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APPENDIX A: PROOFS OMITTED IN MAIN TEXT

This section contains all proofs omitted in the main text. The first sub-
section introduces some tools necessary for many of the proofs. The second
subsection contains proofs of technical lemmas. The final subsection contains
proofs of the major results.

A.1. A Few Prerequisites from the Main Text. In Section 8 of
the main text we introduced bounded linear operators, Hilbert-Schmidt op-
erators, and lemmas related to linear operators and tensor products. While
these results were only mentioned in Section 8 of the main text we need these
tools to prove results from earlier sections. We will quickly review them here
for convenience. To begin we introduce the set of Hilbert-Schmidt operators
which are a subspace of the bounded linear operators of a Hilbert space.

Definition A.1. Let H,H ′ be Hilbert spaces and T ∈ L (H,H ′). T is
called a Hilbert-Schmidt operator if

∑
x∈J ‖Tx‖

2 < ∞ for an orthonormal
basis J ⊂ H. We denote the set of Hilbert-Schmidt operators in L (H,H ′)
by H S (H,H ′).

This definition does not depend on the choice of orthonormal basis: the
sum

∑
x∈J ‖T (x)‖2 will always yield the same value regardless of the choice

of orthonormal basis J . The set of Hilbert-Schmidt operators is itself a
Hilbert space when equipped with the inner product∑

x∈J
〈Tx, Sx〉(1)

where J is an orthonormal basis. Again this value does not depend on the
choice of J . The Hilbert-Schmidt norm will be denoted as ‖·‖H S and the
standard operator norm will have no subscript. There is a well known bound
relating the two norms: for a Hilbert-Schmidt operator T we have that

‖T‖ ≤ ‖T‖H S .(2)
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We will also need to make use of tensor products of bounded linear operators.
The following lemma is exactly Proposition 2.6.12 from [3] and is Lemma
8.1 from the main text.

Lemma A.1. Let H1, . . . ,Hn, H
′
1, . . . ,H

′
n be Hilbert spaces and let Ui ∈

L (Hi, H
′
i) for all i ∈ [n]. There exists a unique

U ∈ L
(
H1 ⊗ · · · ⊗Hn, H

′
1 ⊗ · · · ⊗H ′n

)
,(3)

such that U (h1 ⊗ · · · ⊗ hn) = U1 (h1)⊗· · ·⊗Un (hn) for all h1 ∈ H1, . . . , hn ∈
Hn.

Definition A.2. The operator constructed in Lemma A.1 is called the
tensor product of U1, . . . , Un and is denoted U1 ⊗ · · · ⊗ Un.

We will also need to utilize the equivalence between tensor products and
linear operators ([3] Proposition 2.6.9). The following is Lemma 8.2 from
the main text.

Lemma A.2. Let H,H ′ be Hilbert spaces. There exists a unitary operator
U : H⊗H ′ →H S (H,H ′) such that, for any simple tensor h⊗h′ ∈ H⊗H ′,
U (h⊗ h′) = 〈h, ·〉h′.

A.2. Proofs of Technical Lemmas.

Proof of Lemma 3.1. Because both representations are minimal it fol-
lows that α′i 6= 0 for all i and ν ′i 6= ν ′j for all i 6= j. From this we know
Q ({ν ′i}) 6= 0 for all i. Because Q ({ν ′i}) 6= 0 for all i it follows that for any i
there exists some j such that ν ′i = νj . Let ψ : [r]→ [r] be a function satisfy-
ing ν ′i = νψ(i). Because the elements ν1, . . . , νr are also distinct, ψ must be
injective and thus a permutation. Again from this distinctness we get that,
for all i, Q ({ν ′i}) = α′i = αψ(i) and we are done.

Proof of Lemma 4.1 and 4.3. We will proceed by contradiction. Let
P =

∑m
i=1 aiδµi be n-identifiable/determined, let P ′ =

∑l
j=1 bjδνj be a

different mixture of measures, with l ≤ m for the n-identifiable case, and

m∑
i=1

aiµ
×q
i =

l∑
j=1

bjν
×q
j(4)
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for some q > n. Let A ∈ F×n be arbitrary. We have

m∑
i=1

aiµ
×q
i =

l∑
j=1

bjν
×q
j(5)

⇒
m∑
i=1

aiµ
×q
i

(
A× Ω×q−n

)
=

l∑
j=1

bjν
×q
j

(
A× Ω×q−n

)
(6)

⇒
m∑
i=1

aiµ
×n
i (A) =

l∑
j=1

bjν
×n
j (A) .(7)

This implies that P is not n-identifiable/determined, a contradiction.

Proof of Lemma 4.2 and 4.4. Let a mixture of measures P =
∑m

i=1 aiδµi
not be n-identifiable/determined. It follows that there exists a different mix-
ture of measures P ′ =

∑l
j=1 bjδνj , with l ≤ m for the n-identifiability case,

such that

m∑
i=1

aiµ
×n
i =

l∑
j=1

bjν
×n
j .(8)

Let A ∈ F×q be arbitrary, we have

m∑
i=1

aiµ
×n
i

(
A× Ω×n−q

)
=

l∑
j=1

bjν
×n
j

(
A× Ω×n−q

)
(9)

⇒
m∑
i=1

aiµ
×q
i (A) =

l∑
j=1

bjν
×q
j (A)(10)

and therefore P is not q-identifiable/determined.

