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Abstract

In the Neyman-Pearson (NP) classification paradigm, the goal is to learn a classifier from labeled

training data such that the probability of a false negative is minimized while the probability of a false

positive is below a user-specified level α ∈ (0, 1). This work addresses the question of how to evaluate

and compare classifiers in the NP setting. Simply reporting false positives and false negatives leaves

some ambiguity about which classifier is best. Unlike conventional classification, however, there is no

natural performance measure for NP classification. We cannot reject classifiers whose false positive rate

exceeds α since, among other reasons, the false positive rate must be estimated from data and hence is

not known with certainty.

We propose two families of performance measures for evaluating and comparing classifiers and

suggest one criterion in particular for practical use. We then present general learning rules that satisfy

performance guarantees with respect to these criteria. As in conventional classification, the notion

of uniform convergence plays a central role, and leads to finite sample bounds, oracle inequalities,

consistency, and rates of convergence. The proposed performance measures are also applicable to the

problem of anomaly prediction.
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Performance measures for Neyman-Pearson

classification

I. INTRODUCTION

In the Neyman-Pearson (NP) classification paradigm, the goal is to learn a classifier from labeled

training data such that the probability (with respect to the true, unknown data distribution) of a false

negative is minimized while the probability of a false positive is below a user-specified level α ∈
(0, 1). Unlike classical NP hypothesis testing, NP classification does not assume knowledge of the class-

conditional densities, but only a finite sample of labeled observations.

This framework is an important alternative to other, more common approaches to classification that

seek to minimize the probability of error or expected Bayes’ cost. One advantage of the NP paradigm

is that in many important applications, such as disease classification or network intrusion detection,

it is more natural to specify a constraint on the false positive probability than to assign costs to the

different kinds of errors. A second and no less important advantage is that, unlike decision-theoretic

approaches, NP classification does not rely in any way on knowledge of a priori class probabilities. This

is extremely important in applications where the class frequencies in the training data do not accurately

reflect class frequencies in the larger population. For example, the frequencies of diseased and normal

patients at a research hospital, where training data might be gathered, in all likelihood do not reflect the

class frequencies in the population at large. In fact, it could probably be argued that most classification

problems of interest fit this description.

In this paper we consider the problem of evaluating and comparing classifiers in the NP context.

Suppose we train two classifiers (e.g., two support vector machines with different parameter settings)

and compute empirical estimates of the false positive and false negative probabilities for each. Given α,

which classifier should we choose? In some cases there may be an expert who can decide. But what if

no expert is available? Or, what if we want to compare two learning algorithms across several datasets?

Even if an expert is available, experts usually cost money or have limited time, and their decisions may

be subjective or prone to human error. It seems desirable to have an objective criterion for evaluating

and comparing the trained classifiers.

Before proceeding, let us briefly introduce some basic notations. Let f denote a classifier, and let

R0(f) and R1(f) denote the true false positive and false negative probabilities, respectively. Also let
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R̃0(f) and R̃1(f) denote estimates of R0(f) and R1(f) (e.g., based on an independent test sample).

Denote by f∗α the classifier that minimizes R1(f) subject to R0(f) ≤ α. This classifier is analogous to

the Bayes classifier in conventional classification. Finally, set βα = R1(f∗α).

The approach adopted in this paper is to employ a scalar quantity that reflects the performance of

a classifier and that can be estimated reliably. For example, in conventional classification, that scalar

quantity is usually taken to be the probability of misclassification. By “reflects the performance” we

mean, at the very least, that the global minimizer of the performance measure should be f∗α.

One candidate for such a performance measure is to assign a classifier f a “score” of R1(f) if

R0(f) ≤ α, and ∞ otherwise. This is clearly minimized by f∗α and it favors any classifier satisfying

the constraint to any classifier that does not. Although such a measure may be appropriate for classical

hypothesis testing, there are at least three reasons why it is impractical when learning from data.

First, learning rules produce classifiers from random training samples, and hence the false positive

rate of a classifier is itself a random quantity. The performance of an algorithm on one dataset may

not give a fair indication of its performance on others. This contrasts with conventional classification,

where the probability of error for an unfavorable training sample will at least be somewhat close to

the typical probability of error for that distribution. In terms of expectation, the expected “score” of a

learning rule will be infinite as long as there is some collection of training samples (that occurs with

nonzero probability) for which R0(f) > α. It seems preferable for a performance measure to show more

leniency to violations of the false positive constraint so that “rare” training samples do not mislead us

about a learning rule’s typical performance.

Second, it is not possible to estimate the performance from data precisely. Estimates of R0(f) and

R1(f) are based on random data and thus will have some chance error. It is generally impossible to be

certain whether a given classifier does or does not satisfy the false positive constraint. In fact, suppose

R̃0(f) and R̃1(f) are estimates based on an independent test sample. If we estimate the “score” of f

with R̃1(f) when R̃0(f) ≤ α and with ∞ otherwise, then the bias of this estimate is infinite whenever

0 < R0(f) ≤ α.

Third, many practitioners would be content to have the false positive rate slightly exceed the constraint

if the decrease in the false negative rate is substantial. In other words, it might be nice to explore a small

region along the receiver operating characteristic in the vicinity of α. Unlike cost-sensitive classification,

however, which also allows trading off one error for another, we still require an operating point near α.

To alleviate these problems we could instead measure performance with cIR0(f)>α + R1(f), where

c > 1 and I is an indicator. Yet the same three arguments used above for the case c = ∞ still apply. For
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example, suppose we estimate this quantity with a plug-in estimate based on an independent test sample.

This estimate has a very large bias when the true R0 is close to α, even for large test sample sizes. In

fact, if R0(f) = α, the bias does not tend to zero as the test sample size increases.

In summary, indicator function-based performance measures just discussed are sufficient for theoretical

purposes, but their empirical counterparts are not. A good performance measure for NP classification

should not reject outright a classifier that appears to violate the false positive constraint. Such a violation

may be (1) the result of a rare training sample on which an otherwise good learning rule performs poorly,

(2) the result of chance error in estimating the false positive rate, and (3) acceptable to a practitioner.

Another possibility, which does show some leniency to classifiers violating the false positive constraint,

is to measure performance with |R0(f) − α| + |R1(f) − βα| or some other “distance” in the (R0, R1)

plane. Yet this kind of measure too has drawbacks. It requires knowledge of βα which is unknown, and

hence the distance cannot be estimated. In addition, it penalizes classifiers for having R0(f) < α or

R1(f) < βα, which seems unreasonable.

In addition to the question of how to measure performance in NP classification, this paper addresses

a second question that follows naturally from the first: Having settled on a performance criterion, is it

possible to design a learning rule tailored to that criterion?

