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Abstract

The problem of active diagnosis arises in sev-
eral applications such as disease diagnosis,
and fault diagnosis in computer networks,
where the goal is to rapidly identify the bi-
nary states of a set of objects (e.g., faulty or
working) by sequentially selecting, and ob-
serving, (noisy) responses to binary valued
queries. Current algorithms in this area rely
on loopy belief propagation for active query
selection. These algorithms have an exponen-
tial time complexity, making them slow and
even intractable in large networks. We pro-
pose a rank-based greedy algorithm that se-
quentially chooses queries such that the area
under the ROC curve of the rank-based out-
put is maximized. The AUC criterion al-
lows us to make a simplifying assumption
that significantly reduces the complexity of
active query selection (from exponential to
near quadratic), with little or no compromise
on the performance quality.

1 Introduction

The problem of diagnosis appears in various appli-
cations such as medical diagnosis (Heckerman, 1990;
Jaakkola and Jordan, 1999), fault diagnosis in nuclear
plants (Santoso et al., 1999), computer networks (Rish
et al., 2005; Zheng et al., 2005), power-delivery sys-
tems (Yongli et al., 2006), decoding of messages sent
through a noisy channel, etc. In these problems, the
goal is to identify the binary states X = (X1, · · · , XM )
of M different objects based on the binary outcomes
Z = (Z1, · · · , ZN ) of N distinct queries/tests, where
the query responses are noisy. For example, in the
problem of medical diagnosis, the goal is to iden-
tify the presence/absence of a set of diseases based
on the outcomes of medical tests. Similarly, in a

fault diagnosis problem, the goal is to identify the
state (faulty/working) of each component based on
alarm/probe responses (In the rest of this paper, we
will refer to an object with state 1 as a fault). In recent
years, this problem has been formulated as an infer-
ence problem on a Bayesian network, with the goal of
assigning most likely states to unobserved object nodes
based on the outcome of the query nodes.

An important issue in diagnosis is the trade-off be-
tween the cost of querying (uncovering the value of
some Zj) and the achieved accuracy of diagnosis. It is
often too expensive, time consuming or even impossi-
ble to get responses to all the queries. In this paper,
we study the problem of active diagnosis, where the
queries are selected sequentially to maximize the ac-
curacy of diagnosis while minimizing the cost of query-
ing.

Zheng et al. (2005) proposed the use of reduction in
conditional entropy (equivalently, mutual information)
as a measure to select the most informative subset
of queries. They proposed an algorithm that uses
the loopy belief propagation (BP) framework to select
queries sequentially based on the gain in mutual infor-
mation, given the observed responses to past queries.
This algorithm, which they refer to as BPEA, requires
one run of BP for each query selection. Finally, the ob-
jects are assigned the most likely states based on the
outcome of the selected queries, using a MAP (maxi-
mum a posteriori) inference algorithm. Refer to Sec-
tion 3.1 for more details.

However, there are two limitations with this approach.
First, the MAP estimate does not equal the true state
vector X, either due to noise in the observed query re-
sponses or due to suboptimal convergence of the MAP
inference algorithm. This leads to false alarm and miss
rates that may not be tolerable for a given application.

The second issue is that BPEA does not scale to large
networks, because the complexity of computing the
approximate value of conditional entropy grows ex-



ponentially in the maximum degree of the underlying
Bayesian network (see Section 3.1 for details). As we
show in Section 5, it becomes intractable even in net-
works with a few thousand objects. In addition, since
this approach relies on belief propagation (BP), it may
suffer from the limitations of BP such as slow conver-
gence or oscillation of the algorithm, especially when
the prior fault probability is small (Murphy et al.,
1999). As we discuss below, the prior fault probability
is often very low in real-world diagnosis problems.

In this paper, we propose to address these two lim-
itations by adopting an AUC (Area under the ROC
curve) criterion for query selection. To address the
first limitation, we propose to output a ranked list of
objects rather than their most likely states, where the
ranking is based on their posterior fault probability.
Given such a ranked list, the object states can be es-
timated by choosing a threshold t, where the top t
objects in the ranked list are declared as faults (i.e.,
state 1) and the remaining as 0. Varying t gives a re-
ceiver operating characteristic (ROC) curve. We show
how to select queries sequentially by maximizing AUC.