Proof of Lemma 5.1. Lemma A.1 states that there exists a continuous
linear operator Ũ : H1⊗· · ·⊗Hn → H ′1⊗· · ·⊗H ′n such that Ũ (h1 ⊗ · · · ⊗ hn) =

U1(h1) ⊗ · · · ⊗ Un(hn) for all h1 ∈ H1, · · · , hn ∈ Hn. Let Ĥ be the set of
simple tensors in H1 ⊗ · · · ⊗ Hn and Ĥ ′ be the set of simple tensors in
H ′1⊗· · ·⊗H ′n. Because Ui is surjective for all i, clearly Ũ(Ĥ) = Ĥ ′. The linear-

ity of Ũ implies that Ũ(span(Ĥ)) = span(Ĥ ′). Because span(Ĥ ′) is dense in
H ′1⊗· · ·⊗H ′n the continuity of Ũ implies that Ũ(H1⊗· · ·⊗Hn) = H ′1⊗· · ·⊗H ′n
so Ũ is surjective. All that remains to be shown is that Ũ preserves the inner
product (see Theorem 4.18 in [5]). By the continuity of inner product we
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need only show that 〈h, g〉 =
〈
Ũ(h), Ũ(g)

〉
for h, g ∈ span(Ĥ). With this in

mind let h1, . . . , hN , g1, . . . , gM be simple tensors in H1⊗ · · ·⊗Hn. We have
the following〈

Ũ

(
N∑
i=1

hi

)
, Ũ

 M∑
j=1

gj

〉 =

〈
N∑
i=1

Ũ (hi) ,

M∑
j=1

Ũ (gj)

〉
(11)

=

N∑
i=1

M∑
j=1

〈
Ũ (hi) , Ũ (gj)

〉
(12)

=
N∑
i=1

M∑
j=1

〈hi, gj〉(13)

=

〈
N∑
i=1

hi,
M∑
j=1

gj

〉
.(14)

We have now shown that Ũ is unitary which completes our proof.

Proof of Lemma 5.2. Example 2.6.11 in [3] states that for any two σ-
finite measure spaces (S,S ,m) , (S′,S ′,m′) there exists a unitary operator
U : L2 (S,S ,m)⊗L2 (S′,S ′,m′)→ L2 (S × S′,S ×S ′,m×m′) such that,
for all f, g,

U(f ⊗ g) = f(·)g(·).(15)

Because (Ψ,G, γ) is a σ-finite measure space it follows that (Ψ×m,G×m, γ×m)
is a σ-finite measure space for all m ∈ N. We will now proceed by induc-
tion. Clearly the lemma holds for n = 1. Suppose the lemma holds for
n − 1. From the induction hypothesis we know that there exists a uni-
tary transform Un−1 : L2 (Ψ,G, γ)⊗n−1 → L2

(
Ψ×n−1,G×n−1, γ×n−1

)
such

that for all simple tensors f1 ⊗ · · · ⊗ fn−1 ∈ L2 (Ψ,G, γ)⊗n−1 we have
Un−1 (f1 ⊗ · · · ⊗ fn−1) = f1(·) · · · fn−1 (·). Combining Un−1 with the identity
map via Lemma 5.1 we can construct a unitary operator Tn : L2 (Ψ,G, γ)⊗n−1⊗
L2 (Ψ,G, γ) → L2

(
Ψ×n−1,G×n−1, γ×n−1

)
⊗ L2 (Ψ,G, γ), which maps f1 ⊗

· · · ⊗ fn−1 ⊗ fn 7→ f1(·) · · · fn−1(·)⊗ fn.
From the aforementioned example there exists a unitary transform

Kn : L2
(
Ψ×n−1,G×n−1, γ×n−1

)
⊗ L2 (Ψ,G, γ)(16)

→ L2
(
Ψ×n−1 ×Ψ,G×n−1 × G, γ×n−1 × γ

)
which maps simple tensors g⊗g′ ∈ L2

(
Ψ×n−1,G×n−1, γ×n−1

)
⊗L2 (Ψ,G, γ)

as Kn (g ⊗ g′) = g(·)g′(·). Defining Un(·) = Kn (Tn (·)) yields our desired
unitary transform.