Previous work on NP classification has not dealt with either of these two questions. Both Cannon,

Howse, Hush, and Scovel [1] and Scott and Nowak [2] prove generalization error bounds for learning

rules f̂α based on (penalized) empirical risk minimization. Yet these bounds are of the form “with high

probability, R0(f̂α) is close to α and R1(f̂α) is close to its optimal value.” The false positive and false

negative probabilities are treated separately, and combining them into a single performance measure is

not discussed. Section II-D offers a more extensive comparison with these works and with area under

the ROC curve (AUC) methodology.

In Section II we propose two families of criteria for evaluating classifiers in the NP paradigm, and

present learning rules that satisfy performance guarantees with respect to these criteria. The rules are

given by (in one case constrained) penalized empirical risk minimization. The uniform convergence of

certain empirical processes is seen to play a key role in bounding their performance, as in the theory

of statistical learning for conventional classification [3], [4]. Uniform convergence in turn leads to finite

sample bounds, oracle inequalities, consistency, and rates of convergence.

Section III gives examples of complexity penalties for NP classification, which are key ingredients in

the proposed learning rules. Generalizations of one of the oracle inequalities are given in Section IV.

Some practical aspects of estimating our performance measures from data are presented in Section V.
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Section VI discusses extensions and applications of the main results, including convex upper bounds and

anomaly prediction. The proofs are gathered in an appendix.

II. MAIN RESULTS

To formalize the problem, let X ⊂ Rd be a space of possible patterns and let X be a random

variable on X corresponding to an observed pattern. Let P0 and P1 be two distributions of X . Let (x, y)

denote a realization of X , where y = 0, 1 indicates the data generating distribution Py. A classifier is a

Borel measurable function f : X → {0, 1}. If f is a classifier and (x, y) a realization, a false positive

occurs when f(x) = 1 but y = 0. Similarly, a false negative occurs when f(x) = 0 but y = 1. Let

R0(f) = P0(f(X) = 1) and R1(f) = P1(f(X) = 0) denote the false positive and false negative

probabilities (sometimes called rates) of f .

Let α ∈ (0, 1). In Neyman-Pearson classification one seeks the classifier f∗α for which R1(f) is

minimized subject to R0(f) ≤ α. Throughout this work we assume

A1 X has class-conditional Lebesgue densities h0 and h1.

A2 For each λ > 0, P0(h1(X) = λh0(X)) = P1(h1(X) = λh0(X)) = 0.

Under these assumptions, the Neyman-Pearson lemma [5] states that f∗α is given by a likelihood ratio

test (LRT): f∗α = Ih1(x)>λαh0(x), where λα is the unique number such that
∫
h1(x)>λαh0(x) h0(x) dx =

α. Assumption A2 guarantees the existence of λα and also implies that we may also write f∗α =

Ih1(x)≥λαh0(x). Recall βα = R1(f∗α) =
∫
h1(x)<λαh0(x) h1(x) dx denotes the false negative rate of f∗α.

We adopt A1 and A2 because they ensure that the receiver operating characteristic (ROC) of the LRT

is concave. This allows us to bound βα − βα′ in terms of α − α′ using the slope of the ROC at α. In

particular, we have the following.

Lemma 1 If α′ > α, then βα − βα′ ≤ λα(α′ − α). If α′ < α, then βα′ − βα ≥ λα(α− α′).

A geometric proof of the lemma comes from considering properties of the ROC of f∗α [6]. In particular,

the ROC of f∗α is concave and has slope λα at α. The lemma follows from these properties and the

realization that (βα − βα′)/(α′ − α) is the slope of the line passing through the ROC at α and α′. See

Fig. 1. An analytic proof of the lemma is given in the appendix.

Without assumptions A1 and A2 (for example, when X is discrete) the ROC of the LRT might have

discontinuities and could be non-concave. One theoretical fix is the introduction of randomized classifiers

that choose between two non-randomized classifiers based on a coin flip. This guarantees that the ROC

of f∗α is concave for general distributions. However, such classifiers are not amenable to our analysis or
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Fig. 1. Lemma 1 can be understood in terms of properties of the ROC of f∗α. The solid line is the ROC of a hypothetical
f∗α. The dashed line passes through the ROC at α = 0.1 and α′ = 0.3 and has slope (βα − βα′)/(α′ − α). The dotted line is
tangent to the ROC at α = 0.1 and has slope λα. Lemma 1 follows by concavity of the ROC.

require computationally implausible learning rules. That said, the results stated later in this section do

extend to more general distributions, provided that α is such that R0(f∗α) = α, i.e., the optimal classifier

satisfies the constraint with equality. In this special case, randomized classifiers are not needed.

Let S = {(X1, Y1), . . . , (Xn, Yn)} denote a training sample. In NP classification, two sampling plans

may be considered [1]. Under the prospective sampling plan, the numbers n0 and n1 of examples from

each class are not known until the sample is gathered, and the data are iid realizations of some joint

distribution P on (X,Y ). Under the retrospective sampling plan, n0 and n1 are known a priori, and the

data are iid realizations of their respective class-conditional distributions. The difference is that in the

former case, n0 and n1 are random, whereas in the latter case they are non-random. We will see later

that, in the presented framework, the philosophical differences between the two sampling plans can be

ignored.

The empirical errors with respect to S are defined by R̂0(f) = (1/n0)
∑

i:Yi=0 If(Xi)=1 and R̂1(f) =

(1/n1)
∑

i:Yi=1 If(Xi)=0. A learning rule maps training samples to classifiers. We denote a learning rule

by f̂α, and we also use the same notation to denote the classifier returned when the training sample is

given.
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A. Evaluating classifiers

We propose two families of performance measures, each indexed by a parameter 0 < κ ≤ ∞. They

capture what will be referred to as the net NP error, or simply net error. The first is

Mκ(f) = κ (R0(f)− α)+ + (R1(f)− βα)+ , (1)

where (x)+ := max(x, 0). The second is

N κ(f) = κ (R0(f)− α)+ +R1(f)− βα. (2)

The parameter κ is a tradeoff parameter that controls the penalty for exceeding the constraint. We allow

κ = ∞, which corresponds to strict enforcement of the constraint, although as argued in the introduction,

this case has questionable value. Note that κ is different from a “cost” parameter used in cost-sensitive

classification. If the (·)+ operators were not present, these criteria would be like cost-sensitive risks. Yet

with the (·)+ operators, κ only penalizes false positive rates in excess of α.

Each of the two families of error measures has its pros and cons. The first family has the desirable

property that, for any value of κ, it is minimized by the optimal classifier f∗α. Yet it also has a serious

drawback: it depends on βα, which depends on the unknown distribution. Thus, it is useful for theoretical

analysis and simulation studies, but it cannot be reliably estimated with real-world data.

