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Abstract

Large, multivariate datasets from high-throughput instrumentation have become ubiquitous

in the sciences. Frequently, it is of interest to characterize the measurements in these datasets

by the extent to which they represent ‘nominal’ versus ‘contaminated’ instances. However,

often the nature of even the nominal patterns in the data are unknown and potentially quite

complex, making their explicit parametric modeling a daunting task. In this paper, we introduce

a nonparametric method for the simultaneous annotation of multivariate data (called MN-

SCAnn), by which one may produce an annotated ranking of the observations, indicating the

relative extent to which each may or may not be considered nominal, while making minimal

assumptions on the nature of the nominal distribution. In our framework each observation is

linked to a corresponding generalized quantile set and, implicitly adopting a hypothesis testing

perspective, each set is associated with a test, which in turn is accompanied by a certain false

discovery rate. The combination of generalized quantile set methods with false discovery rate

principles, in the context of contaminated data, is new, and estimation of the key underlying

quantities requires that a number of issues be addressed. We illustrate MN-SCAnn through

examples in two contexts: the pre-processing of flow cytometry data in bioinformatics, and the

detection of anomalous traffic patterns in Internet measurement studies.
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1 Introduction

High-throughput data collection has become a prominent measurement paradigm across the sci-

ences. Examples include DNA microarray technology and similar in biology, remote-sensing imaging

in geography and the earth sciences, computer network traffic monitoring in the Internet, and the

collection of consumer purchasing information in marketing and business. Given the often massive,

automated and instrument-based nature of these methods of data collection, frequently it is the

case that there is ‘contamination’ of some sort among the otherwise ‘nominal’ measurements, and

it is desirable to be able to characterize observations by the extent to which they may be one or the

other. Such characterizations may be used, for example, to separate out ‘reliable’ measurements

from ‘unreliable’ ones, or to detect ‘anomalous’ observations amidst a background of otherwise

‘typical’ data. In many cases, the data are multivariate and sufficiently complicated in distribu-

tion, even under ‘nominal’ conditions, that the painstaking construction of an accurate parametric

model is quite difficult. It is therefore desirable that techniques for the assessment of contamination

in such data be nonparametric.

By way of motivation, consider the data in Fig. 1, representing measurements gathered on

Internet traffic flowing over links in the Abilene network described in Sec. 5. Each point corresponds

to the total traffic volume (measured in bytes) for a given ten minute interval over a pair of links to a

given node in the network. In Fig. 1(a), for example, the node corresponds to Atlanta, and the links

correspond to routes in the Abilene network to Atlanta from Houston and Washington. A useful

goal in this setting is to design a system that takes this collection of roughly 1000 measurements

and identifies the extent to which each point may represent potentially anomalous behavior, such

as might be caused by malicious activities (e.g., denial of service (DoS) attacks). The output of

such a system would be transmitted, for instance, to a network operator who might then conduct

follow-up examinations on the nature of the most suspect data. An essential feature of this system

2



0.5 1 1.5
x 10

8

0.5

1

1.5

2

x 10
8

Atlanta−Houston

A
tla

nt
a−

W
as

hi
ng

to
n

3 4 5 6 7
x 10

8

2

3

4

5

6

x 10
8

Chicago−New York

C
hi

ca
go

−
In

di
an

ap
ol

is

(a) (b)

Figure 1: Examples of Contaminated Multivariate Data. Scatterplot of volume levels for traffic
passing through select pairs of links at (a) Atlanta and (b) Chicago, in the Abilene network of
Fig. 4 (a), over consecutive 10 minute intervals.

is that it make minimal assumptions about the nature of the typical data, as it would be required

to apply equally well to data at any node in the network, such as the Chicago node, as shown in

Fig. 1 (b), whose distributional characteristics are clearly different from those of the data for the

Atlanta node.

In this paper we propose a framework well-suited to accomplish goals like the one just described.

In particular, we propose a multivariate, nonparametric method for simultaneous contamination an-

notation, which we call MN-SCAnn. Formally, we suppose we observe independent and identically

distributed measurements Xi ∈ Rd, i = 1, . . . , n from a mixture distribution i.e.,

Xi ∼ Q = (1− π)P + πµ , (1)

where P is the distribution of the nominal data, µ is the distribution of the contaminating data

(e.g., such as anomalies), and π is the a priori probability of obtaining a contaminated observation.