The rank-based approach is motivated by the fact that
in many applications there is a domain expert who
makes the final decision on the objects’ states. Such
a ranking can be useful to a domain expert who will
use domain expertise and other sources of information
to choose a threshold t that may lead to a permissible
value of false alarm and miss rates for a given applica-
tion.

To address the second limitation, we circumvent the
use of BP in the query selection stage by making the
simplifying assumption of a single fault, i.e., the state
of only one object can be equal to 1. To be clear,
we still intend to apply our algorithm when multiple
faults are present; the single fault assumption is used
in the design of the algorithm. This assumption is
reasonable because the prior fault probability is quite
low in many applications. For example, in the prob-
lem of fault diagnosis in computer networks, the prior
probability of a router failing in any given hour is on
the order of 10−6 (Kandula et al., 2005). Similarly, in
the disease diagnosis problem of QMR-DT, the prior
probability of a disease being “present” is typically on
the order of 10−3 (Murphy et al., 1999).

We show that the AUC criterion can be optimized effi-
ciently under the single-fault assumption. While other
criteria such as mutual information can also be opti-
mized efficiently under this assumption, we show that
AUC is much more robust to violations of the single
fault assumption, which are bound to happen in prac-
tice. We demonstrate through experiments on com-
puter networks that the proposed query selection cri-

terion can achieve performance close to that of BPEA
in a multi-fault setting, while having a computational
complexity that is orders less than that of BPEA.
Thus, it is a fast and a reliable substitute for BPEA
in large scale diagnosis problems.

2 Data Model

A diagnosis problem is often represented by a bipartite
diagnosis graph (BDG) between a set of M different
objects, and a set of N distinct queries, with edges be-
tween the two entities. These edges represent the rela-
tion or the interactions between the two entities. For
example, in a fault diagnosis problem, the objects cor-
respond to components and queries to alarms where an
edge determines if a particular component-alarm pair
is connected. Similarly, in a disease diagnosis prob-
lem, objects may correspond to diseases and queries
to symptoms where an edge determines if a particular
symptom is exhibited by a disease. Figure 1 demon-
strates a toy bipartite diagnosis graph.

We denote the state of each object (e.g., pres-
ence/absence of a disease) with a binary random vari-
able Xi and the state of each query (i.e., the ob-
served response to a query) by a binary random vari-
able Zj . Then, X = (X1, · · · , XM ) is a binary ran-
dom vector denoting the states of all the objects, and
Z = (Z1, · · · , ZN ) is a binary random vector denoting
the responses to all the queries, where x ∈ {0, 1}M
and z ∈ {0, 1}N correspond to realizations of X and
Z, respectively.

In addition, for any subset of queries A ⊆ {1, · · · , N},
we denote by ZA the random variables associated
with those queries, e.g., if A = {1, 4, 7}, then ZA =
(Z1, Z4, Z7). Also, for any query j, let paj denote the
objects that are connected to it in the BDG. Then,
Xpaj

denotes the states of all the objects connected to
query j, e.g., for query 2 in Figure 1, Xpa2

= (X2, X3).

We need to specify the joint distribution of (X,Z),
and more generally (X,ZA) for any A, which can
be defined in terms of a prior probability distribu-
tion on X and a conditional distribution on ZA given
X. To define the prior probability distribution on
X, we make the standard assumption that the object
states are marginally independent, i.e., Pr(X = x) =∏M

i=1 Pr(Xi = xi). Similarly, to define the conditional
distribution on ZA given X, we make the standard as-
sumption that the observed responses to queries are
conditionally independent given the states of the ob-
jects connected to them, i.e.,

Pr(ZA = zA|X = x) =
∏
j∈A

Pr(Zj = zj |xpaj
).

These assumptions hold reasonably well in many prac-
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Figure 1: (left) A toy bipartite diagnosis graph (BDG) where the circled nodes denote the objects and the square
nodes denote queries. (right) A Bayesian Network corresponding to the given BDG.

tical applications. For example, in a fault diagno-
sis problem, it can be reasonable to assume that the
components fail independently and that the alarm re-
sponses are conditionally independent given the states
of the components they are connected to. These de-
pendencies can be encoded by a Bayesian network as
shown in Figure 1.

