,029
User-Movie Ratings 4,435,359
Movie-Feature Memb. 131,894

4 EXPERIMENTS

In this section, we give the experimental analysis of PNP, and evalu-
ate its performance for designing new movies for specific audiences.
We seek to answer four main questions:

Q1. How does PNP compare to baseline approaches?

Q2. Is PNP robust with respect to its parameters?

Q3. Is PNP scalable?

Q4. How successful are the movies we design?

The first three questions are related to the inference of user-feature-
score preferences (Problem 2), and the last question refers to the
optimization problem (Problem 3).

4.1 Analysis of Step 1: Inferring feature scores

4.1.1 Q1: PNP vs. baseline methods. To compare the pre-
dictive power of PNP against baseline methods, we cast Problem 2 as
a binary classification problem where the goal is to predict whether
a given user will like or dislike a new movie. More formally, recall
that we consider two classes [12]: User i likes (dislikes) movie j if
she rated it higher (lower) than her average user score, i.e., C;j=1if
rij 2 rj (Cij=0if r;; < F;). Each observation corresponds to a user-
movie rating, where the independent variables are the movie features
(binary), and the dependent variable is the user’s preference (like
or dislike). We note that the mapping of the user-ratings to binary
values results in 55% ‘liked’ movies, and 45% ‘disliked” movies. In
all the cases that we describe below, we learn a per-user classifier on
their movie ratings, and test it on new movies. To predict the user’s
preference for a new movie using PNP, we multiply the user-based
feature-preference vector w; with the new binary movie vector, and
compute her movie score.

This problem can be solved by several traditional methods, among
which we consider:

Baseline 1.1: Naive Bayes. NB can predict whether or not a user
will like a new movie, i.e., it cannot infer the user-feature prefer-
ences (Problem 2). NB makes the assumption that the features act
independently. To avoid the zero-probabilities issue, we use the
Laplace correction.

Baseline 1.2: Logistic Regression. LR is a commonly-used gener-
alized linear model for prediction. Similarly to NB, LR also assumes
feature independence. LR also generates a weight vector of the
features’ contribution in the prediction. Since the number of fea-
tures is greater than the number of samples (Table 3), we used L1
regularization to ensure sparsity of the produced weight vector. To
find the best value of the regularizer parameter, we performed a
cross-validated grid-search over the values {0.5, 1, 5, 10}.

Baseline 1.3: Random Forests. RF is an ensemble method for
classification and regression, which is robust to the inclusion of



irrelevant features and overfitting. For each user, the RF classifier
generates N random subsets on the training data in terms of features,
and constructs a separate decision tree for each subset. To predict a
new user-movie preference, the movie’s feature vector (new sample)
runs through all the generated user-specific decision trees, and the
mode of the classes is assigned as the predicted class. A drawback
of this approach is its runtime, since it requires generating many
decision trees per user. In our experiments, for the maximum depth
of the trees, we performed grid-search over the values {25, 100, 500,
1000}, and generated 10 random subsets of the data. Overall, RF
was very slow despite the small number of grid-search values.

Baseline 1.4: Matrix Factorization. MF [5, 17] with user and item
biases predicts the rating of user i for item j:
fij = <ui, ‘(Jj>+[1 + bi + bj

where u; and v; are d-length vectors (for some small d) that capture
the user and item latent vectors, respectively, p is the global average
rating, b; is the user bias, and b; is the item bias. The main advantage
over the other approaches is that we learn a model for each user
using a small dense matrix, where the number of rated movies is
commonly larger than the number of features. However, MF operates
on a latent feature space, thus using it to design a new movie is not
straightforward. We performed MF over the ratings matrix R to
compute user and feature vectors with a dimension of d = 10. These
were computed using 20 iterations of stochastic gradient descent,
and ¢, regularization parameters selected through cross validation.
The predicted ratings of user/movie pairs were used in the AUC
computations.

Baseline 1.5: Content-based Matrix Factorization. We further
extended basic MF by incorporating content-dependent biases: be-
yond user and movie biases, we include additional bias in our model,
one for every item feature. These can be thought of as explicit, rather
than latent, features of a movie. We again compute parameters for
{5 regularization penalties through cross validation.

Baseline 1.6: Heterogeneous Entity Recommendation. The
method in [38] finds the top-k movies to recommend to a user by
performing non-negative matrix factorization on a set of user-movie
preference diffusion matrices learned via meta-path similarity [34]
and user clustering. We note that this approach cannot be used for
feature preference inference since the model applies only for entities
that are directly linked to and rated by users in the heterogeneous
graph (e.g. movies). Thus, in the binary classification task, we
use the inferred user-movie scores which are directly learned over
the metapaths that correspond to our proposed method’s predefined
paths. We set k = 20 for the low-rank approximations and pick the
method’s parameters through cross validation.

