1888

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 10, OCTOBER 2010
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Abstract—This paper studies the training of support vector machine (SVM) classifiers with respect to the minimax and Neyman-
Pearson criteria. In principle, these criteria can be optimized in a straightforward way using a cost-sensitive SVM. In practice, however,
because these criteria require especially accurate error estimation, standard techniques for tuning SVM parameters, such as cross-
validation, can lead to poor classifier performance. To address this issue, we first prove that the usual cost-sensitive SVM, here called
the 2C-SVM, is equivalent to another formulation called the 2v-SVM. We then exploit a characterization of the 2v-SVM parameter
space to develop a simple yet powerful approach to error estimation based on smoothing. In an extensive experimental study, we
demonstrate that smoothing significantly improves the accuracy of cross-validation error estimates, leading to dramatic performance
gains. Furthermore, we propose coordinate descent strategies that offer significant gains in computational efficiency, with little to no

loss in performance.

Index Terms—Minimax classification, Neyman-Pearson classification, support vector machine, error estimation, parameter selection.

1 INTRODUCTION

N binary classification, false alarms and misses typically

have different costs. Thus, a common approach to
classifier design is to optimize the expected misclassification
(Bayes) cost. Often, however, this approach is impractical
because either the prior class probabilities or the relative cost
of false alarms and misses are unknown. In such cases, two
alternatives to the Bayes cost are the minimax and Neyman-
Pearson (NP) criteria. In this paper, we study the training of
support vector machine (SVM) classifiers with respect to
these two criteria, which require no knowledge of prior class
probabilities or misclassification costs. In particular, we
develop a method for tuning SVM parameters based on a
new strategy for error estimation. Our approach, while
applicable to training SVMs for other performance measures,
is primarily motivated by the minimax and NP criteria.

To set notation, let (x;,y;);_, denote a random sample
from an unknown probability measure, where x; € R%is a
training vector and y; € {—1,+1} is the corresponding label.
For a classifier f: R? — {+1, -1}, let

Pp(f) =Pr(f(x) = +1y = -1) (1)
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and

Pu(f) = Pr(f(x) = ~1ly = +1) 2)

denote the false alarm and miss rates of f, respectively.

When there is no reason to favor false alarms or misses, a
common strategy is to select a classifier operating at the
equal error rate or the break-even point, where Pr(f) = Py(f)
[1], [2], [3]. Of course, many classifiers may satisfy this
constraint. We seek the best possible, the minimax classifier,
which is defined as

fruns = arg n}inmax {Pr(f), Pu(f)}- (3)

An alternative approach is the NP paradigm [1], [4],
which naturally arises in settings where we can only
tolerate a certain level of false alarms. In this case, we seek
the lowest miss rate possible provided the false alarm rate
satisfies some constraint. Specifically, given a user-specified
level «, the NP-optimal classifier is defined as

fo = argmin Py(f). (4)
[:Pp(f)<a
Under suitable conditions on the distribution of (x,y),
such as the class-conditional distributions being continuous,
both f};,, and f are equal to the solution of

In}n YPr(f)+ (1 —v)Pu(f), (5)

for appropriate values of v [5]. This suggests that training
an SVM for minimax and NP classification could, in
principle, be accomplished by simply using a cost-sensitive
SVM and tuning the parameter v to achieve the desired
error constraints. However, tuning parameters for minimax
and NP criteria is very different from tuning parameters for
a Bayesian criterion like that in (5) in one critical respect: To
minimize the minimax or NP criteria, one must use
estimates of Pp(f) and Py (f) to determine the appropriate
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~v. As a result, for minimax and NP classification, it is
extremely important to have accurate estimates of Pp(f)
and Py (f), whereas since v is predefined for Bayesian
criteria, error estimates can be less accurate (e.g., biased)
and still lead to good classifiers.

To tackle the issue of accurate error estimation in cost-
sensitive SVMs, we adopt a particular formulation called the
2v-SVM [6]. We prove that this cost-sensitive SVM is
equivalent to the more common 2C-SVM [7], [8], [9] and
provide a careful characterization of its parameter space in
Section 2. We then leverage this characterization to develop
simple but powerful approaches to error estimation and
parameter selection based on smoothing cross-validation
(CV) error estimates and coordinate descent search strategies
in Section 3. We conduct a detailed experimental evaluation
in Sections 4 and 5 and demonstrate the superior perfor-
mance of 1) our approaches to estimation relative to
conventional CV and 2) our approach to minimax and NP
classification relative to SVM-based approaches more com-
monly used in practice. Section 6 concludes with a brief
discussion. Our results build on those published in [10], [11],
[12]. Our software—based on the LIBSVM package [13]—is
available online at www.dsp.rice.edu/software.

2 CoOST-SENSITIVE SUPPORT VECTOR MACHINES
2.1 Review of SVMs
Conceptually, a support vector classifier is constructed in a
two-step process [14]. In the first step, we transform the x;
via a mapping ® : R? — H, where  is a Hilbert space. In
the second step, we find the hyperplane in W that
maximizes the margin—the distance between the decision
boundary and the closest training vector (from either class)
to the boundary. If w € H and b € IR are the normal vector
and affine shift (or bias) defining the max-margin hyper-
plane, then the support vector classifier is given by
Furol3) = sgn( (w, D(x)),, +b).

The max-margin hyperplane is the solution of a simple
quadratic program:

(P)

. 1 2
min = ||w]|
w,b 2

st y((w, ®(x;))y +0) >1, fori=1,...,n.

