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Abstract

Flow cytometry is a technology that rapidly measures antigen-based markers
associated to cells in a cell population. Although analysis of flow cytome-
try data has traditionally considered one or two markers at a time, there has
been increasing interest in multidimensional analysis. However, flow cytome-
ters are limited in the number of markers they can jointly observe, which is
typically a fraction of the number of markers of interest. For this reason,
practitioners often perform multiple assays based on different, overlapping
combinations of markers. In this paper, we address the challenge of imput-
ing the high dimensional jointly distributed values of marker attributes based
on overlapping marginal observations. We show that simple nearest neighbor
based imputation can lead to spurious subpopulations in the imputed data
and introduce an alternative approach based on nearest neighbor imputation
restricted to a cell’s subpopulation. This requires us to perform clustering
with missing data, which we address with a mixture model approach and
novel EM algorithm. Since mixture model fitting may be ill-posed in this
context, we also develop techniques to initialize the EM algorithm using do-
main knowledge. We demonstrate our approach on real flow cytometry data.
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1. Introduction

Flow cytometry is a technique for quantitative cell analysis [1]. It pro-
vides simultaneous measurements of multiple characteristics of individual
cells. Typically, a large number of cells are analyzed in a short period of
time – up to thousands of cells per second. Since its development in the
late 1960s, flow cytometry has become an essential tool in various biologi-
cal and medical laboratories. Major applications of flow cytometry include
hematological immunophenotyping and diagnosis of diseases such as acute
leukemias, chronic lymphoproliferative disorders and malignant lymphomas
[2].

Flow cytometry data has traditionally been analyzed by visual inspection
of one-dimensional histograms or two-dimensional scatter plots. Clinicians
will visually inspect a sequence of scatter plots based on different pairwise
marker combinations and perform gating, the manual selection of marker
thresholds, to eliminate certain subpopulations of cells. They identify various
pathologies based on the shape of cell subpopulations in these scatter plots.
In addition to traditional inspection-based analysis, there has been recent
work, reviewed below, on automatic cell gating or classification of pathologies
based on multidimensional analysis of cytometry data.

Unfortunately, flow cytometry analysis is limited by the number of mark-
ers that can be simultaneously measured. In clinical settings, this number is
typically five to seven, while the number of markers of interest may be much
larger. To overcome this limitation, it is common in practice to perform
multiple assays based on different and overlapping combinations of markers.
However, many marker combinations are never observed, which complicates
scatter plot-based analysis, especially in retrospective studies. In addition,
automated multidimensional analysis is not feasible because all cell measure-
ments have missing values.

To address these issues, we present a statistical method for file matching,
which imputes higher dimensional flow cytometry data from multiple lower
dimensional data files. While Pedreira et al. [3] proposed a simple approach
based on Nearest Neighbor (NN) imputation, this method is prone to induce
spurious clusters, as we demonstrate below. Our method can improve the
file matching of flow cytometry and is less likely to generate false clusters.
The result is a full dataset, where arbitrary pairs can be viewed together,
and multidimensional methods can be applied.

In the following, we explain the principles of flow cytometry and intro-
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Figure 1: A flow cytometer system. As a stream of cells passes through a laser beam,
photo-detectors detect forward angle light scatter, side angle light scatter and light emis-
sions from fluorochromes. Then the digitized signals are analyzed in a computer.

duce the file matching problem in the context of flow cytometry data. We
then present a file matching approach which imputes a cell’s missing marker
values with the values of the nearest neighbor among cells of the same type.
To implement this approach, we develop a method for clustering with miss-
ing data. We model flow cytometry data with a latent variable Gaussian
mixture model, where each Gaussian component corresponds to a cell type,
and develop an expectation-maximization (EM) algorithm to fit the model.
We also describe ways to incorporate domain knowledge into the initializa-
tion of the EM algorithm. We compare our method with nearest neighbor
imputation on real flow cytometry data and show that our method offers
improved performance. Our Matlab implementation is available online at
http://www.eecs.umich.edu/~cscott/code/cluster_nn.zip.

2. Background

In this section, we explain the principles of flow cytometry. We also define
the statistical file matching problem in the context of flow cytometry data
and motivate the need for an improved solution.

2.1. Flow cytometry

In flow cytometry analysis for hematological immunophenotyping, a cell
suspension is first prepared from peripheral blood, bone marrow or lymph
node. The suspension of cells is then mixed with a solution of fluorochrome-
labeled antibodies. Typically, each antibody is labeled with a different fluo-
rochrome. As the stream of suspended cells passes through a focused laser
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beam, they either scatter or absorb the light. If the labeled antibodies are
attached to proteins of a cell, the associated fluorochromes absorb the laser
and emit light with a corresponding wavelength (color). Then a set of photo-
detectors in the line of the light and perpendicular to the light capture the
scattered and emitted light. The signals from the detectors are digitized and
stored in a computer system. Forward scatter (FS) and side scatter (SS)
signals as well as the various fluorescence signals are collected for each cell
(see Fig. 1).

For example, in a flow cytometer capable of measuring five attributes, the
measurements of each cell can be represented with a 5-dimensional vector
x = (x(1), · · · , x(5)) where x(1) is FS, x(2) is SS and x(3), · · · , x(5) are the
fluorescent markers. We use “marker” to refer to both the biological entities
and the corresponding measured attributes. Then the measurements of N
cells are represented by vectors x1, · · · ,xN and form a N × 5 matrix.

The detected signals provide information about the physical and chemical
properties of each cell analyzed. FS is related to the relative size of the cell,
and SS is related to its internal granularity or complexity. The fluorescence
signals reflect the abundance of expressed antigens on the cell surface. These
various attributes are used for identification and quantification of cell sub-
populations. FS and SS are always measured, while the marker combination
is a part of the experimental design.

Flow cytometry data is usually analyzed using a sequence of one dimen-
sional histograms and two or three dimensional scatter plots by choosing a
subset of one, two or three markers. The analysis typically involves manu-
ally selecting and excluding cell subpopulations, a process called “gating”,
by thresholding and drawing boundaries on the scatter plots. Clinicians rou-
tinely diagnose by visualizing the scatter plots.

Recently, some attempts have been made to analyze directly in high di-
mensional spaces by mathematically modeling flow cytometry data. In [4, 5],
a mixture of Gaussian distributions is used to model cell populations, while
a mixture of t-distributions with a Box-Cox transformation is used in [6]. A
mixture of skew t-distributions is studied in [7]. The knowledge of experts
is sometimes incorporated as prior information [8]. Instead of using finite
mixture models, some recent approaches proposed information preserving di-
mension reduction to analyze high dimensional flow cytometry data [9, 10].
However, standard techniques for multi-dimensional flow cytometry analysis
are not yet established.
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Figure 2: Flow cytometry analysis on a large number of antibody reagents within a limited
capacity of a flow cytometer. A sample from a patient is separated into multiple tubes
with which different combinations of fluorochrome-labeled antibodies are stained. Each
output file contains at least two variables, FS and SS, in common as well as some variables
that are specific to the file.

