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Abstract—Likelihood-based test statistics for the task of de-
tecting a radioactive source in background using a gamma-ray
imaging system often have intractable distributions. This compli-
cates the tasks of predicting detection performance and setting
thresholds that ensure desired false-alarm rates. Asymptotic
distributions of test statistics can aid in predicting performance
and in setting detection thresholds. However, in applications
with complex sensors, like gamma-ray imaging, often only ap-
proximate statistical models for the measurements are available.
Standard asymptotic approximations can yield inaccurate per-
formance predictions when based on misspecified models. This
paper considers asymptotic properties of detection tests based on
maximum likelihood (ML) estimates under model mismatch, i.e.,
when the statistical model used for detection differs from the true
distribution. We provide general expressions for the asymptotic
distribution of likelihood-based test statistics when the number of
measurements is Poisson, and expressions specific to gamma-ray
source detection that one can evaluate using a modest amount of
data from a real system or Monte Carlo simulation. Considering
a simulated Compton imaging system, we show that the proposed
expressions yield more accurate detection performance predic-
tions than previous expressions that ignore model mismatch. These
expressions require less data and computation than conventional
empirical methods.

Index Terms—Asymptotics, Compton scatter camera, detection,
hypothesis testing, misspecified models.

I. INTRODUCTION

M ANY detection strategies use test statistics based on
maximum-likelihood (ML) parameter estimates. How-

ever, in many practical detection problems, the true likelihood is
not available. Estimators derived from approximate models may
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not enjoy the desirable properties of the ML estimator, such as
asymptotic unbiasedness and asymptotic efficiency. Predicting
asymptotic detection performance under the incorrect assump-
tion that these properties are satisfied can lead to inaccurate,
and sometimes overly optimistic results. This work focuses on
gamma-ray source detection using position-sensitive detectors,
an application where model mismatch is often significant due to
system model approximation.
Position-sensitive gamma-ray detectors are useful for secu-

rity, medicine, and nuclear nonproliferation. Position-sensitive
detectors are advantageous because they allow image forma-
tion and spatial localization of sources. However, some types
of position-sensitive detectors have unknown or intractable
models for the system response, motivating the use of approxi-
mate models. Examples of approximations that result in model
mismatch are substituting a non-Gaussian uncertainty with
a Gaussian distribution, linearizing the system response, and
neglecting physical processes, such as Doppler broadening and
pair production. Examples of position-sensitive gamma-ray
detectors and approximate models for the interaction event
probabilities are given in [1]–[4].
Asymptotic approximations are useful for predicting de-

tection performance with complex sensors, but conventional
asymptotic methods for predicting detection performance
assume correct models. We analyzed the asymptotic detection
performance of gamma-ray imaging systems in [5], proving
that position-sensitivity always improves detection perfor-
mance when the detector sensitivity is uniform. The formulas
for asymptotic detection performance in [5] can give inaccurate
results in practical applications where model mismatch exists.
Our work extends previous work on asymptotic detection
performance of gamma-ray detectors by accounting for model
mismatch.
Asymptotics of estimators and likelihood ratios have been

studied previously in the case of a nonrandom number of mea-
surements [6]. The results for a nonrandom number of mea-
surements are not applicable to gamma-ray imaging systems,
which record a Poisson number of measurements in a fixed-time
scan [7, p. 470]. Estimators derived frommispecifiedmodels are
known as quasi-maximum-likelihood estimators (QMLE) [6].
For a nonrandom number of independent and identically dis-
tributed (i.i.d.) measurements, a QMLE derived from a mispec-
ified model is asymptotically normal provided that certain reg-
ularity conditions are satisfied [6]. A QMLE can also be viewed
as anM-estimate. The asymptotic normality and convergence of
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M-estimates is discussed in [8] and [9]. To our knowledge, pre-
vious analyses have not considered the case where the number
of measurements is random, even in recent work [10].
To address these issues, we extend the theory on convergence

of the QMLE for a fixed number of measurements in [6] to the
case where the number of measurements is Poisson. We then
specialize this theory to gamma-ray detection to characterize the
performance of the source intensity test (SIT) [5] and general-
ized likelihood ratio test (GLRT) [11] under model mismatch.
The specialized theory allows efficient computation of the dis-
tribution of the QMLE using Monte Carlo methods.
We report experiments that demonstrate the accuracy of