Results. To evaluate the methods, we perform 5-fold cross val-
idation, compute the AUC (Area Under the Curve) per user, and
report its average and standard deviation over all users in Table 4.

OBSERVATION 2. PNP outperforms all baseline approaches on
user-feature preference inference.

The main shortcomings of the baselines are: (i) Each per-user
model for NB, LR, and RF leverages information specific to that
user only—i.e., her movie ratings, and the corresponding movie

Table 4: PNP outperforms all the baselines. We report the pre-
diction accuracy (avg AUC and its std in parentheses). «,f,y
are the path combination parameters, and ¢ is the rating-
reweighing parameter.

Method Avg AUC over 5 folds

0.5340 (0.0002)
0.6621 (0.1369)
0.6418 (0.1390)

Naive Bayes
Logistic Regression
Random Forests

Matrix Factorization 0.6396 (0.0825)
Content-based Matrix Factorization 0.7043 (0.1420)
Heterogeneous Entity Recommendation 0.5998 (0.0112)
PNP

(a, B,y,8) =(0.7,0.1,0.2,1) 0.9146 (0.0043)

(. B.y.8) = (0.5,0.2,0.3,1)
(@, B,y,8) = (0.3,0.2,0.5,1)
(a, B,y.8) = (0.5,0.2,0.3,0.5)
(a, B, y.8) = (0.5,0.2,0.3, 1.5)

0.9143 (0.0043)
0.9132 (0.0042)
0.9171 (0.0019)
0.9062 (0.0018)

features—, and thus suffers from the sparsity problem; (ii) MF falls
in the collaborative space, but does not leverage information about
the movie features, and operates on a latent feature space; content-
based MF also partially relies on latent movie features, which again
prohibits its use in movie design. The heterogeneous entity recom-
mendation approach infers the movie preferences, but not the feature
preferences, and, thus, cannot be used for movie design either. In
contrast, our proposed method, PNP, solves the MD problem by ex-
ploiting the latent similarities between users (collaborative), movies,
and features, and operates explicitly on the movie features, thus
directly enabling us to use its output to design movies.

4.1.2 Q2: Robustness of PNP. Robustness to the reweigh-
ing schema. To evaluate our reweighing schema in Eq. 1, we learn
a PNP classifier per user for different values of the parameter §.
In Figure 5, we give the average AUC (5-fold cross validation) of
PNP for using the centered ratings without exponentiation (simple
reweighing), and our proposed approach with § ranging from 0 to
3, and for combination parameters @ = 0.5, § = 0.2 and y = 0.3.
The performance is stable for § = 0 — 1.5, which corresponds to
moderate scaling of the user ratings.

OBSERVATION 3. PNP is robust to moderate rescaling of the
user-adapted movie ratings.
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Figure 5: PNP is robust to moderate rescaling of the centered
ratings (x-axis: exponent of proposed reweighing schema in
Eq. (1); y-axis: avg AUC over 5-fold cross validation).
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Figure 6: PNP is robust to the combination parameters of the
predefined paths (x-axis: varying parameter «; y-axis: avg
AUC; different lines for different values of /).

Robustness to the combination parameters. As described in
Eq. (3), the proposed method, PNP, has three parameters which
define the involvement of each predefined path. Next, we explore
how these parameters affect the user preference inference. As before,
we learn a PNP classifier per user for different values of {«, f,y},
and compute the average AUC and its standard deviation (y-axis) by
performing 5-fold cross validation (Figure 6). In this experiment we
set § = 1. We vary the values of « and y from 0 to 1 with step 0.1 (f
is uniquely determined since a + f + y = 1).

OBSERVATION 4. PNP is quite robust to the ‘combination’
parameters (a, f, y) of the predefined walks.

The lowest accuracy is obtained when the direct user preferences
(2-step path) are ignored, and the highest accuracy when the user-
based 4-step path has small participation, likely because this walk
‘blurs’ the individual preferences by relying on ‘similar’ users. In
practice, these parameters can be set by performing cross validation
on the data at hand.

4.1.3 Q3: Scalability. We evaluate the scalability of our method
with respect to the number of ratings, which corresponds to the num-
ber of non-zeros in the ratings matrix R. For our experiment, we
vary the number of ratings from 1000 to 4 435 359, which is the total
number of ratings in our dataset. For each number of ratings, we gen-
erate five matrices with randomly chosen ratings from the original
matrix, we run PNP and report the average and standard deviation
of the runtime. For comparison, we ran both the naive and fast
approaches (we give their theoretical complexities in Section 2.3).
Figure 7 shows the runtime of the two methods on:

(a) a standard machine (STM): AMD Opteron Processor 854
@ 2.80GHz, 2 cores, 32GB RAM;

(b) a high-performance machine (HPM): AMD Opteron Pro-
cessor 6282 SE @ 2.60GHz, 16 cores, 264GB RAM.