2.2. Statistical file matching

The number of markers used for selection and analysis of cells is con-
strained by the number of measurable fluorochrome channels (colors) in a
given cytometer, which in turn is a function of the optical physics of the
laser light source(s) and the excitation and emission spectra of the individ-
ual fluorochromes used to label antibodies to targeted surface marker anti-
gens. Recent innovations have enabled measuring near 20 cellular attributes,
through the use of multiple lasers of varying energy, multiple fluorochrome
combinations, and complex color compensation algorithms. However, in-
struments deployed in clinical laboratories still only measure 5-7 attributes
simultaneously [11].

There may be times in which it would be useful to characterize cell pop-
ulations using more colors than can be simultaneously measured on a given
cytometry platform. For example, some lymph node biopsy samples may
be involved partially by lymphoma, in a background of hyperplasia of lym-
phoid follicles within the lymph node. In such cases, it can be useful to
exclude the physiologic follicular lymphocyte subset based on a known array
of marker patterns (for example, CD10 expression, brighter CD20 expression
than non-germinal center B-cells, and CD38 expression) and evaluate the
non-follicular lymphocyte fraction for markers known to be useful in the di-
agnosis of non-Hodgkin lymphomas (for example, CD5, CD19, CD23, kappa
immunoglobulin light chain, and lambda immunoglobulin light chain). Un-
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Figure 3: Data structure of two incomplete data files. The two files have some overlapping
variables c and some variables s1 and s2 that are never jointly observed. File matching
combines the two files by completing the missing blocks of variables.

less an 8-color (10 channel) flow cytometer is available, this analysis cannot
be done seamlessly. In such case, the markers must be inferred indirectly,
potentially resulting in dilution of the neoplastic lymphoma clone by nor-
mal background lymphocytes. Likewise, recent approaches to the analysis
of flow cytometry data are built around the treatment of datasets as indi-
vidual high-dimensional distributions or shapes, again limited only by the
number of colors available in a given flow cytometry platform. Given the
considerable expense of acquiring cytometry platforms capable of deriving
high-dimensionality datasets, the ability to virtually combine multiple lower-
dimensional datasets into a single high-dimensional dataset could provide
considerable advantage in these situations.

When it is not possible to simultaneously measure all markers of interest,
it is common to divide a sample into several “tubes” and stain each tube
separately with a different set of markers (see Fig. 2) [12]. For example, con-
sider an experiment with two tubes: Tube 1 containing 5000 cells is stained
with CD45, CD5 and CD7, and Tube 2 containing 7000 cells is stained with
CD45, CD10 and CD19. File 1 and File 2 record the FS, SS and marker
measurements in the format of 5000× 5 and 7000× 5 matrices.

In the sequel, we present a method that combines two or more tubes
and generates flow cytometry data in which all the markers of interest are
available for the union of cells. Thus, we obtain a single higher dimensional
dataset beyond the current limits of the instrumentation. Then pairs of
markers that are not measured together can still be visualized through scatter
plots, and methods of multidimensional analysis may potentially be applied
to the full dataset.

This technique, called file matching, merges two or more datasets that
have some commonly observed variables as well as some variables unique to
each dataset. We introduce some notations to generalize the above example.
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In Fig. 3, each unit (cell) xn is a row vector in Rd and belongs to one of
the data files (tubes) X1 or X2, where each file contains N1 and N2 units,
respectively. While variables c are commonly observed for all units, variables
s2 are missing in X1 and s1 are missing in X2, where s1, s2 and c indicate
specific and common variable sets. If we denote the observed and missing
components of a unit xn with on and mn, then on = c ∪ s1 and mn = s2 for
xn ∈ X1 and on = c ∪ s2 and mn = s1 for xn ∈ X2.

Continuing the previous example, suppose that the attribute measure-
ments are arranged as in Fig. 3 in the order of FS, SS, CD45, CD5, CD7,
CD10 and CD19. Then each individual cell is seen as a row vector in R7

with two missing variables. Thus, X1 is a matrix with N1 = 5000 rows and
X2 is a matrix with N2 = 7000 rows, and the common and specific attribute
sets are c = {1, 2, 3}, s1 = {4, 5} and s2 = {6, 7}.

A file matching algorithm impute the blocks of missing variables. Among
imputation methods, conditional mean or regression imputations are most
common. As shown in Fig. 4, however, these imputation algorithms tend to
shrink the variance of the data. Thus, these approaches are inappropriate in
flow cytometry where the shape of cell subpopulations is important in clinical
analysis. More discussions on missing data analysis and file matching can be
found in [13] and [14].

Figure 4: Examples of imputation methods: NN, conditional mean and regression. The NN
method relatively well preserves the distribution of imputed data, while other imputation
methods such as conditional mean and regression significantly reduce the variability of
data.

A recent file matching technique in flow cytometry was developed by
Pedreira et al. [3]. They proposed to use Nearest Neighbor (NN) imputation
to match flow cytometry data files. In their approach, the missing variables
of a unit, called the recipient, are imputed with the observed variables from
a unit in the other file, called the donor, that is most similar. If xi is a unit
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in X1, the missing variables of xi are set as follows:

xmi
i = x∗mi

j where x∗j = arg min
xj∈X2

‖xc
i − xc

j‖2.

Here xmi
i = (x

(p)
i , p ∈ mi) and xc

i = (x
(p)
i , p ∈ c) denote the row vectors of

missing and common variables of xi, respectively. Note that the similarity is
measured by the distance in the projected space of jointly observed variables.
This algorithm is advantageous over other imputation algorithms using con-
ditional mean or regression, as displayed in Fig. 4. It generally preserves the
distribution of cells, while the other methods cause the variance structure to
shrink toward zero.

However, the NN method sometimes introduces spurious clusters into the
imputation results and fails to replicate the true distribution of cell popu-
lations. Fig. 5 shows an example of false clusters from the NN imputation
algorithm (for the detailed experiment setup, see Section 4). We present
a toy example to illustrate how NN imputation can fail and motivate our
approach.

2.3. Motivating toy example

Fig. 6 shows a dataset in R3. In each file, only two of the three features
are observed: c and s1 in file 1 and c and s2 in file 2. Each data point
belongs to one of two clusters, but its label is unavailable. This example is
not intended to simulate flow cytometry data, but rather to illustrate one
way in which NN imputation can fail, and how our approach can overcome
this limitation.

When imputing feature s1 of units in file 2, the NN algorithm produces
four clusters whereas there should be two, as shown in Fig. 6 (d). This
is because the NN method uses only one feature and fails to leverage the
information about the joint distribution of variables that are not observed
together. However, if we can infer the cluster membership of data points,
the NN imputation can be applied within the same cluster. Hence, we seek
a donor from subgroup (1) for the data points in (3) and likewise we seek a
donor from (2) for the points in (4) in the example. Then the file matching
result greatly improves and better replicates the true distribution as in Fig.
6 (e).