The challenge here is that we assume P is unknown, as is π as well. However, we will allow that the

user be willing or able to specify µ, which we will therefore consider known. Precise distributional

assumptions are stated below.
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We take as our goal to produce an annotated ranking of the observations Xi. We have in mind

that the ranking serve to impose priorities through a basic ordering, while the annotations should

provide some further indication as to the extent to which observations are actually likely to be

contaminated. Our approach in this paper is to link each observation to a corresponding generalized

quantile (GQ) set and, implicitly adopting a hypothesis testing perspective, to associate each set

with a test. An inherent ordering of these sets yields a natural ranking, while the association of

each test with a certain false discovery rate (FDR) yields an appropriate annotation.

GQ sets have a long history in statistics, going back at least to the 1970s, where they have been

used to obtain robust estimates of location and scale (e.g., Sager (1978, 1979)) and in the study

of the modality of a distribution (e.g., Hartigan (1987); Müller and Sawitzki (1992)). Consistency

and rates of convergence have been established in Polonik (1997); Walther (1997). More closely

related to our usage, they have been used to quantify multivariate data depth, with an eye to-

wards assessing the outlying-ness of observations (e.g., see Liu et al. (1999) and references therein),

and for the construction of classifiers (using uncontaminated observations from P ) for predicting

anomalies (Theiler and Cai, 2003; Schölkopf et al., 2001; Lanckriet et al., 2003; Steinwart et al.,

2005; Scott and Nowak, 2006). But our combination of GQ set methods with FDR principles is

new, and is motivated by the fact that, by incorporating a hypothesis testing element into our

assessment of contamination, we are implicitly faced with conducting a large number of such tests

simultaneously. FDR methods have received a great deal of attention in the statistics literature

over the past decade (e.g., Benjamini and Hochberg (1995); Storey (2002, 2003); Genovese and

Wasserman (2002); Efron et al. (2001)), and have emerged as the method of choice for quantifying

error rates meaningfully in multiple testing situations, with applications now found in contexts

ranging from wavelet denoising to the analysis of DNA microarrays. However, it is typically the

case in such settings that the null distribution (i.e., P , in our notation) is assumed known, which

it is important to note is not the case here. We show that FDR probabilities may nevertheless be

estimated in the present context through our use of GQ sets and known µ. Additional discussion

of related work is given in Sec. 6.

The assumption of known µ, of one sort or another, can be justified in various settings. For
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example, gamma ray spectrometers, such as are found in high-energy astrophysics, are commonly

used to detect radioactive isotopes. Often, particular isotopes having known energy spectra are

targeted. The challenge is to detect such signals in the presence of significant and sometimes

highly unpredictable background radiation. As another example, in the Internet traffic problem

described above, if the basic measurements derive from data on traffic volume, network operators

generally can at least provide a rough characterization of potentially anomalous levels of volume

by considering network bandwidth and traffic history. Finally, in many situations, the assumption

of uniform µ is intuitive and natural. For instance, this choice recently has been shown to optimize

the worst-case detection rate among all choices for the unknown contamination distribution (El-

Yaniv and Nisenson, 2007). Furthermore, all of the above cited works that apply GQ sets to

anomaly prediction implicitly assume µ is a known distribution on anomalies (Theiler and Cai,

2003; Schölkopf et al., 2001; Lanckriet et al., 2003; Steinwart et al., 2005; Scott and Nowak, 2006).

That is, these predictors are only optimal when in fact the anomalies truly follow the volume-

defining measure µ. Ranking with respect to GQ sets and uniform µ coincides with the ranking

determined by the so-called likelihood data depth (Fraiman and Meloche, 1999; Liu et al., 1999).

The connection to data depth is discussed further in the concluding section. Finally, the validity

of assuming µ known is confirmed through its practical utility. In addition to the experiments

presented later, in a separate empirical study we have successfully applied MN-SCAnn to the

distributed detection of anomalous events in network traffic data (Chhabra et al., 2008).

We also note that our experiments do not validate MN-SCAnn for dimensions greater that 10.

Because of the difficulty in modeling µ in such cases, it may be necessary to reduce the dimension

by first applying a standard method for dimensionality reduction.

The rest of this paper is organized as follows. In Sec. 3 we introduce the basic elements of

our proposed methodology. Estimation of the corresponding GQ sets and FDR probabilities is

addressed in Sec. 4. Some numerical illustrations are presented in Sec. 5, using both synthetic

data and data from two different real-world contexts: the pre-processing of flow cytometry data

in bioinformatics and the detection of anomalies in computer network traffic data (as described

above). Finally, we close with a brief discussion in Sec. 6.
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2 Supplemental Material

A full Matlab implementation of our software is available as supplemental material on the JCGS

website. All proofs are gathered in an appendix that is also available as supplemental material on

the JCGS website.

