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Abstract—Recovering a pattern or image from a collection of
noisy and misaligned observations is a challenging problem that
arises in image processing and pattern recognition. This paper
presents an automatic, wavelet-based approach to this problem.
Despite the success of wavelet decompositions in other areas of
statistical signal and image processing, most wavelet-based image
models are inadequate for modeling patterns in images, due to the
presence of unknown transformations (e.g., translation, rotation,
location of lighting source) inherent in pattern observations. Our
framework takes advantage of the efficient image representations
afforded by wavelets while accounting for unknown translations
and rotations. In order to learn the parameters of our model from
training data, we introduce Template Learning from Atomic Rep-
resentations (TEMPLAR): a novel template learning algorithm.
The problem solved by TEMPLAR is the recovery of a pattern
template from a collection of noisy, randomly translated, and ro-
tated observations of the pattern. TEMPLAR employs minimum
description length (MDL) complexity regularization to learn a
template with a sparse representation in the wavelet domain. We
discuss several applications, including template learning, pattern
classification, and image registration.

Index Terms—MDL, pattern analysis, supervised learning,
wavelets.

I. INTRODUCTION

AVELET decompositions often provide parsimonious
Wimage representations, and this feature has been
exploited to devise powerful compression, denoising, and
estimation methods [2]. Although wavelets provide sparse
representations for many real-world images, it is difficult to
develop a wavelet-based statistical model for a given pattern
based on observations of the pattern. This is because in many
(perhaps most) applications, the pattern of interest undergoes
an unknown or random transformation during data acquisition
(e.g., variations in illumination, orientation, translation, and
perspective). Modeling the wavelet expansion of such trans-
formed data leads to distorted components or even components
that model the transformations instead of the structure of the
underlying object or pattern.
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The objective of this work is to address the problem of
recovering a pattern from a collection of randomly translated
and rotated, noisy observations of the pattern. Examples of
applications where this problem arises include surveillance
from satellite imagery, inspection of parts on an assembly line,
face recognition, and a variety of image registration problems.
We introduce a wavelet-based framework for modeling patterns
that have undergone unknown translations and rotations in
the image acquisition process. To infer the parameters of our
model, we propose Template Learning from Atomic Repre-
sentations (TEMPLAR): an iterative, alternating-maximization
procedure for performing penalized maximum likelihood
estimation. TEMPLAR employs minimum description length
(MDL) complexity-regularization to automatically learn a
low-dimensional pattern template from noisy, randomly trans-
formed observations. The resulting template may be applied
to classification or pattern synthesis. The learning algorithm
itself may be applied to image registration or to denoising from
multiple, unaligned observations. Our approach is similar in
spirit to that of Frey and Jojic [3], although in that work, the
dimension of the template is fixed in advance, and the basis
vectors are adaptive. We work with a fixed (wavelet) basis and
allow the number of degrees of freedom in the template to vary.

The essential ingredients underlying TEMPLAR are i) an or-
thonormal basis that is well-matched to the pattern structure
(i.e., a basis that provides a parsimonious representation of the
pattern template) and ii) MDL-based complexity regularization
to promote a low-dimensional template by allowing only the
significant basis coefficients to contribute to the template. A
low-dimensional template is advantageous because it facilitates
the pattern matching process (in both template learning and clas-
sification) by giving more weight to significant template coef-
ficients, which model the defining structure of the pattern, and
less weight to surrounding clutter.

In this paper, we emphasize discrete wavelet bases since
they tend to provide sparse representations for a wide variety
of spatial patterns, especially those patterns characterized by
their edges. Thus, wavelet-domain representations will lead
to lower dimensional templates than, for example, pixel or
Fourier domain representations. Related to this sparseness
property, discrete wavelet transforms of spatial patterns tend
to exhibit a strong dichotomy into large (significant) and
small (insignificant) coefficients that allows for reasonable and
tractable statistical models.

In Section II, we introduce our pattern-theoretic framework
and statistical model for patterns. In Section III, we present
TEMPLAR: an iterative algorithm for supervised learning of
a pattern template. We also discuss convergence analysis and
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initialization. In Section IV, we illustrate applications of TEM-
PLAR to a variety of problems. Section V concludes with a sum-
mary and discussion.

II. PATTERN-THEORETIC FRAMEWORK AND
STATISTICAL MODEL

When a pattern is observed in an image, it can appear at any
number of locations, orientations, scales, etc., in the image, de-
pending on the spatial relationship between the image forming
device and the pattern. Further uncertainty in pattern observa-
tions can be caused by lighting sources, background clutter, ob-
servation noise, and deformations of the pattern itself (if the
pattern is not rigid, like a human face). Fig. 2(a) shows several
observations of an airplane with variable location, orientation,
lighting conditions, and background. We model these uncertain-
ties in pattern observations with a hierarchical framework, based
on the notion of deformable templates from pattern theory [4].
For our purposes, a template is a noise-free observation of a
pattern that can be transformed into an arbitrary observation of
the same pattern by applying a deformation to the template and
adding observation noise. Examples of deformations include
global operations such as translations and rotations, as well as
transformations with localized support, to represent local per-
turbations of the pattern.

This observation model is hierarchical in that it attempts to
decouple three different aspects of an observed pattern: obser-
vation noise, the unknown transformation, and the pattern itself
(we do not explicitly model clutter). Thus, a pattern observa-
tion is synthesized by generating a realization of the template,
(which we treat as a random vector), applying a randomly se-
lected transformation, and adding a realization of the observa-
tion noise. One novel aspect of our approach is that we model
the template in the wavelet domain. As we argue in Section III,
this allows us to develop a template learning algorithm that takes
advantage of the properties of the wavelet transform. We now
describe in more detail the individual stages of the hierarchical
framework.