In this example, as in real flow cytometry data, there is no way to infer
cluster membership from the data alone, and incorrect labeling can lead to
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Figure 5: Comparison of results for two imputation methods to the ground truth cell
distribution. Figures show scatter plots on pairs of markers that are not jointly observed.
The middle row and the bottom row show the imputation results from the NN and the
proposed Cluster-NN method, respectively. The results from the NN method show spuri-
ous clusters in the right two panels. The false clusters are indicated by dotted circles in
the CD3 vs. CD8 and CD3 vs. CD4 scatter plots. On the other hand, the results from
our proposed approach better resemble the true distribution on the top row.

9



poor results (Fig. 6 (f)). Fortunately, in flow cytometry we can incorporate
domain knowledge to achieve an accurate clustering.

Figure 6: Toy example of file matching. Two files (b) and (c) provide partial information
of data points (a) in R3. The variable c is observed in both files while s1 and s2 are specific
to each file. The NN method created false clusters in the s1 vs. s2 scatter plot in (d).
On the other hand, the proposed Cluster-NN method, which applies NN within the same
cluster, successfully replicated the true distribution. If the clusters are incorrectly paired,
however, the Cluster-NN approach can fail, as in (f).

3. Methods

3.1. Cluster-based imputation of missing variables

We first focus on the case of matching two files. The case of more than
two files is discussed in Section 5. For the present section, we assume that
there is a single underlying distribution with K clusters, and each x ∈ X1

and each x ∈ X2 is assigned to one of these clusters. Let X k
1 and X k

2 denote
the cells in X1 and X2 from the kth cluster, respectively.

Suppose that the data is configured as in Fig. 3. In order to impute
the missing variables of a recipient unit in X1, we locate a donor among the
data points in X2 that have the same cluster label as the recipient. When
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Input: Two files X1 and X2 to be matched
1. Jointly cluster the units in X1 and X2.
2. Perform Nearest Neighbor imputation within the same cluster.

Output: Statistically matched complete files X̂1 and X̂2

Figure 7: The description of the proposed Cluster-NN algorithm for two files.

imputing incomplete units in X2, the roles change. The similarity between
two units is evaluated on the projected space of jointly observed variables,
while constraining both units to belong to the same cluster. Then we impute
the missing variables of the recipient by patching the corresponding variables
from the donor. More specifically, for xi ∈ X k

1 , we impute the missing
variables by

xmi
i = x∗mi

j where x∗j = arg min
xj∈Xk

2

‖xc
i − xc

j‖2.

Fig. 7 describes the proposed Cluster-NN imputation algorithm.
In social applications such as survey completion, file matching is often

performed on the same class such as gender, age, or county of residence
[14]. Unlike our algorithm, however, the information for labeling each unit
is available in those applications and the class inference step is unnecessary.

3.2. Clustering with missing data

To implement the above approach, it is necessary to cluster the flow
cytometry data. Thus, we concatenate two input files X1 and X2 into a
single dataset as in Fig. 3. We model the data with a mixture model with
each component of the mixture corresponding to a cluster. We emphasize
that we are jointly clustering X1 and X2, not each file separately. Thus,
each x in the merged dataset is assigned to one of the K mixture model
components.

In a mixture model framework, the probability density function of a d-
dimensional data vector x takes the form

p(x) =
K∑
k=1

πk pk(x)

where πk are mixing weights of K components and pk are component density
functions. In flow cytometry, mixture models are widely-used to model cell
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populations. Among mixture models, Gaussian mixture models are common
[4, 5, 8], while distributions with more parameters, such as t-distributions,
skew normal or skew t-distributions, have been recently proposed [6, 7].
While non-Gaussian models might provide a better fit, there is a trade-off
between bias and variance. More complicated models tend to be more chal-
lenging to fit. Furthermore, even with an imperfect data model, we may still
achieve an improved file matching.

Clustering amounts to fitting the parameters of the mixture model to the
data points in X1 and X2. Given the model, a data point x is assigned to
cluster k for which the posterior probability is maximized. Here we explain
the mixture model that we used to model the cell populations (Section 3.2.1)
and present an EM algorithm for inferring the model parameters, which
determine the cluster membership of each data point (Section 3.2.2).

3.2.1. Mixture of PPCA

Fitting multidimensional mixture models require estimating a large num-
ber of parameters, and obtaining reliable estimates becomes difficult when
the number of components or the dimension of the data increase. Here we
adopt a probabilistic principal component analysis (PPCA) mixture model
as a way to concisely model cell populations.

PPCA was proposed by [15] as a probabilistic interpretation of PCA.
While conventional PCA lacks a probabilistic formulation, PPCA specifies
a generative model, in which a data vector is linearly related to a latent
variable. The latent variable space is generally lower dimensional than the
ambient variable space, so the latent variable provides an economical repre-
sentation of the data. Our motivations for using PPCA over a full Gaussian
mixture model are that the parameters can be fit more efficiently (as demon-
strated in Section 4), and in higher dimensional settings, a full Gaussian
mixture model may have too many parameters to be accurately fit.

The PPCA model is built by specifying a distribution of a data vector
x ∈ Rd conditional on a latent variable t ∈ Rq, p(x|t) = N (Wt + µ, σ2I)
where µ is a d-dimensional vector and W is a d× q linear transform matrix.
Assuming the latent variable t is normally-distributed, p(t) = N (0, I), the
marginal distribution of x becomes Gaussian p(x) = N (µ,C) with mean µ
and covariance matrix C = WWT + σ2I. Then the posterior distribution
can be shown to be Gaussian as well: p(t|x) = N (M−1WT (x− µ), σ2M−1)
where M = WTW + σ2I is a q × q matrix.

The PPCA mixture model is a combination of multiple PPCA compo-
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nents. This model offers a way of controlling the number of parameters to
be estimated without completely sacrificing the model flexibility. In the full
Gaussian mixture model, each Gaussian component has d(d+1)/2 covariance
parameters if a full covariance matrix is used. The number of parameters can
be reduced by constraining the covariance matrix to be isotropic or diagonal.
However, these are too restrictive for cell populations since the correlation
structure between variables cannot be captured. On the other hand, the
PPCA mixture model lies between those two extremes and allows control of
the number of parameters through specification of q, the dimension of the
latent variable.

A PPCA mixture can be viewed as a Gaussian mixture with structured co-
variances. In Gaussian mixtures, various approaches constraining covariance
structures have been proposed [16], where each cluster is required to share
parameters to have the same orientation, volume or shape. However, in the
PPCA model, the geometry of each cluster is allowed to vary between clus-
ters, and the cluster parameters for different clusters are not constrained to
be related to one another. Therefore, the PPCA mixture model is preferable
in flow cytometry where cell populations typically have different geometric
characteristics.