our methods and their favorable performance compared to a
naïve application of expressions in [5] when model mismatch
is present. In these experiments, we evaluate the asymptotic
performance of tests for detecting a point-source in a distributed
background using a simulated parallel-plate Compton detector
and the approximate system model from [4]. We illustrate that
evaluating the asymptotic performance in terms of the receiver
operating characteristic (ROC) using the method outlined in
this paper requires less data than generating the ROC empir-
ically. We use ROC analysis rather than risk minimization in
our experiments because it does not require prior probabilities
on the presence and absence of a source.
The contributions of this paper are twofold: the extension of

the asymptotic convergence results of [6] from the case of a
fixed number of measurements to the case of a Poisson number
of measurements, and the novel application of the asymptotic
convergence results to detection performance approximation for
gamma-ray imaging systems.
This paper is organized as follows: Section II introduces

the problem, Section III gives results about convergence and
asymptotic normality of the QMLE when the number of mea-
surements is Poisson, Section IV gives specialized expressions
for the asymptotic distribution of the SIT and GLRT for
gamma-ray imaging systems, and Section V gives the results of
numerical experiments using the proposed asymptotic theory.

II. BACKGROUND

To characterize asymptotic detection performance, we must
first define the true distribution of recorded events and reason-
able models for it. The true distribution is governed by physics
but its exact form is typically unknown or difficult to compute
in practice. We also describe a model distribution for a list of
recorded events, which is often an approximation of the true
distribution. We describe the model in general terms to allow
adaptation to different types of gamma-ray detectors and per-
haps other applications such as list-mode positron emission to-
mography (PET) scans [12].

A. True Distribution of Recorded Events

We assume that the true distribution of recorded events
follows the list-mode model of [13] for Poisson measurements.
During a fixed-duration scan, a gamma-ray imaging system
records attribute vectors, such as interaction locations within
the detector and deposited energy, for each photon interaction
event. Let the list of attribute vectors recorded by the system be

. The random number of measurements

is , where , is the rate of recorded
events in counts per unit time, and is the deterministic scan
time chosen by the user. Each where is the set of all
possible event attribute vectors. For example, in an energy and
position-sensitive detector, is a vector of the coordinates and
energies of all interactions of the th photon.
Let denote the true density1 of the recorded attributes

for a single interacting photon. In general, we do not parame-
terize this true distribution because it represents the true phys-
ical process. Provided that the count rate is low enough to avoid
dead-time effects [13], the true probability density of the list of
event attributes is given by

(1)

B. Measurement Model

The true distribution of the observations in (1) is not always
known exactly, so we now give an observation model. Since the
mean number of emissions is unknown, we model it by ,
where , is the modeled photon emission rate
in counts per unit time, and is a parameter vector that lies in
the set for some integer . Examples of parameters of
interest in gamma-ray imaging are source intensity, source posi-
tion, and source energy. Let denote themodeled attribute
density, which should approximate the true density . Under
the above assumptions, we model the likelihood of the observa-
tions as follows [5], [13]:

(2)

Throughout, we use superscript “ ” to denote functions or dis-
tributions that are part of the model and might differ from the
true underlying functions or distributions that they represent.
We define model mismatch in Definition 1 [6].
Definition 1: Model mismatch exists if for all such

that , there exists an such that .
This definition means that there is no parameter in the param-

eter space such that the modeled and true distributions and count
rates are identical.

C. Estimator Definition

The quasi maximum likelihood (QML) estimate of the pa-
rameter vector is given by

(3)

assuming a solution exists and is unique. The subscript is in-
cluded to emphasize that the estimate is a function of a list of
event attributes acquired during a scan of duration . In the next
section, we examine the asymptotic properties of as ,
i.e., as one records more events by increasing the scan time.

1Throughout, density refers to the probability density function if the attributes
are continuous random variables, or the probability mass function if the at-
tributes are discrete random variables. For more general or mixed distributions,
density refers to the Radon-Nikodym density [14] with respect to an appropriate
base measure.
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Section V shows that the asymptotic approximation can accu-
rately characterize the distribution of , even for a finite scan
time.

III. PROPERTIES OF THE QMLE

We now describe the asymptotic behavior of the QMLE in
(3). The results, stated in Theorems 1 and 2, are extensions of
the results of [6] to the case where the number of measurements
is Poisson. The results in [6] apply only to the case where the
number of measurements is not random, and therefore are not
directly applicable to gamma-ray detection systems. The regu-
larity conditions required for Theorems 1 and 2 are similar to
those required for the results of [6], except we add conditions
on the modeled count rate to ensure that the modeled like-
lihood in (2) is well defined.
Let denote the column gradient with respect to ,

and let denote the Hessian with respect to . By the def-
inition in (3), assuming that the log-likelihood is differentiable
and the maximizer is in the interior of the parameter space, the
QMLE satisfies

(4)

We also define

(5)

where the expectation is with respect to the true distribution
. Even though the true distribution is unknown, we assume

one can compute expectations by Monte Carlo integration with
samples obtained from it.