Assume that pattern observations are Ny X [N, images, which
are thought of as N-dimensional real-valued vectors, where
N = N;Ns. Let the random vector W = (Wy,..., Wx)T
denote the wavelet coefficients of the pattern template. By
viewing the template as a random variable, we are able to
model variations in the intensity of the patterns, due to changes
in illumination, for example. The wavelet-domain template
induces a spatial-domain template by the relation W = WZ,
where YV denotes a wavelet discrete transform. In this work, we
restrict attention to 2-D separable, orthonormal wavelet bases.
It will be convenient to think of ¥V as an N x N orthogonal
matrix.!

In real-world images, we often observe two “flavors” of
wavelet coefficients: large coefficients, corresponding to
wavelet basis functions that match edges in the image, and
small coefficients, corresponding to smooth regions of the
image or noise. We refer to the former as significant coefficients
and the latter as insignificant coefficients. This dichotomy into

'A matrix is orthogonal if its inverse is its transpose. Equivalently, the
columns of the matrix form an orthonormal basis for R .
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large and small coefficients is a useful approximation that has
lead to successful wavelet-based signal processing techniques
[5], [6]. Our wavelet-domain statistical model is based on this
intuition.

Assign to each W; a state variable s; taking on the
values O or 1, with s; = 1 indicating a significant coef-
ficient and s; = 0 indicating an insignificant coefficient.
We model the marginal pdf of the insignificant wavelet
coefficients as fu,|s,(wilsi = 0) = N(wilpio,0%),
and we model the marginal pdf of the significant wavelet
coefficients as fy,|s,(wilsi = 1) = N(wilpi1,07,).
Here, N(x|u,0?) denotes a Gaussian density with mean
p and variance o2 as a function of the variable z. For

m = 0,1, define p,,, = (U1m,---,4Nm)", and define
X, = diag(o? ,,,...,0%,,) where diag(as, ..., a,) denotes
the n X n diagonal matrix with diagonal entries a, ..., a,. To

simplify our model, we assume p;0 = 0 and 07, = o3 for
each ¢. Thus, significant coefficients have unconstrained mean
and variance, whereas insignificant coefficients are constrained
to have mean zero and common variance o3. This reflects our
belief that the insignificant wavelet coefficients model smooth
regions or noise. We collect the means and variances of the
significant and insignificant wavelet coefficients together in
the parameter vector 8 = {p,, X1, g, Xo}. Because of our
simplifying assumptions, we may also write 8 = {u,,X;,03}.

We assume that the wavelet coefficients are statistically inde-
pendent. This is a reasonable approximation because the wavelet
basis functions are orthogonal and spatially localized. There-
fore, the joint distribution of the wavelet coefficients of the pat-
tern template is specified by 6, together with a configuration
s = (s1,...,5n)7T of state variables. In reality, for most real-
world images, there are dependencies between wavelet coeffi-
cients, such as spatial clustering and persistence across scale
[6]. Although we do not treat this issue, a more sophisticated
wavelet-domain model could be incorporated into the present
work using a hidden Markov tree [6].

We model template deformations with a collection of geo-
metric transformations Iy, = 1,..., L. Each transformation
T'; is a translation, rotation, or composition of the two. While
these operations are usually thought of as rigid-body actions
on R2, it is also convenient to think of them as linear operators
on RN (representing N1 X N, images, where N = NjNs.)
As such, they are represented by sparse, N x N orthogonal
matrices (see Appendix I for implementation details.) The
collection {I'/}2, is fixed before any analysis is done and
is chosen to cover (or at least reasonably approximate) the
suspected range of possible transformations. The number of
transformations may be reduced (thus speeding up the learning
algorithm) if we assume each training image has been crudely
preprocessed to compensate for very gross transformations
such as large translations.

As the final stage of our observation model, we assume that
the observed image is corrupted by zero-mean, additive white
Gaussian noise with variance 2, _. Thus, to synthesize a pattern
observation based on a particular template, we first generate a
realization w of wavelet coefficients according to the joint pdf
Jwis(Wls) = IT fw,|s, (wi|s;). Next, we obtain a realization
z = W~ lw of the template by transforming w into the spatial
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domain. A transformation I'; is then selected according to some
prior distribution (assumed uniform unless otherwise indicated)
and applied to the spatial template to form a transformed pattern
y = I'yz. Finally, the pattern x is generated by adding white
Gaussian noise to y.

