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ABSTRACT relative weight given to each class. It is clear that both approaches

H’:lffect the desired tradeoff between false alarms and misses. What
s not clear, however, is how to implement these ideas to achieve a
specificfalse alarm levet. In other words, the primary challenge is
accurate error estimation.

We study the problem of designing support vector classifiers wit
respect to a Neyman-Pearson criterion. Specifically, given a use
specified levelx € (0,1), how can we ensure a false alarm rate
no greater tharmx while minimizing the miss rate? We examine

two approaches, one based on shifting the offset of a convention- As might be expected, we find that shifting the offset parame-

ally trained SVM and the other based on the introduction of classter does not perform as well as introducing an additional parameter
specific weights. Our contributions include a novel heuristic for im-to control the relative weights. However, optimizing over this addi-

proved error estimation and a strategy for efficiently searching th&onal parameter significantly increases the training time. We pro-
parameter space of the second method. We also provide a chard¥@se a method for greatly reducing the complexity of the expanded
terization of the feasible parameter set of ?neSVM on which the ~ search with no significant loss in performance. We also suggest a

second approach is based. The proposed methods are compared@gthod for decreasing the variance of the error estimates, which are
four benchmark datasets. crucial for NP classification. Furthermore, we offer two contribu-

tions regarding thev-SVM, the cost-sensitive SVM we employ.

First, we present a theorem that precisely characterizes the feasi-
ble set for the defining quadratic program. Second, we have made
Most approaches to classification attempt to infer a classifier th vailable at www.dsp.rice.edu/software our code, which is based on

minimizes the probability of making an error. In many importantt e LIBSVM package [2].
applications, however, some kinds of errors are more important than
others. Intumor classification, for example, the impact of mistakenly
classifying a benign tumor as malignant is much less than that of the 2. SUPPORT VECTOR MACHINES
opposite mistake.

In the Neyman-Pearson (NP) classification paradigm, the goal
is to design a classifier (based on training data) that minimizes theupport vector machines (SVMs) are among the most effective
probability of amisswhile constraining the probability of false ~ methods for classification [3]. Le;,y;), i = 1,2,...,n denote
alarmto be less than some user-specified significance tevéln-  the training data wherg; € R¢ is ad-dimensional feature vector
like Neyman-Pearson hypothesis testing in classical detection th@ndy; € {-+1, —1} indicates the class of;. Conceptually, the sup-
ory, NP classification relies entirely on training data, placing no paraPort vector classifier is constructed in a two step process. In the first
metric assumptions on the data. step, thex; are transformed via a mappidg: R? — H whereH is

The NP framework has two major advantages with respect t& high (possibly infinite) dimensional Hilbert space. The intuition is
conventional classification criteria that seek to minimize the probathat the two classes should be more easily separatidiian inR*.
bly of error or, more generally, an expected misclassification cost-or algorithmic reasons} must be chosen so that tkernelopera-
First, assigning costs is often less intuitive or reasonable than aor k(x,x’) = (®(x), ®(x'))# is positive definite. This allows us
signing a false alarm constraint. Second, NP classification does nt compute inner products i without explicitly evaluatingd.
assume knowledge of the a priori class probabilities. This is ex-  In the second step, a hyperplane is determined in the induced
tremely important in applications where the class frequencies in thfeature space according to the max-margin principle. In the case
training data do not accurately reflect class probabilities in the largefhere the two classes can be separated by a hyperplane, the SVM
population. In fact, it could probably be argued that most classififinds the hyperplane that maximizes timargin — the distance be-
cation problems of interest fit this description. For a more detailedween the decision boundary and the closest point to the bound-
motivation for the Neyman-Pearson paradigm, see [1]. ary. When the classes cannot be separated by a hyperplane, the