A. Convergence

Let be given by

(6)

assuming that such a solution exists and is unique. Under suit-
able conditions, is the limit of the sequence of estimates as

. Appendix A describes one sufficient set of regularity
conditions that guarantees existence, uniqueness, and conver-
gence. These conditions are similar to those in [6], with exten-
sions to the case of a random number of measurements. The reg-
ularity conditions apply only to the model, with the exception
of the assumption that the attributes of different photon interac-
tions are i.i.d.. The regularity conditions ensure that the log-like-
lihood function exists and that the QMLE exists and is unique.
We discuss verification of these conditions in Appendix C. The
convergence of the QMLE is stated in Theorem 1, which ex-
tends [6, Theorem 2.2] to the case of a Poisson number of mea-
surements.
Theorem 1: Under suitable regularity conditions, as

.
A useful result for interpretation of is given in Corollary

1. The additional regularity conditions required for Corollary 1
place restrictions on the true distribution. The proof and suffi-
cient regularity conditions are given in Appendix A.

Corollary 1: Under suitable regularity conditions, mini-
mizes the Kullback-Leibler divergence [15] of the true distribu-
tion with respect to the modeled distribution.
This Theorem and Corollary are shown in [6] for the case of
nonrandom. In the absence of model mismatch, the true dis-

tribution (1) and modeled distributions (2) are equal for some
such that . Let be the parameter

value, assuming a unique solution, under which this equality is
achieved. Then, in the absence of model mismatch,
by Corollary 1, and Theorem 1 reduces to the usual asymptotic
consistency of ML estimates [16] in the absence of model mis-
match.

B. Asymptotic Normality

A QMLE may also be asymptotically normal if certain con-
ditions on the model and true distributions are met. Theorem 2
is an extension of [6, Th. 3.2] to the case of a Poisson number
of measurements. The regularity conditions ensure that the ex-
pectations in Theorem 2 are well defined. The proof is given in
Appendix B.
Theorem 2: Under suitable regularity conditions, asymptoti-

cally as

(7)

where

(8)

(9)

(10)

and expectations are with respect to the true distribution.
This theorem differs from [6, Theorem 3.2] because conver-

gence is shown as the scan time , rather than the number of
measurements, goes to infinity. Our proof in Appendix B avoids
dividing the scan into intervals and naturally shows conver-
gence as scan time goes to infinity.
In the absence of model mismatch, and are equal to

the time-normalized Fisher information matrix [6], where

In this special case, the covariance in (8) simplifies to
. Thus, Theorem 2 reduces to the classic asymptotic nor-

mality and asymptotic efficiency of ML estimation [16] in the
absence of model mismatch.

C. Using Asymptotic Distributions for Approximation

It may be challenging to verify the regularity conditions for
Theorems 1 and 2 listed in Appendices A and B. Our numer-
ical results show that Theorems 1 and 2 are useful as practical
approximations for gamma-ray detection problems. The condi-
tions listed in the Appendix are sufficient, but not necessary. A
discussion of how one could verify the regularity conditions is
given in Appendix C.



5144 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 11, NOVEMBER 2011

The asymptotic mean in (6) and covariance in (7)
both depend on the true attribute distribution . In some
gamma-ray imaging problems, the exact form of is com-
putationally intractable, but it is relatively easy to compute ex-
pectations (9) and (10) with respect to by Monte Carlo
methods [17]. The next section uses Theorems 1 and 2 to de-
velop specialized expressions for the asymptotic distribution of
test statistics applied to gamma-ray source detection problems.

IV. ASYMPTOTICS FOR GAMMA-RAY SOURCE DETECTION

The true and modeled distributions in Section II are more
general than required for gamma-ray source detection problems.
This section develops a model and a true distribution for the
specific task of source detection, and uses the model to develop
asymptotic distributions of useful test statistics for detecting a
source in background.