The density of the observed image, conditioned on the tem-
plate parameters and transformation index ¢, is given by

p(x[8,5,0) = N (xmwm TVTEWLT + 52 1)

obs

m = (/L1751,...,/1/N7SN)T, and

diag(of, ,...,0%,)- Since Ty and W are

where

Yy =
orthogonal operators, we have UzbsI = FgWT(agbsI)WI‘T,
and therefore, we may write the covariance matrix of the
above density as TWT(E2 + o2, I)WI; . In light of this
fact, we see that it is not necessary to model the observation
noise separately from the wavelet coefficients. Henceforth, we
assume that any observation noise is captured by the wavelet
domain statistical model, and the likelihood of an observed

image is

p(x0,8,6) = N (x|1vap, PZWTEWI‘ZT) W

III. COMPLEXITY REGULARIZED TEMPLATE
LEARNING VIA TEMPLAR

In this section, we introduce a method for learning template
parameters @ and s from training data, i.e., a collection X =
(x!,...,xT) of statistically independent observations of the
same underlying pattern, as in Fig. 2(a). In the process, we also
learn the transformations, indexed by £ = ({4, ..., {r), giving
rise to each observation. Our approach is to perform penalized
maximum likelihood (PML) estimation of the parameters 8, s,
and L. In particular, we would like to maximize the objective
function

F(8,s, L) =logp(X|0,s, L) + c(s)

where ¢(s) is a complexity penalty term that decreases as the
number of significant coefficients increases. We include c(s) to
balance the tradeoff between fitting the data and model com-
plexity and, thus, to promote the learning of a template with a
sparse wavelet representation.

We select a minimum description length (MDL)-based
penalty term of the form

¢(s) = —2klog(N)

where k = ) s; is the total number of significant coefficients
[7]1-[9]. The negative of this quantity is interpreted as the
number of bits required to encode the location and values
of the means and variances of the significant coefficients. In
detail, following a derivation similar to that of Saito [7], each
significant coefficient requires approximately log, (V) bits to
encode its location, (1/2)log,(N) bits to encode its mean, and
(1/2)log,(N) bits to encode its variance. Since the negative
log-likelihood is the Shannon code length required to encode
the data, we see that maximizing F’ is equivalent to minimizing
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the total code (description) length required to encode both
data and model parameters. We remark that a full description
of the model parameters would also require encoding the
transformations. In our experiments, however, we are assuming
that the transformations are equally likely. Therefore, encoding
the transformations would simply add a constant value to the
MDL penalty, and the maximization would be unaffected.

We believe that joint maximization of F' over all three
parameters is intractable (although we have no proof of this
fact). Our approach is to find an approximate solution by using
TEMPLAR: an iterative alternating-maximization algorithm.
The premise is to maximize over one parameter at a time while
holding the other two fixed. We first initialize estimates sy and
Ly of the states and hidden transformations by stipulating, for
example, that all scaling coefficients are significant, all wavelet
coefficients are insignificant, and all transformations are the
identity transformation. TEMPLAR then proceeds according to

0, = argmaaxF(ﬂ,sj_l,L‘j_l) 2)
s; = argmax F'(0;,s,L£;_1) 3)
L;= argnlng(ﬂj7sj,E). )

Since each step involves a maximization, this produces a non-
decreasing sequence of penalized log-likelihood values. The
process continues until F'(6;,s;,L;) = F(8;-1,8j-1,Lj-1),
which is guaranteed to happen in a finite number of iterations,
by Theorem 1. When the algorithm stops, the current values of
[/} ; and s; are estimates for the template, and the current value
of £, contains the best estimate of the transformations that
generated the training images from the learned template.

The update steps 2) and 3) of TEMPLAR are simple and ef-
ficient (see Appendix II). The third step, which requires an ex-
haustive search, is the most time consuming. Recall that pat-
tern deformations are modeled by a discretized collection of
rigid-body transformations I'y, . .., I' .. With this setup, one it-
eration of TEMPLAR requires O(N LT') operations, where N
is the total number of pixels in a pattern observation, L is the
number of transformations, and 7' is the number of training
images. We discuss techniques for reducing the computational
complexity in Section III-C.

A. Convergence Analysis

In this section, we characterize the template output by
TEMPLAR and discuss properties that are advantageous
for pattern analysis. We begin with some theoretical results
before shifting to a more intuitive discussion of TEMPLARs
convergence. Theorems 1 and 2 assume that the transformation
space has been discretized and contains L elements. For
notational convenience, we define F; = F(0;,s;,£;). In
addition, let 7; = (p;,%;) be the template corresponding
to the jth iteration, where p; = (p1,5,,---,/iNsy)" and
¥; = diag(oi,,,.--,0%.,)s and pi s, and o7 . are deter-
mined by the current estimates #; and s;. As noted earlier,
the sequence {F};} is nondecreasing. Note that the particular
sequence, as well as the terminal value of (8;,s;, £;), depends
on the initial values of sg and L.
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Theorem 1: The sequence of penalized log-likelihood values
{F;} generated by TEMPLAR [according to (2)-(4)] converges
and reaches its limit in a finite number of iterations.

Proof: Recalling that the observations are [V-dimen-
sional, there are L transformations and 7 training images.
There are 2V possible configurations of the state vector s and
LT possible configurations of £. Given s;_1 and £;_1, the
values of #;,s;, and £; are uniquely determined. Thus, there
are 2V LT different possibilities for (6;,s;, £;) and, hence, at
most 2V LT different values for F;. A nondecreasing sequence
that takes on a finite number of values must converge and reach
its limit after finitely many terms in the sequence. ]

It follows that TEMPLAR terminates in a finite number of it-
erations. However, Theorem 1 does not tell us about the conver-
gence of the sequence of template estimates 7, which is what
we are ultimately interested in. The following result allows us
to address this issue.

Theorem 2: With probability one, if F; = F;_q, then 7; =
Tj-1.

The proof is found in Appendix III. An underlying assump-

tion of the proof is that the training images x?, ..., xT' are re-

alizations from a probability measure that is absolutely contin-
uous with respect to Lebesgue measure (i.e, it has a density.)
When we say “with probability one,” we mean that the set of
training imagesx', ..., x” suchthat F; = F;_jand 7; # T;_4
(for some j) has measure zero with respect to this probability
measure.

