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Abstract. For image registration to be applicable in a clinical setting,
it is important to know the degree of uncertainty in the returned point-
correspondences. In this paper, we propose a data-driven method that
allows one to visualize and quantify the registration uncertainty through
spatially adaptive con�dence regions. The method applies to various
parametric deformation models and to any choice of the similarity cri-
terion. We adopt the B-spline model and the negative sum of squared
di�erences for concreteness. At the heart of the proposed method is a
novel shrinkage-based estimate of the distribution on deformation pa-
rameters. We present some empirical evaluations of the method in 2-D
using images of the lung and liver, and the method generalizes to 3-D.

1 Introduction

Image registration is the process of �nding the spatial transformation that best
aligns the coordinates of an image pair. Its ability to combine physiological and
anatomical information has led to its adoption in a variety of clinical settings.
However, the registration process is complicated by several factors, such as the
variation in the appearance of the anatomy, measurement noises, deformation
model mismatch, local minima, etc. Thus, registration accuracy is limited in
practice, and the degree of uncertainty varies at di�erent image regions. For
image registration to be used in clinical practice, it is important to understand
its associated uncertainty.

Unfortunately, evaluating the accuracy of a registration result is non-trivial,
mainly due to the scarcity of ground-truth data. For rigid-registration, there
have been studies where physical landmarks are used to perform error analysis
[3]. Statistical performance bounds for simple transformation models have been
presented under a Gaussian noise condition [11,13]. However, it is generally di�-
cult or impractical to extend these methods to nonrigid registration, which limits
their applicability since many part of the human anatomy cannot be described
by a rigid model.

While characterizing the accuracy of a nonrigid registration algorithm is even
more challenging, there have been recent works addressing this issue. Christensen
et al. initiated a project which aims to allow researchers to perform comparative
evaluation of nonrigid registration algorithms on brain images [1]. Kybic used
bootstrap resampling to perform multiple registrations on each bootstrap sam-
ple, and used the results to compute the statistics of the deformation parameter
[8]. In [6], Hub et al. proposed an algorithm and a heuristic measure of local un-
certainty to evaluate the �delity of the registration result. Risholm et al. adopted
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a Bayesian framework in [10], where they proposed a registration uncertainty
map based on the inter-quartile range (IQR) of the posterior distribution of the
deformation �eld. Simpson et al. also adopted the Bayesian paradigm in [12],
where they introduced a probabilistic model that allows inference to take place
on both the regularization level and the posterior of the deformation parame-
ters. The mean-�eld variational Bayesian method was used to approximate the
posterior of the deformation parameters, providing an e�cient inference scheme.

We view the deformation as a random variable and propose a method that
estimates the distribution of the deformation parameters given an image pair
and registration algorithm. For illustration purpose, we use the cubic B-spline
deformation model and the negative sum of squared di�erences as the similarity
criterion, but the idea is applicable for other forms of parametric model (see [5]
for other possible choices) and intensity-based registration algorithms. The es-
timated distribution will allow us to simulate realizations of registration errors,
which can be used to learn spatial con�dence regions. To the best of our knowl-
edge, none of the existing methods view the registration uncertainty through
spatial con�dence regions represented in the pixel-domain. The con�dence re-
gions can be used to create an interactive visual interface, which can be used to
assess the accuracy of the original registration result. A conceptual depiction of
this visual interface is shown in Fig. 1. When a user, such as a radiologist, selects
a pixel in the reference image, a con�dence region appears around the estimated
corresponding pixel in the homologous image. If the prespeci�ed con�dence level
is, say γ = 0.95, then the actual corresponding point is located within the con�-
dence region with at least 95% probability. The magnitude and the orientation
of the con�dence region o�ers an understanding of the geometrical �delity of the
registration result at di�erent spatial locations.

(a) (b) (c)
Fig. 1. Conceptual illustration of the proposed method. The marks in (a)-(b) are a few
point-correspondences estimated by registration. The con�dence regions in (c) o�er an
understanding of the possible registration error for these pixels. We expect the shape
of the con�dence regions to re�ect the local image structure, as demonstrated in (c).

2 Method

For clarity, the idea is presented in a 2-D setting, but the method generalizes
directly to 3-D.