3 Methodology

Recall the model in Eqn. (1). To formalize this mixture model, we assume the existence of

unobserved variables Y1, . . . , Yn such that (Xi, Yi) are iid realizations of a random pair (X,Y ),

Y ∈ {0, 1}. Thus Q is the marginal of X, P and µ are the conditional distributions of X given

Y = 0 and 1, respectively, and π = Pr (Y = 1).

Define GP,β, the generalized quantile (GQ) set of P at level β, to be the P -measurable set with

minimal µ-measure containing at least β ∈ [0, 1] probability mass under P i.e.,

GP,β := arg min{µ(G) : P (G) ≥ β} . (2)

GQ sets coincide with level sets of the density of P with respect to µ when this density exists. Each

mass β corresponds to a certain level of the density of P , and as β ranges from 1 to 0, the density

level ranges from 0 to the maximum value of the density. When µ is proportional to Lebesgue

measure, then GQ sets are also called minimum volume sets. We do not require µ to be uniform.

We make the following assumptions on the model in Eqn. (1).

[A] π < 1.

If the data are entirely from the contamination distribution µ, and we make no assumptions

on the nominal component P , the problem is intractable. Generally, we expect π ¿ 1.

[B] µ is absolutely continuous with respect to Lebesgue measure, and has the form

µ(G) ∝ ν(G ∩G0),
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where ν is a known positive measure (not necessarily a probability measure), and G0 is the

unknown support of µ.

For example, ν could be Lebesgue measure, in which case µ is uniform, or ν could be a

Gaussian measure, in which case µ is a truncated Gaussian. By the following assumption,

which implies that the supports of µ and Q coincide, the set G0 can be estimated consistently

from the measurements using nonparametric support estimation.

[C] P is absolutely continuous with respect to µ (and therefore Lebesgue measure), and its density

f with respect to µ has no plateaus: for all λ > 0, µ({x : f(x) = λ}) = 0.

Absolute continuity implies that P (GP,β) = β for all β, and that the mapping β 7→ µ(GP,β)

is continuous and nondecreasing. It is also implies concavity of the receiver operating charac-

teristic (ROC) curves of optimal tests of µ against either P or Q. The no-plateau assumption

implies uniqueness of P -GQ sets, for all 0 ≤ β ≤ 1, up to µ-measure zero.

The assumption of a density implies that the support of P is contained in the support of µ.

If the support of µ is known a priori, this condition can be relaxed.

[D] The density f of P is not bounded away from zero.

This means it is impossible to express P as a nontrivial mixture of µ and another distribution,

and ensures that both π and P in Eqn. (1) are unique.

As stated previously, our goal is to produce an annotated ranking of the observations X1, . . . , Xn.

We consider the task of ranking first. Define

βP (X) := sup{β ∈ [0, 1] : Xi /∈ GP,β}. (3)

and for i = 1, . . . , n, set

βi := βP (Xi).

Essentially, each Xi is assigned to the smallest P -GQ set that contains Xi. Ordering the βi as

{β(n), . . . , β(1)}, from largest to smallest, naturally induces a ranking {X(1∗), . . . , X(n∗)} of the
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observations, where (i∗) denotes the index of the i-th most potentially anomalous observation.

Our choice of approach here may be motivated by considering the problem of formally testing

the null hypothesis H0 : Xi ∼ P versus the alternative hypothesis H1 : Xi ∼ µ, for each i = 1, . . . , n.

If we choose to use a test of size α i.e., with a Type I error rate Pr (Reject H0|H0 True) = α, then

the set Gc
P,1−α is in fact the rejection region for the most powerful test of this size. Then, if instead

of making a hard decision of H0 versus H1, we report the corresponding statistical p-value under

this class of tests, that p-value is simply 1−βi. Therefore, our proposed ranking follows the ordering

of the observed p-values, from smallest to largest.

Now consider the issue of annotation of our ranked observations. The values βi are themselves an

obvious, and indeed not unreasonable, candidate for such an annotation. However, there is the need

to interpret these values and, although the values βi are well-defined probabilities in the context of

the individual hypothesis tests for their corresponding observations Xi, they are not designed to be

meaningfully interpreted en masse when simultaneously conducting multiple hypothesis tests. This

observation is a variation on the issue at the heart of the well-known ‘multiple testing problem’ in

statistics. Recall that, stated simply, the problem is that, whereas standard testing theory dictates

that one should choose the size α of a single test to control the chance of an incorrectly rejected

null hypothesis i.e., a ‘false discovery’, in contexts where a large number of such tests are to be

conducted, one expects to end up with a correspondingly large number of false discoveries purely

by chance. Such an outcome is often unsatisfactory, particularly when nontrivial amounts of energy

are expected to be used to follow up on discoveries, as is often the case in, for example, anomaly

detection problems.