This paper studies support vector machines (SVMs) for NP clasconstraints are relaxed through the introduction of slack variables
sification. In the SVM literature two approaches have been sug¢;. If ¢ > 0, this means that the correspondirg lies inside
gested for controlling false alarms. One involves shiftingdffeet  the margin and is called margin error. If w € H andb € R
parameter, resulting in an affine shift of the decision boundary, angre the normal vector and affine shift defining the max-margin hy-
the other entails introducing an additional parameter to control thgerplane, then the support vector classifier is givernfhy (x) =

*Supported by NSF, AFOSR, ONR, and the Texas Instruments I'_eadeSg {w, @(x))» +b). The offset parametd is often called the

ship University Program. bias
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Email: {md,richb,cscoft@rice.edu, Web: dsp.rice.edu SVM [4], which we will call theC-SVM, can be formulated as the

1. INTRODUCTION
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following quadratic program: Theorem 1. Let (D2¢) and (D2.) denote the duals offbc) and
(P2.) respectively. Fixy € [0, 1] and leta™ be any optimal solution

(Pe) m;% %”WHQ N Ci& of (D). Define )
W0, i=1 * *
st yi(k(w,x;)+b)>1-¢& fori=1,2,....n V*:chfloo%’ V*:éiino%'
& >0 fori=1,2,...,n Then
0 <y < e Minlme (L= 7)no) _ %
whereC' > 0 is a tradeoff parameter that controls overfitting. wheren, = |I|andn_ = |I_|. The7rLlO < Ve <V = Umax < 3

l_:or _computational reasons, i_t i_s often easier to SQW@)(by Thus, for any > v*, (Da,) is infeasible. For any € (v.,v"]
solving its dual formulation. This is derived by forming the La- the gptimal objective value of¥., ) is strictly positive, thus there
grangian and then optimizing over the Lagrange multipliénstead  gyists at least on€' > 0 such that anyx is an optimal solution of
of the primal variables. The primal and the dual are related througl@DZC) if and only ifa/(Cn) is an optimal solution of P2,). For

w =3 " aiyi®(x;). For mostx;, we will havea; = 0. Thexi  anyy € [0, 1.], (D) is feasible with zero optimal objective value
for which «; # 0 are calledsupport vectors. (and a trivial solution).

An alternative (but equivalent) formulation of tie SVM is the
v-SVM [5], which replace<” with a different parameter € [0, 1]
that serves as an upper bound on the fraction of margin errors and a 3. CONTROLLING FALSE ALARMS
lower bound on the fraction of support vectors. Th8VM has the

primal formulation: As mentioned in the Introduction, there are two main strategies for

n controlling false alarms. The first is to train@&SVM or v-SVM
(P) min 1 ||WH2 —vp+ 1 Z & and then shift the bia$) to achieve the desired false alarm rate. The
2 nei- second approach is to use th@-SVM or 2v-SVM and achieve the
desired false alarm rate by adjustingappropriately. As described
is Section 2, P»¢) and (P2.), as well as Pc) and (P,), are closely
§& >0 fori=1,2,...,n related and equivalent in the sense that they explore the same set of
p>0. possible solutions. For the remainder of this paper we restrict our
attention to thes-SVM and the2v-SVM, because their parameter
The above formulations implicitly penalize errors in both classesspaces are more conveniently discretized. This is important because
equally. However, as described in the introduction, in many applicait makes the coordinate descent and windowing heuristics we de-
tions there are different costs associated with the two different kindscribe below more reasonable.
of errors. To address this issue, cost-sensitive extensions of both the |n what follows Px () and Py (f) denote the false alarm and
C-SVM and thev-SVM have been proposed, which we shall denote
the2C-SVM and the2v-SVM, respectively.
First we will consider theC-SVM proposed in [6]. Lefl; =
{i:yi=+1}andI_ = {i: y; = —1}. The2C-SVM has primal:

w,b.§,p

st yi(k(w,x;)+b) > p—& fori=1,2,...,n

miss rates of a classifigt, and Pr(f) and Py (f) denote estimates
of these quantities.