A. True Distribution

In Section II, we made no assumption about the form of
the true distribution of recorded attributes . In gamma-ray
source detection problems, the measurements are often gener-
ated by a mixture of source and background emission processes.
Let be the nonnegative true mean number of emitted source
counts per unit time, be the nonnegative true mean number
of background counts recorded per unit time, and be the true
sensitivity, or probability that a photon emitted from the source
is recorded. We assume that the true distribution follows the
mixture

(11)

where is the density of recorded attributes given that they
originated from the source and is the density of recorded
attributes given that they originated from the background. We
adopt a mixture model because the recorded attributes of events
that originate from the source have a different distribution than
the attributes of recorded events that originate from the back-
ground. One can derive (11) using the law of total probability.
The nonnegative sensitivity is a function of the spatial rela-
tionship between the source and detector. The quantities and
are usually not known in practice, but are needed for simula-

tion. One can estimate by simulation for a particular detector
geometry, source position, and energy spectrum. The total mean
number of received counts obeys the relation .
The density is a probability density function by the non-
negativity of , , and .
We formulate source detection as the hypothesis testing

problem

B. Model Distribution

We consider a modeled attribute distribution similar to that of
[5] for detecting a source in background. The parameters char-
acterizing the source are the intensity with units of counts

emitted per unit time and source position2 . In the 3D
far-field with a known source energy, the set could be

, representing all possible azimuth and polar angles on a
sphere. We parameterize the background intensity by the back-
ground count rate with units of gamma-ray counts recorded
per unit time. Let be the vector of all parameters, where lies
in the -dimensional parameter space . In what follows, we
assume that takes the form:

(12)

Let the modeled sensitivity approximate the probability
that a photon emitted from a source positioned at is recorded.
We model the rate of recorded photons by

(13)

We adopt the model in (13) because the total rate of recorded
photons is the sum of the recorded count rate due to background
and the recorded count rate due to the source .
Let denote the modeled distribution of a recorded

attribute vector given it originated from a source at positon
and let denote the modeled distribution of a recorded at-
tribute vector given that it originated from the background.
Note that depends only on the source position, and

does not depend on any of the parameters in (12).
We model the overall distribution of recorded attributes as a

mixture of and given by

(14)

As in (11), in (14) is a valid probability density function
when , , and are nonnegative.

C. Asymptotic Performance of Source Intensity Test (SIT)
Under Model Mismatch

The SIT [5] for detecting the presence of a radiation source
of unknown intensity is given by

(15)

where is the QMLE for . By Theorem 2, assuming that the
regularity conditions are satisfied,

(16)

as , where is defined in (8), [1, 1] denotes the [1,
1] component of the matrix, and is the asymptotic mean of
defined by the first element of in (6). Define to be

the solution to (6) under and to be the solution to (6)
under . Thus, is a consistent estimator of under

and a consistent estimator of under . Because of model

mismatch, may not be equal to the true intensity and
may not be zero.
We calculate and by simulating or recording a large

number of observations from the true distribution under and
and solving for the QMLE using (4) under both hypotheses.

Although obtaining accurate estimates of and requires

2 could also denote a vector containing both spatial position and energy
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many observations, we found that more are required to generate
an ROC empirically with high accuracy. We calculate ,
and using (8) and evaluate the expectations in (9) and
(10) byMonte Carlo integration with data sampled from the true
distribution. One can use these values with (16) to predict the
corresponding asymptotic ROC curve.

D. Asymptotic Distribution of GLRT Under Model Mismatch

The GLRT is another common detection method given by
[11]

(17)

By a similar argument to that in [6] for a nonrandom number of
measurements, asymptotically as

(18)

The expression in (18) resembles the Wald test [11], which is a
variance-normalized statistic of the ML estimates.
Combining Theorem 2 with (18) and performing algebraic

manipulations, we have that under model mismatch for the
GLRT with a scalar parameter and large,

under

under
(19)

where denotes a noncentral chi-square random variable
with noncentrality parameter and degrees of freedom [11],
and

(20)

(21)

The result in (19) generalizes the result from [11] that the
GLRT is asymptotically noncentral chi-square under and
central chi-square under . The multiplicative factors
and equal unity in the absence of model mismatch.
One can use (19) to compute the asymptotic area under the

ROC curve (AUC) of the GLRT using Monte Carlo simulation
to estimate , , , and . Note that in
(21) and in (20) are functions of a generic parameter vector
. When appears on the right-hand side (RHS) of (20), it rep-
resents the first element of , which corresponds to the source
intensity parameter . One can use the distributions in (19) to
compute the ROC and AUC.

E. Asymptotic Distributions for Gamma-Ray Imaging

The covariance matrix in (7) has a specific form when the
recorded attributes are distributed according to the mixture
model in (14) and the parameter vector has the form (12). In
this section, we derive expressions for and in (8). Let

(22)

where

(23)

(24)

In the absence of model mismatch, would simplify to the
time-normalized Fisher information matrix for the model
(2). Let

(25)

where

The matrix depends on the degree of model mismatch and
is zero when . By algebra, one can show that for
gamma-ray imaging detectors,

(26)

and

(27)

The expression in (27) shows that model mismatch can decrease
the Fisher information. This decrease results in increased vari-
ance of the parameter estimates .
In the next section, we evaluate these expressions at to

explore the detection performance of various detectors.