One can show via a simple geometric argument that, for
any w satisfying the constraints in (P), the two classes are
separated by a margin of 2/|w|; hence, minimizing the
objective function of (P) is equivalent to maximizing the
margin. This problem can also be solved via its Lagrangian
dual, which, after some simplification, reduces to a
quadratic program in the dual variables «y,...,a,. The
dual is formed via the Karush-Kuhn-Tucker (KKT) condi-
tions [15], which provide a simple means for testing the
optimality of a particular solution. In our case, we can use
the KKT conditions to express the optimal primal
variable w in terms of the optimal dual variables, according
tow=>"",ay;®(x;). Note that w depends only on the x;
for which «; # 0, which are called the support vectors.
Furthermore, observe that, with this substitution, the
quadratic program depends on the training data only
through (®(x;), ®(x;)),, for all possible pairs of training
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vectors. If we consider a positive semidefinite kernel, i.e., a
function k:R? xR’ — R such that [k(xi, x))]i, is a
positive semidefinite matrix for all » and all xy,...,
x, € RY, then there exists a space 1 and a mapping &
such that k(x,x") = (®(x), ®(x)),, [14]. By selecting such ®
as the nonlinear feature mapping, we can efficiently
compute inner products in ‘H without explicitly evaluating
®. In the sequel, we work with positive semidefinite
kernels.

To reduce sensitivity to outliers and allow for nonsepar-
able data, it is usually desirable to relax the constraint that
each training vector is classified correctly through the
introduction of slack variables, i.e., we replace the constraints
of (P) with y;((w, ®(x;)),, +b) >1—¢&, where & >0. If
& > 0, this means that the corresponding x; lies inside the
margin and is called a margin error. To penalize margin
errors while retaining a convex optimization problem, one
typically incorporates >, & into the objective function.

There are two ways to do this, resulting in two SVM
formulations. The original SVM adds CY ! & to the
objective function, where C' > 0 is a cost parameter selected
by the user; hence, we call this formulation the C-SVM [16].
An alternative (but equivalent) formulation is the »-SVM
[17], which instead adds 13" & —vp and replaces the
constraints with y;((w, ®(x;));, +b) > p—&, where v e
[0,1] is again a user-supplied parameter and p is a variable
to be optimized. An advantage of the v formulation is that v
serves as an upper bound on the fraction of margin errors
and a lower bound on the fraction of support vectors [17].

2.2 Cost-Sensitive SVMs

Cost-sensitive extensions of both the C-SVM and the v-SVM
have been proposed—the 2C-SVM and the 2v-SVM. We
first consider the 2C-SVM proposed in [7]. Let I, = {i:
yi=+1} and I_ ={i:y; = —1}. The 2C-SVM quadratic
program has primal formulation

. 1
(Pc)  min SIWIP+Cy Y 6+ 01— &
" iely el
. yi((wW, ®(x;))p +0) > 1 =&, fori=1,...,n,
s.t.
& >0, fori=1,...,n,

and simplified Lagrangian dual formulation

n

. 1 n
(Dac) min o > mogyyik(xi,x) = > o
=1 i
; 0<a; <Cr, fori e I,
s.t.
0<o<C(-—7), foriel,

i QY = 07
i=1

where C' > 0 is again a cost parameter set by the user and
v € [0,1] controls the trade-off between the two types of
errors. Note that it is also possible to parameterize the 2C-
SVM through the parameters C; = Cy and C_ = C(1 — ),
which is somewhat more common in the literature [7], [8], [9].

As before, one can replace the parameter C' with a
parameter v € [0, 1] to obtain a cost-sensitive extension of
the v-SVM [6]. The 2v-SVM has primal
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(Po)  min WP —vp+ 1Y e+ 123
w whép2 n L' n £
el iel_
yi((w, (%)) +0) > p—&, fori=1,...,n,
s.t. & >0, fori=1,...,n,
p=>0
and dual
1 n
(Day) main 3 a;ayy,k(x;, x;)
ij=1
Y .
0<q <—, for i e I,
s.t. 1 "
— '
0<q; < , for iel,
n

As with the 2C-SVM, the 2v-SVM has an alternative
parameterization. Instead of v and +, we can use vy and v_.

If weletn, =|I,| and n_ = |I_|, then
_ 2vpvngn. _ v_n_ _vn
~(vyny +von_)n’ 7= ving +von_  2un,’

or equivalently
vn vn
2(1 —y)n_~

This parameterization is more awkward to deal with in

establishing the theorems below, but v, and v_ have a more
intuitive meaning than v and ~, as illustrated below by
Proposition 1. Furthermore, Proposition 3 shows that the
feasible set of (D) is nonempty if and only if
(vi,v_) €[0,1°. Thus, this parameterization lends itself
naturally toward simple uniform grid searches and a number
of additional methods that aid in accurate and efficient
parameter selection, as described in Section 3.

2.3 Properties of the 20-SVM

Before establishing the relationship between the 2C-SVM

and the 2v-SVM, we establish some of the basic properties

of the 2v-SVM. We begin by briefly repeating a result of [6]

concerning the interpretation of the parameters in the

(v4,v_) formulation.

Proposition 1 [6]. Suppose that the optimal objective value of
(Dy,) is not zero. For the optimal solution of (Ds,), let ME..
and ME_ denote the fraction of margin errors from classes +1
and —1, and let SV and SV _ denote the fraction of support
vectors from classes +1 and —1. Then,

ME, <v, <SV.,
ME_ <v_ < SV_.

Returning to the (v,7v) formulation, we establish the
following result concerning the feasibility of (Da,).
Proposition 2. Fix ~ € [0,1]. The feasible set of (Ds,) is

nonempty if and only if v < vy < 1, where
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2min(yn, (1 —y)n-)
- :

VIII&X -

Proof. First, assume that v < 1. Let

o = Vmax _ min(% (1 B ’Y)n*/nJr) S z’ ie I+
2n. n n
and
max i — 1- 1- .
ai:u :mln('yn+/n 'y)S ’y7 iel

2n_ n

Then, > ;c; i+ i/, @ = Vmax > v and Yo iy =0.
Thus, « satisfies the constraints of (Ds,) and, hence,
(Dy,) is feasible.

Now, assume that « is a feasible point of (Ds,). Then,
Yy >vand > ;=3 a. Combining these,
we obtain v <23, «;. Since 0 < o; < v/n for i eI,
we see that v <23 o < 2yng /n, and therefore,
v < 2yny /n. Similarly, v < 2(1 — y)n_/n. Thus, v < vyax.