We note that the naive approach, which needs to compute a dense
u X f matrix W in Step 1, runs out of memory for more than 10 000
ratings on the standard machine, while our fast approach is highly
scalable and has comparable runtime on both machines. The speedup
of the fast approach is due to avoiding the computation of matrix
W (which has over 912 million entries for 28 482 users and 32 029
features) and only performing sparse matrix-vector multiplications,
based on the observation that only aggregate preferences from the
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Figure 7: PNP is scalable. The fast approach is faster and needs
less space than the naive one.

target users U’ are needed for the movie design problem under the
uniform threshold model (Section 2.3).

OBSERVATION 5. The fast approach (sparse matrix-vector mul-
tiplications) is up to 100x faster than the naive approach, and
requires less memory.

4.2 Analysis of Step 2: Designing the Movie

4.2.1 Q4: Quantitative Evaluation. Evaluating the second
subproblem of MOVIEDESIGN is a very challenging task, since
there is no ground truth available, and actionable evaluation (i.e.,
producing a movie based on our method’s output) is not feasible.
Since no other work in the literature has addressed this problem, we
introduce two intuitive baselines (which can be automated, and, thus,
do not involve an expert producing a movie):

e Baseline 2.1: POPULAR. Using the same capacity con-
straints as in the optimization problem (Eq. 5), we design a
movie by choosing the most popular features for the target
audience U’ (the ratings are inherited from the movies to
which they belong). The 1 X f popularity vector is given by:
p = v - F, where v is the vector of total ratings per movie,
with elements v; = Z’i‘;l ¥r;;>0, ¥ is an indicator function,
and F is the binary movie-feature membership matrix.

e Baseline 2.2: Top. Applying the same capacity constraints,
we design a movie by selecting the most highly rated fea-
tures for the target users U’. We assume that the features
inherit their movies’ ratings, so the vector of feature ratings
can be computed as: t = -F, where fj is the vector with

the average movie ratings over all users in ¢, and F is the
column-normalized movie-feature membership matrix.

The problem formulation that we introduced in Section 2.2 can
handle both capacity and budget constraints during the feature se-
lection for a new movie. Due to the lack of reliable resources that
provide the real budgets per actor, director, etc., for the purpose of
our experiments, we use only capacity constraints for our method
and the two above-mentioned baselines.

Despite the challenges of evaluating this task, we introduce two
quantitative measures that leverage the ratings of existing movies
(i.e., the available information) to evaluate the new movie designs:

e kNN: Given a movie j*, we find the set N of its k nearest
neighbors (via cosine similarity) and infer its score as fj* =
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Figure 8: PNP outperforms the TOP and POPULAR movie designs.

ﬁ Y jen Fj, where T is the vector with the average movie
ratings over all users in U’. We set k = 20.

o W-KNN: This is the weighted version of KNN, where the
movie scores are weighted by their cosine similarity to the
given movie j*, i.e., fj» = a Yjep sim(j*,j) - 7j, where
a =1/ Y jen sim(j*,j) is a normalization factor.

Results. We applied all methods to the movie dataset (Section 3)
in order to design movies (with constraints, e.g. six actors, two
directors, two genres) for different target audiences: (i) all women;
(ii) all men; (iii) 13- to 15- year-old children; (iv) 13- to 18- year-old
children; (v) men 18-25 years old; (vi) women 18-25 years old.

OBSERVATION 6. As shown in Figures 8(a) and (b), PNP out-
performs the competing baselines for POPULAR and TOP designs
and obtains higher kNN and W-kNN scores.

4.2.2 Anecdotes. To highlight how the movie design changes
with the age of the target audience, we present the movies designed
for men across different age groups. For teenage boys (13-18years),
the movie designed has the following composition. Top genres are
Martial Arts and Action; top actors chosen are Will Smith (according
to IMDB, best known for the Men In Black series) and Adam San-
dler (known for Grown Ups); directors are Clint Eastwood (known
for Million Dollar Baby) and Spike Lee (known for Malcolm X);
producers are Mark Burg (known for Two and a Half Men) and Jack
Giarraputo (known for 50 First Dates); studios are Revolution and
Warner Brothers. Interestingly, the top chosen genre for a movie for
19-25 year-old men is Romance, with Ned Bellamy (best known for
Being John Malkovich) and Alan Rickman (known for the Harry
Potter series) as the leading actors, and Ron Howard as the director
(known for Cinderella Man). As another example, the movie de-
signed for men of all ages has Martial Arts (the genre for movies like
Rush Hour 2) as top-genre, Gary Oldman (known for the Batman
series) and Matt Damon (Bourne series) as lead actors, and Steven
Spielberg as lead director. Our model leverages the distinct patterns
in the movie interests of different demographics to design movies
that specifically cater to those audiences. That said, movie making is
a highly creative process and many elements need to come together.
Taking such a data-driven approach to designing movies is a step
towards the world of targeted and personalized movies.