OPERATOR THEORY FOR MIXTURE MODELS 5

Proof of Lemma 5.3. We will proceed by induction. For n = 2 the
lemma clearly holds. Suppose the lemma holds for n− 1 and let h1, . . . , hn
satisfy the assumptions in the lemma statement. Let α1, . . . , αn satisfy

n∑
i=1

αih
⊗n−1
i = 0.(17)

To finish the proof we will show that α1 must be zero which can be gener-
alized to any αi. Applying Lemma A.2 to (17) we get

n∑
i=1

αih
⊗n−2
i 〈hi, ·〉 = 0.(18)

Because h1 and hn are linearly independent we can choose z such that
〈h1, z〉 6= 0 and z ⊥ hn. Plugging z into (18) yields

n−1∑
i=1

αih
⊗n−2
i 〈hi, z〉 = 0(19)

and therefore α1 = 0 by the inductive hypothesis.

Proof of Lemma 5.4. Let dim (span (h1, . . . , hm)) = l and let h =∑m
i=1 h

⊗2
i . Without loss of generality assume that h1, . . . , hl are linearly in-

dependent and nonzero. From Lemma A.2 there exists a unitary transform
U : H ⊗ H → H S (H,H) which, for any simple tensor x ⊗ y, we have
U(x⊗ y) = x 〈y, ·〉.

First we will show that the rank is greater than or equal to l by contra-
diction. Suppose that g =

∑l′

i=1 xi ⊗ yi = h with l′ < l. Since l′ < l there
must exist some j such that hj /∈ span (x1, . . . , xl′). Let z ⊥ x1, . . . , xl′ and
z 6⊥ hj . Now we have

〈z ⊗ z, h〉 =

m∑
i=1

〈z, hi〉2 ≥ 〈z, hj〉2 > 0,(20)

but

〈z ⊗ z, g〉 =

l′∑
i=1

〈z, xi〉 〈z, yi〉 = 0,(21)

a contradiction.
For the other direction, observe that U(h) is a compact Hermitian oper-

ator and thus admits an spectral decomposition ([5] Theorem 8.15). From
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this we have that U(h) =
∑m

i=1 hi 〈hi, ·〉 =
∑∞

i=1 λi 〈ψi, ·〉ψi with (ψi)
∞
i=1

orthonormal and λi ≥ 0 for all i since U(h) is PSD. Clearly the dimension
of the span of U (h) is less than or equal to l and thus this decomposition
has exactly l nonzero terms. From this we can let U(h) =

∑l
i=1 λi 〈ψi, ·〉ψi

and applying U−1 we have that h =
∑l

i=1 λiψ
⊗2
i . From this it follows that

the rank of h is less than or equal to l and we are done.

Proof of Lemma 6.1. The lemma is obvious when n = n′. Assume that
n′ < n. Let A ∈ G×n′ be arbitrary. We have that

m∑
i=1

aiγ
×n
i

(
A×Ψ×n−n

′
)

=
l∑

j=1

bjπ
×n
j

(
A×Ψ×n−n

′
)

(22)

⇒
m∑
i=1

aiγ
×′n
i (A) γ×n−n

′

i

(
Ψ×n−n

′
)

=

l∑
j=1

bjπ
×n′
j (A)π×n−n

′

j

(
Ψ×n−n

′
)(23)

⇒
m∑
i=1

aiγ
×n′
i (A) =

l∑
j=1

bjπ
×n′
j (A) .(24)

Since A was chosen arbitrarily we have that
∑m

i=1 aiγ
×n′
i =

∑l
j=1 bjπ

×n′
j .

Proof of Lemma 6.2. Let π =
∑n

i=1 γi. Because π is σ-finite for all i we

can define fi = dγi
dπ , where the derivatives are Radon-Nikodym derivatives.

Let fk be arbitrary. We will first show that fk ≤ 1 π-almost everywhere.
Suppose there exists a non π-null set A ∈ G such that fi(A) > 1. Then we
would have

γk (A) =

∫
A
fkdπ(25)

>

∫
A

1dπ(26)

=
n∑
i=1

γi(A)(27)

≥ γk(A)(28)
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a contradiction. From this we have∫
f2
kdπ ≤

∫
1dπ(29)

≤
n∑
i=1

γi(Ψ)(30)

< ∞.(31)

From our construction it is clear that fi ≥ 0 ξ-almost everywhere so we can
assert fi ≥ 0 without issue.

Proof of Lemma 6.3. The fact that f is non-negative and integrable
implies that the map S 7→

∫
S f
×ndπ×n is a bounded measure on (Ψ×n,G×n)

(see [2] Exercise 2.12). Let R = R1× · · ·×Rn be a rectangle in G×n. Let 1S
be the indicator function for a set S. Integrating over R and using Tonelli’s
theorem we get∫

R
f×ndπ×n =

∫
1Rf

×ndπ×n(32)

=

∫ ( n∏
i=1

1Ri(xi)

) n∏
j=1

f(xj)

 dπ×n (x1, . . . , xn)(33)

=

∫
· · ·
∫ ( n∏

i=1

1Ri(xi)

) n∏
j=1

f(xj)

 dπ(x1) · · · dπ(xn)(34)

=

∫
· · ·
∫ ( n∏

i=1

1Ri(xi)f(xi)

)
dπ(x1) · · · dπ(xn)(35)

=

n∏
i=1

(∫
1Ri(xi)f(xi)dπ(xi)

)
(36)

=

n∏
i=1

γ(Ri)(37)

= γ×n(R).(38)

Any product probability measure is uniquely determined by its measure over
the rectangles (this is a consequence of Lemma 1.17 in [4] and the definition
of product σ-algebra) therefore, for all B ∈ G×n,

γ×n (B) =

∫
B
f×ndπ×n.(39)
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A.3. Proofs of Major Results in Paper.