Nonrigid Registration and Deformation Model. When adopting a para-
metric deformation model, it is common to cast image registration as an opti-
mization problem over a real valued function Ψ , a similarity measure quantifying
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the quality of the overall registration. Formally, this is written

argmax
θ

Ψ
(
fr(·),fh ◦ T (· ;θ)

)
, (1)

where fr,fh : R2 → R are the reference and the homologous images respec-
tively, and T (· ;θ) : R2 → R2 is a transformation parametrized by θ. Letting
x = (x, y) denote a pixel location, a nonrigid transformation can be written
T (x;θ) = x+ d(x;θ), where d(· ;θ) is the deformation. To model the deforma-
tion, we adopt the commonly used tensor product of the cubic B-spline basis
function β [7], where the deformation for each direction q ∈ {x, y} is described
independently by parameter coe�cients {θq} as follows:

dq(x;θq) =
∑
i,j

θ(i,j)q β

(
x

mx
− i
)
β

(
y

my
− j
)
. (2)

The scale of the deformation is controlled by mq, which is the knot spacing in
the q direction. If K knots are placed on the image, the total dimension of the
parameter θ = {θx,θy} is 2K since θx,θy ∈ RK .

Spatial Con�dence Regions. Given the image pair fr and fh, let Ωr ⊂ R2

and Ωh ⊂ R2 denote the regions of interest in the reference and homologous
image respectively. Also, let θ̂ be the deformation coe�cients estimated from
registration (1). We will assume that the underlying ground-truth deformation
belongs to the adopted deformation class, with deformation parameter θ. Then,
the registration error e for pixel x ∈ Ωr is expressed as

e(x) =
(
ex(x), ey(x)

)
= T (x; θ̂)− T (x;θ) . (3)

We will view the true deformation θ as a random variable, which introduces a
distribution on e(x) for each x. The con�dence region Φ(x) ⊆ Ωh is a set such
that Pr

(
e(x) ∈ Φ(x)

)
≥ γ, where γ ∈ [0, 1] is a prespeci�ed con�dence level. To

estimate the spatial con�dence regions, we adopt the following two-step process.

First, we estimate the distribution of θ. We assume θ ∼ N (µθ,Σθ), so the
problem reduces to estimating µθ and Σθ. This is a challenging task because
there is only a single realization of θ, corresponding to the given reference and
homologous images, and this realization is not observed.

Second, given the estimates of µθ andΣθ, we can then simulate approximate
realizations of θ, and thereby simulate spatial errors e(x). From this it is straight-

forward to estimate Φ(x). However, sampling from N (µ̂θ, Σ̂θ) is potentially
computationally intensive. The total dimension of θ for the B-spline model is
2K in 2-D and 3K in 3-D. For a high resolution CT data-set of image size
512 × 512 × 480 with voxel dimensions 1 × 1 × 1 mm3, B-spline knots placed
every 5 mm leads to a dimension on the order of millions. Sampling from a
multivariate normal distribution requires a matrix square root of Σθ, but this is
clearly prohibitive in both computational cost and memory storage. Therefore
it is essential that the estimate Σ̂θ have some structure that facilitates e�cient
sampling.
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Estimation of Deformation Distribution. We use the registration result θ̂
as the estimate for µθ, and propose the following convex combination for Σθ:

Σ̂θ = (1− ρ)Σo + ρθ̂θ̂T . (4)

The �rst term Σo is a positive-de�nite matrix which is an a priori baseline
we impose on the covariance structure, and the second term is a rank-1 outer
product that serves as the data-driven component. The weighting between the
two terms is controlled by ρ ∈ [0, 1). Note that (4) has a form of a shrinkage
estimator reminiscent of the Ledoit-Wolfe type covariance estimate [9], but only
using the registration result θ̂.

For the baseline covariance Σo, we propose to use a covariance matrix which
is motivated from the autoregressive model. Let Σ

AR
∈ RK×K

++ denote the co-
variance of a �rst order 2-D autoregressive model, whose entries are given as

Σ
AR

(i, j) = r|x(i)−x(j)|x r|y(i)−y(j)|y , 1 ≤ i, j ≤ K . (5)

Here, |rx| < 1 and |ry| < 1 are parameters that control the smoothness between
neighboring knots, and x(i) = mod (i − 1, nx), y(i) = b(i− 1)/nxc are the
mappings from the lexicographic index i to its corresponding (x, y) coordinate,
assuming an (nx × ny) grid of knots. A key property of this dense matrix is
that its inverse, or the precision matrix Θ

AR
= Σ−1

AR
, is block-tridiagonal with

tridiagonal blocks. Speci�cally,Θ
AR

has an ny-by-ny block matrix structure with
each blocks of size (nx × nx), and only the main diagonal and the subdiagonal
blocks are non-zero. Furthermore, these non-zero blocks are tridiagonal with the
values of the non-zero entries known as a function of rx and ry.