1 3.1. Bias-shifting approach
(Pac) miny SIWlF+Cy Y&+ Cl-7) D &

w,b, iely el A potential advantage of thieias-shiftingstrategy is the ability to
separate the training into two stages. First, we search over the pa-
st wi(k(w,xi)+b) >21-&  fori=1,2,....n rameters of the SVMy( and any kernel parameters). Using an error
& >0 fori=1,2,...,n. estimation method such as cross-validation (CV), we then select the

parameters that minimize the estimated probability of error. Sec-
ond, we shift the bias of that chosen classifier and, again using some
wherey € (0,1) is a parameter for trading off false alarms and form of error estimation, select the bias minimizify, such that

misses. Pr < «. Note that the first error estimate must be nested within the
Similarly, [7] proposed thev-SVM as a cost-sensitive exten- second. In our experiments we use the resubstitution estimate to se-
sion of thev-SVM. The2v-SVM has primal: lect the bias. Resubstitution is generally a poor estimate when the set
1 1_ of classifiers is complex; however, once we fix a normal veetpr
(Pa,) min = ||w|*—vp+ L Y&+ R Y& the set of possible shifted hyperplanes is a class with low complexity,
wb&p 2 n il noer and so resubstitution is in fact a reasonable error estimate.

_ _ _ o Since some datasets are unbalanced, we can also apply the above
st wilk(w,xi) +b) 2 p—& forz‘ =12..,mn strategy using &v-SVM with vy = v_ (wherevy andv_ are

& >0 fori=1,2,...,n as defined in Section 3.2) instead of theSVM. This method is

p > 0. referred to abalanced bias-shifting

Above we stated thatH) and (P,) are equivalent. This notion
was made precise in [8]. We have extended this result to show th&?2. 2v approach

(P>¢) and (P2,) are equivalent in the following sense. The proof is N ) ) )
given in a supplemental technical report [9]. The cost-sensitive extension of tBe-SVM proposed in [7] is pa-
rameterized in a different manner thak(). Specifically, instead
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of parameters and~, (P, ) is formulated using/; andv_, where 4. MEASURING PERFORMANCE

__2vqvonyn_ — v-n- __m Any experimental comparison of classifiers requires a measure of

(v4ng +v_n_)n’ ving +v-n_  2ving performance, that is, a scalar criterion that we can evaluate to com-
pare two classifiers head-to-head. In Neyman-Pearson classification
if we only report the observed false alarm and miss probabilities, we

or equivalently

Loy vn will often observe that one classifier has a smalterbut largerPx,
T oy T T 20— than another. In this case we cannot make a definitive statement
) o ] about which classifier is better.
This parametrization has the benefit that and»_ have a more One option for a scalar performance measure is to estimate

intuitiveT meaning_, similar to the_a-_SVM. Specifically, suppose that Pr(f) and Py (f) and assign a “score” dSM(f) to the classifier

the o_ptlmal solution _off’gu) satisfiesp > 0. Then for_the optlmal_ if ﬁp(f) < . andoo otherwise, wherds and Py are based on an

Z?rlg:fgnog gﬁ‘(’KNQ t')sojl: dugﬁ?;]:?fan;ligr? é?eSJraC(t)'rc:nvgétggr?rlgn%ndependent test sample. This is problematic, however, because the
S ; ppor .~ estimated false alarm rate is based on data and hence susceptible to

class+1. Similarly, v_ is an upper bound on the fraction of margin

errors and a lower bound on the fraction of support vectors fmr@rror. Moreover, in practical settings, it is often acceptable to have
= (f) be a small amount greater than
class—1. See [7] for a proof.

) We evaluate our classifiers using the measure
Furthermore, from Theorem 1 it follows that the dual formula-
tion of (P»,) is feasible if and only ifivy < 1 andv_ < 1, with
a trivial solution ifvy < 0 orv_ < 0. Therefore, to search over
the parameters of th&v-SVM it suffices to conduct a search over a
uniform grid of (v4, v_) in [0, 1.