The multiple testing problem has received a great deal of attention in the statistical literature

over the past decade, since the seminal paper of Benjamini and Hochberg (1995). Their proposal

for this problem effectively boils down to focusing attention not on the size α of individual tests,

but rather the rate of false discoveries across tests. Since their paper, an entire sub-literature has

evolved on the topic of FDR’s, including a number of extensions in which analogues of the model

in Eqn. (1) are assumed (e.g., Storey (2002, 2003); Genovese and Wasserman (2002); Efron et al.

(2001)). From among these various contributions, we choose to adopt the so-called positive FDR
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statistic of Storey (2002) as a natural one for our problem. The positive FDR (pFDR) is so named

because it happens to be equal to the expected fraction of false discoveries, conditional on a positive

number of discoveries having been made. In our context, this statistic can be written (Storey, 2003)

as a probability

pFDR(G) = Pr (Y = 0 |X /∈ G) , (4)

where G denotes an arbitrary set. This is just the probability that, given a ‘discovery’ is made i.e.,

H0 is rejected due to X not being in G, that in fact this discovery is false.

Storey (2003) also proposes a corresponding analogue of the p-value, which he calls a q-value.

This statistic, in our context, takes the form pFDR(GP,βi
). We therefore propose, as a more

meaningful alternative to the values βi, to annotate our ranked observations by the values

γi := 1− pFDR(GP,βi). (5)

Two questions immediately arise in the context of this proposal. First, are the values of the

γi’s consistent with the ranking arising from the βi’s? And second, if so, since we do not know

the actual values γi, how might they be estimated, given that they are formulated in terms of the

unknown measure P? The first question may be answered in the affirmative under fairly general

conditions, as summarized in the following result.

Proposition 1. Let C(s) = 1 − µ(GP,1−s), for s ∈ [0, 1]. Assume C(s) is such that for all

s, s′ ∈ [0, 1], s ≥ s′ implies C(s)/s ≤ C(s′)/s′. Then the ordered sequences {β(n), . . . , β(1)} and

{γ(n), . . . , γ(1)} produce the same rank ordering {X(1∗), . . . , X(n∗)} of the observations X1, . . . , Xn.

The proof of this and all other such results in this paper may be found in the appendix. There we

note that the function C(s) is the receiver operating characteristic (ROC) curve for the optimal test

of X ∼ P against X ∼ µ (see Appendix). The assumption that s ≥ s′ implies C(s)/s ≤ C(s′)/s′

says that the slope of the line connecting the origin to a point on the ROC is monotone decreasing

as the point moves up the ROC. Equivalently, (1 − µ(GP,β))/(1 − β) is monotone decreasing as

β decreases. This assumption is satisfied when C(s) is concave, which occurs, for example, under

9



assumption [C]. For another instance of a condition similar to the one assumed here, see Proposition

1 of Storey (2003).

Regarding the second question raised above, as to the estimation of the γi’s, we address that in

detail in the next section.

4 Estimation

4.1 A Fundamental Relation

The γi, and even the rankings as determined through the βi, depend on P , which we assume

unknown. Instead, all we have at our disposal are the observations X1, . . . , Xn, which are from

the mixture distribution Q defined in (1), and our assumed knowledge about the contaminating

distribution µ. In analogy to Eqn. (2), for 0 ≤ β̃ ≤ 1, define the GQ set under Q at level 0 ≤ β̃ ≤ 1

as

GQ,β̃ = arg min{µ(G) : Q(G) ≥ β̃} .

The following result is fundamental to the practical implementation of our proposed methodology,

in that it relates the GQ sets under P to those under Q.

Proposition 2. Assume conditions [A]-[C] hold. If 0 ≤ β ≤ 1 and we define

β̃ ≡ β̃P,β := πµ(GP,β) + (1− π)β ,

then GQ,β̃ = GP,β. Conversely, suppose 0 ≤ β̃ ≤ β̃max := πµ(GP,1) + 1− π. Then GQ,β̃ is unique,

and if we define

β ≡ βQ,β̃ :=
β̃ − πµ(GQ,β̃)

1− π
, (6)

then GP,β = GQ,β̃.

This result links P -GQ sets to Q-GQ sets in an explicit fashion. Every P -GQ set is a Q-GQ set,

and every Q-GQ set with Q-mass ≤ β̃max is a P -GQ set. In particular, it implies that the ordering

given by the P -GQ sets coincides with that of the Q-GQ sets. Intuitively, the smallest P -GQ set
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containing Xi is also the smallest Q-GQ set containing Xi.