In the ideal case when there is no noise, the observed
response Zj to query j is deterministic given the binary
states of the objects in paj . Specifically, it is given by
the OR operation of the binary variables in Xpaj

, i.e.,
Zj = 1 ⇐⇒ ∃ i ∈ paj s.t. Xi = 1. In general, it is a
noisy OR operation where the conditional distribution
of Zj given xpaj

can be defined using standard noise
models such as the Y-model (Le and Hadjicostis, 2007)
or the QMR-DT model (Pearl, 1988).

We derive the AUC based active diagnosis algorithm
under this general probability model, and in Section 5,
we demonstrate the performance of the proposed al-
gorithm in the problem of fault diagnosis in computer
networks under the QMR-DT noise model, where

Pr(Xi = x) := (αi)
x(1− αi)

1−x, and

Pr(Zj = 0|xpaj
) := ρ0j

∏
k∈paj

ρxk

kj .

Here, αi is the prior fault probability, ρkj and (1 −
ρ0j) are the so-called inhibition and leak probabilities,
respectively.

3 Active Diagnosis

The approach in active diagnosis is to maximize some
function f(zA), which denotes the quality of the esti-
mate of X, subject to a constraint on the number of
queries made, i.e.,

maxA⊆{1,··· ,N} f(zA)

s.t. |A| ≤ k.

In general, finding an optimal solution to this problem
is NP-hard (Rish et al., 2005). Instead, the queries
can be chosen sequentially by greedily maximizing the
quality function, given the observed responses to the
past queries, i.e.,

j∗ := argmax
j /∈A

EZj
[f(zA ∪ Zj)− f(zA)|ZA = zA] (1)

where zA ∪ Zj denotes the observed responses to
queries in A ∪ {j}.

3.1 Entropy-based Active Query Selection

Zheng et al. (2005) proposed the use of the reduc-
tion in conditional entropy (equivalently, mutual in-
formation), as a quality function, namely f(zA) =
H(X)−H(X|zA). Here, given the observed responses
zA to previously selected queries A, the next query is
chosen to be

j∗ = argmin
j /∈A

∑
z=0,1

Pr(Zj = z|zA)H(X|zA, z) (2)

where the conditional entropy is given by

H(X|zA, z) = −
∑

x∈{0,1}M
Pr(x|zA, z) log2 Pr(x|zA, z).

Note that direct computation of the above expression
is intractable. However, under the independence as-
sumptions of Section 2, the conditional entropy can
be simplified such that the query selection criterion in
(2) is reduced to

argmin
j /∈A

[
−
∑

xpaj
,z

Pr(xpaj
, z|zA) log2 Pr(Zj = z|xpaj

)

+
∑
z=0,1

Pr(Zj = z|zA) log2 Pr(Zj = z|zA) + const

]
.

Zheng et al. (2005) proposed an approximation algo-
rithm that uses the BP infrastructure to compute the
above expression, which they refer to as belief propa-
gation for entropy approximation (BPEA). This algo-
rithm requires one run of BP for each query selection.
After observing responses zA to a set of queries A, the
object states are then estimated to be

xMAP := argmax
x∈{0,1}M

Pr(X = x|zA).

However, this approach does not scale to large net-
works as BPEA involves a term whose computation
grows exponentially in the number of parents to a
query node. Ifm denotes the maximum number of par-
ents to any query node, i.e., m := maxj∈{1,··· ,N} |paj |,
then the computational complexity of choosing a query
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Figure 2: A rank order corresponding to this example
is r = (3, 1, 2, 4, 5).

using BPEA is O(N2m), thus making it intractable in
networks where m is greater than 25.

Recently, Cheng et al. (2010) proposed a speed up to
query selection using BPEA by reducing the number
of queries to be investigated at each stage. However,
the exponential complexity still remains. Moreover,
though this objective can be computed efficiently un-
der a single fault assumption, as we explain in Sec-
tion 4.2, entropy-based query selection under a single
fault assumption can perform poorly in a multi-fault
setting.

In the next section, we derive a new query selection cri-
terion that sequentially chooses queries such that the
area under the ROC curve of the rank-based output is
maximized. In Section 4.1, we show that the proposed
query selection criterion can be implemented efficiently
under a single fault assumption, and in Section 5, we
show that the AUC-based query selection can achieve
performance close to that of BPEA, even when multi-
ple faults occur, thus making it a viable substitute for
BPEA in large scale networks.