Proof of Theorem 4.5. Let P =
∑m

i=1 aiδµi be a mixture of measures

with linearly independent components. Let P ′ =
∑l

j=1 bjδνj be a mixture
of measures with V3(P) = V3(P ′) and l ≤ m. From Lemma 6.2 there
exists a finite measure ξ and non-negative functions p1, . . . , pm, q1, . . . , ql ∈
L1 (Ω,F , ξ) ∩ L2 (Ω,F , ξ) such that, for all B ∈ F ,

∫
B pidξ = µi(B) and∫

B qjdξ = νj(B) for all i, j. Using Lemma 6.1, 6.3, and 6.4 as we did in
Theorems 4.1 through 4.4 it follows that

m∑
i=1

aip
×2
i =

l∑
j=1

bjq
×2
j .(40)

From Lemma 5.2 we have

m∑
i=1

aip
⊗2
i =

l∑
j=1

bjq
⊗2
j .(41)

By Lemma 5.4 we now know that the rank of the LHS of the previous
equation is m and thus l = m and q1, . . . , qm are linearly independent.
We will now show that qj ∈ span ({p1, . . . , pm}) for all j. Suppose that
qt /∈ span ({p1, . . . , pm}). Then there exists z ∈ L2 (Ω,F , ξ) such that z ⊥
p1, . . . , pm but z 6⊥ qt. Now we have

m∑
i=1

aip
⊗2
i =

m∑
j=1

bjq
⊗2
j(42)

⇒

〈
m∑
i=1

aipi ⊗ pi, z ⊗ z

〉
=

〈
m∑
j=1

bjqj ⊗ qj , z ⊗ z

〉
(43)

⇒
m∑
i=1

ai 〈pi ⊗ pi, z ⊗ z〉 =

m∑
j=1

bj 〈qj ⊗ qj , z ⊗ z〉(44)

⇒
m∑
i=1

ai 〈pi, z〉2 =

m∑
j=1

bj 〈qj , z〉2 .(45)

We know that the LHS of the last equation is zero but the RHS is not, a
contradiction.

Because p1, . . . , pm are linearly independent we can do the following:
for each k ∈ [m] let zk ∈ span ({p1, . . . , pm}) so that zk ⊥ {pi : i 6= k}
and 〈zk, pk〉 = 1. By considering elements of L2 (Ω,F , ξ)⊗3 as elements of
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L2 (Ω,F , ξ)⊗ L2 (Ω,F , ξ)⊗2, we can use Lemma A.2 to transform elements

in L2 (Ω,F , ξ)⊗3 into elements of H S
(
L2 (Ω,F , ξ) , L2 (Ω,F , ξ)⊗2

)
,

m∑
i=1

aip
⊗3
i =

m∑
j=1

bjq
⊗3
j(46)

⇒
m∑
i=1

aip
⊗2
i 〈pi, ·〉 =

m∑
j=1

bjq
⊗2
j 〈qj , ·〉 .(47)

It now follows that
m∑
i=1

aip
⊗2
i 〈pi, zk〉 =

m∑
j=1

bjq
⊗2
j 〈qj , zk〉

⇒ akp
⊗2
k =

m∑
j=1

bjq
⊗2
j 〈qj , zk〉 .(48)

Using Lemma A.2 we have

akpk 〈pk, ·〉 =

m∑
j=1

bj 〈qj , zk〉 qj 〈qj , ·〉 .(49)

The LHS of (49) is a rank one operator and thus the RHS must have exactly
one nonzero summand, since q1, . . . , qm are linearly independent. Let ϕ :
[m]→ [m] be a function such that, for all k,

akp
⊗2
k =

〈
qϕ(k), zk

〉
bϕ(k)q

⊗2
ϕ(k).(50)

From Lemmas 5.2 and 6.3 we have

akµ
×2
k =

〈
qϕ(k), zk

〉
bϕ(k)ν

×2
ϕ(k),(51)

for all k. By Lemma 6.1 we have that akµk =
〈
qϕ(k), zk

〉
bϕ(k)νϕ(k) for all k

and thus µk = νϕ(k) since µk and νϕ(k) are collinear probability measures.
Because µi 6= µj for all i, j we have that ϕ must be a bijection. Let σ = ϕ−1.
By Lemma 6.1 we have that

m∑
i=1

aiµi =
m∑
j=1

bjνσ(j).(52)

Since µ1, . . . , µm are linearly independent the last equation only has one
solution for b1, . . . , bm, which is bk = aσ(k), for all k. Thus

P ′ =

m∑
i=1

aσ(i)δµσ(i)
(53)

which is equal to P.
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Proof of Theorem 4.6. Let P =
∑m

i=1 aiδµi be a mixture of measures
with linearly independent components. We will proceed by contradiction:
let P ′ =

∑l
j=1 bjδνj 6= P be a mixture of measures with V4(P) = V4(P ′).