V. NUMERICAL RESULTS

We applied the asymptotic distributions of test statistics de-
rived in the previous section to detection performance predic-
tion for gamma-ray measurement systems. We considered a po-
sition-sensitive Compton detector as an example application of
the theory and to show that the theory accurately predicts empir-
ical performance. Throughout, we refer to the performance pre-
dicted using the asymptotic theory as “predicted performance.”
We used the SIT (15) in our experiments because of its sim-
plicity and superior performance in the absence of model mis-
match compared to the GLRT as shown experimentally in [5].
We used the asymptotic distributions to create ROC curves

that one can use to set the test threshold and to estimate the
probability of detection for a given false alarm rate. The ROC
curve is a plot of the probability of detection as a function of
the probability of false alarm. Each point on the ROC is a pair
of probability of false alarm and probability of detection values
resulting from a particular choice of the threshold in (15) for
the SIT or (17) for the GLRT. The ROC curve allows one to
choose a threshold value that results in the desired false alarm
rate.
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We also state our results in terms of area under the ROC curve
(AUC) [18], which is a measure of detector performance. The
AUC ranges from 0.5 to 1, where 0.5 is the poorest performance
and 1 is the best performance. The AUC is a measure of overall
detectability that does not depend on the threshold in (15)
or (17).
Throughout this section, we compare predicted performance

accounting for and ignoring model mismatch. The purpose
of this comparison is to illustrate the pitfalls of applying the
asymptotic formulas that do not account for model mismatch
in [5] to problems where model mismatch exists.
In the absence of model mismatch, there exists a parameter

vector such that and
for all . In this case, the theory from [5] states that the
maximum likelihood estimator is a consistent estimator of .
When applying the theory in [5] in this section, we used the in-
correct assumption that the estimates are normally distributed
with mean rather than . This assumption is incorrect in
the presence of model mismatch, and is one factor that con-
tributes to the failure of the theory from [5] in the results that
follow. In the absence of model mismatch,

, so we make the substitution to capture
the naïve use of the methods in [5].
To compute the predicted performance, we sampled event

attributes from the true distribution. We generated one list
of events with a source present and another without a source
present. We used these lists to compute the asymptotic means

and by numerically solving (3). This is justified
by the convergence result of Theorem 1, provided that the
number of events in the list is sufficiently large. Although the
list must be large enough to obtain an accurate estimate of the
asymptotic mean, the asymptotic method often requires fewer
simulated events to compute the ROC than empirical methods.
We also used the lists of recorded events to evaluate (9) and
(10) by Monte Carlo integration to obtain and .
In the experiments that follow, we used an equal number of
background events in the two lists. Let be the number of
sampled background events in each scan. The list of recorded
events without a source present consists of events and
the list of recorded events with a source present consists of

background events and source events. We
use to report the total number of recorded events used to
predict the detection performance using approximations based
on asymptotics, where

(28)

and the term is due to the source events in the list that
contains both source and background events.We use the relation
in (28) because is the expected number of total measure-
ments used to compute the ROC using the proposed method.
We compared the performance predicted by asymptotics to

the empirical performance to show the accuracy of the proposed
method. To calculate the empirical performance, we simulated
a large number of scans with and without the source present.
To simulate a scan, we first drew the number of emitted source
counts from a Poisson distribution with mean . We then
simulated emitted source photons, recording the attributes

Fig. 1. Illustration of parallel-plate Compton detector used for simulation.

of each photon that interacts with the detector. To simulate the
background events for the scan, we drew the number of back-
ground counts from a Poisson distribution with mean
and simulated background photons until we record the attributes
for interactions. For each scan, we computed the QMLE
by solving (3).
We computed the empirical ROC and AUC using the source

intensity estimates for all simulated scans with and without a
source. For each value of the threshold in (15), the fraction of
source intensity estimates above that threshold when a source is
present is the probability of detection and the fraction of source
intensity estimates above that threshold when a source is ab-
sent is the probability of false alarm. We computed the em-
pirical AUC using the Wilcoxon-Mann-Whitney statistic [19].
Let be the number of scans used to compute the ROC.
We simulated scans with a source present and
scans without a source present. Let be the mean number
of recorded sample events needed to complete all scans.
We report the mean number of events used to compute an em-
pirical ROC or AUC as , where