S RELATED WORK

Next, we review three main research areas that are related to our
work: (i) recommendation systems, (ii) analysis of heterogeneous
graphs, and (iii) influence maximization.

Recommendation systems Our work is related to recommendation
methods, and specifically group recommendation, which seeks to
recommend existing items that are likely to match the tastes of
multiple users at the same time [15, 30]. The area of recommenda-
tion systems is very active with numerous algorithms that leverage
the user preferences and similarities [7, 14, 18], or item similari-
ties [24, 32] in order to provide personalized recommendations to
the users. The user-based CF approaches suffer from the sparsity
problem, especially for new users (cold-start problem), which leads
to very low prediction quality and scalability. To overcome these
problems, [25] leverages the social interactions and connections be-
tween users, [39] proposes a unified approach that combines CF with
friendships and memberships, and other methods, known as content-
based methods that use side information, such as demographics,
and item features (e.g. stylistic visual attributes) [11, 13, 27, 31].
A popular, scalable and accurate approach is matrix factorization
[17], which relies on latent factors for both users and items in order
to make recommendations. Privacy is always a major concern in
online systems including recommendation systems, which has led to
privacy-preserving systems [6, 26, 29]. Despite the similarities with
group recommendation, our objective is to design a new movie (or,
generally, a new product), so that the expected number of endorsers
in the intended audience is maximized.

Heterogeneous graphs Heterogeneous networks have become very
popular in the recent years, and efforts have focused on adapting
and extending approaches intended for homogeneous graphs, such
as similarity search [19, 34] and random walk with restarts [4, 28,
41]. Sun et al. [34] introduced the idea of meta-paths for similarity
search. In our work, we use meta-paths or predefined paths to
perform ‘random’ walks, with the ultimate goal of inferring user-
feature preferences for the MD problem. The heterogeneous entity
recommendation approach [38] addresses the problem of top-k entity
recommendation by performing matrix factorization on user-movie
preference matrices obtained by employing the definition of meta-
path similarity [34] (normalized path counts). The goal of [38] is to
rank existing items by user interest, assuming that all the items that
are rated by a user are of interest to her (although she might have
disliked some of the items). This is a weaker problem than the one



that our work and typical recommender systems tackle. Moreover,
[38] cannot directly infer the user-feature preferences, making it
unsuitable for the MD problem. Unlike these works, we infer the
user preferences with respect to item features by defining random-
walk scores over meta-paths and effectively incorporate likes and
dislikes, which leads to high accuracy.

Influence Maximization Influence maximization is a fundamental
underlying problem in viral marketing [9], the early adoption of
products and the dynamics of adoption [23, 33], targeted advertising,
and more. The goal is to identify which users to target in order to
maximize the adoption of an existing product or service. One of
the most influential papers in the area by Kempe, Tardos, and Klein-
berg [16] introduced the independent cascades and linear threshold
models for user conversion; more efficient models have been pro-
posed since then [10]. In our work, we use a variation of the linear
threshold model.

6 CONCLUSIONS

This paper introduces the MOVIEDESIGN problem for specific target
audiences by leveraging user-movie preferences and movie content.
The MD problem that we have proposed is complementary to recom-
mendation systems. In addition to contributing a novel formulation
of the MD problem as an optimization problem, we have introduced
a new random walk-based algorithm, PNP on a POSITIVE and
NEGATIVE graph, which efficiently handles dislikes in the user pref-
erences. We have shown that PNP is superior to baseline methods in
terms of movie preference predictions. Finally, we have applied our
method on large, real-world datasets to generate movies for specific
audiences, and introduced ways for the qualitative and quantitative
evaluation of the designs. Although we have tailored our approach
to the design of movies, it can be generalized to other products as
long as reviews and product features can be identified.

Future work includes extending our method with other elements
of the creative movie process, notably the plot of the movie, the
screenplay, and the soundtrack. There are additional signals that can
be incorporated, such as the credits order for the actors in the movie
as an indicator of their contribution and weights on a movie’s genre,
e.g. for a movie that is mostly drama yet has an element of romance,
we can weigh those two genres unequally.
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