From Theorem 4.1 we know that P is 3-identifiable. By Lemma 4.1 it follows
that P is 4-identifiable and thus l > m. From Lemma 6.2 there exists a finite
measure ξ and non-negative functions p1, . . . , pm, q1, . . . , ql ∈ L1 (Ω,F , ξ) ∩
L2 (Ω,F , ξ) such that, for all B ∈ F ,

∫
B pidξ = µi(B) and

∫
B qjdξ = νj (B)

for all i, j.
Proceeding as we did in the previous theorem proofs we have that

m∑
i=1

aip
⊗4
i =

l∑
j=1

bjq
⊗4
j .(54)

Suppose that there exists k such that νk /∈ span ({µ1, . . . , µm}). From this
it would follow that there exists z such that z ⊥ {p1, . . . , pm} and z 6⊥ qk.
Then we would have that〈

m∑
i=1

aip
⊗4
i , z⊗4

〉
=

〈
l∑

j=1

bjq
⊗4
j , z⊗4

〉
(55)

⇒
m∑
i=1

ai 〈pi, z〉4 =
l∑

j=1

bj 〈qj , z〉4 ,(56)

but the LHS of the last equation is 0 and the RHS is positive, a contradiction.
Thus we have that qk ∈ span ({p1, . . . , pm}) for all k.

Since l > m and no pair of elements in q1, . . . , qm are collinear, there
must exist a vector in q1, . . . , ql which is a nontrivial linear combination of
p1, . . . , pm. Without loss of generality we will assume that q1 =

∑m
i=1 cipi

with c1 and c2 nonzero. By the linear independence of p1, . . . , pm there must
exist vectors z1, z2 such that 〈z1, p1〉 = 1, z1 ⊥ {pi : i 6= 1}, 〈z2, p2〉 = 1, and
z2 ⊥ {pi : i 6= 2}. Now consider〈

m∑
i=1

aip
⊗4
i , z⊗2

1 ⊗ z
⊗2
2

〉
=

〈
l∑

j=1

bjq
⊗4
j , z⊗2

1 ⊗ z
⊗2
2

〉
(57)

⇒
m∑
i=1

ai 〈pi, z1〉2 〈pi, z2〉2 =

l∑
j=1

bj 〈qj , z1〉2 〈qj , z2〉2 .(58)

The LHS of the last equation is 0 and the RHS is positive, a contradiction.
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Proof of Theorem 4.7. Let P =
∑m

i=1 aiδµi be a mixture of measures
with jointly irreducible components. Consider a mixture of measures P ′ =∑l

j=1 bjδνj with V2(P) = V2(P ′). From Lemma 6.2 there exists a finite

measure ξ and non-negative functions p1, . . . , pm, q1, . . . , ql ∈ L1 (Ω,F , ξ) ∩
L2 (Ω,F , ξ) such that, for all B ∈ F ,

∫
B pidξ = µi(B) and

∫
B qjdξ = νj (B)

for all i, j. Proceeding as we have done in the previous theorem proofs we
have

m∑
i=1

aipi × pi =
l∑

j=1

bjqj × qj .(59)

From Lemma 5.2 we have

m∑
i=1

aipi ⊗ pi =

l∑
j=1

bjqj ⊗ qj .(60)

Suppose for a moment that P ′ contains a mixture component which does
not lie in span ({µ1, . . . , µm}). Without loss of generality we will assume
that ν1 /∈ span ({µ1, . . . , µm}). Recall that joint irreducibility implies linear
independence so ν1, µ1, . . . , µm are a linearly independent set of measures
and thus q1, p1, . . . , pm are linearly independent. It follows that we can find
some z ∈ L2 (Ω,F , ξ) such that 〈z, q1〉 6= 0 and z ⊥ {pi : i ∈ [m]}. From (60)
we have the following〈

m∑
i=1

aipi ⊗ pi, z ⊗ z

〉
=

〈
l∑

j=1

bjqj ⊗ qj , z ⊗ z

〉
(61)

⇒
m∑
i=1

ai 〈pi ⊗ pi, z ⊗ z〉 =

l∑
j=1

bj 〈qj ⊗ qj , z ⊗ z〉(62)

⇒
m∑
i=1

ai 〈pi, z〉2 =

l∑
j=1

bj 〈qj , z〉2 .(63)

All the summands on both sides of the last equation are nonnegative. By
our construction of z the LHS of the previous equation is zero and the first
summand on the RHS is positive, a contradiction. Thus, each component in
P ′ must lie in the span of the components of P.