Note that β̃max is the Q-mass of the support of P . Points Xi outside of GP,1 all have βi = 1,

but they may have distinct values of β̃i. In addition, GQ,β̃ is not unique for β̃ > β̃max. Nonetheless,

the annotation γi in this case is still 1, as the following result shows. This result is the main result

that facilitates the estimation of the annotations. Define

β̃Q(X) := sup{β̃ ∈ [0, 1] : X /∈ GQ,β̃}. (7)

and β̃i := β̃Q(Xi), in analogy to the βi defined for P in Eqn. (3).

Corollary 1. Under conditions [A]-[C],

γi =
π(1− µ(GQ,β̃i

))

1− β̃i

. (8)

Hence, we have the key insight that to estimate γi, we need only estimate µ(GQ,β̃i
), Q(GQ,β̃i

),

and π.

4.2 Estimating the Components of γi

Here we describe strategies for estimating each of the components of γi in (8). In this section,

we use the notation G(X) = GQ,βQ(X), the smallest Q-GQ set containing X. In addition, set

Gi = G(Xi) = GQ,β̃i
and let Ĝi denote an estimate of Gi.

4.2.1 Estimation of µ(GQ,β̃i
)

By assumption [B], µ is known except for its support. By [C], the support of µ is the support of

Q. Thus, we may estimate GQ,1, the support of µ, using standard methods for support estimation.

With an estimate of the support, we can then properly normalize µ and compute an estimate µ̂(G)

for arbitrary G. In particular, we need to estimate the µ-measure of the sets Gi. Given Ĝi, in our

implementation, we estimate µ(Ĝi) with a Monte Carlo approach based on simulation from µ.
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4.2.2 Estimation of Gi

Suppose {Ĝλ}λ∈Λ is a family of set estimates such that (a) each Ĝλ estimates some Q-GQ set, and

(b) Λ is such that the range of GQ sets estimated is sufficiently rich to reasonably approximate

GQ,β̃ for any 0 ≤ β̃ ≤ 1. Then a natural estimator for Gi is Ĝi := Ĝλ̂i
, where λ̂i := arg max{µ(Ĝλ) :

λ ∈ Λ, Xi /∈ Ĝλ}.
In our experiments, we use thelevel sets

Ĝλ = {x :
1
n

n∑

i=1

Kσ(x−Xi) ≥ λ}

of a kernel density estimate having a Gaussian kernel with bandwidth σ. The support of µ is

estimated by taking the largest λ such that Ĝλ contains all the data. The bandwidth is selected

by maximizing a cross-validation-based estimate of the area under the ROC curve C̃(s), which is

discussed in the appendix.

Other possibilities for Ĝλ include those based on the one-class support vector machine (OCSVM)

with Gaussian kernel (Schölkopf et al., 2001). Path algorithms implementing this strategy are

described in Lee and Scott (2007) and Lee and Scott (2010).

4.2.3 Estimation of Q(GQ,β̃i
)

Given estimates Ĝi of the sets Gi = GQ,β̃i
, we may then estimate β̃i = Q(Gi) and related quantities

through Q̂(Ĝi), where Q̂(·) is the empirical measure deriving from the data. This motivates the

estimate ˆ̃
βi = ((i) − 1/2)/n, i = 1, . . . , n, where (i) here refers to the rank of the i-th observation

under the ordering with respect to the sets Ĝi.

4.2.4 Estimation of π

The estimation of π is facilitated by a transformation of variables. Specifically, consider Z =

µ(G(X)) as a univariate random variable on the interval [0, 1] resulting from transformation of the

generic random variable X ∼ Q. The following result shows π to be related to the density of Z in

a simple manner.
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Proposition 3. Assume conditions [B]-[D] hold. Define

D(t) := inf{β : µ(GP,β) ≤ t}

and

D̃(t) := inf{β̃ : µ(GQ,β̃) ≤ t} .

Then the density of Z is D̃′(t) = π + (1− π)D′(t), and π = D̃′(1−).

Thus D̃(t) is the cumulative distribution function of Z. Proof of the proposition employs

arguments that, similar to those of Proposition 1, rely on ROC curves of optimal tests, only in this

case in a dual sense, with P and µ switched in their roles as null and alternative. The reader is

referred to the appendix for details.

The obvious strategy now is to estimate π by estimating D̃′(1−) based on the values Zi :=

µ(G(Xi)) = µ(Gi), i = 1, . . . , n. Note, however, that we do not in fact have access to the Zi, given

our lack of knowledge of Q. We propose therefore to replace each Zi by the value Ẑi := µ̂(Ĝi) once

the estimates Ĝi are computed and to proceed accordingly.