Since £; depends only on 7; and the data, we also have
Ly, = L1 with probability one, whenever F; = F;_;. Since
each term in the sequence {7, L;} depends only on the pre-
vious term and the data (which is fixed), once two consecutive
terms are equal, all terms are equal from that point on. This re-
sult eliminates the possibility of “cycling,” i.e., having the algo-
rithm endlessly alternate between two or more different config-
urations of 7" and L that yield the same penalized log-likelihood
value.

We are unaware of any result relating the template produced
by TEMPLAR to the global maximum of F'. Morever, due to
the discrete nature of the model parameters, the notion of local
optimality is ill-defined. The final estimate produced by TEM-
PLAR does satisfy a weaker criterion, however; it is a partial
optimal solution. The parameters 0%, s*, and L* are a partial
optimal solution to the optimization problem at hand if they sat-
isfy

0" = argnl;ixF(O,s*7L*)
s* = argmax F'(0",s, L)
L= argn1LaXF(9*,s*,E).

This criterion pairs naturally with alternating-maximization al-
gorithms and is employed frequently in numerical optimization
problems of this sort [10], [11]. That TEMPLAR produces a
partial optimal solution is an immediate corollary of Theorems
1 and 2.

As the final stage of our analysis, we give an intuitive explana-
tion for why TEMPLAR works. We have already discussed how
wavelets decompose a pattern into a few significant coefficients
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and several insignificant coefficients, and how the MDL prin-
ciple encourages the formation of a sparse template involving
only the significant coefficients, but how does a sparse template
aid in the learning process?

A sparse template improves the pattern matching (i.e., regis-
tration) procedure of (4). The template only models significant
portions (e.g., edges) of the pattern, and hence, when a pattern
is matched to the template, the clutter present in that image does
not significantly affect the value of the likelihood function.

Moreover, when a training pattern is aligned to the template,
the significant coefficients become even more significant (quan-
tified in terms of the variable d; in Appendix II-B). In other
words, the significant coefficients become stronger the next iter-
ation; therefore, other training images will become more likely
to align themselves with the template. Once a few training im-
ages share a common alignment, other training images are likely
to gravitate toward that same alignment. We refer to this phe-
nomenon as “jumping on the bandwagon.” This feature of TEM-
PLAR enables it to converge quickly in most cases (fewer than
T iterations).

In summary, TEMPLAR generally converges quickly to a
template with a sparse wavelet representation. These proper-
ties are illustrated in the synthetic example below as well as
in the applications given in Section IV. In nearly all of our ex-
perimentation with TEMPLAR, it converges in four to eight it-
erations. Of course, the probability of TEMPLAR producing
what we would call a good template decreases as the observation
noise increases, as the range of transformations in our model de-
creases, or as the variability of the pattern or clutter increases.
In addition, while the sparseness of the template is encouraged
by the MDL penalty, it is not guaranteed, being sensitive to the
initialization (discussed in Section III-C).

B. Synthetic Example

Fig. 1(a) shows 20 training images. Each image is 32 x 32
pixels and was formed by adding white Gaussian noise (with
variance o2, = 0.1) to a particular binary (0 or 1 valued) image
consisting of a 4 X 4 square and a cross. The square occurs
within a 4 pixel translation (horizontally and/or vertically) of
the center of the image and is considered to be the pattern of
interest. The cross occurs at more widely varying translations,
independent of the square’s location, and is considered clutter.

We apply TEMPLAR to this data using the Haar wavelet
transform and using transformations I'y that cover translations
of up to £8 pixels horizontally or vertically, for a total of
(17)? = 289 transformations. The algorithm converges after
four iterations for this particular realization of the training
data. Fig. 1(b) shows W~'u{/), where the template mean is
transformed into the spatial domain, for each iterarion.

The final template has ten significant coefficients out of 1024
total coefficients. If we consider a binary image with a 4 x 4
square of 1s and a background of Os, then the Haar wavelet trans-
form of such an image can have anywhere from 10 to 56 nonzero
wavelet transform coefficients, depending on the location of the
square in the image. Thus, the sparsest representation of such a
square would have ten nonzero coefficients, compared with 16
coefficients in the pixel domain. The template found by TEM-
PLAR has the sparsest possible representation for the square,
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Synthetic example. (a) Training data: randomly translated squares, with randomly translated crosses in the background, plus white Gaussian noise.

(b) Sequence of template means, transformed into the spatial domain, for each iteration of the learning algorithm. (c) Observations synthesized from the trained

model.

and the ten nonzero coefficients needed to reconstruct the square
at that location are the significant coefficients of the template.

This example illustrates how TEMPLAR converges to a
sparse template via jumping on the bandwagon (defined in
the previous subsection). In the first iteration, W‘lp,gl) is the
average of the 20 training images because the transformations
are initialized to be the identity. After it is computed, some
wavelet coefficients are “turned on,” meaning their states
become significant. When the transformations are updated, 12
of the training patterns are aligned at a specific location. At
that location, the binary images of the square would have ten
nonzero coefficients, which is the minimum possible. This is
because the square pattern is best represented at this location,
given the limited number of significant coefficients. Six more
training patterns match this alignment in the second iteration
and two in the third. Upon repeating this experiment 100 times,
the average dimension of the template was 10.90, and the
average number of iterations needed to reach convergence was
4.65.