For the second family the story is reversed. Even though βα appears, it is simply a constant additive

term that can be ignored for the purposes of minimization or comparison. Thus, reliable estimation (up

to the unknown constant) based on an independent test sample is possible. On the downside, minimizing

this net error does not result in f∗α for all values of κ. If κ is small, and since (in contrast to the first

family) it pays to take R1(f) below βα, the minimizing classifier might have R0(f) > α. The following

result tells us which values of κ are meaningful.

Proposition 1 If κ ≥ λα then N κ(f∗α) ≤ N κ(f) for all classifiers f .

Proof: It suffices to consider only the classifiers f∗α′ , α
′ ∈ [0, 1], since each of these has optimal

false negative rate for false positive rate α′. There are two cases. If α′ < α, then N κ(f∗α)−N κ(f∗α′) =

βα − βα′ ≤ 0. If α′ > α, then by Lemma 1 we have

N κ(f∗α)−N κ(f∗α′) = κ(α− α′) + (βα − βα′)

≤ κ(α− α′) + λα(α′ − α)
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= (λα − κ)(α′ − α)

≤ 0

since κ ≥ λα.

Since λα is in general unknown, an upper bound on λα is needed. The following lemma is one (perhaps

crude) possibility.

Lemma 2 λα ≤ 1/α.

Proof: Taking α′ = 0 in Lemma 1 we have λα ≤ (1− βα)/α ≤ 1/α.

Thus, if κ ≥ 1/α, the criterion in (2) is meaningful (it is minimized by the target classifier f∗α) and it

can be estimated from data. For practical applications we suggest the NP score

E(f) =
1
α

(R0(f)− α)+ +R1(f) (3)

as the criterion for evaluation and comparison of NP classifiers. In addition to being minimized by f∗α,

it can be accurately estimated from a test sample (see Section V-A for details). Furthermore, it has the

appealing property that as α draws closer to 0, a stiffer penalty is exacted on classifiers that violate

the constraint. This makes sense because exceeding α by 0.01, for example, is much more significant

when α = 0.01 than when α = 0.1. Said another way, the NP score in (3) penalizes the relative error

(R0(f)− α)/α.

B. Designing classifiers

Having addressed the first of our motivating questions, we now turn to the second. How can one learn

with respect to the error measures put forth above? More precisely, are there learning rules that obey

performance guarantees when performance is measured in terms of these error measures?

The learning problem here is considerably different from decision-theoretic statistical estimation prob-

lems such as conventional classification. There, one seeks to optimize an expected loss, where the loss

measures the cost of making an error. The (·)+ operator is also a kind of loss function, but in NP

classification it operates after the expectation with respect to the random pattern.

We propose two general learning rules whose net NP errors are governed by oracle inequalities. Before

introducing the rules, the following definition is needed. Let F be a set of classifiers, and let φ0 and φ1

be functions of f ∈ F , the training sample S, and a confidence parameter δ.
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Definition 1 We say (φ0, φ1) are a (distribution free) complexity penalty pair for F if and only if for

all distributions and all δ0, δ1 ∈ (0, 1),

PS

({
S : sup

f∈F

(∣∣∣R0(f)− R̂0(f)
∣∣∣− φ0(f, S, δ0)

)
> 0

})
≤ δ0

and

PS

({
S : sup

f∈F

(∣∣∣R1(f)− R̂1(f)
∣∣∣− φ1(f, S, δ1)

)
> 0

})
≤ δ1,

where PS denotes the probability with respect to the appropriate (prospective or retrospective) sampling

plan.

Thus, φ0 and φ1 control the rate of uniform convergence of the class-conditional frequencies to the true

class-conditional probabilities. In the results below we do not specify the sampling plan explicitly. Rather,

we assume that (φ0, φ1) are a complexity penalty pair with respect to whatever the sampling plan happens

to be. Examples of complexity penalties for NP classification under both sampling plans are discussed

in Section III.

Both learning rules that we propose assume a given collection F of candidate classifiers, as well as

a complexity penalty pair for F . Each rule has a separate formulation for the case κ = ∞, and these

formulations happen to coincide, so there are three rules total. For now we consider only the first two;

the case κ = ∞ is treated in Section IV-B. Each learning rule also has two parameters. The first, ν ∈ R,

controls the tradeoff between false positives and false negatives. The second, γ > 0, is not a tuning

parameter; for any given ν, κ, and α, the results below specify the appropriate choice of γ. It is treated

as a variable to simplify the presentation.

The first learning rule, based on a constrained minimization and referred to as NP-CON, is

f̂ c
α = arg min

f∈ bFν
α

R̂1(f) + φ1(f, S, δ1) + γφ0(f, S, δ0). (4)

Here we define F̂ν
α = {f ∈ F : R̂0(f) ≤ α + νφ0(f, S, δ0)}. The following result uses the notation

Fα = {f ∈ F : R0(f) ≤ α}.

Theorem 1 Assume (φ0, φ1) are a complexity penalty pair for F . Fix 0 < κ < ∞. Let δ0, δ1 > 0 and

let f̂ c
α be the rule NP-CON (4) with ν = 1 and γ ≥ 2(κ+ λα). Then

Mκ(f̂ c
α) ≤ inf

f∈Fα

{
γφ0(f, S, δ0) +R1(f)− βα + 2φ1(f, S, δ1)

}
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with probability at least 1− (δ0 + δ1) with respect to the draw of the training sample S. Moreover, the

same result holds if we replace Mκ by N κ, where now it suffices to have γ ≥ 2κ.

Brief remarks:

• The result only holds for ν = 1. In Section IV we present a more general oracle inequality for this

rule that applies for all values of ν.

• Recall that γ is not a free parameter. We see that the appropriate choice of γ is 2(κ + λα) if

performance is to be measured by Mκ, and 2κ if measured by N κ. Since λα is usually unknown,

it may be replaced by the upper bound 1/α of Lemma 2.

The upper bound of Theorem 1 is called an oracle bound. The second term is the (deterministic)

approximation error for the false negative probability. It is the amount of “excess false negative probabil-

ity” that results from a particular classifier satisfying the constraint. The first and third terms bound the

(stochastic) estimation errors of the false positive and false negative probabilities, respectively. In other

words, these terms bound the deviation between true and empirical error.

In general, the approximation and estimation errors will vary in magnitude depending on the unknown

distribution. The oracle inequality says that f̂ c
α performs about as well as the classifier selected by an

oracle to optimize the tradeoff between these error terms. This implies an adaptive rate of convergence,

as discussed in Section II-C below.

The second learning rule, based on an unconstrained minimization and referred to as NP-UNC, is

f̂u
α = arg min

f∈F
κ

(
R̂0(f)− α− νφ0(f, S, δ0)

)
+

+ γφ0(f, S, δ0) + R̂1(f) + φ1(f, S, δ1) (5)

This rules obeys its own oracle inequality.