Because of conditions [B]-[C], D(t) (and hence D̃(t)) is concave. Then estimating π amounts

to estimating the value of a monotone decreasing density at the right boundary of its support. A

consistent estimator for this problem has been studied by Kulikov and Lopuhaä (2006). Practical

estimators have also been developed in recent work on multiple testing (Langaas et al., 2005; Storey,

2002) where they are used to estimate the proportion of true null hypotheses. There the p-values

of a test play a role similar to our Zi; under a null hypothesis, p-values are uniform, just as our

Zi’s are uniform under X ∼ µ.

The estimated points (Ẑi,
ˆ̃
βi) form an empirical version of D̃(t). By an argument similar to

that which established Proposition 1, the γ̂i and ˆ̃
βi determine the same ranking provided the values

(1 − ˆ̃
βi)/(1 − Ẑi) are nonincreasing as i increases. Because of estimation error, however, this will

typically not be the case.

Our experiments involve continuous data, and therefore we expect D̃(t) to be concave. To

ensure that the γ̂is and ˆ̃
βis produce the same rankings, we propose to smooth the empirical ROC
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by fitting a function that is monotone, concave, and has endpoints at (0, 0) and (1, 1). Note that

one may either regress Ẑi on ˆ̃
βi or 1 − ˆ̃

βi on 1 − Ẑi. The latter approach, which we employ in

our experiments, corresponds to smoothing an empirical version of C̃(s) := 1− µ(GQ,1−s) which is

simply the reflection of D̃(t) about the anti-diagonal of the unit square (see Appendix). In either

case, the rankings are preserved.

ROC smoothing has two additional benefits. First, the slope of the estimated ROC at 1 gives

an estimate of π as per Proposition 3. Second, the estimates γ̂i satisfy 0 ≤ γ̂i ≤ 1, which they

should, being probabilities. Without smoothing, this might not be the case.

To implement ROC smoothing we employ a least squares linear smoothing spline with M fixed

pieces, subject to monotonicity, concavity, and endpoint constraints. This is easily seen to be the

solution of a quadratic program with M constraints. In our implementation we take M = 20

logarithmically spaced pieces and use Matlab’s quadprog routine, which converges reliably for

problems of this size.

5 Experiments

We apply our overall framework, MN-SCAnn, to a synthetic data problem, the network traffic

data from Sec. 1, and flow cytometry data. Unless otherwise noted, µ is taken to be the uniform

distribution. Full implementation details are available in our software, available as supplemental

material on the JCGS website.

5.1 Synthetic data

Here the typical distribution P is a two dimensional, two component Gaussian mixture and the

anomalies are uniform on a rectangle. The components of the mixture have equal weight, and the

two components are
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Figure 2: Results of Synthetic Data Experiment. (a) Sample of 500 points from synthetic data,
together with the GQ set containing 90% of the data based on a thresholded kernel density estimate.
(b) Sorted annotations γ̂(i). Vertical stems indicate actual anomalies.

To facilitate processing, the data were translated and rescaled to the unit square. A sample of size

500 consisting of π = 0.1 anomalies is shown in Fig. 2 (a). Also shown is the Q-GQ set containing

90% of the data. Fig. 2 (b) plots the sorted annotation values γ̂i for a realization of the synthetic

data. The vertical stems indicate the approximately 50 observed anomalies. Anomalies constitute

a strong majority of the data points with highest annotation values, with almost all having value

γ̂i ≥ 0.1. The presence of a few anomalies with lower annotations is expected given the overlap

between the supports of µ and P .

We also investigated the impact of a non-uniform anomaly distribution and the presence of

non-informative features.

To address non-uniform µ, we implemented an alternative measure that puts more probability

mass toward the periphery of the space, and less near the centroid of the observed data. The

details are available in the software. We reran the above Gaussian mixture experiment with this

new anomaly distribution, and the resulting annotations are shown in Fig. 3 (a). The annotation

values tend to rise more sharply toward the right end of the curve. That is, relative to the uniform

anomaly distribution, more points are annotated as being more anomalous, as expected. The

relative rankings, however, are fairly consistent: both choices of anomaly distribution lead to most
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Figure 3: Extensions of Gaussian mixture experiment. (a) Annotations based on a non-uniform
anomaly distribution µ. (b) Annotations when five non-informative variables are appended to the
data.

of the anomalous points being bunched toward the right side of the curve.

To address the issue of non-informative features, we appended five variables to the 2-d Gaussian

mixture data, where the new variables are uniformly distributed, independent of whether the point is

nominal or anomalous, and also independent of which Gaussian component the first two coordinates

belong to (if the point is nominal). Thus the appended variables are completely non-informative.