In a mixture of PPCA model, each PPCA component explains local data
structure or a cell subpopulation, and the collection of component parameters
θk = {πk,µk,Wk, σ

2
k}, k = 1, · · · , K, defines the model. An EM algorithm

can learn the model by iteratively estimating these parameters. More details
on the PPCA mixture and the EM algorithm for data without missing values
are explained in [17].

3.2.2. Missing data EM algorithm

The concatenated dataset of X1 and X2 contains only partial observations
of N = N1 + N2 units. Hence, we cannot directly apply the EM algorithm
for a PPCA mixture to infer the model parameters. In the present section,
we devise a novel EM algorithm for the missing data.

Even though our file matching problem has a particular pattern of missing
variables, we develop a more general algorithm that allows for an arbitrary
pattern of missing variables. Our development assumes values are “missing
at random,” meaning that whether a variable is missing or not is independent
of its value [13]. We note that [18] presented an EM algorithm for a Gaussian
mixture with missing data, and [17] presented EM algorithms for a PPCA
mixture when data is completely observed. Therefore, our algorithm may be

13



viewed as an extension of the algorithm of [18] to PPCA mixtures, or the
algorithm of [17] to data with missing values.

Denoting the observed and missing variables by on and mn, each data

point can be divided as xn =

[
xon
n

xmn
n

]
. Recall that, in the file matching

problem, on indexes the union of common variables and the observed specific
variables, and mn indexes the unobserved specific variables so that x

(i)
n , i ∈

on, are observed variables and x
(i)
n , i ∈ mn, are missing variables. This is

only for notational convenience and does not imply that the vector xn is
re-arranged to this form.

Thus, we are given a set of partial observations {xo1
1 , · · · ,x

oN
N }. To invoke

the EM machinery, we introduce indicator variables zn. One and only one
entry of zn is nonzero and znk = 1 indicates that the kth component is
responsible for generating xn. We also include the missing variables xmn

n and
the set of latent variables tnk for each component to form the complete data
(xon

n ,x
mn
n , tnk, zn) for n = 1, · · · , N and k = 1, · · · , K.

We derive an EM algorithm for the PPCA mixture model with missing
data. The key difference from the EM algorithm for completely observed data
is that the conditional expectation is taken with respect to xo as opposed to
x in the expectation step.

To develop an EM algorithm, we employ and extend the two-stage proce-
dure as described in [17]. In the first stage of the algorithm, the component
weights πk and the component center µk are updated:

π̂k =
1

N

∑
n

〈znk〉 , (1)

µ̂k =

∑
n 〈znk〉

[ xon
n

〈xmn
n 〉

]
∑

n 〈znk〉
(2)

where 〈znk〉 = P (znk = 1|xon
n ) is the responsibility of mixture component k

for generating the unit xn and 〈xmn
n 〉 = E[xmn

n |znk = 1,xon
n ] is the conditional

expectation. Note that we are not assuming the vectors in the square bracket
are arranged to have this pattern. This notation can be replaced by the true
variable ordering.
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Cell Type CD markers
granulocytes CD45+, CD15+
monocytes CD45+, CD14+
helper T cells CD45+, CD3+
cytotoxic T cells CD45+, CD3+, CD8+
B cells CD45+, CD19+ or CD45+, CD20+
Natural Killer cells CD16+, CD56+, CD3-

Table 1: Types of human white blood cells. The T cells, B cells and NK cells are called
lymphocytes. Each cell type is characterized by a set of expressed cluster of differentiation
(CD) markers. The CD markers are commonly used to identify cell surface molecules on
white blood cells. The ‘+/−’ signs indicate whether a certain cell type has the corre-
sponding antigens on the cell surface.

In the second stage, we update Wk and σ2
k:

Ŵk =SkWk(σ2
kI + M−1

k WT
k SkWk)−1, (3)

σ̂2
k =

1

d
tr
(
Sk − SkWkM

−1
k ŴT

k

)
(4)

from local covariance matrix Sk:

Sk =
1

Nπ̂k

∑
n

〈znk〉

〈([ xon
n

〈xmn
n 〉

]
− µ̂k

)([ xon
n

〈xmn
n 〉

]
− µ̂k

)T
〉
.

The new parameters are denoted by π̂k, µ̂k,Ŵk and σ̂2
k. These update rules

boil down to the update rules for completely observed data when there are
no missing variables. We derive the EM algorithm in detail in Appendix A.

After model parameters are estimated, the observations are divided into
groups according to their posterior probabilities:

arg max
k=1,···K

p (znk = 1|xon
n ),

so each unit (cell) is classified into one of K cell subpopulations. Note that
this posterior probability is computed in the E-step. This gives the desired
clustering.

3.2.3. Domain knowledge and initialization of EM algorithm

Because of the missing data, fitting a PPCA mixture model is ill-posed,
in the sense that several local maxima of the likelihood may explain the data
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equally well. For example, in the toy example in Section 2.3, there is no
way to know the correct cluster inference based solely on the data. However,
we can leverage domain knowledge to select the number of components and
initialize model parameters.

In flow cytometry, from the design of fluorochrome marker combinations
and knowledge about the blood sample composition, we can anticipate cer-
tain properties of cell subpopulations. For example, Table 1 summarizes
white blood cell types and their characteristic cluster of differentiation (CD)
marker expressions. The six cell types suggests choosing K = 6 when ana-
lyzing white blood cells.

The CD markers indicated are commonly used in flow cytometry to iden-
tify cell surface molecules on leukocytes (white blood cells) [19]. However,
this information is qualitative and needs to be quantified. Furthermore, the
appropriate quantification depends on the patient and flow cytometry sys-
tem.

To achieve this, we use one dimensional histograms. In a histogram, two
large peaks are generally expected depending on the expression level of the
corresponding CD marker. If a cell subpopulation expresses a CD marker,
denoted by ‘+’, then it forms a peak on the right side of the histogram. On
the other hand, if a cell subpopulation does not express the marker, denoted
by ‘−’, then a peak can be found on the left side of the histogram. We use
the locations of the peaks to quantify the expression levels.

These quantified values can be combined with the CD marker expression
levels of each cell type to specify the initial cluster centers. Thus, each
element of µk of a certain cell type is initialized by either the positive quantity
or the negative quantity from the histogram. In our implementation, these
are set manually by visually inspecting the histograms. Then we initialize
the mixture model parameters {πk,µk,Wk, σ

2
k} as described in Fig. 8.