Based on Σ
AR
, we propose to use the following baseline covariance Σo ∈

R2K×2K
++ having a 2-by-2 block matrix structure expressed by the Kronecker

product:

Σo =

[
cxΣAR

cxyΣAR

cxyΣAR
cyΣAR

]
=

[
cx, cxy
cxy, cy

]
⊗Σ

AR
. (6)

The coe�cients cx and cy assign the prior variance level on θx and θy, whereas
cxy assigns the prior cross-covariance level between θx and θy. The only restric-
tion on these values is (cxcy) > c2xy, which ensures Σo is positive-de�nite. It is
important to note that the precision matrix Θo of this baseline covariance is
sparse, also having a 2-by-2 block matrix structure

Θo = Σ−1o =

[
cx, cxy
cxy, cy

]−1
⊗Σ−1

AR
=

[
px, pxy
pxy, py

]
⊗Θ

AR
, (7)

where {px, py, pxy} are obtained by inverting the 2 × 2 coe�cient matrix. The
sparsity structure ofΘo can be interpreted intuitively under a Gaussian graphical
model framework. The conditional dependencies between knots are described
by the non-zero entries in the matrix, which are represented as edges in an
undirected graph. For our model, a knot θx(i, j) has 17 edges, 8 connected to
its 8-nearest neighbors and the other 9 connected to the corresponding θy(i, j)
knot and its 8-nearest neighbors. Fig. 2 provides an illustration of Σo and the
sparsity structure of its inverseΘo, along with an example realization of B-spline
coe�cients θ = (θx,θy).
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(a) (b) (c) (d)

Fig. 2. Illustration of the properties of the baseline covariance Σo. The val-
ues used are (nx, ny) = (50, 50), (rx, ry) = (0.95, 0.8), and {cx, cy, cxy} =
{1, 2, 0.5}. (a) The baseline covariance Σo, (b) the sparsity structure of Θo = Σ−1o ,
(c)-(d) B-spline coe�cients θx and θy obtained from sample θ = (θx,θy) ∼ N (0,Σo).

Error Simulations and Spatial Con�dence Regions. Since the estimate
Σ̂θ (4) is a rank-1 updated form of the baseline Σo, we can exploit the sparsity
structure of Θo to e�ciently draw realizations from N (θ̂, Σ̂θ) without explicitly

storing or computing a matrix square root for the dense matrix Σ̂θ. We only
need to store the sparse precision matrix Θo and compute its cholesky factor Lo,
which can be done in O(K) operations [4]. This allows the sampling procedure
to scale gracefully to 3-D.

Using such sampling procedure, we can now generate realizations of registra-
tion error e(x) as follows:

1. Sample θi ∼ N (µ̂θ, Σ̂θ).

2. Synthesize reference image f
(i)
r (x)← fh ◦ T (x;θi).

3. Register fh on to f
(i)
r to get estimate θ̂i.

4. Compute error ei(x) = T (x; θ̂i)− T (x;θi).
We assume that e(x) ∼ N

(
µe(x),Σe(x)

)
for all x. Then the spatial con�dence

region associated with pixel x ∈ Ωr is de�ned by the ellipsoid

Φ(x) = {x′ :
(
x′ − µe(x)

)T
Σ−1e (x)

(
x′ − µe(x)

)
< χ2

2(1− γ)} , (8)

which is the 100γ% level set of the bivariate normal distribution. Under this
formulation, con�dence region estimation becomes the problem of estimating
{µe(x),Σe(x)}, the mean and covariance of the registration error at pixel lo-
cation x. We estimate these with the sample mean and covariance based on
the simulated errors {ei(x)}. Algorithm 1 outlines the overall spatial con�dence
region estimation process.

Note that since we are using θ̂ as the estimate for µθ, it is important for
the original registration to return a sensible result, as severe inaccuracy could
negatively impact the quality of the spatial con�dence regions.

3 Experiments

We demonstrate an application of the method, and also present preliminary
experiments performed in 2-D. For illustration purpose, we used the negative sum
of squared di�erences as the similarity criterion, but other metrics such as mutual
information are also appropriate. To encourage the estimated deformation to be
topology-preserving, we included the penalty term introduced by Chun et al. [2]
into the cost function for all experiments.
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Algorithm 1 - Spatial Con�dence Regions Generation

Input: fr,fh
Output: {µ̂e(x), Σ̂e(x)} for all x ∈ Ωr

θ̂ ← argmax
θ′

Ψ
(
fr(·),fh ◦ T (· ;θ′)