Theorem 2 Assume (φ0, φ1) are a complexity penalty pair. Let δ0, δ1 > 0 and let f̂u
α be as in (5) with

ν ∈ R and γ = κ(1 + ν). Then

N κ(f̂u
α) ≤ inf

f∈F

{
κ (R0(f)− α)+ + 2κφ0(f, S, δ0) +R1(f)− βα + 2φ1(f, S, δ1)

}

with probability at least 1− (δ0 + δ1) with respect to the draw of S.

The two rules and corresponding bounds each have their pros and cons. Theorem 2 applies for all

values of ν, whereas Theorem 1 assumes ν = 1. A generalization of Theorem 1 is given in Section

IV, although this bound is somewhat less appealing than the form in Theorem 1. Even if we compare

Theorem 1 and Theorem 2 for ν = 1, the inf in Theorem 2 is over all of F . We can specialize to Fα and
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recover the exact bound of Theorem 1. Thus the bound in Theorem 2 is at least as small as the bound

in Theorem 1.

On the other hand, NP-CON has the advantage that Theorem 1 applies to both Mκ and N κ, whereas

Theorem 2 only applies to N κ. Furthermore, as shall be made precise in Theorem 3 below, NP-CON

enjoys a guaranteed bound on its false positive rate. Moreover, this bound applies to all ν, and when

ν = −1, the desired false positive constraint can be guaranteed with high probability. With NP-UNC,

the ν parameter offers some control over the excess false positive rate, but no bound is known.

C. Consistency and rates of convergence

The finite sample bounds presented in this paper yield asymptotic results. Strong consistency follows

easily via the Borel-Cantelli lemma, provided the class F grows with n in a suitable way. For example,

consistency for VC classes or histograms holds under the conditions described in [2].

Rates of convergence also follow naturally.1 For example, if the optimal classifier f∗α belongs to a set

with finite VC dimension, and if the learning rules (with the corresponding VC penalty) are applied to

that VC class, the resulting net NP error decays to zero like O(
√

logn/n), which is within a log factor

of the standard 1/
√
n rate for VC classes (see [3], ch. 14).

More significantly, our oracle bounds give adaptive rates. Faster convergence is automatically achieved

when the distribution is nice in some sense. For example, consider a learning rule based on F = ∪K
k=1Fk,

where each Fk is a VC class with VC dimension ∝ k (for example). Consider the class of distributions

such that

R1(fk)− βα ≈ k−s

where

fk = arg min
f∈Fk

α

R1(f)

and s > 0. Since the VC penalties are on the order of
√
k logn/n, the oracle inequality (in Theorem 1,

for example) is minimized by choosing k ∝ (n/ log n)1/(2s+1), which yields a rate of (log n/n)s/(2s+1).

Clearly the optimal choice of k depends on s, which is unknown a priori. Yet because of the oracle

inequality, our learning rules perform as if they knew s.

1“Rate” here refers to the decay of the performance measure to zero as the sample size increases, as opposed to false
negative/positive “rates,” which are just probabilities.
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D. Relation to previous work

The theoretical foundations of NP classification were laid in [1] and [2]. Cannon et al. [1] consider

learning a classifier from a fixed VC class F [3]. They study the rule

f̂α = arg min
f∈F

{R̂1(f) | R̂0(f) ≤ α+ ε0}. (6)

Under the retrospective sampling plan, they are able to show that with high probability (going to one

exponentially fast as n0, n1 →∞),

R0(f̂α) ≤ α+ 2ε0 and R1(f̂α) ≤ R1(fF ,α) + 2ε1,

for any ε0, ε1 > 0, and where fF ,α = arg minf∈F{R1(f) | R0(f) ≤ α}. Under the prospective sampling

plan, they obtain much looser bounds that are impractical for not only their looseness but also their

dependence on the unknown a priori class probabilities.

Scott and Nowak [2] show that if the tolerances ε0 and ε1 are chosen in a certain way as functions of

n0 and n1, then f̂α obeys the same performance guarantee under the prospective sampling plan as under

the retrospective sampling plan. They also extend the analysis to learning from one of several candidate

VC classes F1, . . . ,FK . For appropriate choices of ε0(k), ε1(k), k = 1, . . . ,K, they consider the rule

that first computes f̂k
α according to (6) for each k, and then selects

f̂α = arg min{R̂1(f) + ε1(k) | f = f̂k
α, k = 1, . . . ,K}.

Here ε0(k) and ε1(k) are essentially a complexity penalty pair. Under both prospective and retrospective

sampling plans, it is shown that with high probability,

R0(f̂α) ≤ α+ 2ε0(k̂) and R1(f̂α) ≤ min
k=1,...,K

(R1(fF ,α) + 2ε1(k)) (7)

where k̂ is the index of the class of the selected classifier. This might be called a semi-oracle bound,

where the approximation and stochastic components of the excess false negative probability are balanced,

but the excess false negative probability is not balanced with anything.

The present work improves on this earlier work in three respects. First, we allow for complexity

penalties that are data-dependent or classifier-dependent, as opposed to restricting to VC or finite classes.

Second, we balance the excess false positive rate with the excess false negative rate. The result in (7)

balances the approximation and stochastic components of the excess false negative probability, but the

excess false positive probability is not balanced with these two terms. Third, our rules have guaranteed
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performance with respect to the criteria proposed earlier.

The Neyman-Pearson criterion may also be contrasted with receiver operating characteristic (ROC)

methodology. The area under the ROC curve (AUC) is a scalar performance measure for classification

that, like NP, is insensitive to prior class probabilities and misclassification costs. However, the NP

criterion produces a specific classifier while the AUC criterion yields a family of classifiers. In particular,

maximizing the AUC selects a family of classifiers from among several families, where each family

is typically generated by varying a threshold (or some other parameter) in an algorithm to trace out

an ROC. Numerous studies indicate the advantages of AUC maximization over misclassification rate

minimization, even when the final objective is a small misclassification rate [7], [8], [9], [10]. However,

while the AUC is useful for selecting a family of classifiers, it does not select a specific classifier from

within the optimal family, which is the ultimate goal. Nor is the AUC a relevant performance measure

for evaluating individual classifiers designed to operate near a certain point in ROC space.

The partial AUC [11], [12] is an alternative criterion that is closer in spirit to NP in that it targets a

specific region of ROC space. Still, it is not viable for evaluating individual classifiers since it requires

the ROC to be at least partially traced out. Furthermore, the endpoints defining the “partial area” are

somewhat subjective.

III. COMPLEXITY PENALTIES FOR NP CLASSIFICATION

In this section we give several examples of complexity penalty pairs (φ0, φ1) under both retrospective

and prospective sampling plans. The penalties have well known counterparts in conventional classification.