The results are shown in 3 (b). The annotation plot shows that most of the anomalies are still

bunched toward the right of the plot, but not quite as much as when there were no non-informative

variables. This indicates that MN-SCAnn possesses some tolerance to non-informative features.

Results (not shown) from varying the number of non-informative features from 1 to 10 suggests the

tolerance diminishes as this number increases.

5.2 Network anomaly detection

Now return to the problem of detecting anomalous Internet traffic on a given network, described at

the start of this paper. Fig. 4 shows a map of the Abilene network, the ‘backbone’ network serving

most universities and research labs in the United States. Developed as part of the Internet2 project

(www.internet2.org), a project devoted to development of the ‘next-generation’ Internet, Abilene
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Figure 4: Schematic depiction of the Abilene network.

and Abilene data frequently serve as a testbed for development methodologies. Typically measure-

ments on a network like Abilene are most easily available locally at network nodes (e.g., routers,

regional aggregation points, etc.). So a natural way to approach the problem of anomaly detection

is to seek to determine whether the traffic through a given network node is anomalous in nature

or not. This problem is made challenging by many issues, particularly the facts that (a) traffic at

a network node is a combination of the traffic from a number of incoming and outgoing links, and

(b) traffic on fixed links has been found to have subtle combinations of various characteristics, and

hence is not highly amenable to simple parametric modeling (e.g., Lakhina et al. (2004b,a)). Since

traffic measurements are available on both inbound and outbound links, the dimensionality of the

data X at each node ranges from 4 to 8.

Our methodology, which makes no assumptions on the distribution P of normal network traffic,

is natural for this task. Here, we analyze a week’s worth of data Xi, i = 1, . . . , 1008, where each

Xi is a vector of traffic volumes in a 10 minute window along all links connecting to the given

router. (1008 is the number of 10 minute intervals in a week. Technically, the datapoints in this

example are correlated, due to temporal correlations in the underlying traffic flows. However, we

ignore these correlations here for the purpose of illustration.) Note that there is no pure ‘truth set’

available to us here. To evaluate the performance of our methodology, we compare it to that of

the method due to Lakhina et al. (2004b,a), which is a standard in the literature. Their method
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Figure 5: Sorted annotations γ̂(i) for the Abilene network traffic data at (a) the six dimensional
Atlanta router, and (b) the eight dimensional Sunnyvale router. Vertical stems indicate anomalies
detected by a method having access to global network traffic.

uses principle component regression to remove from the original multivariate network flow time

series the main, common underlying trends. Importantly, it utilizes all of the data on all links

in the network simultaneously, and therefore in that sense is a ‘global’ method, arguably working

with more information than our ‘local’ method applied at each individual node. The data for this

experiment are available online (www.internet2.org), and were preprocessed as described in Lakhina

et al. (2004b).

Fig. 5 (b) shows the largest 208 (out of 1008 total data points, corresponding to all 10 minute

intervals over a period of one week) annotations γ̂i for the data at the six-dimensional Atlanta

router. There are 12 anomalies total identified by the method of Lakhina et al., indicated by

vertical stems, and we see that 8 out of these 12 occur past the ‘knee’of the curve in Fig. 1(a), at

roughly 0.1. Furthermore, all eight of these are in the top ten. These results strongly suggest that

our methodology, despite using only information local to the router, is capable of mimicking well

the performance of a global method that is standard in the literature. Similar comments apply

to the eight-dimensional Sunnyvale router, shown in Fig. 5 (b). The conclusions here are further

supported by a much more extensive analysis that has been done by the authors and colleagues

(Chhabra et al., 2008).
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Note that in both the Atlanta and Sunnyvale routers, there are also a few data points with

annotations γ̂i above 0.1 that were not declared anomalous by Lakhina et al. Since the method of

Lakhina et al. is only a proxy to an unavailable truth set, it is impossible to say whether these

points represent false discoveries or, alternatively, are in fact true discoveries missed by Lakhina et

al.

5.3 Flow cytometry

A flow cytometry instrument is capable of measuring certain optical properties of biological cells,

including size, granularity, and fluorescent tags associated to different antigens of interest (Huber

and Hahne, 2005). Given a population of cells, flow cytometry data can be used to characterize

the different cell types present. Fig. 6 (a) is a scatterplot showing two features, known as sideward

light scatter and CD45, from a six dimensional dataset. There are multiple cell types present in the

population, in this case four. Three of these cell types are associated with one of the three visible

clusters, while a fourth is less apparent and overlaps the upper left cluster somewhat.