Now we have, for all j, qj =
∑m

i=1 c
j
ipi. From joint irreducibility we have

that cji ≥ 0 for all i and j. We will now consider the situation where a
component of P ′ is a nontrivial linear combination of components in P.
Suppose that there exists r, s, s′, with s 6= s′, such that crs, c

r
s′ > 0. From the
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linear independence of p1, . . . , pm we can find a z such that 〈ps, z〉 = 1 and
z ⊥ {pq : q ∈ [m] \ {s}}. Applying Lemma A.2 to (60) we have

m∑
i=1

aipi 〈pi, ·〉 =

l∑
j=1

bjqj 〈qj , ·〉(64)

⇒
m∑
i=1

aipi 〈pi, z〉 =

l∑
j=1

bjqj 〈qj , z〉(65)

⇒ asps =

l∑
j=1

bj

[
m∑
t=1

cjtpt

]〈
m∑
u=1

cjupu, z

〉
(66)

⇒ asps =

l∑
j=1

bj

[
m∑
t=1

cjtpt

]
cjs(67)

=

m∑
t=1

l∑
j=1

bjc
j
tc
j
spt(68)

=

m∑
t=1

pt

l∑
j=1

bjc
j
tc
j
s.(69)

Let αt =
∑l

j=1 bjc
j
tc
j
s for all t and note that each summand is nonnegative.

Now we have

asps =
m∑
t=1

αtpt.(70)

We know that αs′ > 0 since brc
r
sc
r
s′ > 0. This violates the linear independence

of p1, . . . , pm. Now we have that for all i there exists j such that pi = qj . From
the minimality of the representation of mixtures of measures it follows that
l = m and without loss of generality we can assert that pi = qi for all i and
thus µi = νi for all i. Because p1, . . . , pm are linearly independent it follows
that p1⊗ p1, . . . , pm⊗ pm are linearly independent. We can show this by the
contrapositive, suppose p1 ⊗ p1, . . . , pm ⊗ pm are not linearly independent
then there exists a nontrivial linear combination such that

∑m
i=1 κipi⊗pi = 0.

Assume without loss of generality that κ1 6= 0. Applying Lemma A.2 we get



OPERATOR THEORY FOR MIXTURE MODELS 13

that

m∑
i=1

κipi 〈pi, ·〉 = 0(71)

⇒
m∑
i=1

κipi 〈pi, p1〉 = 0(72)

⇒ κ1p1 ‖p1‖2L2 +
m∑
i=2

κipi 〈pi, p1〉 = 0(73)

(74)

and thus p1, . . . , pm are not linearly independent.
Since p1⊗ p1, . . . , pm⊗ pm are linearly independent it follows that ai = bi

for all i and thus P = P ′.

Proof of Lemma 7.1. For brevity’s sake let Q = Tn,q (Qn,p,q) and R =

Vn

(
δ∑q

i=1 piδi

)
. Let y ∈ [q]×n be arbitrary. We will prove that Q({y}) =

R({y}) which, since y is arbitrary, clearly generalizes to Q = R. Let y̌ ∈ Cn,q
be the element such that y̌i = |{j : yj = i}| for all i, i.e. the ith index of y̌
contains the number of times the value i occurs in y. From the definition of
Vn we have that

R({y}) =

(
q∑
i=1

piδi

)×n
({y}) =

n∏
i=1

pyi =

q∏
j=1

p
y̌j
j .(75)

We define χ to be the indicator function, which is equal to 1 if its subscript
is true and 0 otherwise. Consider some z 6= y̌. We have

Tn,q (δz) ({y}) =
1

n!

∑
σ∈Sn

δσ(Fn,q(z)) ({y})(76)

=
1

n!

∑
σ∈Sn

χσ(Fn,q(z))=y.(77)

From our definition of Fn,q and y̌ it is clear that there must exist some r
such that the number of entries of Fn,q(z) which equal r is different from
the number of indices of y which equal r. Because of this no permutation of
Fn,q(z) can equal y and thus Tn,q (δz) ({y}) = 0. From this it follows that
Tn,q (δz) ({y}) = 0 for all z 6= y̌.
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Now we will consider Tn,q (δy̌) ({y}). Again we have

Tn,q (δy̌) ({y}) =
1

n!

∑
σ∈Sn

χσ(Fn,q(y̌))=y,(78)

so we need only determine how many permutations of Fn,q (y̌) are equal to y.
Basic combinatorics tells us that there are y̌1! · · · y̌q! such permutations. The
coefficient of δy̌ inQn,p,q is n!

y̌1!···y̌q !p
y̌1
1 · · · p

y̌n
n so we have thatQ({y}) = R({y})

by direct evaluation.