4 AUC-based Active Query Selection

AUC has been used earlier as a performance criterion
in the classification setting with decision tree classi-
fiers (Ferri et al., 2002; Cortes and Mohri, 2003) and
boosting (Long and Servedio, 2007), and in the prob-
lem of ranking (Ataman et al., 2006), but not in an
active diagnosis setting to the best of our knowledge.
In all the earlier settings, the AUC of a classifier is
estimated using the training data whose binary labels
are known. However, in an active diagnosis setting,
the object states (binary labels) are neither known nor
does there exist any training data. Hence, we propose
a simple estimator for the AUC, based on the posterior
probabilities of the object states.

Given the observed responses zA to queries in A, let
the objects be ranked based on their posterior fault
probabilities, i.e., Pr(Xi = 1|zA), where ties involving
objects with the same posterior probability are broken
randomly. Then, let r = (r(1), · · · , r(M)) denote the
rank order of the objects, where r(i) denotes the index
of the ith ranked object. For example, a rank order
corresponding to the toy example in Figure 2 is r =
(3, 1, 2, 4, 5). Also, note that r depends on the queries
chosen A and their observed responses zA, though it
is not explicitly shown in our notation.

Given this ranked list of objects, we get a series of esti-
mators {x̂t}Mt=0 for the object state vector X, where x̂t

corresponds to the estimator which declares the states
of the top t objects in the ranked list as 1 and the re-
maining as 0. For example, x̂2 = (1, 0, 1, 0, 0) for the
toy example shown in Figure 2.

These estimators have different false alarm and miss
rates. The miss and false alarm rates associated with
x̂t are given by

MRt =

∑
{i:x̂t

i=0} I{Xi = 1}∑M
i=1 I{Xi = 1}

=

∑M
i=t+1 I{Xr(i) = 1}∑M

i=1 I{Xi = 1}
,

FARt =

∑
{i:x̂t

i=1} I{Xi = 0}∑M
i=1 I{Xi = 0}

=

∑t
i=1 I{Xr(i) = 0}∑M
i=1 I{Xi = 0}

,

where I{E} is an indicator function which takes the
value 1 when the event E is true, and 0 otherwise.

However, since the true states of the objects are not
known, the false alarm and the miss rates should be
estimated. Based on the responses zA to queries in A,
these two error rates can be estimated as

M̂Rt(zA) =

∑M
i=t+1 Pr(Xr(i) = 1|zA)∑M

i=1 Pr(Xi = 1|zA)
, (3a)

F̂ARt(zA) =

∑t
i=1 Pr(Xr(i) = 0|zA)∑M
i=1 Pr(Xi = 0|zA)

. (3b)

Using these estimates, the ROC curve can then be ob-
tained by varying the threshold t from 0 to M leading
to different false alarm and miss rates. For example,
x̂0 which declares the states of all the objects to be
equal to 0, has a false alarm rate of 0 and a miss rate
of 1. On the other hand, x̂M which declares the states
of all objects as 1, has a false alarm rate of 1 with a
miss rate of 0. The other estimators have false alarm
and miss rates that span the space between these two
extremes.

Finally, the area under this ROC curve can be es-
timated using a piecewise approximation with either
lower rectangles, upper rectangles or a linear approxi-
mation (refer Bellala et al. (2011) for more details).
For reasons discussed below, upper rectangles work
better than the other two options. The AUC estimate
based on upper rectangles is given by

A(zA) := ÂUC =

M−1∑
t=0

(1− M̂Rt+1)(F̂ARt+1 − F̂ARt)

= F̂ARM − F̂AR0 −
M−1∑
t=0

M̂Rt+1(F̂ARt+1 − F̂ARt)

= 1−
M−1∑
t=0

M̂Rt+1(F̂ARt+1 − F̂ARt),



where we dropped the dependence of M̂Rt and

F̂ARt on zA to avoid cramping. Also, note that∑M−1
t=0 M̂Rt+1(F̂ARt+1 − F̂ARt) corresponds to an es-

timate of the area above the ROC curve, which we
denote by A(zA).