An important issue in file matching arises from the covariance matrix.
When data is completely observed, a common way of initializing a covariance
matrix is using a sample covariance matrix. In the case of file matching,
however, it cannot be evaluated since some sets of variables are never jointly
observed (see Fig. 9). Hence, we build Ck from variable to variable with
sample covariances, whenever possible. For example, we can set Cc,s1

k with
the sample covariance of data points in X1 where variables c and s1 are
available. On the other hand, the submatrix Cs1,s2

k cannot be built from
observations. In our implementation, we set the submatrix Cs1,s2

k randomly
from a standard normal distribution. However, the resulting matrix may
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Input: X1, X2 data files; K the number of components; q the dimension of
the latent variable space; µk the initial component means.
for k = 1 to K do

1. Using distance ‖xon
n − µon

k ‖2, find the set of data points X k whose
nearest component mean is µk

2. Initialize observable submatrices of Ck with sample covariances of
data in X k, and the remaining entries with random draws from a stan-
dard normal distribution.
3. Make Ck positive definite by replacing negative eigenvalues with a
tenth of the smallest positive eigenvalue.
4. Set πk = |X k|/(N1 +N2)
5. Set Wk with the q principal eigenvectors of Ck

6. Set σ2
k with the average of remaining eigenvalues of Ck

end for
Output: {πk, µk, Wk, σ2

k} for k = 1, · · · , K

Figure 8: Parameter initialization of an EM algorithm for missing data. Cell populations
are partitioned into K groups by the distance to each component center. The component
weight πk is proportional to the size of each partition. From the covariance matrix estimate
Ck, parameters Wk and σ2

k are initialized by taking the eigen-decomposition.

c s1 s2
c
s1
s2

Figure 9: Structure of covariance matrix C. The sub-matrices Cs1,s2
k and Cs2,s1

k cannot
be estimated from a sample covariance matrix because these variables are never jointly
observed.
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FS SS CD56 CD16 CD3 CD8 CD4
file 1
file 2

Figure 10: File structure used in the single tube experiments in Section 4.1. FS, SS and
CD56 are common in both files, and a pair of CD markers are observed in only one of the
files. The blank blocks correspond to the unobserved variables. The blocks in file 1 are
matrices with N1 rows and the blocks in file 2 are matrices with N2 rows.

not be positive definite. Thus, we made Ck positive definite by replacing
negative eigenvalues with a tenth of the smallest positive eigenvalue. Once a
covariance matrix Ck is obtained, we can initialize Wk and σ2

k by taking the
eigen-decomposition of Ck.

4. Results

We apply the proposed file matching technique to real flow cytometry
datasets and present experimental results. Three flow cytometry datasets
were prepared from lymph node samples of three patients. These datasets
were provided by the Department of Pathology at the University of Michigan.

We consider two experimental settings. In the first experiment (Section
4.1), we artificially create two incomplete data files from a single tube and
compare the imputed results to the original true dataset. In the second
experiments (Section 4.2), we investigate multiple tubes where each file is
derived individually from two different tubes and the imputed results are
compared to separate reference data.

4.1. Single tube experiments

From each patient sample, a dataset is obtained with seven attributes: FS,
SS, CD56, CD16, CD3, CD8 and CD4. Two files are built from this dataset,
and two attributes from each file are made hidden to construct hypothetical
missing data. Hence, CD16 and CD3 are available only in file 1, and CD8
and CD4 are available only in file 2, while FS, SS and CD56 are commonly
available in both files. Fig. 10 illustrates the resulting data pattern where
the blocks of missing variables are left blank.

For each white blood cell type, its expected marker expressions (CD mark-
ers), relative size (FS) and relative granularity (SS) are presented in Table 2.
The ‘+/−’ signs indicate whether a certain type of cells expresses the mark-
ers or not. For example, helper T cells express both CD3 and CD4 but not
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Cell type FS SS CD56 CD16 CD3 CD8 CD4
granulocytes + + − + − − −
monocytes + − − + − − −
helper T cells − − − − + − +
cytotoxic T cells − − − − + + −
B cells − − − − − − −
Natural Killer cells − − + + − − −

Table 2: Cell types and their corresponding marker expressions for data in the single tube
experiments. ‘+’ or ‘−’ indicates whether a certain cell type expresses the CD marker or
not.

others. As explained in Section 3.2.3, we quantify this qualitative knowledge
with the help of one dimensional histograms. Two dominant peaks corre-
sponding to the positive and negative expression levels are picked from each
histogram, and their measurement values are set to the expression levels.
Fig. 11 and Table 3 summarize this histogram analysis. When two negative
peaks are present as in CD8, the stronger ones are chosen in our implementa-
tion. In flow cytometry, it is known that two types of cells with the same ‘−’
marker can cause slightly different measurement levels. However, this differ-
ence between ‘−’ peaks is often small and less significant compared to the
difference between ‘+’ and ‘−’ peaks. When we tried experiments (not pre-
sented) by choosing weaker peaks, we could not observe meaningful changes
in the results.
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Figure 11: Histogram of each marker in the single tube experiments (Section 4.1). The
peaks are selected manually and are indicated in each panel.
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FS SS CD56 CD16 CD3 CD8 CD4
+ 800 680 500 350 550 750 650
− 400 400 240 130 200 170 200

Table 3: The positive and negative expression levels are extracted from the histograms in
Fig. 11. These values are used to initialize the EM algorithm.

Following the procedure delineated in Section 3, two incomplete data files
are completed. A mixture of PPCA is fitted with six components because
six cell types are expected on this dataset. The latent variable dimension of
each PPCA component is fixed to two. The convergence of the missing data
EM algorithm is determined when the relative change of log-likelihood value
is less than 10−10 or the number of iterations reaches 5000. Fig. 12 shows
the evolution as iteration continues. The likelihood value increases sharply
during the dozens of steps in the beginning and then converges.
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Figure 12: Typical convergence of the proposed missing data EM algorithm.

The synthesized data after file matching is displayed in Fig. 5. The figure
shows scatter plots of specific variables: CD16, CD3, CD4 and CD8. Note
that these marker pairs are not available from any of the two incomplete
data files, while other marker pairs are directly obtainable from the observed
cells. The imputation results from the NN and the Cluster-NN methods
are compared in the figure. For reference, the figure also presents scatter
plots of the ground truth dataset. As can be seen, the results from the
Cluster-NN better coincide with the true distributions. By contrast, the NN
method generates spurious clusters in the CD3-CD8 and CD3-CD4 scatter
plots, and the results are far from the true distributions. These false clusters
are indicated in Fig. 5. We quantify the quality of the imputed values below
in Section 4.3.
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FS SS CD5 CD45 CD19
file 1
file 2

Figure 13: Data pattern used in the multiple tube experiments in Section 4.2. Both files
contain FS, SS and CD5 commonly, and each file contains one of CD45 and CD19. All
marker attributes are available in a separate reference file.

4.2. Multiple tube experiments

In this second experiment, we involve multiple tubes and demonstrate
the file matching of flow cytometry data.