Penalties under retrospective sampling are essentially complexity penalties for classes of sets, and are

closely related to concentration of measure inequalities. Furthermore, we show that a complexity penalty

pair under the retrospective sampling plan is also a complexity penalty pair under prospective sampling.

Thus, it is not necessary to be concerned with the philosophical differences between the two sampling

plans.

A. Penalties under the retrospective sampling plan

Partition the training sample S into S0 and S1 according to class. Suppose there are ny samples of

class y = 0, 1. Under the retrospective sampling plan, (φ0, φ1) is a complexity penalty pair if for all

δy ∈ (0, 1),

Pny
y

({
Sy : sup

f∈F

(∣∣∣Ry(f)− R̂y(f)
∣∣∣− φy(f, Sy, δy)

)
> 0

})
≤ δy,
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y = 0, 1. Thus it suffices to choose φ0 and φ1 independently. Furthermore, the necessary condition above

can be rephrased in terms of complexity penalties for classes of sets. The following definition was put

forth in [13].

Definition 2 Let G be a collection of measurable subsets of X . Given a distribution Q on X , let T =

{X1, . . . , Xm} denote an iid sample from Q. We say φ is a (distribution free) complexity penalty for G
if and only if for all distributions Q and all δ ∈ (0, 1),

QT

({
T : sup

G∈G

(∣∣∣Q(G)− Q̂(G)
∣∣∣− φ(G,T, δ)

)
> 0

})
≤ δ.

Here Q̂(G) = (1/m)
∑m

i=1 IXi∈G is the empirical probability of G.

Let Gy be the collection of all sets of the form Gy
f = {x : f(x) = 1 − y} ranging over f ∈ F . If φy

is a complexity penalty for the class of sets Gy, y = 0, 1, then (φ0, φ1) is a complexity penalty pair

according to Definition 1. When applying Definition 2, we take Q = Py, T = Sy, m = ny, δ = δy, and

φy(f, Sy, δy) = φ(Gy
f , T, δ). In summary, a complexity penalty pair for NP classification is nothing more

than a pair of penalties for sets.

Several examples of complexity penalties for sets are given in [13]. We briefly recall some basic

examples.

1) VC penalty: Suppose F has VC dimension 2 ≤ V <∞. Then Gy also has VC dimension V [3].

Let G be either G0 or G1. According to one version of the VC inequality [3], for any ε > 0 and

for any distribution Q,

QT

(
sup
G∈G

∣∣∣Q(G)− Q̂(G)
∣∣∣ > ε

)
≤ 8mV e−mε2/32.

Thus,

φ(G,T, δ) =

√
32
V logm+ log(8/δ)

m

defines a complexity penalty for G. The reader is reminded VC penalties were originally introduced

as penalties for sets [14].

2) Occam’s Razor penalty: Suppose F is countable and let {πk}k≥1 be a prior for F : πk ≥ 0 and
∑

k πk = 1. Let G be either G0 or G1. By Chernoff’s bound [15], for any fixed Gk ∈ G and any

ε > 0 we have

QT

(∣∣∣Q(Gk)− Q̂(Gk)
∣∣∣ >

√
log(1/πk) + log(2/δ)

2m

)
≤ πkδ.
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By the union bound

φ(G,T, δ) =

√
log(1/πk) + log(2/δ)

2m

defines a complexity penalty for G.

3) Rademacher penalty: Let G be either G0 or G1, and assume that G satisfies the property that

G ∈ G ⇒ G ∈ G, where G denotes the complement of G. Let σ1, . . . , σn be Rademacher random

variables, i.e., independent random variables taking on the values 1 and -1 with equal probability.

Denote Q̂(σi)(G) = 1
n

∑n
i=1 σiIXi∈G. Define the conditional Rademacher average

ρ̂(G, T ) = E(σi)

[
sup
G∈G

Q̂(σi)(G)
]
,

where the expectation is with respect the Rademacher random variables. As discussed in [13],

φ(G,T, δ) = 2ρ̂(G, T ) +

√
2 log(2/δ)

m

defines a complexity penalty for G.

4) Union penalty: Suppose F = ∪K
k=1Fk, where perhaps K = ∞, and (φk

0, φ
k
1) is a complexity

penalty pair for each k. Let {πk}k≥1 be a prior. Then

φy(f, Sy, δy) = φk
y(f, Sy, δyπ

k)

defines a complexity penalty pair for F , where on the right hand side k is such that f ∈ Fk.

B. Penalties under the prospective sampling plan

The definition of complexity penalty is such that a simple conditioning argument gives us penalties

under the prospective sampling plan for free.

Proposition 2 If (φ0, φ1) are a complexity penalty pair for F under the retrospective sampling plan,

then they are also a complexity penalty pair for F under the prospective sampling plan.

Proof: Define the event

Ω0 =

{
S : sup

f∈F

(∣∣∣R0(f)− R̂0(f)
∣∣∣− φ0(f, S, δ0)

)
> 0

}
.
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By the law of total probability we have

PS(Ω0) =
n∑

m=0

PS(S ∈ Ω0 |n0 = m)PS(n0 = m)

≤
n∑

m=0

δ0PS(n0 = m)

= δ0.

A similar argument applies to φ1.

IV. GENERALIZATIONS OF THEOREM 1

We present two generalizations of Theorem 1. The first extends NP-CON to the case ν ≥ −1, while

the second extends both NP-CON and NP-UNC to the case κ = ∞.

A. NP-CON with ν ≥ −1

Theorem 1 is a special case of the following result. This more general result was deferred until now

because its interpretation when ν 6= 1 is somewhat less transparent. Introduce the notation Fν
α = {f ∈

F : R0(f) ≤ α− (1− ν)φ0(f, S, δ0)}. Note that F1
α coincides with Fα which was introduced with the

statement of Theorem 1.

Theorem 3 Let (φ0, φ1) be a complexity penalty pair, and let δ0, δ1 > 0. Define the oracle bound

B(F , S, ν, γ, δ0, δ1) = inf
f∈Fν

α

{
γφ0(f, S, δ0) +R1(f)− βα + 2φ1(f, S, δ1)

}
.

Let f̂ c
α be as in (4) with ν ≥ −1. If γ ≥ (κ+ λα)(1 + ν), then

R0(f̂ c
α) ≤ α+ (1 + ν)φ0(f̂ c

α, S, δ0)

and

Mκ(f̂ c
α) ≤ B(F , S, ν, γ, δ0, δ1)

with probability at least 1 − (δ0 + δ1) with respect to the draw of S. The same statement holds if we

replace Mκ by N κ, where now it suffices to take γ ≥ κ(1 + ν).

The interpretation of the oracle when ν 6= 1 is essentially the same as the case ν = 1. To gain some

insight, assume that F = ∪K
k=1Fk, where φ0 and φ1 are constant on each Fk. That is, for any S,
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φ0(f, S, δ0) = εk0 and φ1(f, S, δ1) = εk1 for f ∈ Fk. This happens, for example, when F is a union of

VC classes.