Proof of Corollary 7.1. We will proceed by contradiction and as-
sume that there exists two mixtures of the form in the corollary statement,

m∑
i=1

aiQn,pi,q =

s∑
j=1

bjQn,rj ,q(79)

but s 6= m or s = m and there exists no permutation such that aiQn,pi,q =
bσ(i)Qn,rσ(i),q. If we apply Tn,q defined earlier, from Lemma 7.1 it follows
that

Vn

(
m∑
i=1

aiδ∑q
k=1 pi,kδk

)
= Vn

 s∑
j=1

bjδ∑q
l=1 rj,lδl

 .(80)

We have that P =
∑m

i=1 aiδ
∑q
k=1 pi,kδk

and P ′ =
∑s

j=1 bjδ
∑q
l=1 rj,lδl

are mix-
tures of measures which are not n-identifiable. Our contradiction hypothesis
implies that P 6= P ′. From Lemma 4.2 we have that

V2m−1

(
m∑
i=1

aiδ∑q
k=1 pi,kδk

)
= V2m−1

 s∑
j=1

bjδ∑q
l=1 rj,lδl

 ,(81)

which contradicts Theorem 4.1.

Proof of Corollary 7.2. The proof of this corollary is virtually iden-
tical to the proof of Corollary 7.1, it simply uses Theorem 4.3 instead of
Theorem 4.1 and related notions of determinedness.

APPENDIX B: “RANDOM DOMINATING MEASURE” TRICK

Here we introduce the technique mentioned in Sections 8 and 9 of the
main text which ensures that mixture components over a finite sample space
have distinct norms, the “random dominating measure” trick. Let

(
Ω, 2Ω

)
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be a finite sample space with Ω = {ω1, . . . , ωd}. Let µ1, . . . , µm be distinct

measures on this space. Let y1, . . . , yd
iid∼ unif (1, 2) and let ξ be a random

measure on
(
Ω, 2Ω

)
defined by ξ ({ωi}) = yi for all i. Clearly ξ dominates

all µ1, . . . , µm and thus we can define Radon-Nikodym derivatives pi = dµi
dξ

for all i. We will treat these Radon-Nikodym derivatives as being elements
in L2

(
Ω, 2Ω, ξ

)
. We have the following lemma.

Lemma B.1. With probability one∫
pi(ω)2dξ(ω) 6=

∫
pj(ω)2dξ(ω)(82)

for all i 6= j.

Proof. Observe that, for all i, j,∫
{ωj}

pidξ = pi(ωj)ξ ({ωj}) = pi(ωj)yj = µi ({ωj})(83)

and thus pi (ωj) =
µi({wj})

yj
. We will show that ‖p1‖2`2(Rd) 6= ‖p2‖2`2(Rd) with

probability one, which implies ‖pi‖`2(Rd) 6= ‖pj‖`2(Rd) for all i 6= j with

probability one (here and for the rest of this supplement ‖·‖`2(Rd) will de-

note the standard Euclidean norm on Rd and 〈·, ·〉`2(Rd) the standard inner

product).
Because µ1 6= µ2 it follows that there exists some j such that µ1 ({ωj}) 6=

µ2 ({ωj}). Without loss of generality we will assume that j = 1 in the pre-
vious statement. Now we have

P

(∫
p1 (ω)

2 dξ (ω) =

∫
p2 (ω)

2 dξ (ω)

)
(84)

= P

(
d∑
i=1

µ1 ({ωi})2

yi
=

d∑
j=1

µ2 ({ωj})2

yj

)
(85)

= P

((
µ1 ({ω1})2

y1
−
µ2

(
{ω1}2

)
y1

)
=

(
d∑
i=2

µ1 ({ωi})2

yi
−

d∑
j=2

µ2 ({ωj})2

yj

))
(86)

which is clearly zero since (µ1 ({ω1}))2− (µ2 ({ω1}))2 6= 0 and y1, . . . , yd are
all independent random variables and from a non-atomic measure.

APPENDIX C: RECOVERY ALGORITHM FOR FINITE SAMPLE
SPACES

Let
(
Ω, 2Ω

)
be a finite measurable space with |Ω| = d. To simplify ex-

position we will assume that Ω is simply the set of d dimensional indicator
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vectors in Rd, e1, . . . , ed. Note that Euclidean space with the standard in-

ner product is L2
(

Ω, 2Ω,
∑d

i=1 δei

)
= `2

(
Rd
)
. Let µ1, . . . , µm be distinct

probability measures on Ω. Let P =
∑m

i=1wiδµi be a mixture of mea-
sures. Let p̃i , Ex∼µi [x] for all i. Note that p̃i,j = µi ({ej}) for all i, j. Let

X1,X2, . . .
iid∼ V2m−1 (P) with Xi = [Xi,1, . . . , Xi,2m−1].

To begin we construct the random dominating measure described in Ap-

pendix B. Let y1, . . . , yd
iid∼ unif (1, 2). The random dominating measure ξ

is defined by ξ ({ei}) = yi for all i. Let pi = dµi
dξ , i.e. pi (ej) =

p̃i,j
yj

for all

i and j. There is a bit of a computational issue with this representation
for the densities p1, . . . , pm since the new dominating measure changes the
inner product from the standard inner product. We can remedy this with
the following lemma.

Lemma C.1. Let x, v ∈ `2
(
Rd
)
, ξ be as above, and

B =



1√
y1

0 0 · · · 0

0 1√
y2

0 · · · 0

0 0
. . .