Finally, we see that

2 mi 1—7v)n_) 2mi _

o 2minms, (L= 9)n) _2min(nens)
n n

as desired. O

From Proposition 2, we obtain the following result
concerning the (v.,v_) formulation.

Proposition 3. The feasible set of (Ds,) is nonempty if and only
ifvy <landv_ <1

Proof. From Proposition 2, we have that (D, ) is feasible if
and only if
_ 2min(yn,. (1 y)n)
< - .

Thus, (Ds,) is feasible if and only if

Vonin_ Vingmn_
vingtrvon_ dving+ron_

v v_nin_ 2min<
+ + <

)

(viny +von_)n — n
and thus, v,v_ <min(v_,vy)orv, <landv_<1. O

2.4 Relationship Between the 2v-SVM and 2C-SVM

The following theorems extend the results of [18] and relate
(Do) and (Dy,). The first shows how solutions of (Dy¢) are
related to solutions of (D,,), and the second shows how
solutions of (D,,) are related to solutions of (Ds¢). The third
theorem, the main result of this section, shows that increasing
v is equivalent to decreasing C. These results collectively
establish that (Dyc) and (Ds,) are equivalent in that they
explore the same set of possible solutions. However, despite
their theoretical equivalence, in practice, the 2v-SVM lends
itself toward more effective parameter selection procedures.
The theorems and their proofs are inspired by their
analogues for (D¢) and (D,). However, note that the
introduction of the parameter v somewhat complicates the
proofs of these theorems, which are given in the Appendix.

Theorem 1. Fix v € [0, 1]. For any C > 0, let a“ be an optimal
solution of (D) and set v =" a/(Cn). Then, « is an
optimal solution of (Dsc) if and only if o/(Cn) is an optimal
solution of (Day).
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estimate: E$,. (b) Smoothed CV estimate: E5%,. (c) Estimate of E,,), based on an independent test set.

Theorem 2. Fix v € [0, 1]. For any v € (0, Viax), assume (Da,)
has a nonzero optimal objective value. This implies that the p
component of an optimal solution of the primal satisfies p > 0,
so we may set C'=1/(pn). Then, a is an optimal solution of
(Dac) if and only if a/(Cn) is an optimal solution of (Da,).

Theorem 3. Fix v € [0, 1] and let o be an optimal solution of
(Dyc) for all C' > 0. Define

. 27:1 0‘70
v, = lim
C—o0 Cn
and
n
V" = lim Liz1
c—0 Cn

Then, 0 < v, < V" =vpa <1. For any v >v*, (Dy,) is
infeasible. For any v € (v,, V"] the optimal objective value of
(Dy,) is strictly positive, and there exists at least one C' > 0
such that the following holds: o is an optimal solution of
(Dac) if and only if a/(Cn) is an optimal solution of (Da,)).
For any v € [0, v.], (D2,) is feasible with an optimal objective
value of zero and a trivial solution.

Remark. Consider the case where the training data can be
perfectly separated by a hyperplane in . In this case, as
C — oo, margin errors are penalized more heavily, and
thus for some sufficiently large C, the solution of (Dac)
will correspond to a separating hyperplane. Thus, there
exists some C* such that a (corresponding to the
separating hyperplane) is an optimal solution of (Da)
for all C' > C*. In this case, as C' — oo, Y i, aC/C’n — 0,
and thus, v, = 0. Note also that we can easily restate
Theorem 3 for the alternative (C,,C_) and (v4,v-)
parameterizations if desired.

3 SupPPORT VECTOR ALGORITHMS FOR MINIMAX
AND NP CLASSIFICATION

In order to apply either the 2C-SVM or the 2v-SVM to the
problems of minimax or NP classification, we must set the
free parameters appropriately. In light of Theorem 3, it
might appear that it makes no difference which formulation
we use, but given the critical importance of parameter
selection to both of these problems, any practical advantage
that one parametrization offers over the other is extremely
important. In our case, we are motivated to employ the 2v-
SVM for two reasons. First, the 2C-SVM has an unbounded

parameter space. In our experience, this leads to numerical
issues for very large or small parameter values, and it also
entails a certain degree of arbitrariness in selecting the
starting and ending search grid points. Since the parameter
space of the 2v-SVM is bounded we can conduct a simple
uniform grid search over [0,1]° to select (v, ,v_). The second
reason is that we have found a method, described below,
that capitalizes on this uniform grid to significantly enhance
the accuracy of error estimates for the 2v-SVM.

To select the appropriate (v, v_), we obtain estimates of
the error rates over a grid of possible parameter values and
select the best parameter combination based on these
estimates. The central focus of our study (which will be
based on simulations across a wide range of data sets) is
concerned with how to most accurately and efficiently
perform this error estimation and parameter selection
process.

To be concrete, we will describe the algorithm for the
radial basis function (Gaussian) kernel, although the method
could easily be adapted to other kernels. We consider a 3D
grid of possible values for v, v_, and the kernel bandwidth
parameter o. For each possible combination of parameters,
we begin by obtaining CV estimates of the false alarm and
miss rates, which we denote PSV and PSY. Note that we
slightly abuse notation and that ﬁp and 13M should be
thought of as arrays indexed by v, v_, and o. (This is distinct
from the notation established earlier where Pr and P,; are
functionals that map classifiers to error rates.) We next select
the parameter combination that minimizes ECV, where for
minimax classification, we set E°V = Eg}g ;= maX{Pg v,
PV and for NP classification, we set EYV = ESY,  where

NP(a)
Ef[‘;,(a) — P9 when PS¢V < a and E%‘;, (o) = 00 otherwise.
3.1 Accurate Error Estimation: Smoothed