Given this quality function, the goal of active diag-
nosis is to maximize the accuracy of diagnosis given
by A(zA), subject to a constraint on the number of
queries made, i.e.,

maxA⊆{1,··· ,N}A(zA)

s.t. |A| ≤ k.

Substituting this quality function in (1), we get the
criterion for greedily choosing the next query to be

j∗ = argmin
j /∈A

∑
z=0,1

Pr(Zj = z|zA)A(zA ∪ z). (4)

Substituting the estimates of miss rate and false alarm
rate from (3a) and (3b), we get A(zA) to be

M−1∑
i=1

Pr(Xr(i) = 0|zA)

M∑
j=i+1

Pr(Xr(j) = 1|zA)


M∑
i=1

Pr(Xi = 1|zA)

M∑
i=1

Pr(Xi = 0|zA)

. (5)

Note that both the query selection criterion in (4) and
the function A(zA) in (5) depend only on the posterior
probabilities of unobserved nodes given the states of
the observed nodes. Since these probabilities can be
approximated using BP, the AUC-based active query
selection can be performed using BP similar to the
entropy-based active query selection.

However, the main focus of this paper is on active di-
agnosis for large scale networks where query selection
using BP is slow and possibly intractable. In the next
section, we show that the proposed AUC-based query
selection can be performed efficiently under a single
fault assumption.

4.1 Single Fault Assumption

We now derive the AUC-based query selection crite-
rion under the single fault assumption. Under this
assumption, the object state vector X is restricted to
belong to the set {I1, · · · , IM} in the query selection
stage, where Ii is a binary vector whose ith element
is 1 and the remaining elements are 0. This reduction
in the state space of the object vector allows for query
selection to be performed efficiently without the need
for BP.

More specifically, the posterior probabilities required
to choose queries sequentially in (4) can be computed

as follows. Using the conditional independence as-
sumption, Pr(Z = z|zA) can be computed as

Pr(Z = z|zA) =

M∑
i=1

Pr(Z = z|X = Ii)Pr(X = Ii|zA),

where Pr(X = Ii|zA) can be computed directly as

Pr(X = Ii|zA) =
Pr(X = Ii)Pr(ZA = zA|X = Ii)

M∑
j=1

Pr(X = Ij)Pr(ZA = zA|X = Ij)

with Pr(ZA = zA|X = Ii) =
∏

k∈A Pr(Zk = zk|X =
Ii). Also, note that under a single fault assumption,

M∑
i=1

Pr(Xi = 1|zA) =

M∑
i=1

Pr(X = Ii|zA) = 1, (6)

M∑
i=1

Pr(Xi = 0|zA) =

M∑
i=1

1− Pr(Xi = 1|zA) = M − 1.

Hence, the estimate of the area above the ROC curve
A(zA) in (5) reduces to

M−1∑
i=1

Pr(Xr(i) = 0|zA)

M∑
j=i+1

Pr(Xr(j) = 1|zA)


M − 1

. (7)

The following result gives an efficient way to compute
A(zA).

Proposition 1. The estimate of the area above the
ROC curve A(zA) in (5) can be equivalently expressed
as

1

2
+

M∑
i=1

(2i−M − 2)Pr(Xr(i) = 1|zA) + Pr2(Xi = 1|zA)

2

M∑
i=1

Pr(Xi = 1|zA)

M∑
i=1

Pr(Xi = 0|zA)

From this result, given a ranked list of the objects,
the complexity of computing A(zA) is O(M), i.e.,
the complexity of computing A(zA) is dominated by
the complexity of sorting, O(M logM). Hence, the
computational complexity of choosing a query at each
stage using the AUC-based criterion under a single
fault assumption is O(NM logM).

In addition, as we show in Theorem 1 below, AUC esti-
mated using lower rectangles or a linear approximation
is adaptive monotone (Golovin and Krause, 2010), i.e.,
the accuracy of diagnosis given by A(ZA) is guaran-
teed to increase by acquiring more query information
(equivalently, the area above the ROC curve given by
A(ZA) is guaranteed to decrease by acquiring more
query information).