(29)

A. Source Intensity Test for ComptonDetector—Monoenergetic
Source and Background

1) Setup: We used the expressions derived in Section IV-E
to evaluate the AUC for a Compton imaging detector when the
source position and background spatial distribution are as-
sumed known, but the background intensity is unknown. The
detector is an idealized parallel-plate Compton camera [20] il-
lustrated in Fig. 1. We assumed that the position uncertainty and
attenuation due to the finite thickness of the detector plates are
negligible. The detector records positions and energies of in-
teracting photons that undergo Compton scatter in the first, or
scattering detector, and either Compton scatter or photoelectric
absorption in the second, or absorption detector. The photoelec-
tric and Compton cross sections for this simulation are equal to
that of CdZnTe. The absorption detector is infinitely large, the
scatter detector is 1 cm by 1 cm, and the plates are separated by
a distance . The interaction positions in both detec-
tors are quantized into 0.1 cm 0.1 cm pixels. We also added
Gaussian noise with zero mean and standard deviation of 1 keV
to the recorded energies to simulate the effect of electronic noise
on the recorded energy.
The source is a 662 keV point-source located at an azimuth

angle of 180 degrees and an elevation angle of 45 degrees in the
far-field. For this experiment, let be the azimuth and elevation
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angles of the source. We estimated the true sensitivity for the
chosen source position by simulating emitted source pho-
tons and divided the number of recorded photons by the number
of simulated photons. This is justified because one can show that
in the absence of background, converges in probability to

as . In this experiment, we assumed that
every photon strikes the scatter detector, but only some inter-
acting photons result in two-interaction events. We found the
true sensitivity under this assumption to be .Wemodel
the sensitivity by its true value.
The true background is monoenergetic with the same energy

as the source. Although a monoenergetic background is not re-
alistic, it is useful to study this case where energy alone does
not differentiate between source and background photons. Let

be the angular position about the detector in spher-
ical coordinates with inclination angle and azimuth angle .
When the background is spatially uniform in the hemisphere
above the detector, the origin direction of a photon emitted from
the background obeys the density

We model the background as spatially uniform, but simulate
a nonuniform background. We draw the origin direction of each
background photon from the density

The difference between the modeled and true background is a
source of model mismatch.
In this example, the attribute vector for an interacting

photon is a 6 1 vector containing the -coordinate, -coordi-
nate, and recorded energy. When the source is in the far field,
the and -coordinates of the interaction in the scatter (top)
detector are uniformly distributed, and the measured values
are quantized to 0.1 cm because the detector is pixelated. The
energy deposited in each detector follows the Klein-Nishina
formula [21, p. 51]. The coordinates of the interaction in the
second detector are a function of the interaction location in
the first detector and the Compton scattering angle of the
first interaction. The second interaction is also quantized to
0.1 cm. This true distribution [4] is computationally difficult to
compute, so we use the model proposed in [4], which provides
a Gaussian approximation to the uncertainties induced by
detector pixelization.
2) Results: We first examined the agreement between the

ROC predicted with asymptotics and the empirical ROC with
the parallel-plate Compton detector. Fig. 2 shows the ROC for
the true mean number of emitted source counts and
known true mean number of recorded background counts
.We used events to compute the predicted

ROC and events to compute the empirical
ROC. The predicted ROC accounting for model mismatch is
much closer to the empirical ROC than the predicted ROC ig-
noring model mismatch. Even with this small number of source

Fig. 2. Empirical and predicted ROC curves of the SIT with
and . Error bars denote standard error.

Fig. 3. Histograms and scaled asymptotic probability density functions of
source intensity estimates where and .
(a) Source absent . (b) Source present .

counts per scan, the asymptotic approximation appears to be rea-
sonable. This result shows that the proposed asymptotic analysis
gives a reasonable approximation of the true ROC in this case.
The asymptotic distributions of the source intensity estimates

used to calculate the ROC in Fig. 2 are also reasonably accu-
rate approximations of the empirical distributions. Fig. 3 shows
histograms of the empirical source intensity estimates and the
asymptotic probability density functions (we applied scaling to
the density functions to make the units consistent with the his-
togram). We allowed the source intensity estimates to be neg-
ative because the modeled likelihood in (2) is well-defined if
and are chosen such that is nonnegative for any

observed event , even it is negative. The asymptotic distri-
butions that account for mismatch fit the empirical distributions
reasonably well.
We also examined the agreement between the predicted

AUC and the empirical AUC as a function of scan time. We
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Fig. 4. Empirical and asymptotic AUC of SIT vs. for
and . Error bars denote standard error.