Cross-Validation

While CV estimates are relatively easy to calculate, they tend
to have a high variance, and hence, some parameter
combinations will look much better than they actually are
due to chance variation. However, we have observed across a
wide range of data sets for the 2v-SVM that PSV and PV
appear to somewhat “noisy” versions of smoothly varying
functions of (v, v_, 0), asillustrated in Fig. 1a. This motivates
asimple heuristic to improve upon CV: Smooth PCV and PCV
through convolution with a low-pass filter 1V and then
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calculate 5 using the smoothed CV estimates. Ignoring the
kernel parameter, we describe the approach in Algorithm 1.
We also consider two approaches to selecting the kernel
parameter. We can apply a two-dimensional (2D) filter to the
error estimates for (v,v )€ [0,1]* as in Algorithm 1,
separately for each value of o, or alternatively, a three-
dimensional (3D) filter to the error estimates, smoothing
across different kernel parameter values. Fig. 1 illustrates the
effect of 3D smoothing on an example data set, demonstrating
that ESM more closely resembles the estimate of E obtained
from an independent test set. In our experiments, the filter is
chosen to be a simple Gaussian window low-pass filter.
Several possible filters can be used (for example, Gaussian
filters of varying widths, median filters, etc.), and all result in
similar performance gains. The key to all of these smoothing
approaches is that they perform some kind of local averaging
toreduce outlying estimates. We will see that both 2D and 3D
methods are extremely effective in a quantitative sense in
Section 5.

Algorithm 1. Smoothed Grid Search
for a vector of values of v, do
for a vector of values of v_ do
ECV «— CV estimate of E
end for
end for
ESM W ( ECV)
select v, v_ minimizing
train SVM using v, v_

ESM

3.2 Efficient and Accurate Error Estimation:
Coordinate Descent

The additional parameter in the 2v-SVM can render a full grid
search, somewhat computationally expensive, especially for
large data sets. Fortunately, a simple speedup heuristic exists.
Again inspired by the smoothness of PSV and P9V, we
propose a coordinate descent search. Several variants are
possible, but the simplest one we employ, denoted as 2D
coordinate descent, is described in Algorithm 2. It essentially
consists of a sequence of orthogonal line searches that
continues until it converges to a fixed point. To incorporate
a kernel parameter, we can either repeat this approach for
each value of the kernel parameter, or consider the natural 3D
extension of this algorithm. Smoothing can also be easily
incorporated into this framework by conducting “tube
searches”: adding additional adjacent line searches adjacent
to the line searches in Algorithm 2 that are then filtered to
yield smoothed estimates along the original line searches.

Algorithm 2. Coordinate Descent
(9,10) « (0.5,0.5)
10
repeat
estimate E for v, = v/, and a vector of values of v_

estimate E for v_ = 1/ and a vector of values of v,

set /71, V! to minimize ECV
increment ¢
until /. = v and v/ ="

train SVM using v/, v"
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4 EXPERIMENTAL SETUP

4.1 Performance Evaluation

In order to evaluate the methods described above and to
compare the 2v-SVM to methods more commonly used in
practice, we conduct a detailed experimental study. We
compare the algorithms on a collection of 11 benchmark data
sets representing a variety of dimensions and sample sizes."
The data sets comprise a mixture of synthetic and real data.
For each of the first nine data sets, we have 100 permutations
of the data into training and test sets, and for the last two, we
have 20 permutations. We use the different permutations to
generate a more reliable performance estimate for each
algorithm. For a given algorithm, we train a classifier for each
permutation of training data and then evaluate our perfor-
mance metric using the corresponding permutation of the
test data. We then average the scores over all permutations.
Specifically, for each approach, we estimate ]319‘/ and ﬁ%v for
various parameter combinations using five-fold CV. We then
select the appropriate parameters, retrain our classifiers on
the full set of training data, and then estimate Pp(f) and
Py(f) using the independent test data.

Our performance metric is max{Pp(f), Py(f)} for mini-
max classification. For NP classification, we use the Ney-
man-Pearson score,

émaX{PF( ) — a,0} + Pyu(f), (6)

proposed in [19]. It can be shown that the global minimizer
of (6) is the optimal NP classifier under general conditions
on the underlying distribution. Furthermore, the NP score
has additional properties, desirable from a statistical point
of view: It can be reliably estimated from data, it tolerates
small violations of the false alarm constraint, and as «
draws closer to zero, a stiffer penalty is exacted on
classifiers that violate the constraint [19]. To evaluate
performance on unbalanced data sets, we repeated these
experiments, retaining only 10 percent of the negatively
labeled training data.

In order to compare multiple algorithms on multiple data
sets, we use the two-step procedure advocated in [20]. First,
we use the Friedman test, a statistical test for determining
whether the observed differences between the algorithms
are statistically significant. When reporting results from
the Friedman test, we give the p-value. Next, once we have
rejected the null hypothesis (that the differences have
occurred by chance), we apply the Nemenyi test, which
involves computing a ranking of the algorithms for each
data set, and then an average ranking for each algorithm.
Along with these rankings, we provide the so-called critical
difference for a significance level of 0.05. (If the average
ranking of two algorithms differs by more than this value,
which depends on the desired p-value and the number of
algorithms being compared against each other, then the
performance of the two algorithms is significantly different,
with a p-value of at most 0.05.) See [20] for a more thorough
discussion of and motivation for these techniques.

1. We use the following data sets, which can be obtained with
documentation from http://ida.first.fhg.de/projects/bench: banana,
breast-cancer, diabetes, flare-solar, heart, ringnorm, thyroid, twonorm,
waveform, image, splice.
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Fig. 2. Effect of smoothing on E};,. The results shown are the ratio of
the bias, variance, and mean squared error (MSE) of E}7; to that of
ES}Y, for each data set. A value of less than 1 indicates improvement.

4.2 Implementation

In all experiments we use a radial basis function (Gaussian)
kernel, a logarithmically spaced grid of 50 points of o € [107*,
10*],and a 50 x 50 regular grid of (v, v_) € [0, 1]*. For the 2D
smoothing approach, we apply a 3 x 3 Gaussian window to
the error estimates for (v,,v_) € [0,1]* separately for each
value of . For the 3D smoothing approach, we apply a 3 x
3 x 3 Gaussian window to the error estimates, smoothing
across different kernel parameter values. The standard
deviation of the Gaussian window is set to the length of
one grid interval. (There does not seem to be much change in
performance for different window sizes and widths.)