Further assume that the approximation error of the false negative probability decays (as a function of

k) at a rate that is independent of α. Formally, define

βk
α = inf

f∈Fk

R0(f)≤α

R1(f).

Assume there exist constants c, c > 0 and a function τk tending to zero such that, for all α ∈ (0, 1) and

all k,

cτk ≤ βk
α − βα ≤ cτk.

Under these assumptions, and denoting α(k, ν) = α− (1− ν)εk0 , we have

B(F , S, ν, γ, δ0, δ1) = min
1≤k≤K

[
βk

α(k,ν) − βα + 2εk1 + γεk0

]
.

By Lemma 1,

βk
α(k,ν) − βα = βk

α(k,ν) − βα(k,ν) + βα(k,ν) − βα

≤ cτk + λα(k,ν)(1− ν)εk0.

Using τk ≤ 1
c (β

k
α − βα), and introducing C = (c/c) and Ck = γ + λα(k, ν)(1− ν), we conclude

B(F , S, ν, γ, δ0, δ1) ≤ min
1≤k≤K

[
C(βk

α − βα) + 2εk1 + Ckε
k
0

]

= min
1≤k≤K

[
C inf

f∈Fk
α

(R1(f)− βα) + 2εk1 + Ckε
k
0

]
.

Thus, up to constants, the oracle bound when ν 6= 1 has the same interpretation as when ν = 1.

B. Absolute certainty: κ = ∞

Both NP-CON and NP-UNC have extensions, which happen to coincide, to the case κ = ∞. The basic

idea is to take ν = −1 and set γ = 0 in Equations (4) or (5).

Consider the learning rule

f̂a
α = arg min

f∈ bF−1
α

R̂1(f) + φ1(f, S, δ1). (8)

Taking ν = −1 and set γ = 0 in the proof of Theorem 3 gives the following.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. Y, NOVEMBER 2005 17

Corollary 1 Let (φ0, φ1) be a complexity penalty pair, and let δ0, δ1 > 0. Let f̂a
α be as in (8). Then

R0(f̂a
α) ≤ α

and

R1(f̂a
α)− βα ≤ inf

f∈F−1
α

{
R1(f)− βα + 2φ1(f, S, δ1)

}

with probability at least 1− (δ0 + δ1) with respect to the draw of S.

The interpretation of the oracle bound in this case is the same as for Theorem 3.

V. PRACTICAL MATTERS

The NP score

Eκ(f) = κ (R0(f)− α)+ +R1(f),

κ ≥ 1/α, is envisioned not only as a theoretical tool but a performance criterion for the evaluation of

NP learning algorithms with real data. This section examines some practical aspects of working with this

error quantity.

A. Error estimation

Suppose we are given a classifier f and a test sample S̃ (independent of the training sample). How

should we estimate the error Eκ(f) = κ (R0(f)− α)+ + R1(f)? Our proposal is to do the obvious:

compute the sample-based frequencies R̃0(f) and R̃1(f) and plug in to obtain the estimate

Ẽκ(f) = κ
(
R̃0(f)− α

)
+

+ R̃1(f). (9)

As seen below, this estimator implements the maximum likelihood principle and, although biased, it has

a smaller mean squared error (MSE) than if the (·)+ operator was not present.

Let us recast the problem in more general terms. Consider the problem of estimating θ = θ0 + θ1,

where θ0 = κ (p0 − α)+ and θ1 = p1, and p0 and p1 are the success probabilities of two Bernoulli trials.

We observe ny outcomes of the respective Bernoulli trials, of which ky are assumed to be successes,

y = 0, 1. Moreover, k0 and k1 are independent.

The maximum likelihood estimate of θ is κ (k0/n0 − α)+ + k1/n1. This is seen as follows. Since k0

and k1 are independent, the MLE of θ is the sum of the MLE’s of θ0 and θ1. Clearly k1/n1 is the MLE
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Fig. 2. (a) The bias of the MLE of (R0(f)− α)+ as a function of R0(f). Here α = 0.1 and n0 = 100. (b) The mean
squared error (solid line) of the MLE of (R0(f)− α)+ as a function of R0(f). Here α = 0.1 and n0 = 100. The dashed line
represents the MSE the MLE of R0(f), for comparison.

of θ1. The MLE of p0 is also clearly k0/n0. Since θ1 is simply a transformation of the parameter p0, the

claim follows from the invariance property of the MLE.

Observe that θ̂0 = κ (k0/n0 − α)+ is biased. Fig. 2 (a) shows a plot of the bias of θ̂0 as a function

of p0 for α = 0.1 and n0 = 100. The bias is greatest when p0 is near α, although it is still quite small,

and this maximum bias will decrease for larger n0. Furthermore, when bias and variance are considered

together, it becomes apparent that the (·)+ operator actually makes θ easier to estimate. In particular, the

following is true.

Proposition 3

E[(θ̂ − θ)2] ≤ κ2 p0(1− p0)
n0

+
p1(1− p1)

n1
.

Note that the right-hand side is just the MSE of the standard unbiased estimator of κ(p0 −α) + p1. Fig.

2 (b) is a plot of the MSE of θ̂0 (with κ = 1 for simplicity) as a function of p0 together with a plot

of the MSE of the MLE of p0 − α. The two graphs coincide for p0 much larger than α, but the former

MSE is clearly less when p0 is near or below α.

B. Model selection

Because of the positive bias just discussed, if Eκ is used as a criterion for model/parameter selection

(for any learning algorithm, not necessarily the rules previously studied in this paper), the actual value

of R0(f̂α) will be less than the estimated value on average. Since having R0(f̂α) ≤ α is so important in



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. Y, NOVEMBER 2005 19

NP classification, this conservative bias may actually be helpful in designing the classifier. This remark

also applies to other error estimates, including those based on training data such as cross-validation or

bootstrap.

C. Confidence intervals

Hoeffding’s inequality and related concentration inequalities for bounded random variables may be

applied to Ẽκ(f) to obtain distribution free confidence intervals [3], [16]. If one is interested in a

confidence interval for R̃0(f) = p̂0, one may also appeal to the central limit theorem (CLT) and use the

standard error estimate
√
p̂0(1− p̂0)/n0. A common rule of thumb states that for the CLT approximation

to apply to the binomial bin(n0, p0) one needs n0p0 ≥ 5. If it can be assumed that p0 ≈ α, then this gives

a lower bound on the class zero test sample size n0. If α = 0.1, for example, than at least 5/α = 50

class zero test examples are need to apply the standard error-based confidence interval.