We also observe that the final template does not represent
any of the clutter present in the training images. Although each

training image contains a “cross” pattern in the background, the
template does not. This is because the crosses’ spatial relation-
ship to the square varies from image to image. It is conceivable
that TEMPLAR would try to align the crosses instead of the
squares, but this does not happen because the range of transfor-
mation used by TEMPLAR does not cover the range expressed
by the cross pattern, and because the square is a “stronger” pat-
tern, in that it has more energy.

The common variance of the insignificant coefficients in this
example is 03 = 0.113, which is slightly larger than the ob-
servation noise variance of o2, = 0.1. This discrepancy is to
be expected since background clutter (i.e., the crosses) also con-
tributes to the variance of the insignificant coefficients. Fig. 1(c)
shows five pattern observations synthesized from the trained
model. The synthesized images closely resemble the training
data, except that the clutter (crosses) is no longer present.

C. Initialization and Approximate Search Strategies

In our initial exposition of TEMPLAR, and in the preceding
example, the unknown transformations were each initialized to
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the identity mapping. For more complex scenes, however, this
initialization is inadequate for two reasons. First, if the number
L of transformations needed is large, the running time of TEM-
PLAR will be prohibitively large. Second, the algorithm may
never “lock on” to a good template, in which case, the end re-
sult will be an undistinguished blob.

In order to overcome both problems simultaneously, we pro-
pose initializing TEMPLAR using an image registration algo-
rithm to align the training patterns. While exact registration will
be difficult in the scenarios we have in mind (due to noise,
clutter, and pattern variability), a coarse registration may be pos-
sible. This will greatly reduce the size of the transformation
search space and allow the first estimate of the template to be at
least a rough approximation of the true pattern, thereby encour-
aging the coarsely aligned patterns to jump on the bandwagon,
as discussed in Section ITI-A.

In our experiments, we employ a shape matching method-
ology based on “shape contexts” [12]. The shape context ap-
proach is computationally efficient and has been proven effec-
tive at modeling shape information. Registration of two images
with shape contexts proceeds in five steps.

i) Extract feature points from both images using, for ex-
ample, an edge detector.

ii) For each feature point, construct the shape context, which
is a histogram of relative locations of the other features
points on the same object with respect to a log-polar grid.

iii) By comparing shape contexts, construct a cost matrix

that records the similarity of pairs of points in the two
images.

iv) Determine corresponding points by solving the linear as-
signment problem for the cost matrix of the previous step.
This can be solved efficiently using well-known linear
programming techniques

v) Determine the aligning transformation by minimizing the
sum of squared errors over an appropriate class of trans-
formations (e.g., rigid body, affine, thin-plate splines).

After initialization, the optimization in (4) is still the most
time-consuming step of the learning process. We have found
that various approximations can improve this situation in prac-
tice. One possibility is to search over translations and rotations
independently. This approximation is effective in the latter iter-
ations of TEMPLAR when the patterns are nearly aligned. An-
other possibility is to modify the transformation search space
'y, ..., 'y with each iteration. The first iteration would per-
form a coarse search over a large range of the search space,
and subsequent iterations would reduce the range of the search
space but increase the precision of the search. This multireso-
lution search strategy reflects how the template converges in a
coarse to fine fashion. We would not lose much by adopting this
approach since the highest resolution coefficients of the tem-
plate are not learned until later iterations.

Returning to the issue of initialization, if the images are com-
pletely free of noise and clutter, shape contexts may align the
patterns perfectly, thus allowing us to drastically reduce the
search space. On the other hand, the shape context approach
is somewhat sensitive to clutter. Hence, it will only produce a
coarse registration of the training patterns. As mentioned above,
as long as preregistration eliminates large transformations, this

2269

is enough to significantly decrease the search space and improve
the running time of TEMPLAR. From a different viewpoint,
TEMPLAR may be seen as one approach to increasing the ro-
bustness of the shape context method and other pattern matching
algorithms.

Shape contexts or, more generally, shape matching al-
gorithms based on corresponding feature points, may have a
deeper connection to TEMPLAR. Instead of sampling the space
of transformations to obtain a finite collection I'y,...,I'r,
we could instead maintain a continuously parametrized trans-
formation space and represent the template by feature points
(like those used in the shape context setup). This would allow
for extremely rapid transformation updates through the use
of well-known least-squares techniques [as in step v) above].
Since wavelets are well known for their edge detection capabili-
ties [13], the wavelet domain template model naturally provides
a set of feature points that model the pattern but not clutter. We
have not developed this idea in this paper, but it would make
a sensible extension of the present work for situations where
more computational efficiency is required.

IV. APPLICATIONS OF TEMPLAR

All experiments were carried out in MATLAB on a 425-MHz
Pentium II processor.

A. Template Learning

In this section, we illustrate template learning on real data.
Fig. 2(a) shows 20 observations of a randomly translated and
rotated toy airplane. These 128 x 128 = 16 384-dimensional
images were obtained with a digital camera. Note the varying
background, lighting intensity, and location of the lighting
source. In learning a template for this data, we use transforma-
tions I'y, ..., I’z that cover rotations up to one degree accuracy
and translations up to one pixel accuracy within a radius of 50
pixels. Thus, the total number of transformations modeled is
approximately 7(50)%(360) ~ 2.8 million. Because this data
requires a large number of transformations, we successively
refined the transformation search space, as described in Sec-
tion III-C, bringing the total number of transformations per
iteration down to around 10 000 or less. Other variations in the
observations were not explicitly modeled by transformations.