Our implementation of the 2v-SVM uses the sequential
minimization optimization (SMO) approach. The idea of the
SMO algorithm is to break up the optimization problem by
iteratively selecting pairs (o, ;) and then optimizing the
objective function with respect to (o, @;) while holding the
remaining «, constant. This subproblem has an analytic
solution, and hence, can be solved extremely efficiently. The
algorithm then proceeds by iteratively selecting pairs of
variables to optimize (usually according to a criterion based
on the violation of the KKT constraints). For a detailed
discussion of the SMO algorithm as applied to the »-5VM,
see [21]. A key point noted in [21] is that optimizing over a
particular pair («;,«;) will only reduce the objective
function if y; = y;. This means that an SMO-type imple-
mentation of the 2v-SVM will only differ from that of the
v-SVM in that we must replace the optimization constraint
that o, o € [0,1/n] with «;,«; €[0,7/n] for i €I, and
a;,a; € [0,(1 —~)/n] for i € I,.. The remaining steps of the
algorithm, including the subset selection methods, are
identical to those of the »-SVM. Our implementation is
based on the popular LIBSVM package [13]. Our code, as
well as a more detailed discussion of the changes made, are
available online at www.dsp.rice.edu/software.

4.3 Alternative Approaches to Controlling Errors

In order to provide a reference for comparison, we also
consider two alternative SVM-based approaches to control-
ling Pp and Py, bias-shifting and the balanced v-SVM. In
bias-shifting, which is the most common approach taken in
the literature, we train a standard (cost-insensitive) SVM

1893
TABLE 1
Average Ranking of Each Smoothing Approach for the 2v-SVM
% || Smoothing | Balanced | Unbalanced
& None 291 291
5 2-D 1.73 1.64
= 3D 1.36 145
Smoothing | Balanced | Unbalanced
a9 None 2.73 2.64
z 2D 2.09 2.00
3-D 1.18 1.36

Friedman p-values are <0.01 for all cases; Nemenyi critical difference at
0.05is 1.10.

and then adjust the bias of the resulting classifier to achieve
the desired error rates [22]. Note that we do not expect that
bias-shifting will perform as well as the 2v-SVM since it has
been shown that the cost-sensitive SVM is superior to
bias-shifting in the sense that it will generate an ROC with a
larger area under its curve [22]. In our experiments, we
search over a uniform grid of 50 points of the parameter v
and also apply a 3 x 3 Gaussian smoothing filter to smooth
the error estimates across different values of v and o.

A common motivation for minimax classification is that
some data sets are unbalanced in the sense that they have
many more samples from one class than from the other. In
light of Proposition 1, another possible algorithm is to use a
2v-SVM with v, = v_. We refer to this method as the balanced
v-SVM. Since v, and v_ are upper bounds on the fractions of
margin errors from their respective classes, we might expect
that this method will be superior to the traditional v-SVM for
minimax classification. Note that this method has the same
computational complexity as the traditional »-SVM. For the
balanced »-SVM, we search over a uniform grid of 50 points
of the parameter v, = v_ and again apply a 3 x 3 Gaussian
smoothing filter to smooth the error estimates across
different o.

5 RESULTS AND DISCUSSION
5.1 Effects of Smoothing

In Fig. 2, we examine how smoothing impacts the accuracy
of the error estimates for each of our data sets. We compare
the CV error estimates and the test error estimates for
the parameter combination selected using the CV estimates.
We then repeat this for smoothed error estimates. We
compute the bias, variance, and mean squared error (MSE)
of the two estimation approaches by averaging over
different permutations. From Fig. 2, we see that smoothing
leads to significant reductions in the bias and MSE across all
data sets. On most of the data sets, we also observe a
reduction in the variance. Furthermore, while we do not
display the actual values, we also note that the bias of the CV
estimator is always negative and ranges from —0.01 to as
large as —0.17. This validates our intuition that the “noise” in
the CV estimates can lead to selecting parameter combina-
tions that look better than they really are. The bias, variance,
and MSE reductions translate into a drastic improvement on
the resulting classifiers. The results of smoothing on our
benchmark data sets are shown in Table 1, and they clearly
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TABLE 2
Average Ranking of Each Coordinate Descent Approach
for the 2v-SVM

Smoothing | CD | Balanced | Unbalanced
a None 2-D 4.18 4.18
£ None 3-D 391 4.00
5 2-D 2-D 2.73 2.82
> 3D 2D | 2.0 2.00
3-D 3-D 2.18 2.00
Smoothing | CD | Balanced | Unbalanced
None 2-D 3.82 4.36
By None 3-D 3.55 3.64
2D 2D 26 3.36
3-D 2-D 1.91 191
3-D 3-D 3.09 1.73

Friedman p-values are <0.05 for all cases; Nemenyi critical difference at
0.05is 1.92.

indicate that both 2D and 3D smoothing offer a statistically
significant gain in performance, with 3D smoothing offering
a slight edge.

5.2 Coordinate Descent

Table 2 shows that 3D smoothing combined with either 2D or
3D coordinate descent offers gains in performance as well,
which is particularly helpful since these methods speedup
the parameter selection process considerably. Note that
smoothing again makes a tremendous impact on the
resulting performance, even in the absence of a complete
grid search. Perhaps somewhat surprisingly, we observe that
2D and 3D coordinate descent behave similarly, despite 3D
coordinate descent being considerably more greedy.