We now describe in detail one possibility for deriving a bootstrap error estimate and confidence intervals

based on the general principles laid out by Efron and Tibshirani [17]. Recall S denotes the observed

training sample of size n, and let S∗1, . . . , S∗B denote bootstrap samples, i.e., samples of size n obtained

by drawing points at random from S, with replacement. The goal is to obtain point and interval estimates

for E(f̂), where f̂ is derived from S according to some learning rule. Thus let f̂b denote the classifier

produced by the same learning rule but applied to the bootstrap sample S∗b, b = 1, . . . , B. The general

bootstrap principle suggests the error estimate

Ê0(f̂) :=
1
B

B∑

b=1

Ê0(f̂b),

where Ê0(f̂b) is the empirical error of f̂b evaluated on the original training sample. However, this naı̈ve

approach will be overly optimistic. As a correction, Efron and Tibshirani recommend estimating the bias

of this estimate with
1
B

B∑

b=1

[Ê0(f̂b)− Êb(f̂b)],

where Êb(f̂b) is the empirical error of f̂b evaluated on the b-th bootstrap sample. This yields the final

estimate

Ê(f̂) := Ê0(f̂) +
1
B

B∑

b=1

[Ê0(f̂b)− Êb(f̂b)]

=
1
B

B∑

b=1

[2Ê0(f̂b)− Êb(f̂b)].
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Furthermore, a confidence interval may be obtain based on the percentiles of the sorted bootstrap

values {2Ê0(f̂b) − Êb(f̂b)}B
b=1. In particular, a 100(1 − β) confidence interval results from the interval

whose endpoints are the β/2 and 1 − β/2 percentiles of the values {2Ê0(f̂b) − Êb(f̂b)}B
b=1. We remark

that other bootstrap approaches are possible, including other bias corrections. One may also construct

interval estimates of E(f̂) indirectly by first constructing interval estimates of the false positive and false

negative rates. This indirect approach will generally produce different estimates because of the nonlinear

relationship between E and the class-conditional errors.

VI. EXTENSIONS

In this concluding section we briefly discuss some extensions of our main results.

A. Criteria for Anomaly Prediction

The proposed error measures can be easily applied to the problem of evaluating and comparing set

estimates for anomaly prediction [18], [19]. In anomaly prediction, one is given training data from one

distribution, and the objective is to construct a set where data following this distribution tend to be

located. In one formulation, the goal is to construct a small region containing at least 100α% of the total

probability mass of the normal data, where α is set by the user.

Performance can be measured in at least two ways. In the minimum volume set paradigm [13], [20],

the objective is to find the set with minimum volume, where volume is calculated according to some

(user-specified) reference measure, such as Lebesgue. The performance is summarized in terms of the

volume of the estimate and the closeness of the mass of the estimate to α. A second approach measures

performance by counting false positives and false negatives on a new dataset that contains both normal

and abnormal data.

In both cases, there is a second measure that comes in to play, in addition to the data-generating

probability measure. Let us call these the inlier and outlier measures, Q0 and Q1. Then the problem

is equivalent to Neyman-Pearson classification at the false positive constraint 1 − α, where 1 − Q0

corresponds to the false positive probability and Q1 corresponds to the false negative probability. Thus,

the quantity
1

1− α
(α−Q0(G))+ + Q1(G)

is an objective criterion for comparing two set estimates. It is minimized by the set that is optimal with

respect to Q0 and Q1, can be estimated from test data, and places a stronger penalty on violations of

the mass constraint when α is larger.
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B. Convex upper bounds

Much attention has been paid lately to the minimization of differentiable convex upper bounds on

the probability of misclassification [21]. We briefly remark on a property that may be of interest when

attempting to apply this principle to NP classification. In particular, supposed that the non-differentiable

convex function (·)+ is replaced by the differentiable convex function

ψθ(x) =
1
θ

ln(1 + exp(θx)), θ > 0,

which majorizes (·)+ and tends to it in the limit as θ →∞. Consider the modified net NP error criterion

N κ
θ (f) = κψθ(R0(f)− α) +R1(f)− βα.

Is this error measure useful for NP classification? Is it minimized by f∗α for any κ? The answer is a

qualified yes.

Proposition 4 If κ = 2λα, then N κ
θ (f∗α) ≤ N κ

θ (f) for all classifiers f .

The problem of course is that λα is unknown in practice. Whereas before we only needed an upper

bound on λα, minimizing the modified error appears to require exact knowledge of λα. As a side note,

the factor of 2 occurs because it is equal to 1/ψ′θ(0). The derivative could easily be changed and the

factor would change accordingly, but knowledge of λα would still be required.

C. Scaling the penalties

In practice it may be desirable to scale the penalties φ0 and φ1 by arbitrary constants γ0, γ1 > 0.

Consider NP-CON for example and the net error Mκ. Theorem 1 holds when γ1 ≥ 1 and γ0 = γ ≥
2(κ+λα) If instead we allow γ0 and γ1 to be arbitrary, then Theorem 1 still holds but with an additional

constant

C =
(

max
{

2(κ+ λα)
γ0

,
1
γ1
, 1

})2

out in front. This fact follows easily by applying the elementary inequality

a0A0 + a1A1 +A2 ≤ max
{

1
a0
,

1
a1
, 1

}
(A0 +A1 +A2)

twice at appropriate places in the proof.

Similar remarks hold for the other oracle bounds. In conclusion, scaling the penalties (which can lead to

improved performance on real world data) only affects the oracle inequalities by constants and therefore
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does not change consistency properties or rates of convergence derived from them.

APPENDIX I

PROOFS

Recall that conditions A1 and A2 are assumed throughout.

A. Proof of Lemma 1

Set G0,α = {x : f∗α(x) = 0} and G1,α = G0,α = {x : f∗α(x) = 1}. Define G0,α′ and G1,α′ similarly.

Recall that h1(x) ≤ λαh0(x) on G0,α. We have

βα − βα′ =
∫

G0,α

h1(x)dx−
∫

G0,α′
h1(x)dx

=
∫

G0,α\G0,α′
h1(x)dx

≤ λα

∫

G0,α\G0,α′
h0(x)dx

= λα

∫

G1,α′\G1,α

h0(x)dx

= λα

(∫

G1,α′
h0(x)dx−

∫

G1,α

h0(x)dx

)

= λα(α′ − α).

This proves the first part of the lemma. The second part follows a similar argument.

B. Proofs of Oracle Inequalities

Given δ0, δ1 > 0, define

Ω0 =

{
S : sup

f∈F

(∣∣∣R0(f)− R̂0(f)
∣∣∣− φ0(f, S, δ0)

)
> 0

}

and

Ω1 =

{
S : sup

f∈F

(∣∣∣R1(f)− R̂1(f)
∣∣∣− φ1(f, S, δ1)

)
> 0

}
.

The basic strategy for proving the oracle inequalities is to show that they hold when S ∈ Ω0∩Ω1, which,

by Definition 1, occurs with probability at least 1− (δ0 + δ1). But first, a couple of lemmas.