Using the Haar wavelet transform, TEMPLAR converges to
an 853-dimensional template in seven iterations. The mean of
the template, transformed into the spatial domain, is shown in
Fig. 2(b). The most important observation is that TEMPLAR
produces a template that captures the structure of the pattern of
interest while ignoring clutter. The details of the airplane are
represented fairly well, whereas the background is smooth.

Fig. 2(c) is a wavelet-domain map of the significant wavelet
coefficients. We see (by looking at the highest resolution
subbands) that the significant coefficients model edges in
the pattern, which is where the defining information in the
pattern is contained. This is what we would expect from
complexity-regularized learning: The significant coefficients
should be those wavelet coefficients that contribute the most to
defining the structure of the pattern. Fig. 2(d) is a map of the
variance of the template in the spatial domain. This map was
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@ (@

Fig. 2. Template learning. (a) Training data: randomly translated and rotated airplanes, with variable background and lighting conditions. (b) Template mean,
transformed into the spatial domain. (c) Map of significant wavelet coefficients (indicated by white). (d) Template variance, transformed into the spatial domain.
(e) Template mean when TEMPLAR is initialized using the shape context-based matching method. This experiment shows that TEMPLAR automatically denoises
and declutters a pattern occurring in several noisy, cluttered, and misaligned observations.

Fig. 3. As a byproduct of TEMPLAR, the training images are registered.

formed by computing the square of each wavelet basis function, the registered images produced by TEMPLAR. The template
multiplying by the variance of the corresponding wavelet mean in Fig. 2(b) is simply the superposition of these images,
coefficient, and summing over all coefficients. Fig. 3 displays reconstructed using only the significant wavelet coefficients.
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Fig. 4.

Images of the first subject in the Yale Face Database, displaying the variety of facial expressions and lighting conditions used. In our experiment, the

images were not preregistered, and the background was not cropped out, as it is in this figure.

The size of the transformation search space for this problem
is quite large, and correspondingly, the algorithm required about
three days to converge. To speed up the algorithm, we reran
the experiment after first initializing the transformations using
shape contexts, as discussed in Section III-C. The patterns were
aligned to the 17th training pattern. After initialization, the pat-
terns are roughly aligned to within an accuracy of about ten
pixels. This allowed us to use a much smaller transformation
space, and the algorithm ran in about 30 min, as opposed to three
days. The template that resulted is shown in Fig. 2(e).

B. Pattern Classification

If we are given training images for two or more classes
of patterns, we can apply TEMPLAR to produce templates
for each class and use the resulting pattern models for like-
lihood-based classification. Specifically, if we have trained
models {f.,s.}$_; for C different classes of patterns, we
can use these models to classify an unlabeled test image x
according to a generalized likelihood ratio test (GLRT):

¢* = arg max m?xp(xwusc,f) . (5)

The GLRT selects the class that has the highest likelihood when
evaluated using the most likely transformation for that class.
This results in a classifer that is independent of the transforma-
tion I'y that gave rise to x. The number of operations required
to classify an image is O(NM).

We illustrate pattern classification by a face recognition ex-
ample using the Yale Face Database. This database was assem-
bled at the Yale Vision and Robotics Lab and is available on the
Internet at http://cvc.yale.edu/projects/. The database consists of
165 images of 15 people, with 11 images of each subject, each
having different lighting and/or facial expression. The images
for one subject (with the background cropped out) are shown
in Fig. 4. The same variations in lighting and facial expression
were used for each subject. In the data we used, the background
was not cropped out, and the faces were not aligned.

Belhumeur et al. [14] compare the performance of five
different face recognition methods on this data set: the
“Fisherface” method, a correlation-based method, the linear
subspace method, and two variations of the Eigenface method.
The performance of each method was evaluated using the
“leave-one-out” strategy: To classify an image, that image was
removed from the data set, and a classifier was constructed for
each class using the remaining data. TEMPLAR ranks third out
of the six methods, with a misclassification rate of 16.5% when
the background was not cropped out of the picture.

This example is not meant to demonstrate that TEMPLAR
is a superior method for face recognition. What is important to
notice is that TEMPLAR, while in no way designed for face

(a) (b)

Fig. 5. Airplane classification experiment. (a) Observations of two airplanes
without noise (b) Representative training images (c¢) Learned airplane
templates. This experiment also demonstrates how TEMPLAR produces a
denoised image from multiple noisy, misaligned observations. The learned
template is a denoised version of the pattern of interest.

recognition, performs comparably to these algorithms without
any preprocessing. In the experiments reported in [14], each
image was manually registered before classification took place.
TEMPLAR, however, requires no preprocessing: The images
are automatically registered during the template learning
process. Even if the other methods had used an automatic
algorithm to register the images beforehand, this registration
would by no means align the images in a way that was optimal
for each method. With TEMPLAR, however, registration
and template learning are jointly optimized under a unified
framework.

We would like to emphasize that while TEMPLAR does not
achieve the best results for this experiment, it should not be dis-
counted as a methodology for face recognition. The ideas behind
TEMPLAR could be incorporated into a system specifically de-
signed for this problem. For example, the wavelet basis could
be replaced by a basis tailored for sparse representation of fa-
cial features.

As a second example of pattern classification, we consider
images containing one of two types of airplanes. Fig. 5(a)
shows noise-free observations of these airplanes. Twenty-five
training images for each class were artificially generated by
applying random transformations and adding Gaussian noise.
The transformations considered are horizontal and vertical
shifts of up to £2 pixels, combined with rotations by multiples
of 30°. Fig. 5(b) shows representative training images for each
class.