5.3 Comparison with Other Methods

We now compare the 2v-SVM strategies to the balanced
v-SVM and traditional »-SVM with bias-shifting. Table 3
provides the results of the Nemenyi test for the 3D smoothed
grid-search approach (labeled 3D-SGS), the 2D and 3D
coordinate descent methods (labeled 2D-CD and 3D-
CD—Dboth use 3D smoothing), the balanced »-SVM without
bias-shifting (labeled Bal »-SVM), and the traditional »-SVM
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TABLE 3
Average Ranking of the 2v-SVM Methods, the Balanced v-SVM,
and the v-SVM with Bias-Shifting

Method Balanced | Unbalanced
% 3D-SGS 2.73 2.00
é 2D-CD 2.64 2.64
5 3D-CD 2.73 2.00
= AV 3.64 2.09
Bal v-SVM 3.27 4.27
Method Balanced | Unbalanced
3D-SGS 2.36 3.18
a9 2D-CD 2.18 2.09
Z | 3D-CD 2.73 1.64
v-SVM 491 4.18
Bal v-SVM 2.82 3.91

Friedman p-values are <0.001 for all cases except unbalanced minimax
classification, for which the p-value is 0.502; Nemenyi critical difference
at0.05is 1.92.

with bias-shifting (labeled »-SVM). In Table 4, we compare
the training times for these methods. Since there is a large
variation in training time across the different data sets,
we normalize the training time by the training time of the 3D
smoothed grid search. The values listed are the average
improvement (across the different permutations) over the
3D smoothed grid search achieved by the different
approaches. We report the results for minimax classification;
the results for NP classification across the different values of
« are very similar.

For the case of minimax classification on balanced data
sets, the 2v-SVM methods appear to exhibit stronger
performance, but this is not statistically significant. How-
ever, for the unbalanced case, there is a clear and significant
difference, with the 2v-SVM methods being clearly super-
ior. The 3D-SGS method appears to be the best performing
overall, but the coordinate descent methods exhibit very
similar performance. For the case of NP classification, the
2v-SVM methods clearly outperform the traditional »-SVM
methods and also outperform the balanced »-SVM.

As expected, the 3D-SGS tends to take on the order of
50 times longer to train compared to the »-SVM and Bal

TABLE 4
Speedup in Training Time for the 2v-SVM Methods for Minimax Classification
-
:
—
(o]
s | 2| 8| 3 E s | B E "
“— 3] i - C o= e [
A BRI T - N - O S
Method g £ 5 = 2 | £ 5 5 : | § &
3D-SGS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2D-CD 3.33 4.61 517 3.78 5.47 5.46 4.69 6.48 5.86 3.40 5.41
3D-CD 53.60 | 34.78 | 48.80 | 48.32 | 42.78 | 44.63 | 60.10 | 49.33 | 32.05 | 34.74 | 32.32
v-SVM 45.05 | 74.06 | 58.96 | 52.12 | 50.51 | 48.99 | 73.84 | 48.81 | 74.77 | 56.40 | 51.87
Bal v»-SVM || 43.49 | 68.49 | 56.31 | 50.62 | 48.49 | 47.54 | 69.61 | 47.10 | 71.31 | 54.17 | 49.27

The reported values are the average improvement (across the different permutations) over the 3D-SGS approach for each method and each data
set. (A value of 50 indicates that a method was 50 times faster than the 3D-SGS approach on that data set.)



DAVENPORT ET AL.: TUNING SUPPORT VECTOR MACHINES FOR MINIMAX AND NEYMAN-PEARSON CLASSIFICATION

v-SVM (as a result of having to collect CV estimates over a
50 x 50 grid of values for (v,,v_) instead of a length of 50
grid of values for v). However, the coordinate descent
methods offer a large improvement over the 3D-5GS
approach in terms of training time, with little loss in
performance. In particular, the 2D-CD approach results in
training times that are roughly five times faster than the
3D-SGS approach (although still 10 times slower than the
v-SVM and Bal »-SVM), while the 3D-CD approach requires
a training time on the same order as the »-SVM and Bal
v-SVM. On occasion, the 3D-CD approach is even faster
than the »-SVM and Bal v-SVM. Thus, we would recom-
mend the 3D-CD approach as a suitable balance between
accuracy and computational efficiency.

Perhaps the most surprising result is that the 3D

coordinate descent method is not only competitive with the
full grid search but even performs better than the grid search
on the unbalanced data sets. This may be a consequence of
the fact that, by ignoring many parameter combinations,
coordinate descent is less sensitive to noisy error estimates.
In essence, coordinate descent can act as a simple form of
complexity regularization, thus preventing overfitting.

6 CONCLUSION

We have demonstrated that, when learning with respect to
the minimax or NP criteria, the 2v-SVM, in conjunction with
smoothed cross-validation error estimates, clearly outper-
forms methods based on raw (unsmoothed) error estimates,
as well as the bias-shifting strategies commonly used in
practice. Our approach exploits certain properties of the
2v-SVM and its parameter space, which we analyzed and
related to the 2C-SVM. Our experimental results imply that
accurate error estimation is crucial to our algorithm’s
performance. Simple smoothing techniques lead to signifi-
cantly improved error estimates, which translate into better
parameter selection and a dramatic improvement in perfor-
mance. We have also illustrated a computationally efficient
variant of our approach based on coordinate descent.

The primary intuition explaining the gains achieved by
our approach lie in minimizing the impact of outlying error
estimates. When estimating errors for a large grid of
parameter values, a poor estimator is likely to be overly
optimistic at a few parameter settings simply by chance. Our
smoothing approach performs a weighted local averaging to
reduce outlying estimates. This may also explain the
surprising performance of our greedy coordinate descent
speedup: By ignoring many parameter combinations, the
algorithm reduces its exposure to such outliers.