Two tubes from each of the three patient samples are stained individually
with different marker combinations: CD5/CD45 and CD5/CD19. For com-
parison with actually measured data, an additional tube is conjugated with
markers CD5/CD45/CD19. This additional tube dataset is used only for
evaluation of imputation results and is not involved during the file matching.
Fig. 13 illustrate the pattern of datasets used in the experiments.

As opposed to the previous single tube experiments, the experiments on
multiple tubes impose another complication. It is well-known that in flow
cytometry, the instrument can drift over time. This technical variation causes
the shifts in population positions. To minimize the effects from this variation,
data files can be preprocessed with normalization techniques [20, 21] before
applying file matching algorithms.

However, the rate of this drift is typically very slow and on a much larger
scale than the time for one set of tubes. Furthermore, operators are careful
to calibrate each tube (based on the same sample) in the same way to min-
imize such variation. For these reasons, technical variation within a batch
of tubes corresponding to the same patient/sample is much less of an issue
in flow cytometry, compared to technical variation between data gathered
at different times. Since no noteworthy population shift was found from the
histogram analysis in Fig. 14, we proceeded without any normalization.

For datasets in multi-tube experiments, Table 4 shows the relative marker
expression levels of various types of white blood cells. Their corresponding
numerical measurement levels are found from this table and the histograms
in Fig. 14, and given in Table 5. Since all white blood cells express CD45,
its negative level is left blank in the table.

Similarly to the above experiments, the two incomplete data files are
imputed using the Cluster-NN algorithm as explained in Section 3. In this
experiment, a PPCA mixture model with five components is fitted to the
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Figure 14: The top row shows histograms from the two incomplete files. Histograms from
the reference file are shown in the bottom row. The peaks of each marker are indicated.
No noticeable population shift across files was observable.

Cell type FS SS CD5 CD45 CD19
granulocytes + + − + −
monocytes + − − + −
helper T cells − − + + −
cytotoxic T cells − − + + −
B cells − − − + +
Natural Killer cells − − − + −

Table 4: Types of white blood cells and their corresponding markers expressions for data
in the multiple tube experiments..

FS SS CD5 CD45 CD19
+ 850 670 700 615 545
− 410 395 280 − 255

Table 5: The positive and negative expression levels are obtained from the histograms in
Fig. 14. Since all white blood cells express CD45, the negative level is left blank.
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missing data. We choose five components because the two types of T cells
share the same row in Table 4. The dimension of the latent variable of each
component, q, is set to two.

Fig. 15 displays the cell distributions of imputed data files. The presented
marker pair CD45-CD19 is not originally available in any of the two files in
experiments. The corresponding scatter plot from the separate reference
file is also drawn. While the imputed results from the NN method and the
Cluster-NN method look similar, a horizontal drift of cells in high CD19
subpopulation can be observed in the NN result. This spread of cells is not
present in the reference plot and the Cluster-NN result.
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Figure 15: Comparison of two imputation results with the actual measurements in the
reference file. The result from the NN method shows a horizontal drift of cells in high
CD19 population. This is not observed in the Cluster-NN result and the reference file.

4.3. Evaluation method

To quantitatively evaluate the previous results, we use Kullback-Leibler
(KL) divergence. The KL divergence between two distribution f(x) and g(x)
is defined by

KL(g ‖ f) = Eg [log g − log f ] .

Let f be a true distribution responsible for the observations and g be its
estimate.

The KL divergence is asymmetric and KL(f ‖ g) and KL(g ‖ f) have
different meanings. We prefer KL(g ‖ f) to KL(f ‖ g) because the former
more heavily penalize the over-estimation of the support of f . This allows
us to assess when an imputation method introduces spurious clusters.

For the single tube and the multiple tube experiments, we evaluated
the KL divergence of the imputation results. We randomly permuted each
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ID NN (file 1) Cluster-NN (file 1) NN (file 2) Cluster-NN (file 2)
Patient1 2.90 ± 0.05 1.55 ± 0.05 2.66 ± 0.03 1.12 ± 0.04
Patient2 4.54 ± 0.07 1.22 ± 0.03 4.12 ± 0.08 0.92 ± 0.03
Patient3 4.46 ± 0.10 2.40 ± 0.11 4.18 ± 0.11 2.30 ± 0.07

(a) Single tube experiments

ID NN (file 1) Cluster-NN (file 1) NN (file 2) Cluster-NN (file 2)
Patient1 0.51 ± 0.01 0.46 ± 0.02 0.41 ± 0.01 0.40 ± 0.01
Patient2 0.64 ± 0.01 0.62 ± 0.03 0.80 ± 0.03 0.78 ± 0.04
Patient3 0.88 ± 0.05 0.78 ± 0.07 0.80 ± 0.02 0.65 ± 0.03

(b) Multiple tube experiments

Table 6: The KL divergences are computed for ten permutations of each flow cytometry
dataset. The averages and standard errors are reported in the table. For both the NN
and Cluster-NN algorithm, the file matching results are evaluated. (a) In the single tube
experiments, the KL divergences of Cluster-NN are closer to zero than those of NN. Thus,
the results from Cluster-NN better replicated the true distribution. (b) In the multiple
tube experiments, the Cluster-NN consistently performed better than the NN. However,
the differences between two algorithms are small.

dataset ten times, and divided into incomplete data files and evaluation sets.
Then we computed the KL divergence for each permutation, and reported
their averages and standard errors in Table 6. The details of dividing datasets
and computing the KL divergence are explained in Appendix B.

As can be seen, the KL divergences from Cluster-NN are substantially
smaller than those from NN in the first set of experiments on a single tube.
Therefore, the Cluster-NN yielded a better replication of true distribution.
In the second series of experiments, the differences in KL divergence between
algorithms were minor. While we could observe the spread of cells in the NN
results (see Fig. 15), their effect on the KL divergence was sometimes small
due to their relatively small number.

4.4. Computational considerations

Here we consider computational aspects of the PPCA mixture model and
its EM algorithm.

As we described above in Section 3.2.1, through the PPCA mixtures, we
can control the number of model parameters without losing the model flexi-
bility. When combining more tubes, this ensures that there is sufficient data
for parameter estimation with higher dimensionality. Another advantage of
using PPCA mixtures is the execution time of the EM algorithm. Under
Windows 7 system equipped with two Intel(R) Xeon(R) 2.27 GHz processors
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and RAM 12GB, the average convergence time with PPCA mixtures was
about 23 seconds in the above single tube experiment. On the contrary, it
took nearly 200 seconds on average to fit full Gaussian mixtures. That is,
fitting a PPCA mixture model took approximately eight times less relative
to one based on a full Gaussian mixture model. This computational improve-
ment is highly desirable because demands for high-throughput analysis are
sharply increasing in flow cytometry.
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Figure 16: The scatter plots of a dataset used in the single tube experiments (Section 4.1)
are drawn on several marker pairs. The fitted mixture components are shown as well on
each panel. For clarity, four among the six components are displayed.