E(f) = S max {Pr(f) — a0} + Pu(f). @

As discussed in [10], this measure satisfies the following de-
) o ) sirable properties: i) It is minimized by the classifierf; =

- Insum, thefull_algorlthm for NP classification with tBe-S_\/M arg min{ Py (f) | Pr(f) < a}. (i) It can be accurately estimated

is to conduct a grid search over the SVM parameters, estifiate from a test sample using the simple plug-in estimaife) I has the
and Py, using some error estimation technlgue, and select the Pappealing property that as draws closer to 0, a stiffer penalty is
rameter combination minimizings; such thatPr < «. exacted on classifiers that violate the constraint. In other words, it
penalizes theelativeerror (Pr(f) — a)/cv.

3.3. Coordinate descent: Speeding up the 2v-SVM 5. EXPERIMENTS

The additional parameter in the/Z5VM renders a full grid search In our experiments with the-SVM we used the LIBSVM package
very time consuming. Fortunately, a simple speed-up is possiblg2]. For the2v-SVM we implemented our own version that is avail-
We have observed across a wide range of datasets and kernels thhte online at www.dsp.rice.edu/software.

the errorsPr and P, vary smoothly when plotted as functions of We ran our algorithms on the benchmark datasets named “ba-
(vy,v—) € [0,1)%. Thus, instead of conducting a full grid search nana”, “heart”, “thyroid”, and “breast.” The datasets are available
over (v4,v_) we propose a kind of coordinate descent search. Sewnline with documentatioh.The first dataset is synthetic, while the
eral variants are possible, but the one we employ runs as followsither three are based on real data collected from various repositories
Find the best parameters on grids placed along the lines- 1/2 on the web. There are 100 permutations of each dataset into training
andv_ = 1/2. From then on, conduct a line search in the direc-and test data. The dimensions of the datasets are 2, 13, 5, and 9, re-
tion orthogonal to the previous line search, at each step selecting tispectively, and the training sample sizes are 400, 170, 140, and 200,
parameters minimizind,; such thatPr < . Note that this strat- respectively. The targetedis 0.1.

egy would be more difficult to justify with theC-SVM because the In all of our experiments we used a r_adial basis function (Gaus-
choice of endpoints and grid spacing would ultimately be arbitrarysian) kernel and searched for the bandwidth parameteer a loga-
and data-dependent. rithmically spaced grid of 50 points frorr0~* to 10%. For the bias-

shifting method we searched over a uniform grid of the parameter
v of 50 points. For th€v-SVM methods we consideredsa8 x 50
regular grid of(vy,v_) € [0,1]%

For each permutation of each dataset we ran our algorithms on
the training data and estimated the false alarm and miss rates us-
ing the test data. Table 1 reports the average false alarm and miss
rates over all 100 permutations, along with standard deviations. For

3.4. Windowing the estimated errors

The observation about the smoothnes®pfand Py, as functions of
(v4+,v-) leads to another heuristic improvement in all of our meth-

ods. For the full grid search ovér.,, v—), after (istimatigg the error each permutation we also computed the performance me&sanel

at each point on the grid, we low-pass filter béth and P witha e show the median values in the table. The table also reports the
Gaussian window. This effectively reduces the variance of the errogyerage training time of each algorithm. The methods compared
estimates. It is especially effective for high variance estimates likge pias-shifting with the-SVM (BS), balanced bias-shifting using
cross-validation.  Without windowing, some grid points will 00k {he 2,-SVM with v, = v_ (BBS), the2v-SVM with a full grid

much better than they actually are, due to chance variation. For cQearch ovefv.,v_) (GS), and thev-SVM with a coordinate de-
ordinate descent we window along lines in the grid, and for the biagcent search ove, »_) (CD). For each of the last two methods
shifting approach, we window the estimates acrossitigeid. As e also applied a smoothing window to the error estimates as de-

with the coordinate descent strategy, the ability to discretize the pasriped in Section 3.4. These two variants are indicated by a “W”.
rameter space of thzv-SVM with a uniform grid plays a key role

in justifying this heuristic. Ihttp://ida.first.fhg.de/projects/bench/
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Table 1. Average values oPr and Py (over 100 permutations of
each data set), the median NP error scéreand average running
times for the six tested methods. Here= 0.1. The tested methods
are bias-shifting (BS), balanced bias-shifting (BBS), andS¥M

resulting in poor average performance.