APPENDIX

In [18], Chang and Lin illustrate the relationship between
(D) and (D¢)—which denote the dual formulations of the
v-SVM and C-SVM, respectively. We follow a similar
course. First, we rescale (Dyc) by Cn in order to compare
it with (Ds,). This yields:
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n

1 & 1
(D) min = aioyyik(x, X)) — =Y o
"ol on
0<ao; < %, 1€l

s.t.

iel,

In order to prove the theorems in Section 2.4, we take
advantage of the equivalence of (Dy¢) and (Dj). We will
establish the relationship between (D,,) and (D), which
by rescaling establishes the theorems in Section 2.4 relating
(D) and (Dsc). We begin with the following lemmata:

Lemma 1. Fix v € [0,1] and v € [0, viax|- There is at least one
optimal solution of (Ds,) that satisfies Y !  «; =v. In
addition, if the optimal objective value of (Ds,) is not zero,
then all optimal solutions of (Do,) satisfy >, a; = v.

Proof. The first statement follows from Proposition 3. The
second statement was proven in Theorem 1 of [18] for the
v-SVM. The proof relies only upon the form of the objective
function of the dual formulation of the »-SVM, which is
identical to that of (Ds,), and the fact that any feasible
point can be rescaled so that ) ;" | a; = v. Thus, we omit it
for the sake of brevity and refer the reader to [18]. ad

Lemma 2. Fix v € [0,1], C >0, and v € [0,1]. Assume (D)
and (Ds,) share one optimal solution o with Y " of = v.
Then, a is an optimal solution of (D)) if and only if it is an
optimal solution of (Ds,).

Proof. The analogue of this lemma for (D) and (D,) is
proven in Lemma 2 of [18]. The proof relies only upon
the form of the objective functions, which are identical to
those of (Dj) and (Dy,), on the fact that the feasible sets
are convex, and on the analogue of Lemma 1. Thus, we
again refer the reader to [18]. O

For the proofs of Theorems 1 and 2, we will employ the
Karush-Kuhn-Tucker (KKT) conditions [15]. As noted
above, these conditions typically depend on both the primal
and dual variables, but in our case, we can eliminate w to
form a simplified set of conditions. Specifically, a is an
optimal solution of (D) if and only if there exist b € IR and
A, € € R" satisfying the conditions:

n 1 ]
Z ajyiyik(xi, x;) — on T byi=N—& Vi, (7)
=1 "
)\iai = 07 )\L 2 07 €L >0 Vv i7 (8)
v
51(__017?):07 OSOQS% ZEI-H (9)
_ 1—
&( 7—ai):o, 0<a; T oier, (0
n n
> =0 (11)
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Similarly, « is an optimal solution of (D,,) if and only if
there exist b, p € IR and A, £ € IR" satisfying:

Zajyiyjk(xi7xj) —ptby=XN—-& Vi, (12)
=

G(l-a)=0, 0<a<? dcr, (14)
n
1-— 1-—
£L< ’Y_a7):07 OSOQS—V ie[—v (15)
n n

iaiyi =0, Za > v, (Za —y> =0. (16)
i=1 i=1

Note that the two sets of conditions are mostly identical,
except for the first and last two of the conditions for (Dy,).
Using this observation, we can prove Theorems 1 and 2.

Proof of Theorem 1. If o is an optimal solution of (D)),
then it is a KKT point of (D)). By setting v ="', af
and p = 1/(Cn), we see that a“ also satisfies the KKT
conditions for (D,,) and thus is an optimal solution of
(Ds,). From Lemma 2, we therefore have that « is an
optimal solution of (D)) if and only if it is an optimal
solution of (Ds,). Thus, a is an optimal solution of (Ds()
if and only if a/(Cn) is an optimal solution of (D). O

Proof of Theorem 2. If a” is an optimal solution of (Dy,),
then it is a KKT point of (D,,). From (12), we have

n

Z (Z aSyyik(xi, x;) — p+ bl/z‘) af = Z()w = &)y,
=

i=1 i=1

which, by applying (13) and (14), reduces to

n n
Za yzy] Xl,Xj)—pZOé,I;:—%Zfi.
i=1 i=1

By assumption, (Ds,) has a nonzero optimal objective
value. Thus, from Lemma 1, ) | o/ = v and

1IN~ oy Ay
p= l—/ (Mz:laiajyiyjk(xi,xj) +’I’L;§l> > 0.

Thus, we can choose C = 1/(pn) > 0 so that & is a KKT
point of (Dj.). From Lemma 2, we have that « is an
optimal solution of (D) if and only if it is an optimal
solution of (Dy,). Hence, a is an optimal solution of
(Dyc) if and only if @/(Cn) is an optimal solution of
(Day). o

We will need the following lemmata to prove Theorem 3.

Lemma 3. Fix v € [0,1] and v € [0, 1]. If the optimal objective
value of (Dy,) is zero and there is a C > 0 such that the
optimal solution of (D)), af, satisfies Y !, of = v, then
V = Upax and any « is an optimal solution of (Do, ) if and only

if it is an optimal solution of (D)) for all C > 0.

Proof. Setting p = 1/Ch, o isaKKT point of (Ds, ). Hence, if

the optimal objective value of (D,,) is zero, then
oy iy af afyiysk(xi,x;) = 0. The kernel k is (by
def1n1t1on) pos1t1ve definite, so we have 37, of Cyyik(xi,
x;) = 0. Thus, (7) and (12) become

—%—i—byi:)\i—fi, for i=1,...,n. (17)
From this, we observe that if b > 0, then \; — & < 0 for all
1€l ,and thatif b <0, then \; — & <O forallie I,.

Without loss of generality, we assume that b > 0 since
the situation when b <0 can be treated similarly by
exchanging /_ and 1. Since b > 0 we have that \; — § <
0 for all ¢ € I_, and since the ); are nonnegative, this
implies that & > 0 for all i € I_. Therefore, in order for
the first conditions of (10) and (15) to hold, we need

af =(1—~)/nforallie I_.From the first conditions of
(11) and (16) we have that } .., a¥ =3, of, and
thus 3,; a = (1 —y)n_/n < 4n. /n.