Lemma 3 If S ∈ Ω0 and f ∈ F̂ν
α , then R0(f) ≤ α+ (1 + ν)φ0(f, S, δ0).
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Proof: This follows from R̂0(f) ≤ α+ νφ0(f, S, δ0) and the definition of Ω0.

Lemma 4 Let ν ≥ −1. If S ∈ Ω0 and f ∈ F̂ν
α, then βα −R1(f) ≤ λα(1 + ν)φ0(f, S, δ0).

Proof: Let S ∈ Ω0 and f ∈ F̂ν
α. Observe

R0(f) ≤ R̂0(f) + φ0(f, S, δ0) ≤ α+ (1 + ν)φ0(f, S, δ0) =: α′,

which implies R1(f) ≥ βα′ . By Lemma 1, we have

βα −R1(f) ≤ βα − βα′ ≤ λα(α′ − α) = λα(1 + ν)φ0(f, S, δ0).

C. Proof of Theorem 1

Assume S ∈ Ω0 ∩ Ω1. We consider three separate cases: (1) R1(f̂ c
α) < βα and R0(f̂ c

α) > α, (2)

R1(f̂ c
α) ≥ βα and R0(f̂ c

α) > α, and (3) R1(f̂ c
α) ≥ βα and R0(f̂ c

α) ≤ α. Note that the case in which both

R0(f̂ c
α) ≤ α and R1(f̂ c

α) < βα is impossible.

In the first case, we have

Mκ(f̂ c
α) = κ(R0(f̂ c

α)− α)

≤ κ(1 + ν)φ0(f̂ c
α, S, δ0) + βα −R1(f̂ c

α) +R1(f̂ c
α)− βα

≤ (κ+ λα)(1 + ν)φ0(f̂ c
α, S, δ0) +R1(f̂ c

α)− βα

≤ γφ0(f̂ c
α, S, δ0) + R̂1(f̂ c

α)− βα + φ1(f̂ c
α, S, δ1)

= inf
f∈ bFν

α

{
γφ0(f, S, δ0) + R̂1(f)− βα + φ1(f, S, δ1)

}

≤ inf
f∈ bFν

α

{γφ0(f, S, δ0) +R1(f)− βα + 2φ1(f, S, δ1)}

≤ inf
f∈Fν

α

{γφ0(f, S, δ0) +R1(f)− βα + 2φ1(f, S, δ1)} .

The first two inequalities follow from Lemmas 3 and 4. The next two inequalities follow from γ ≥
(κ+λα)(1+ν) and from S ∈ Ω1 (used twice). The final inequality follows from S ∈ Ω0, which implies

Fν
α ⊂ F̂ν

α .
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For the second case we have

Mκ(f̂ c
α) = κ(R0(f̂ c

α)− α) +R1(f̂ c
α)− βα

≤ κ(1 + ν)φ0(f̂ c
α, S, δ0) +R1(f̂ c

α)− βα

≤ γφ0(f̂ c
α, S, δ0) +R1(f̂ c

α)− βα.

Now proceed as in the first case.

For the third case, note

Mκ(f̂ c
α) = R1(f̂ c

α)− βα

≤ κ(1 + ν)φ0(f̂ c
α, S, δ0) +R1(f̂ c

α)− βα

and proceed as in the second case.

To prove the theorem for the net error N κ, the strategy above can be used but with a simplification.

The first case above need not be considered, which allows γ to be smaller.

D. Proof of Theorem 2

Below we use the elementary fact (x+ y)+ ≤ (x)+ + (y)+ for any x, y, which follows by convexity

of (·)+. Assume S ∈ Ω0 ∩ Ω1. Then

N κ(f̂u
α) = κ

(
R0(f̂u

α)− α
)

+
+R1(f̂u

α)− βα

≤ κ
(
R̂0(f̂u

α)− α+ φ0(f̂u
α , S, δ0)

)
+

+ R̂1(f̂u
α)− βα + φ1(f̂u

α , S, δ1)

≤ κ
(
R̂0(f̂u

α)− α− νφ0(f̂u
α , S, δ0)

)
+

+ κ(1 + ν)φ0(f̂u
α , S, δ0) + R̂1(f̂u

α)− βα + φ1(f̂u
α , S, δ1)

= inf
f∈F

{
κ

(
R̂0(f)− α− νφ0(f, S, δ0)

)
+

+ κ(1 + ν)φ0(f, S, δ0) + R̂1(f)− βα + φ1(f, S, δ1)
}

≤ inf
f∈F

{
κ (R0(f)− α)+ + 2κφ0(f, S, δ0) +R1(f)− βα + 2φ1(f, S, δ1)

}
.

E. Proof of Proposition 3

The MSE of the combined estimator θ̂ = θ̂0 + θ̂1 is

E[(θ̂ − θ)2] = E[(θ̂0 − θ0)2] + E[(θ̂1 − θ1)2] + E[(θ̂0 − θ0)(θ̂1 − θ1)]

= E[(θ̂0 − θ0)2] + E[(θ̂1 − θ1)2]
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where in the last step we use independence and unbiasedness of θ̂1. Thus, it suffices to bound the MSE’s

of θ̂0 and θ̂1 separately. It is well known that MSE(θ̂1) = p1(1− p1)/n1.

Writing out the definition of MSE we have

E[(θ̂0 − θ0)2] = κ2
n0∑

k=0

((
k

n0
− α

)

+

− (p0 − α)+

)2

bin(n0, p0, k)

≤ κ2
n0∑

k=0

((
k

n0
− p0

)

+

)2

bin(n0, p0, k)

≤ κ2
n0∑

k=0

(
k

n0
− p0

)2

bin(n0, p0, k)

= κ2 p0(1− p0)
n0

,

where in the second step we use the fact (a)+ − (b)+ ≤ (a− b)+. This concludes the proof.

F. Proof of Proposition 4

It suffices to consider only the classifiers f∗α′ , α
′ ∈ [0, 1], since each of these has optimal false negative

rate for false positive rate α′. There are two cases. If α′ < α, then

N κ
θ (f∗α)−N κ

θ (f∗α′) = κ(ψθ(0)− ψθ(α′ − α)) + (βα − βα′)

≤ κψ′θ(0)(α− α′) + λα(α′ − α)

= (λα − 1
2κ)(α

′ − α)

= 0,

where the inequality follows from the fact that ψ is convex and increasing, and from Lemma 1.

Similarly, if α′ > α, then

N κ(f∗α)−N κ(f∗α′) = κ(ψθ(0)− ψθ(α′ − α)) + (βα − βα′)

≤ κψ′θ(0)(α− α′) + λα(α′ − α)

= (λα − 1
2κ)(α

′ − α)

= 0.
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