)
µ̂θ ← θ̂

Σ̂θ ← (1− ρ)Σo + ρθ̂θ̂T

for i = 1, · · · , N
sample θi ← N (µ̂θ, Σ̂θ)

generate f
(i)
r (x)← fh ◦ T (x;θi)

register θ̂i ← argmax
θ′

Ψ
(
f (i)
r (·),fh ◦ T (· ;θ′)

)
compute ei(x) = T (x; θ̂i)− T (x;θi)

end

µ̂e(x)← 1
N

∑N
i=1 ei(x)

Σ̂e(x)← 1
N

∑N
i=1

(
ei(x)− µ̂e(x)

)(
ei(x)− µ̂e(x)

)T

Application. We �rst applied the proposed method to two coronal CT slices
in the lung region, shown in Fig. 3. Both images are size 256 × 360, and the
exhale-frame served as the homologous image while the inhale-frame served as
reference. The notable motion in this data-set is the sliding of the diaphragm
with respect to the chest wall. Due to the opposing motion �elds at this interface,
registration uncertainty is expected to be higher around this region. To model
the deformation, we used a knot spacing of (mx,my) = (3, 8), resulting in a
parameter dimension of θ ∈ R7650. A tighter knot spacing was used for mx since
a �ner scale of deformation was needed in the x-direction to model the sliding
motion at the chest wall. Since the degree of this slide is relatively small for this
data-set, the registration result shown in Fig. 3 looks reasonably accurate based
on visual inspection.

Using θ̂ obtained from registering these images, we used the single-shot mean
and covariance estimate and the e�cient sampling scheme to obtain 100 new re-
alizations of deformations. For the baseline covariance Σo, we used values of
(rx, ry) = (0.9, 0.9) and {cx, cy, cxy} = {2, 4, 0.5}. A relatively high value for
cy was used since the magnitude of the overall deformation was higher in the
y-direction. Finally, ρ = 0.1 was used, as it was found to produce sensible de-
formation samples. One of the synthesized reference images is shown in Fig. 3.
Following Algorithm 1, we obtained a set of spatial con�dence regions {Φ(x)}
for all x in the region of anatomical interest, using a con�dence level of γ = 0.9.
A few of these are displayed in Fig. 3 (a)-(h), along with 100 simulated errors. It
is important to note how the shapes of these con�dence regions re�ect the local
image structure. The principal major axes of the ellipses are oriented along the
edge, indicating higher uncertainty for those directions. The con�dence regions
for (c) and (g) take on isotropic shapes due to the absence of well-de�ned im-
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age structures. Finally, notice how the con�dence region for (e) is quite large,
illustrating how di�cult it is to accurately register the sliding diaphragm at the
chest wall.

a

b
c

d

e
f

g
h

a

b
c

d

e

f

g

h

Reference Image Homologous Image Registered Image Sampled Image

fr (x) fh (x) fh
(
T (x; θ̂)

)
fh

(
T (x; θi)

)

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3. The top row shows the 2-D data-set used in the �rst experiment, along with the
registration result and an image synthesized using one of the sampled deformations. A
few of the con�dence regions from x ∈ Ωr are shown in (a)-(h), with the red marks
representing 100 realizations of registration error. Note how the con�dence regions
re�ect the local image structure.

Experimental Result. To quantitatively evaluate our method, we manually
assigned µθ and Σθ for the cubic B-spline deformation-generating process. The
mean deformation µθ was designed to model the exhale to inhale motion in
the abdominal area around the liver region, simulated by a contracting mo-
tion �eld. Manually assigning a sensible ground-truth value for the covariance
Σθ is extremely di�cult due to its high dimension and positive-de�nite con-
straint. Therefore, we took the shrinkage-based covariance model (4) as the
ground-truth, using values of (rx, ry) = (0.95, 0.95), {cx, cy, cxy} = {2, 3, 0.5},
and ρ = 0.1. These values imply that the covariance is smooth with moderate
level of correlation in the x and y deformations. We sampled a single instance
of deformation θ from this ground-truth distribution, and used it to deform a
2D axial CT slice in the liver region, having image size 512 × 420. We labeled
the original image as the homologous and the deformed image as the reference.
This resulting image pair and their di�erence image are shown in Fig. 4. A knot
spacing of (mx,my) = (8, 8) was used to de�ne the scale of the ground-truth
deformation, resulting in a parameter dimension of θ ∈ R6656.