Theorem 1. Under the single fault assumption, the
quality function A(ZA) estimated using either lower
rectangles or a linear approximation, is adaptive
monotone, i.e., ∀A′ ⊆ A

A(ZA′) ≤ A(ZA)

Refer Bellala et al. (2011) for proofs of Proposition 1
and Theorem 1.

4.2 Comparison with Single-Fault Entropy

As mentioned earlier, the reduction in conditional en-
tropy can also be computed efficiently under a single
fault assumption. However, entropy-based query selec-
tion under a single fault assumption performs poorly
in a multi-fault setting. We will now provide an intu-
itive explanation for this phenomenon. Our argument
relies on the following result, whose proof can be found
in (Bellala et al., 2011).

Proposition 2. Under the single fault assumption,
along with the conditional independence assumption of
Section 2, the entropy-based query selection criterion
in (2) reduces to

j∗ := argmin
j /∈A

M∑
i=1

Pr(Xi = 1|zA)H
(

Pr(Zj = 0|Xi = 1)
)

−H
(

Pr(Zj = 0|zA)
)

(8)

where H(p) := −p log2 p − (1 − p) log2(1 − p) denotes
the binary entropy function.

As noted in (6), under a single fault assumption, the
posterior fault probabilities are constrained to sum to
1. Hence, objects with high posterior fault probabil-
ity decrease the posterior fault probabilities of the re-
maining objects. Given this scenario, note from (8)
in Proposition 2, that both the terms in this query
selection criterion are highly dominated by the ob-
ject(s) with high posterior fault probabilities (even the

second term, since Pr(Zj = 0|zA) =
∑M

i=1 Pr(Xi =
1|zA)Pr(Zj = 0|Xi = 1)). Hence, at any given in-
stance, the query chosen according to this criterion is
highly biased towards objects that already have a high
posterior fault probability. This could lead to a poor
choice of queries as the objects with high posterior
fault probability need not have their true states as 1,
especially in the initial stages.

On the other hand, the AUC-based criterion under
single fault assumption in (7) chooses queries at each
stage by taking into account its effect on all the ob-
jects, leading to a more balanced and informative
choice of queries. This can be observed from its ex-

pression in (7), by re-writing it as∑M
i=2 Pr(Xr(i) = 1|zA)

∑i−1
j=1 Pr(Xr(j) = 0|zA)

M − 1
,

where the object with the least posterior fault proba-
bility, i.e., Xr(M), is assigned the maximum weight of∑M−1

j=1 Pr(Xr(j) = 0|zA), with monotonically decreas-
ing weights as the posterior fault probability of the
objects increases. This forces to choose a query that
takes in to consideration the effect on all the objects.

Though AUC approximated using either lower rectan-
gles or a linear approximation are similarly robust to
objects with high posterior fault probabilities, for rea-
sons explained in detail in Bellala et al. (2011), AUC
approximated using upper rectangles is a better choice.

5 Application: Fault Diagnosis in
Computer Networks

In this application, the goal is to monitor a system of
networked computers for faults, where each computer
can be associated with a binary random variable Xi

(0 for working and 1 for faulty). It is not possible to
test each individual computer directly in a large net-
work. Hence, a common solution is to test a subset of
computers with a single test probe Zj , where a probe
can be as simple as a ping request or more sophisti-
cated such as an e-mail message or a webpage-access
request. Thus, there is a bipartite diagnosis graph with
each query (probe) connected to all the objects (com-
puters) it passes through. In these networks, certain
computers are designated as probe stations, which are
instrumented to send out probes to test the response of
the networked elements. However, the available set of
probes Z is often very large, and hence it is desired to
minimize the number of probes required to identify the
faulty computers. Refer Rish et al. (2005) for further
details.

We compare the performance of the proposed AUC-
based active query selection under single fault assump-
tion (AUC+SF) with BPEA and entropy-based ac-
tive query selection under single fault assumption (En-
tropy+SF), on 1 synthetic dataset and 2 computer net-
works. Unlike Zheng et al. (2005) and Cheng et al.
(2010) who only considered networks of size up to 500
components and 580 probes, here we also consider a
large scale network.