Fig. 5. RMSE of the empirical and predicted AUC versus the number of sam-
ples from the true distribution where and .
The true AUC was computed empirically using 1,021,956 sampled events.

expect the agreement between the empirical and predicted
AUC to improve as scan time increases because Theorems 1
and 2 give convergence results as scan time goes to infinity.
Fig. 4 shows the empirical and asymptotic AUC versus scan
time for source intensity and background
intensity . The numbers of events used
to compute the asymptotic and empirical AUC are given by
(28) and (29), respectively, where
and . In this example, the predicted AUC
approximates the empirical AUC well even for small scan
times. In both Figs. 2 and 4, the predicted performance using
the proposed expressions that account for model mismatch are
much closer to the empirical performance than the predictions
that ignore model mismatch.
To support the claim that the proposed asymptotic method for

predicting the ROC and AUC requires less data than empirical
methods, we computed the root mean square error (RMSE) [22,
p. 261] of the predicted and empirical AUC with various num-
bers of events sampled from the true distribution. Recall that
the number of events used to compute the ROC asymptotically

, given by (28), is the number of events used to simulate
a list of events from the background and another list of events
containing source and background events. The number of events

used to compute the ROC empirically is given by (29).
Fig. 5 shows the RMSE of the empirical and predicted

AUC as a function of the number of photon interaction events
sampled from the true distribution. We esti-

mated the RMSE at each point with 1000 trials and drew
sampled events without replacement from a pool of for
each trial. This resampling scheme is similar to the jackknife

[23]. Fig. 5 shows that the predicted AUC using the proposed
asymptotic method is more reliable in terms of RMSE than the
empirical AUC, especially for a modest number of samples.

VI. CONCLUSION AND FUTURE WORK

We extended the asymptotic theory of maximum likelihood
estimators under model mismatch to the case where the number
of measurements is Poisson.We used this theory to develop spe-
cialized expressions for the asymptotic distributions of QML
estimates and test statistics for gamma-ray imaging systems,
namely (16) and (19)–(27). One can evaluate the expressions
usingMonte Carlomethods where the events are drawn from the
true distribution of recorded photon interaction events. In prac-
tice, one can evaluate these expressions for any system model
using a modest amount of data generated from the true distribu-
tion.
We provided an application of the proposed theory to detec-

tion of gamma-ray sources. The results showed that the pro-
posed method of computing the ROC using asymptotic approx-
imations under model mismatch agrees with empirical ROC
methods in the scenarios considered.When the asymptotic mean

of the source intensity estimates in the absence of a source
is less than zero, the approximation may not be as accurate for
small scan times. If the asymptotic approximation is poor, one
can improve the approximation by considering a larger scan
time. We provide examples illustrating the quality of the ap-
proximation in different conditions in [24].
Future work will apply this theory to other types of detectors

and detection problems. The proposed theory is general enough
to incorporate source energy in the parameter . We plan to
use this theory to study detection performance in polyenergetic
backgrounds. We also plan to study the performance of physical
detectors using real data.

APPENDIX

A. Proof of Theorem 1

Let the probability measure be the true
distribution of a single recorded attribute. Since is typically
unknown, we model it with the probability measure . We now
make the following assumptions:
Assumption 1: The attributes of distinct photon interaction

events are i.i.d.
Assumption 2: Assume that has a Radon-Nikodym density

with respect to a base measure .
By Assumption 2, there exists a function such that

The true mean number of recorded photons is typically un-
known, so we model it as

One can show that Assumptions 1 and 2 imply that the Radon-
Nikodym density of the modeled distribution of observed
attributes and is given by (2). The Radon-Nikodym density in
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(2) is the likelihood of given the number of recorded attributes
and their values. The same formula is given in [13].
We have now shown that the modeled likelihood function

exists, but we have yet to show the existence of a maximizer
over the parameter space . To show existence, we introduce
three more assumptions:
Assumption 3: is continuous in .
Assumption 4: is continuous in .
Assumption 5: is a compact subset of .
Assumptions 3, 4, and 5 and the existence of the Radon-

Nikodym density of the modeled distribution implies that

exists.
Additional suitable regularity conditions for Theorem 1 are:
Assumption 6: for all for some

that is integrable with respect to the true attribute distribution,
i.e., is finite.
1) Assumption 7: The solution to (6) is unique.
In this proof, Assumptions 1–7 are assumed satisfied.
Proof: We use the result for strong consistency under

model mismatch with a nonrandom number of measurements
in [6] to prove strong consistency when the number of mea-
surements in Poisson.
We divide the scan of length into intervals of unit du-

ration. We can assume without loss of generality that is an
integer because our choice of scan interval duration is arbitrary.
Treating the scan of duration as independent scans of
unit duration leads to the following restatement of the log-like-
lihood that differs only in terms constant with respect to :