The more surprising result is that the full grid search (GS) per-
formed worse than the heuristics (WGS, CD, and WCD). Window-
ing consistently improved GS, and in general WGS exhibited the
best performance. Windowing did not seem to offer any benefit to

grid-search (GS), windowed grid search (WGS), coordinate désceD, but CD was remarkably competitive with WGS. Moreover, CD

(CD), and windowed coordinate descent (WCD).

Pr Py E Time(s)

BS .057+ .07 | .455+ .47 | .637 19

o | BBS | .089+.06 | .059+.15 | .077 32
S | GS .098+ .09 | .064+.09 | .127 898
2 | WGS | .087+.06 | .0324+ .05 | .051 898
| cb .084+ .06 | .039+ .05 | .066 55
WCD | .093+ .06 | .032+ .05 | .082 55

BS .086+ .09 | .553+ .39 | 1.000 58

BBS | .113+.10 | .368+ .33 | .681 66

5| Gs 1244 .06 | .219+.07 | .375 | 2801
2| WGS | .113+.05| .231+.07 | .326 | 2801
CD 1064+ .05 | .230+ .06 | .318 169
WCD | .110+ .05 | .231+.06 | .330 169

BS 000+ .00 | 1.00+ .00 | 1.000 45

_ | BBS | .078+ .23 | .910+ .24 | 1.000 83
§ GS 156+ .09 | .668+ .10 | 1.122| 2084
£ | WGS | .112+.06 | .689+ .10 | .821 2084
CD 114+ .06 | .683+.10 | .871 121
WCD | .119+ .06 | .678+ .10 | .906 121

BS 109+ .07 | .334+ .40 | .628 212

s | BBS | .142+.04 | .104+ .02 | .464 221
§ GS 114+ .03 | .120+ .02 | .255 | 9727
8 | WGS | .104+.02 | .124+ .02 | .160 9727
CD 1044 .02 | .125+.02 | .179 541
WCD | .106+ .03 | .124+ .02 | .198 541

The window size wa8 x 3 for GS andl x 3 for CD. The standard

is only 2 to 3 times slower than BS. Given the computational demand
of (W)GS, CD seems to be a reliable compromise of computing time
and performance.

This paper also contributed a theorem on the feasible parameter
set of the2v-SVM. This theorem is important for our algorithms be-
cause it allows us to discretize the parameter space via a uniform grid
in the unit square. This regular grid in turn underlies two heuristics
that gave us improved performance: the coordinate descent search
and the windowed error estimates.

The performance of classifiers was measured &gy) =
(1/a) max{Pr(f) — ,0} + Pa(f). Thus, accurate error esti-
mation is crucial to an algorithm’s success. If a learning rule re-
sults in an estimate®r < «, it stands a much better chance of
being competitive with respect to this measure, since errors in ex-
cess ofa are penalized heavily. In our algorithms we estimated er-
rors using LOOCYV, and selected parameters according to the rule
min{ Py (f) | Pr(f) < a}. Yetin several cases the final test esti-
mate of Pr was in excess af.. We did find some improvements in
error estimation by low-pass filtering the error estimates to remove
some of the high variance of LOOCV.

Future work on Neyman-Pearson classification should focus on
improved methods of error estimation. One possibility is to replace
LOOCYV with an error estimate with a negative bias, such as the boot-
strap zero estimator. Another is to train the classifier asigreally
some number’ < «. Yet this quickly enters the realm of ad hoc
fixes, and it may take some care to develop rules that perform well
across a variety of datasets.
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