Unfortunately, cell populations are often contaminated by air bubbles, cell debris, and various

other artifacts. These contaminants give rise to outliers in the flow cytometry data. It is desirable to

identify these outliers and account for their prevalence so as to minimize their affect on subsequent

processing. MN-SCAnn provides a natural way to assess the proportion of outliers present and to

quantify the degree of outlyingness of individual cells.

We ran MN-SCAnn on this dataset as follows. The full dataset has around 30,000 cells, so for

computational convenience we analyzed a random subsample of size 5,000. In addition, one of the

features has an exceptionally high number of degenerate values (i.e., it takes on the max or min,

giving the distribution an atomic component), so we eliminated this feature, and ran MN-SCAnn

on the resulting five dimensional dataset. The results are shown in Fig. 6 (b). The estimated

fraction of outliers is 0.001. The full sample in Fig. 6 (a) has about 30,000 points, and thus our

method interprets about 30 of these to be outliers. For comparison, we also show the values β̂(i),

estimated by plugging in to Eqn. (6). Although the rank ordering is consistent with γ̂(i), these

values offer no information regarding the proportion and extremity of the contaminating points.
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Figure 6: Flow Cytometry Data. (a) A two-dimensional projection of the five-dimensional data
we analyze, showing its nonparametric nature. (b) Sorted annotation values γ̂(i) for the 1000 most
outlying points. Also shown are the values β̂(i), which are conceptually similar to ‘unadjusted
p-values’, and convey no information about the composition of the sample.

6 Discussion and Conclusions

A growing body of literature has begun to address the same issues that motivated MN-SCAnn,

namely, rigorous statistical assessment of complex, multivariate data. We offer some connections

to this work, and also discuss limitations of MN-SCAnn.

The notion of data depth has flourished recently as an approach to ‘descriptive statistics, graph-

ics, and inference’ in multivariate, nonparametric settings (Liu et al., 1999; Serfling, 2006). The

key ingredient in data depth analysis is a ‘depth function’ that defines an ordering of points in

a multivariate sample with respect to degree of outlyingness. Much work on data depth focuses

on estimating parameters such as generalized notions of location or kurtosis (see references in Liu

et al. (1999); Serfling (2006)). Wang and Serfling (2006) discuss robust estimation of certain classes

of depth functions, while Dang and Serfling (2010); Dang (2005) analyze swamping and masking

breakdown points for data depth under contamination.

The so-called likelihood depth orders points with respect to the height of the density governing

the sample. When the sample is contaminated, the points are ordered with respect to the density

of the uncontaminated portion of the sample. Adopting the likelihood depth perspective, Fraiman

and Meloche (1999) demonstrated the robustness of certain kernel density estimate based estimates
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of centrality for symmetric distributions. We have shown in Proposition 1 that the ranking of MN-

SCAnn with a uniform contamination measure coincides with that of likelihood depth. Some

have argued that likelihood depth is not a valid measure of depth because multimodal densities

complicate notions of center, among other reasons (Serfling, 2006). Yet the lack of a well-defined

notion of center does not preclude the likelihood depth from imparting a valid ordering. The

likelihood ordering is to us the most natural multivariate extension of ‘extremeness’ as captured

by univariate p-values. Indeed, for multimodal nominal distributions, such as the flow cytometry

data analyzed above, it is not clear whether it is even reasonable to insist on defining centrality.

Moreover, our work demonstrates how likelihood depth can be extended beyond mere rankings to

interpretable, quantitative annotations.

Other recent work has sought to combine traditional statistical approaches within a machine

learning perspective. Roth (2006) incorporated a method for outlier rejection into a kernel Fisher

discriminant approach to level set estimation (one-class classification). He takes advantage of

the implicit Gaussian assumption in the kernel feature space to devise a quantile-quantile driven

procedure for iteratively detecting and rejecting outliers.

One limitation of our approach is that it is unlikely to perform well when applied directly to

high-dimensional data. For dimensions much greater that 10, our method would suffer from the

limitations of kernel density estimation, and from the need to generate an extremely large random

sample to estimate the anomaly distribution accurately. Therefore, to apply our method in such

settings, it is recommended to first perform dimensionality reduction using some standard method,

such as PCA or kernel PCA, to reduce the dimension to 10 or less.

On a final note, we point out that establishing the asymptotic behavior of our estimators

γ̂i of the quantities γi is an interesting open theoretical problem. For example, although the γi

are essentially just one minus a version of Storey’s q-value, and a form of consistency has been

established for q-value estimates in Storey et al. (2004), the estimation strategy here is necessarily

different, and so consistency would need to be shown independently. Also, given the structure of

our problem and the nature of the estimators used, it would appear that arguments somewhat

distinct from those in Storey et al. (2004) will be necessary.
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