With these training images, we used TEMPLAR to learn a
template for each class. The means of these templates are shown
in Fig. 5(c). To test the classifier induced by these learned tem-
plates, we generated 100 test images for each class in the same
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way that we generated the training data. The classification rule
in (5) yielded no misclassifications.

C. Image Registration

In this section and the next, we mention briefly two other
applications of TEMPLAR, both of which are interpretations
of ideas already discussed. As noted previously, a byproduct
of TEMPLAR is that the training patterns are registered (see
Fig. 3). TEMPLAR may be especially useful as a tool for image
registration in two particular settings.

First, consider the problem of automatically aligning a large
number of images all containing the same object. Rather than se-
lecting one of the images as a prototype and aligning the others
to it, TEMPLAR proceeds in a way whereby all pairs of images
interact indirectly through the template. This more unified ap-
proach could be especially beneficial when no good prototype
exists.

TEMPLAR can also be used as a technique for improving the
output of another registration algorithm. Indeed, a first registra-
tion of the data may be viewed as the initialization step of TEM-
PLAR. This is how we used the shape context approach in our
experiments. TEMPLAR as a method for improving a registra-
tion algorithm is most appropriate when that algorithm makes
errors due to clutter or pattern variations.

D. Denoising from Multiple, Unaligned Observations

TEMPLAR can also be used to denoise a collection of mis-
aligned observations of an image or pattern. Previous work on
this problem assumes that the pattern is aligned in each of the
observations [15]. With our framework, we no longer require
this assumption. TEMPLAR automatically registers the obser-
vations and performs denoising by averaging and then setting
some wavelet coefficients to zero (although not according to a
thresholding rule). The coefficients that are set to zero are pre-
cisely the insignificant coefficients. For an example of denoised
patterns from previous experiments, see Figs. 2(b) and 5(c). In
the former, TEMPLAR’s action is more accurately described as
“decluttering.” This highlights TEMPLAR’s ability to remove
clutter despite lacking an explicit statistical characterization of
the clutter.

V. CONCLUSION

In this paper, we present a wavelet-based approach for mod-
eling observations of patterns with variable location and orien-
tation. We introduce TEMPLAR: an iterative, alternating-max-
imization algorithm that combines the approximation capabili-
ties of wavelets with MDL complexity-regularization to learn a
low-dimensional template from training data. The dimension of
the template is automatically inferred from the data. Once the
template has been learned, the resulting model can be used for
pattern synthesis or pattern classification. TEMPLAR also ap-
plies directly to image registration or denoising from unaligned
observations. We illustrate these applications with real and syn-
thetic examples. We also discuss approximate search strategies
and initialization based on shape contexts in order to increase
TEMPLARSs efficiency.
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The primary contribution of this paper is the incorporation of
atomic representations into a pattern theoretic framework. In re-
cent years, considerable effort has been invested in finding good
atomic representations (e.g., wavelets) for various kinds of data
in order to facilitate signal processing tasks. Unfortunately, most
such atomic representations are not invariant to transformations
of the image, and therefore, it is difficult to construct statistical
models for observations of a particular pattern using such repre-
sentations. Pattern theory provides a framework for decoupling
the modeling of transformations from the modeling of the pat-
tern itself. The hierarchical framework presented in this paper
employs this concept to allow a wavelet domain model of pat-
tern observations.

Software for TEMPLAR, in the form of MATLAB m-files, is
available at the Rice DSP website: http://www.dsp.rice.edu/soft-
ware/.

APPENDIX [
NOTES ON IMPLEMENTATION OF TRANSLATION AND ROTATION

In order to make translation and rotation as energy-pre-
serving (orthogonal) as possible, the following implementation
was used. For translation, the image was treated as a torus. For
example, if an image was translated to the right, those pixels
on the right edge of the original image would wrap around and
appear on the left edge of the translated image. For rotation,
when an image was rotated through an angle that was not a
multiple of 90°, the corners of the original image that were
cropped off by rotation were mapped in a one-to-one manner
back to the empty corners of the rotated image.

APPENDIX II
DETAILS OF TEMPLAR

In this Appendix, we provide explicit solutions to the opti-
mization problems in (2)—(4) and give the associated computa-
tional complexities.

A. Estimating Gaussian Mixture Means and Variances

Consider the problem of maximizing F' over the parameter
60 = {u,;,X1,02}, given training data X = (x!,...,xT),
with s and £ fixed. The penalty term c(s) does not depend
on #; therefore, this is equivalent to maximizing the likelihood
p(X|8,s, £). Denote WL, 'x! by w! = (wi,...,wl)T. By
orthogonality of I';, and W, it follows from (1) that

p(wt|07 S, gt) = N(Wt|”‘7 2)

(6)

Recall that the ith wavelet coefficient is modeled as
N (i s, 5 of_sq_ ). Since the wavelet coefficients are independent
and the training images are independent, (6) implies

1 T
ﬂi,l thz_;wf

1 T 2
67, = T Z (wi — fui1)

are maximum likelihood estimates for the parameters of the
Gaussian densities modeling the significant coefficients. If the
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number of training images 7" is small, we may wish to normalize
by T'— 1 instead of 1" to achieve unbiased estimates for the vari-
ances. To aV01d over fitting the model, if crZ 1 < eforsome small
€, we set O'L 1 = €

For the 1ns1gn1ﬁcant coefficients, the maximum likelihood es-
timate for o is

D (w

t=1

Q>
o
HIH

| X
N % Z(l —8)
i=1

where &k = ) s;, which is the number of significant wavelet
coefficients. Since V¥ and F;tl can be computed in O(N) oper-
ations, the process of estimating @ requires O(NT') operations.