During the series of experiments, we have chosen the number of mixture
components based on the number of cell types. Then mixture models are
learned from the partially observed data. Fig. 16 illustrates how the cluster-
ing behaves on a dataset used in the single tube experiments (Section 4.1).
Component contours are overlaid on the scatter plots over a few observed
marker pairs. Most contours can be successfully identified with important
cell subpopulations in the dataset, while there are some cases where we could
not find the corresponding cell types.

Although many mixture model-based analysis in flow cytometry rely on
criteria such as Akaike information criterion or Bayesian information criterion
to select the number of components [5, 6, 7], these approaches assume com-
pletely observed data, whereas most of the data are missing in file matching.
In practice, a good rule of thumb is to set the number of mixture compo-
nents with the number of cell types. Fig. 17 shows the effect of the number
of components. For a range of K, where K is the number of components,
we repeated the single tube experiments in Section 4.1. Six points are first
selected from from Fig. 11 and Table 2, and then used for K = 6. For models
with more or less than 6 components, each centroid is initialized by random
drawing from a Gaussian distribution centered at one of the six points. Once
cluster centers are initialized, the rest of the parameters are initialized by
following the method described in Fig. 8. The best performance is given
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when K = 7, with the performance slightly better than the performance
when K = 6. For values of K less than 6, the performance was much worse,
and for values greater than 7, the performance gradually degraded as the
number of components was increased.

5 10 15 20 25
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Number of components (K)

K
L 

di
ve

rg
en

ce

 

 
NN − file 1
Cluster NN − file 1
NN − file 2
Cluster NN − file 2

Figure 17: The KL divergence of Cluster-NN imputation results over the number of com-
ponents of a PPCA mixture model. As the NN method does not involve clustering, the
KL divergence remains constant. The best performance of Cluster-NN is achieved near
K = 7.

5. Discussion

In this paper, we demonstrated the use of a cluster-based nearest neighbor
(Cluster-NN) imputation method for file matching of flow cytometry data.
We applied the proposed algorithm on real flow cytometry data to generate
a dataset of higher dimension by merging two data files of lower dimensions.
The resulting matched file can be used for visualization and high-dimensional
analysis of cellular attributes.

While the presented imputation method focused on the case of two files, it
can be generalized to more than two files. We envision two possible extensions
of the Cluster-NN imputation method. For concreteness, suppose that five
files X1, · · · ,X5 are given and a missing variable of xi ∈ X1 is available in X2

and X3.

Method 1. The first approach fits a single mixture of PPCA model to the
all units in the five files using the missing data EM algorithm in Section 3.2.
According to their posterior probabilities, units in each file are clustered into
classes. If xi belongs to X k

1 , then the similarities are computed between xi

and units in X k
2 and X k

3 . Then the most similar unit is chosen to be the
donor.
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Method 2. In the second method, a pair of files are considered at a time by
selecting and limiting the search for a donor to one of X2 and X3. One can
pick a file with more cells, say X3. Thus, the donor candidates are found
among units in X3. Then the PPCA mixture model is trained with the cells
in X1 and X3 using the missing data EM algorithm. After units in X1 and
X3 are labeled, a donor is found from X k

3 for xi ∈ X k
1 .

Once a donor is elected either from Method 1 or from Method 2, the
missing variable of xi is imputed from the donor. Method 2 solves smaller
problems involving less number of data points for model fitting, but needs to
train mixture models multiple times to impute all the missing variables in the
dataset. On the contrary, Method 1 solves a single large problem involving
all data points.

Future research directions include finding ways of automatic domain infor-
mation extraction. The construction of covariance matrices from incomplete
data in the initialization of the EM algorithm is also an interesting problem.
We expect that better covariance structure estimation, which will be avail-
able from better prior information, will be helpful for better replication of
non-symmetric and non-elliptic cell subpopulations in the imputed results.

In the present study, we validated our method with lymphocyte data,
where, for certain marker combinations, cell types tend to form relatively
well-defined clusters. However, for other samples and marker combinations,
clusters may be more elongated or less well-defined due to cells being at
different stages of physiologic development. Fig. 16 indicates that flow cy-
tometry clusters are often not Gaussian distributed. It may therefore be
worth extending the ideas here to incorporate non-elliptical clusters using,
for example, skewed Gaussian or skewed multivariate t components [7]. The
cluster merging technique of [22] may also be helpful in this regard.

Appendix A. Derivation of EM algorithm for mixture of PPCA
model with missing data

Suppose that we are given an incomplete observation set. We can divide

each unit xn as xn =

[
xon
n

xmn
n

]
by separating the observed components and the

missing components. Note that we do not assume that the observed variables
come first and the missing variables next, and this should be understood as
a notational convenience.
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In the PPCA mixture model, the probability distribution of x is

p(x) =
K∑
k=1

πkp(x|k)

where K is the number of components in the mixture and πk is a mixing
weight corresponding to the component density p(x|k). We estimate the set
of unknown parameters θ = {πk,µk,Wk, σ

2
k} using an EM algorithm from

the partial observations {xo1
1 , · · · ,x

oN
N }.

To develop an EM algorithm, we introduce indicator variables zn =
(zn1, · · · , znK) for n = 1, · · · , N . One and only one entry of zn is nonzero,
and znk = 1 indicates that the kth component is responsible for generating
xn. We also include a set of the latent variables tnk for each component
and missing variables xmn

n to form the complete data (xon
n ,x

mn
n , tnk, zn) for

n = 1, · · · , N and k = 1, · · · , K. Then the corresponding complete data
likelihood function has the form

LC =
∑
n

∑
k

znk ln [πkp(xn, tnk)]

=
∑
n

∑
k

znk

[
ln πk −

d

2
lnσ2

k −
1

2σ2
k

tr
(
(xn − µk)(xn − µk)T

)
+

1

σ2
k

tr
(
(xn − µk)tTnkW

T
k

)
− 1

2σ2
k

tr
(
WT

kWktnkt
T
nk

) ]
,

where terms independent of the parameters are not included in the second
equality. Instead of developing an EM algorithm directly on this likelihood
function LC , we extend the strategy in [17] and build a two-stage EM algo-
rithm, where each stage is a two-step process. This approach monotonically
increases the value of the log-likelihood each round [17].