Next, we generated three classes of spatial con�dence regions for this im-
age pair, using con�dence levels of γ = 0.9 and 0.95. The �rst con�dence region
Φ1(x) corresponds to the case where a correct deformation model is used for reg-
istration, and the parameter values for the shrinkage-based covariance estimate
Σ̂θ matches that of the ground truth. The second con�dence region Φ2(x) cor-
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(a) (b) (c)

Fig. 4. The data-set used for validation: (a) the homologous image fh(x), (b) the
reference image fr(x) = fh

(
T (x;θ)

)
generated by a deformation coe�cient sampled

from the ground-truth distribution θ ∼ N (µθ,Σθ), (c) the absolute di�erence image.

responds to the case where there is a mismatch in the deformation model. Here,
we used a �fth-order B-spline function during registration, with a knot spacing
of (mx,my) = (6, 6). In addition, we introduced some discrepancies in the pa-

rameter values for Σ̂θ. Finally, the third con�dence region Φ3(x) corresponds to
the ideal case, and is constructed for the purpose of comparison. Here, a correct
deformation model is used for registration, and the deformations used to train
the spatial con�dence regions were sampled from the ground-truth N (µθ,Σθ)
rather than the estimated distribution. The descriptions of these con�dence re-
gions are summarized in Table 1. All con�dence regions were generated using
N = 200 simulated errors.

Table 1. Spatial Con�dence Regions Generated for Validation

Def. Basis Def. Scale Parameter values used for Σ̂θ

Conf. Reg. 1 Cubic mx = 8 ρ = 0.1, (rx, ry) = (0.95, 0.95)
Φ1(x) B-spline my = 8 {cx, cy, cxy} = {2, 3, 0.5}

Conf. Reg. 2 Fifth order mx = 6 ρ = 0.15, (rx, ry) = (0.9, 0.9)
Φ2(x) B-spline my = 6 {cx, cy, cxy} = {2, 2, 0}

Conf. Reg. 3 Cubic mx = 8 µ̂θ = µθ,Σ̂θ = Σθ
Φ3(x) B-spline my = 8 (Oracle)

To assess the quality of these spatial con�dence regions, we evaluated their
coverage rates by sampling M = 500 additional deformations from the ground-
truth distribution N (µθ,Σθ). Coverage rate for a given pixel x is de�ned as the
percentage of registration errors that are con�ned within the con�dence region
Φ(x), and is written mathematically as

1

M

M∑
i=1

1 {ẽi(x) ∈ Φ(x)} , (9)

where 1{·} is the indicator function, and ẽi(x) are registration errors generated
from deformations sampled from the ground-truth distribution. We computed
the coverage rate for the pixels that are located within the region of anatomy.
The resulting coverage rates are rendered as heatmaps and are displayed in Fig.
5, along with their corresponding histograms. It can observed that the coverage
rates for the �rst two con�dence regions, Φ1(x) and Φ2(x), generally come close
to the prespeci�ed con�dence level γ, although some degree of discrepancy can
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be observed at some image regions. The third con�dence region Φ3(x) gave the
best result as expected; the coverage rate for all pixels comes very close to γ.

In summary, the performance of the spatial con�dence regions Φ1(x) and
Φ2(x) turned out to be reasonably close, having results comparable to the ideal
case of Φ3(x). Although further validation studies are required to obtain a more
conclusive �nding, this is an encouraging preliminary result.
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Fig. 5. The coverage rates evaluated for the three classes of spatial con�dence regions
presented in Table 1, displayed in the form of heatmap and histogram. Note that the
performances of Φ1(x) and Φ2(x) are fairly comparable to the ideal con�dence region
Φ3(x), as the coverage rates for many of the pixels come close to the prespeci�ed
con�dence level γ.

4 Discussion and Conclusion

In this paper, we presented a new method to evaluate the accuracy of a registra-
tion algorithm using spatially adaptive con�dence regions. Preliminary experi-
mental test results in 2-D suggest the con�dence regions are e�ective based on
their coverage rates. However, it is important to note that the computational
cost of the proposed method is N times the original registration algorithm, since
we must register each of the sampled deformations. Depending on the user's
choice, this N can be in the order of hundreds to even thousands, with higher
values likely to return more reliable con�dence regions. We note that the process
is easily parallelizable. Furthermore, in application such as surgical planning and
radiation therapy, it may not be necessary to have spatial con�dence regions for
every voxel in the image volume. Therefore, after completing the original full
3-D registration, we suggest to run the N registrations only within a subregion
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where the accuracy of the initial registration must be known. This allows one to
obtain spatial con�dence regions for these locations at a much more reasonable
computational expense.

In the future, we will perform more extensive validation studies in 3-D using
various similarity criteria and deformation models, and explore a way to quantify
the robustness of the method. Furthermore, other choices of a priori baseline
for the shrinkage-based covariance estimate will be investigated. Finally, we will
seek a way to incorporate more data into our model to allow a more sophisticated
parameter selection to take place.
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