B. Determining States of Gaussian Mixtures

In order to maximize F' with respect to s, with  and L fixed,
it is useful to write

logp(X]6,s, L)

ZfL

where f; is the contribution to the overall log-likelihood from
the 2th coefficient, as a function of the state variable s;. The
change of variables formula says that

p (WI‘ZIX|07S7£) ‘WI‘;l‘ — p(x8,s,0).

By orthogonality of W and Iy, we have |WI', ! | = 1; therefore,

from (6)

p(x'[,8,s,¢)
=N(w'|p,%)

1 1 t T 1 +
= —  _ex _ _ S: _ . 7

Since the observations are assumed statistically independent

p(X|0,s,L) =

Hp

|05£t

Therefore, we have

logp(XI 0.s,L)

- St
N 2

1 1 uzs
[—ilog (27| —52 ) ]

|07 S, gt)

[l
M=

t

Il
-

i=1 Si

N (w! — i )2
Z[—log%r—l—loga +12#]

||
l\:>|>i
M’i

t=1 i=1

.MZ
=2l

<
Il
—

|
DN | =

— log 2r+1T log Ul s; +Z

t=1 szi
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In the third equality, we use the fact that |X| = Hfil ol
Therefore, we may define for m = 0,1

1 )?
fi(m):—5 10g27r+T10g01m+;#

Now, define d; = f;(1) — f;(0). This is the increase in the
log-likelihood we achieve when the 7th coefficient is significant,
as opposed to insignificant. Since our penalty on s is only a func-
tion of the number of significant coefficients, if we are going to
have any significant coefficients, they should be the coefficients
with the largest d; values. Therefore, we order the coefficients
so that d;, > d;, > --- > d;, . The maximum increase in the
log-likelihood that can occur from having exactly & significant
coefficients is Z 1 d;;. However, having k significant coeffi-
cients carries with it a penalty of ¢(s|k). Hence, the number of
significant coefficients that maximizes the penalized log-likeli-
hood is

k
k* = arg max c(s|k) + ; d;,

and this maximum is attained by setting s;; = 1 for j =
,k*, and s;; _OforJ —k*+1....,N.

Note that the values w! used to compute d; were already com-
puted in the previous step; therefore, they do not need to be
computed again. The number of operations required to compute
the d; is O(NT'), whereas the number of operations required to

compute k* is O(N log N), due to the sorting and maximizing.

C. Inferring Hidden Transformations

As in Section IT-A, the penalty c(s) does not involve £; there-
fore, PML estimation of £ given @ and s is equivalent to max-
imum likelihood estimation. Furthermore, since the pattern ob-
servations are statistically independent, we may estimate the
hidden transformation for each training image independently.
The ML estimate £ = (/4, ..., 0r) is given by

by = arg max log p(x'|0,s, ). (8)
We solve this optimization problem by exhaustive search over
all L transformations. This log-likelihood can be computed
from (8), which requires O(N) operations. We repeat this com-
putation L times for each of the 7" training images; therefore,
computing L requires O(N LT') operations. This dominates the

other two steps of TEMPLAR so that the overall running time
of TEMPLAR is O(NLT).

APPENDIX III
PROOF OF THEOREM 2

Let X € RNT denote the collection of N-dimensional
training images x!,...,xT, which are viewed as a single
concatenated vector. Set U = {X|F, = Fj_1 and 7, #
Ty for some k}. We will show A\(U) = 0, where A denotes

Lebesgue measure. Then, the probability of U will be zero
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since the probability measure governing the data is absolutely
continuous with respect to the Lebesgue measure.
We may write F'(8,s, £) as a function of X:

F(0,s,L) = logp(X|0,s, L) + c(s)
1 LT
= — 522 [Nlog%r—i—logozsl_

t=1 i=1
) 2
((vretet), - s
+ 5

i,Si

Notice that this is a polynomial in the coordinates of X. Now,
suppose that sy, and Ly, are fixed, and view 8, = 6(X; s, L)
as a function of the data. From the formulas in Section II-A,
we see that @;, given s; and £}, is a polynomial function of the
coordinates of X. Therefore, if X € U, with F}, = Fj_4 but
Tr # Tr_1 for some k, then X is a zero of the polynomial

r(X) = F (0(X;sk—2,Lr—2),Sk—1, Lr—1)
-F (O(X, Sk—1, ,Ck_1>7 Sk, ﬁk) .

Since 7;. # Tr—1, this function is nonzero. By the following
lemma, the zeros of r(X) comprise a set with measure zero.
(See [16, pp. 28-29] for a proof.)

Lemma 1: If p : R™ — R is a nonzero polynomial in n
variables, then the set of zeros of p has measure zero with respect
to the Lebesgue measure.

Moreover, 7(X) is one of a finite family of functions. To see
this, observe that s and £ can take on 2% and LT possible values,
respectively. Therefore, there are at most (27 L.T)? possibilities
for r(X), corresponding to the choices for s; and £;,j = k —
2, k—1, k. Hence, we have shown that if X € U, then X belongs
to one of a finite number of zero measure sets. Since the finite
union of zero measure sets has measure zero, we conclude that
U has measure zero. As noted above, this proves the theorem.
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