In the first stage of the two-stage EM algorithm, we update the component
weight πk and the component mean µk. We form a complete data log-
likelihood function with the component indicator variables zn and missing
variables xm

n , while ignoring the latent variables tnk. Then we have the
following likelihood function:

L1 =
N∑

n=1

K∑
k=1

znk ln[πkp(x
on
n ,x

mn
n |k)]

=
∑
n

∑
k

znk

[
lnπk −

1

2
ln |Ck| −

1

2
tr
(
C−1k (xn − µk)(xn − µk)T

)]
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where terms unrelated to the model parameters are omitted in the second
line. We take the conditional expectation with respect to p(zn,x

mn
n |xon

n ).
Since the conditional probability factorizes as

p(zn,x
mn
n |xon

n ) = p(zn|xon
n )p(xmn

n |zn,xon
n ),

we have the following conditional expectations

〈znk〉 =p(k|xon
n ) =

πkp(x
on
n |k)∑

k′ πk′p(x
on
n |k′)

,

〈znkxmn
n 〉 = 〈znk〉 〈xmn

n 〉 ,
〈xmn

n 〉 =µmn
k + Cmnon

k Conon−1

k (xon
n − µon

k ),〈
znkx

mn
n xmn

T

n

〉
= 〈znk〉

〈
xmn
n xmn

T

n

〉
,〈

xmn
n xmn

T

n

〉
=Cmnmn

k −Cmnon
k Conon−1

k Conmn
k + 〈xmn

n 〉
〈
xmn

T

n

〉
where 〈·〉 denotes the conditional expectation. Maximizing 〈L1〉 with respect
to πk, using a Lagrange multiplier, and with respect to µk give the parameter
updates

π̂k =
1

N

∑
n

〈znk〉 , (A.1)

µ̂k =

∑
n 〈znk〉

[ xon
n

〈xmn
n 〉

]
∑

n 〈znk〉
. (A.2)

In the second stage, we include the latent variable tnk as well to formulate
the complete data log-likelihood function. The new values of π̂k and µ̂k are
used in this step to compute sufficient statistics. Taking the conditional
expectation on LC with respect to p(zn, tnk,x

mn
n |xon

n ), we have

〈LC〉 =
∑
n

∑
k

〈znk〉
[

ln π̂k −
d

2
lnσ2

k −
1

2σ2
k

tr
(〈
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〉) ]
.

Since the the conditional probability factorizes

p(zn, tnk,x
mn
n |xon

n ) = p(zn|xon
n )p(xmn

n |zn,xon
n )p(tnk|zn,xon

n ,x
mn
n ),
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we can evaluate the conditional expectations as follows :〈
(xn − µ̂k)(xn − µ̂k)T

〉
=
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+
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]
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Recall that the q × q matrix Mk = WT
kWk + σ2

kI. Then the maximization
of 〈LC〉 with respect to Wk and σ2

k leads to the parameter updates,

Ŵk =

[∑
n

〈znk〉
〈
(xn − µ̂k)tTnk

〉] [∑
n

〈znk〉
〈
tnkt

T
nk

〉]−1
, (A.3)

σ̂2
k =

1

d
∑

n 〈znk〉

[∑
n

〈znk〉 tr
(〈

(xn − µ̂k)(xn − µ̂k)T
〉)

− 2
∑
n

〈znk〉 tr
(〈

(xn − µ̂k)tTnk
〉
WT

k

)
+
∑
n

〈znk〉 tr
(
WT

kWk

〈
tnkt

T
nk

〉) ]
. (A.4)

Substituting the conditional expectations simplifies the M-step equations

Ŵk =SkWk(σ2
kI + M−1

k WT
k SkWk)−1, (A.5)

σ̂2
k =

1

d
tr
(
Sk − SkWkM

−1
k ŴT

k

)
(A.6)

where

Sk =
1

Nπ̂k

∑
n

〈znk〉

〈([ xon
n

〈xmn
n 〉

]
− µ̂k

)([ xon
n

〈xmn
n 〉

]
− µ̂k

)T
〉
.

Each iteration of the EM algorithm updates the set of old parameters
{πk,µk,Wk, σ

2
k} with the set of new parameters {π̂k, µ̂k,Ŵk, σ̂

2
k} in (A.1),

(A.2), (A.5) and (A.6). The algorithm terminates when the value of the
log-likelihood function changes less than a predefined accuracy constant.
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ID N1 N2 Ne

Patient1 10000 10000 5223
Patient2 7000 7000 4408
Patient3 3000 3000 3190

Table B.7: Datasets from three patients in the single tube experiments (Section 4.1). Each
tube is divided into two data files and an evaluation set. N1 and N2 denote the sizes of
the two data files, and Ne is the size of the evaluation set.

Appendix B. Computing KL divergences

For each experiment in Section 4, we quantify the imputation results
using the KL divergence.

Appendix B.1. Single tube experiments

In the single tube experiments, each dataset corresponding to the different
patients is divided into two data files and a separate evaluation set. Table
B.7 summarizes the cell counts in these sets. N1, N2 and Ne are the cell
counts of the two files and the hold-out set, respectively. After imputing the
two files with either the NN or the Cluster-NN method, the KL divergences
are computed. The empirical estimate of the KL divergence is

KL(g ‖ f) =Eg [log g − log f ]

≈ 1

Ne

Ne∑
n=1

[log g (x̂n)− log f (x̂n) ]

≈ 1

Ne

Ne∑
n=1

[
log ĝ (x̂n)− log f̂ (x̂n)

]
where the distributions f and g are replaced by their corresponding density
estimates and the expectation is approximated by a finite sum over imputed
results x̂n on the hold-out set of size Ne. For f̂ and ĝ, we used kernel density
estimation on the ground truth data and the imputed data, respectively.

Appendix B.2. Multiple tube experiments

As explained in Section 4.2, three tubes per patient are available in the
multiple tube experiments. The third tube of higher dimension is a reference
dataset and is not involved during the file matching. Each of the two lower
dimensional tubes is split into two halves. The first halves of the two tubes
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ID N1 N2 Ne1 Ne2 N3

Patient1 10000 10000 3982 21828 47248
Patient2 8000 8000 14661 3793 28101
Patient3 2000 5000 1817 7228 9795

Table B.8: Datasets from three patients in the multiple tube experiments (Section 4.2).
N1 and N2 denote the sizes of the two data files, and Ne1 and Ne2 denote the sizes of the
evaluation sets. N3 is the number of cells in the additional tube that is treated as the
ground truth.

form the incomplete data: file 1 and file 2 with N1 and N2 cells, respectively.
The second halves of size Ne1 and Ne2 form the evaluation sets and their
imputed results are used to approximate the expectation of the KL diver-
gence. For each patient, the sizes of these sets are shown in Table B.8. The
reason for splitting each tube in half is so that the data used to approximate
the expectation are independent to the data used to estimate density of the
imputed result. Therefore, the imputation result of file 1 is evaluated by

KL(g1 ‖ f) ≈ 1

Ne1

Ne1∑
n=1

[
log ĝ1 (x̂n)− log f̂ (x̂n)

]
where ĝ1 is the kernel density estimate based on imputed rows from the first
half of tube 1. The third tube is treated as the ground truth data and used
to obtain the density estimate f̂ .

When evaluating the KL divergence of file 2, ĝ1 is replaced by ĝ1, the
kernel density estimate on the imputed result of file 2, and the finite sum is
taken over the evaluation set of size Ne2.
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