The first dataset is a random bipartite diagnosis
graph (Guillaume and Latapy, 2004) generated us-
ing the standard Preferential Attachment (PA) ran-
dom graph model. The second and the third datasets
are network topologies built using the BRITE (Medina
et al., 2001) and the INET (Winick and Jamin, 2002)
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Figure 3: Demonstrates the competitive performance of the AUC-based query selection under single fault as-
sumption to that of BPEA, while having a computational complexity that is orders less (near quadratic vs.
exponential complexity of BPEA). On INET, we only compare AUC+SF with Entropy+SF as BPEA becomes
slow and intractable.

generators, which simulate an Internet-like topology at
the Autonomous Systems level. To generate a BDG of
components and probes from these topologies, we used
the approach described by Rish et al. (2005) and Zheng
et al. (2005).

For the random graph model considered, we gener-
ated a random BDG consisting of 300 objects and
300 queries. We generated a BRITE network consist-
ing of 300 components and around 400 probes, and
an INET network consisting of 4000 components and
5380 probes. We consider the QMR-DT noise model
described in Section 2. We compare the 3 query selec-
tion criteria under 2 performance measures, AUC and
Information gain.

Figure 3 compares their performance as a function of
the number of queries inputted. To compute the area
under the ROC curve, we rank the objects based on
their posterior fault probabilities that are computed
using a single-fault assumption. Alternatively, note
that these posterior probabilities could be computed
using BP for the PA and BRITE networks (BP is slow
and intractable on the INET). For performance of the
three query selection criteria under AUC computed
with BP based rankings, refer Bellala et al. (2011).

On the other hand, the reduction in conditional en-
tropy is computed approximately using BPEA. We
used the inference engines in the libDAI (Mooij, 2010)
package for implementing BPEA and BP. However,
BPEA (and BP) became slow and intractable on the

INET, with BP often not converging and resulting in
oscillations. Hence, on this network, we only com-
pare the performance of AUC+SF and Entropy+SF
based on the AUC criterion which is computed based
on rankings obtained from posterior probabilities un-
der a single-fault assumption.

The results in this figure correspond to a prior fault
probability value of 0.03, with the leak and inhibition
probabilities at 0.051. Each curve in this figure is aver-
aged over 200 random realizations, where each random
realization corresponds to a random state of X and
random generation of the noisy query responses. For
the PA and BRITE models, the results were observed
to be consistent across different realizations of the un-
derlying bipartite network. For INET, we considered
only one network with 25 probe stations.

Note from this figure that AUC+SF invariably per-
forms better than Entropy+SF, and comparable to
BPEA. We observed similar comparable performance
of AUC+SF to that of BPEA, for different values of
leak and inhibition probabilities, and other low val-
ues of prior fault probabilities (Bellala et al., 2011).
In addition, note from Figure 4 that the time com-
plexity of selecting a query grows exponentially for
BPEA, whereas for AUC+SF, it grows near quadrat-
ically (O(NM logM)) with the time taken to select a
probe being less than 2 seconds even in networks with

1Refer Bellala et al. (2011) for results on other values
of prior, leak and inhibition probabilities
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Figure 4: Comparison of time complexity of selecting
a query using BPEA and AUC+SF.

2000 components.

These experiments demonstrate the competitive per-
formance of AUC-based query selection under single
fault assumption to that of BPEA, besides having a
computational complexity that is orders less than that
of BPEA, demonstrating its potential as a fast and a
reliable substitute for BPEA under low prior, in large
scale diagnosis problems.

6 Conclusions

We study the problem of active diagnosis for multi-
ple fault identification in large scale, noisy networks.
Noting that active query selection algorithms such as
BPEA that rely on belief propagation are intractable
in large networks, we propose to make the simplify-
ing assumption of a single fault in the query selection
stage. Under this assumption, several query selection
criterion can be implemented efficiently. However, we
note that traditional approaches such as Information
gain based query selection under a single fault assump-
tion performs poorly in a multiple fault setting. Hence,
we propose a new query selection criterion, where the
queries are selected sequentially such that the area un-
der the ROC curve (AUC) of a rank-based output is
maximized. We demonstrate the competitive perfor-
mance of the proposed algorithm to BPEA in the con-
text of fault diagnosis in computer networks. The com-
petitive performance of the proposed algorithm, while
having a computational complexity that is orders less
than that of BPEA (near quadratic vs. the exponential
complexity of BPEA), makes it a fast and a reliable
substitute for BPEA in large scale diagnosis problems.
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