(30)

where , by the summation
property of independent Poisson random variables [22, p. 196],

is the attribute vector of the th event to occur during the th
scan. Since the modeled mean number of total received counts
is , the modeled mean number of counts per scan interval is

by the summation property of independent Poisson
random variables.
Assumption 6 implies that

so for all and is integrable with
respect to the true distribution because it is the sum of integrable
functions.
Strong convergence of to follows by [25, Theorem 2.1].

To show that is the member of the parameter space that
minimizes the Kullback-Leibler divergence between the model
and the true distributions, we make the following additional as-
sumptions:
Assumption 8: The probability measure characterizing the

true distribution is absolutely continuous with respect to the
base measure , with Radon-Nikodym density for .
Assumption 9: , the logarithm of the true density

of a single attribute, exists and is finite.
Assumption 8 guarantees that the true distribution of the list

of recorded attributes is a Radon-Nikodym density. Assumption
9 implies that , the logarithm the density of a list
of attributes, exists by the linearity of expectation. Thus, the
Kullback-Leibler divergence exists.
The existence of the QMLE and Assumptions 6–9 satisfy the

conditions of Theorem 2.2 of [6], which gives strong conver-
gence of the estimates to the element that minimizes

.

B. Proof of Theorem 2

We state the following theorem, which is used in the proof of
Theorem 2:
Theorem 3: Let be an i.i.d. sequence of

random vectors with and
for , and let . Then as

We omit the proof of Theorem 3 for brevity. The proof shows
that the characteristic function of the random sum converges
pointwise to the characteristic function of a normal random
vector with mean zero and covariance .
We make the following assumptions to guarantee the asymp-

totic normality of the QMLE.
Assumption 10: is continuously differentiable in
for each .
Assumption 11: and are continuously differen-

tiable in .
Assumption 12: and are mea-

surable in for each .
Assumption 13: The elements of , where

, are dominated by functions
integrable with respect to the true distribution.
Assumption 14: The elements of are domi-

nated by functions integrable with respect to the true distribu-
tion.
Assumption 15: is an interior point of .
Assumption 16: is nonsingular.
Assumption 17: is invertible in an open neighborhood

around .
Assumption 18: .
Proof: Let
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and

which both exist by Assumptions 10, 11, and 12. By the mean
value theorem,

for some such that lies on the line segment between and
. Since by the definition of the QMLE,

(31)

From (6), we have

(32)

By (32) and Theorem 3

where , which exists by Assumption 13, is defined in (9).
By an extension of the weak law of large numbers to Poisson
random sums and by Assumptions 15 and 18, we have that

where , which exists by Assumption 14, is defined in
(10). Combining (9), (10), (31), and using Slutsky’s theorem
[26, p. 39],

where , which exists and is nonsingular by Assumptions
16 and 17, is defined in (8).

C. Verification of Regularity Conditions

This Appendix describes the methods by which one could
verify Assumptions 1–7 needed for Theorem 1 and Assump-
tions 10–18 required for Theorem 2 using the example system
in Section V.
The recorded attributes are i.i.d. because of the chosen system

setup, and one can verify that Assumptions 2–4, 6, and 10–12
are satisfied. Assumption 5 is satisfied if one places an upper
bound on the set of possible source and background intensity
estimates. Assumption 7 is satisfied in all but degenerate cases
where there are multiple sources of exactly the same intensity,
which are of little practical interest. Assumptions 13 and 14 are
difficult to verify directly without an expression for the true dis-
tribution of recorded attributes. However, we expect that the true
distribution is well behaved so that the continuous gradient and
Hessian of the log-likelihood are integrable with respect to the

true distribution. One can verify Assumptions 15–17 for a par-
ticular case after computing , , and . Assumption 18
follows from Theorem 1.

D. Sample Calculations of and

We provide calculations for the [1, 1] elements of and
in (26) and (27). Calculations of the other elements of

these matrices follows from similar calculation.
1) Calculation of : From the definition of in

(13)

(33)

From the mixture-model definition of in (14)

(34)
Substituting (33) and (34) into the definition of in (9)

(35)

2) Calculation of : Taking derivatives with respect
to

(36)

(37)

and

(38)

Substituting (36), (37), and (38) into (10), we obtain
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