Thus, for the case where b > 0, we have established that
af = (1 —~)/nforalli € I_and that (1 — y)n_ < yn..We
now consider ¢ € I.. There are three possibilities, which
follow from (17) and depend on b:

1. Ifbe [O,C}n) then \;, — & <0 foralliel,.

2. Ifb>0 ,then \;, =& >0 forallie L.

3. Ifb—Cn,thenA —&=0forallie .

In Case 1, we must have & > 0 for all ¢ € I.. For the
first conditions of (9) and (14) to hold, we need af =q/n
for all i € I;. The requirement that 3>, ., of =37, of
(from the first conditions of (11) and (16)) and the fact
that af = (1 —)/n for all i € I imply that

Za? = 2n+’y/n = 2TL_(1 — 'Y)/n = Vmax-
i=1

Furthermore, since the optimal objective value of (Dy,) is
zero, the objective function for (D)) in this case becomes

1 n
min —— g «;
@ Cn =

This is minimized by a¢ (since Y, af = vyay), hence,
at is an optimal solution of (D)) for all C > 0.
In Case 2, )\, >0 for all :€I_. For the first
conditions of (8) and (13), A\;af =0, to hold, we need
¢=0 for all i€ I+ However, the requirement that
Yier, f =30, af and the fact that of = (1—~)/n
for all i € I_ lead to a contradiction if /_ is nonempty.
Hence, all of the training vectors are in the same class,

and af =0 for all i. Thus,

n
E C_n—

;= 0 = Vmax-
i=1

Furthermore, if all the data are from the same class, then
= 0 is an optimal solution of (D)) for all C' > 0.
In Case 3, where \; — & =0, either \; =& #0or \; =
& =0 for each i € I,.. However, \; =¢; # 0 leads to a
contradiction because (8) and (13), together with (9) and
(14), require both af = 0 and ¢ = vy/n. Thus, \; =& =0
and the KKT conditions involving A; and ¢ impose no



Lemma 4. If o is an optimal solution of (D,

conditions on af for i € I,. Since af = (1 —)/n for all

t€l_,and (1 —v)n_ < ~yn,;, we can satisty

D af =) o =

el el

Yy /n.

Thus, Y7, a¥ = vy, Hence, by setting b = 1/(Cn), a¢
is an optimal solution of (D)) for all C' > 0.

Therefore, in all three cases, we have that v = v, and
that a“ is an optimal solution of (D)) for all C' > 0.
Hence, if a“ is an optimal solution of (D ( he) and for v =
%, af the optimal objective value of (Dy,) is zero, then
V = Upax and @ is an optimal solution of ( b)), for all
C > 0. The lemma follows by combining this with
Lemma 2. a

o), then 370 af
a continuous decreasing function of C' on ((), 00).

Proof. The analogue of this lemma for (Df) is proven in

[18]. Since the proof depends only on the form of the
objective function and the analogues of Theorems 1
and 2 and Lemma 3, we omit the proof and refer the
reader to [18]. O

We are now ready to prove the main theorem.

Proof of Theorem 3. From Lemma 4 and the fact that, for all

C,0 <> | a < Upay, we know that the above limits are
well defined and exist.

For any optimal solution of (D)), (7) holds:

n 1 )
;afyiyjk(xi,x»—aw:&—&, for i€l
i Cyiyik(x; -)—i—bf)\—g- for iel

2 a5 yiyik(xi, X cn =\ i, for 1 .
Assume first that b>0. In this case, since af is

bounded, when C'is sufficiently small, we will necessa-
rily have \; — & < 0 for all ¢ € I... Pick such a C. Since &;
and )\; are nonnegative, ¢ > 0 for all ¢ € I, and from
9), af =q/nforallic I..If fyn+/n > (1 —v)n_/n, then
this a¢ is feasible and S a = Unax. However, if
yny/n < (1 —~)n_/n, then we have a contradiction, and
thus it must actually be that b < 0. In this case, for C
sufficiently small, A\; — & < 0 for all ¢ € I;. As before, this
now implies that af = (1 —v)/n for all i € I_, and thus
S af = vax. Hence, v =31 | af = vy, and from
Proposmon 2, we immediately know that (D,,) is
infeasible if v > v*.

For all v < v*, from Proposition 2, (D,,) is feasible.
From Lemma 4, we know that > | af is a continuous
decreasing function. Thus for any v € (v.,v"], there is a
C > 0 such that > | o = v, and by Lemma 2, any « is
an optimal solution of (D 5) if and only if it is an optimal
solution for (D).).

Finally, we consider v € [0,v,]. If v < v,, then (Dy,)
must have an optimal objective value of zero because
otherwise, by the definition of v,, this would contradict
Theorem 2. If v = v, = 0, then the optimal objective value
of (Dy,) is zero, as «” =0 is a feasible solution. If
v =r, >0, then Lemma 1 and the fact that the feasible
region of (Ds,) is bounded by 0 < a; <~/n for i € I,
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and 0 < o; < (1 —7y)/n fori € I_ imply that there exists a
sequence {a"}, v <wp <--- <, such that o’ is an
optimal solution of (D,,) with v =v;, > | o’ = v}, and

. . . . n v
a =lim, ., " exists. Since ) ;' | o = v,

n n

. V;
E o = lim g o =v..
=1 Vji—Vy £

Since the feasible region of (Dy,) is a closed set, we also
immediately have that o is a feasible solution of (Ds,)
for v = v,. Since Y7, | o cuiyeymk(xe, %) = 0 for all v,
we find that Y~ | oj o yeymk(xs, X)) = 0 by taking the
limit. Therefore, the optimal objective value of (Ds,) is
zero if v = v,. Thus, the optimal objective value of (Dy,)
is zero for all v € [0, v,].

Now suppose for the sake of a contradiction that the
optimal objective value of (D,,) is zero but v > v,. By
Lemma 4, there exists a C' > 0 such that, if o€ isan optimal
solution of (D)), then 3" | af = v. From Lemma 3, v =
Vmax = V° = v, since Y i, af is the same for all C. This
contradicts the assumption that v > v,. Thus, the objective
value of (Ds, ) can be zero if and only if v < v,. In this case,
w = 0 and thus the solution is trivial.

By appropriate rescaling, this establishes the theorem.O
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