...
...

...
. . . 0

0 0 · · · 0 1√
yd


.(87)

Then 〈Bx,Bv〉L2(Ω,2Ω,ξ) = 〈x, v〉`2(Rd).

Proof of Lemma C.1. We have

〈Bx,Bv〉L2(Ω,2Ω,ξ) =

∫
(Bx)(i)(Bv)(i)dξ(i)(88)

=

d∑
i=1

(Bx)(i)(Bv)(i)yi(89)

=

d∑
i=1

x(i)
√
yi

v(i)
√
yi
yi(90)

=
d∑
i=1

x(i)y(i)(91)

= 〈x, y〉`2(Rd) .(92)
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From this lemma we have that B, when considered as an operator in
L
(
`2
(
Rd
)
, L2

(
Ω, 2Ω, ξ

))
, is a unitary transform. We are interested in esti-

mating the tensor
∑m

i=1wip
⊗2m−1
i , but in order to keep the algorithm oper-

ating in standard Euclidean space we will instead transform it into `2
(
Rd
)
.

To this end consider an arbitrary i. We have

B−1pi = B−1 [pi,1, . . . , pi,d]
T(93)

= B−1

[
p̃i,1
y1
, . . . ,

p̃i,d
yd

]T
(94)

=

[
p̃i,1√
y1
, . . . ,

p̃i,d√
yd

]T
,(95)

and thus B−1pj = Bp̃j for all j.
We will use the following lemma to find the expected value of

E [BXi,1 ⊗ · · · ⊗BXi,2m−1] .(96)

Lemma C.2. Let n > 1 and Z1, . . . , Zn be independent random vectors
in Rd1 , . . . ,Rdn such that E [Zi] exists for all i. Then E [Z1 ⊗ · · · ⊗ Zn] =
E [Z1]⊗ · · · ⊗ E [Zn].

Proof of Lemma C.2. Let [i1, . . . , in] ∈ Rd1 × · · · × Rdn be arbitrary.
We have that

E [Z1 ⊗ · · · ⊗ Zn]i1,...,in = E [Z1,i1 · · ·Zn,in ](97)

= E [Z1,i1 ] · · ·E [Zn,in ] .(98)

Since i1, . . . , in were arbitrary it implies that all entries of E [Z1 ⊗ · · · ⊗ Zn]
and E [Z1]⊗ · · · ⊗ E [Zn] are equal.

Recall that Xi,1, . . . , Xi,2m−1
iid∼ µ with µ ∼P. From the previous lemma

and the definition of p̃i it follows that

E [BXi,1 ⊗ · · · ⊗BXi,2m−1](99)

= Eµ∼P [E [BXi,1 ⊗ · · · ⊗BXi,2m−1|µ]](100)

= Eµ∼P [E [BXi,1|µ]⊗ · · · ⊗ E [BXi,2m−1|µ]](101)

= Eµ∼P [BE [Xi,1|µ]⊗ · · · ⊗BE [Xi,2m−1|µ]](102)

=
m∑
i=1

wiBE [Xi,1|µ = µi]⊗ · · · ⊗BE [Xi,2m−1|µ = µi](103)

=

m∑
i=1

wi (Bp̃i)
⊗2m−1 .(104)
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Let Yi,j = BXi,j and recall that Sn is the symmetric group over n symbols.
Now we will construct the whitening operator. To do this first construct the
operator

Ĉ =
1

(2m− 1)!

1

n

n∑
i=1

∑
σ∈S2m−1

Yi,σ(1) ⊗ · · · ⊗ Yi,σ(m−1)〈
Yi,σ(m) ⊗ · · · ⊗ Yi,σ(2m−2), ·

〉
.

(105)

There are some repeated terms in the previous summation, which is not an

issue. Instead we could have set Ĉ to be equal to

1

(2m− 2)!

1

n

n∑
i=1

∑
σ∈S2m−2

Yi,σ(1) ⊗ · · · ⊗ Yi,σ(m−1)
〈
Yi,σ(m) ⊗ · · · ⊗ Yi,σ(2m−2), ·

〉
,

but this would not utilize all the data, specifically Y1,2m−1, . . . , Yn,2m−1.
In the second operator, the average over S2m−2 functions as a projection
onto the space of symmetric tensors [1] and the summation over S2m−1

in the definition of Ĉ serves a similar purpose. Viewed alternatively, the
distribution of [Yi,1, . . . , Yi,2m−1]T does not change if we reorder the entries of
the vector, so the summation is considering all possible orderings of random
groups. This symmetrization conveniently assures that Ĉ is a Hermitian
operator. This Ĉ is estimating the C mentioned in the Section 8 of the main
text. Let λ

Ĉ,1
, . . . , λ

Ĉ,m
be the top m eigenvalues of Ĉ and v

Ĉ,1
, . . . , v

Ĉ,m
be

their associated eigenvectors. We can now construct the whitening operator

Ŵ =
m∑
i=1

λ
− 1

2

Ĉ,i
v
Ĉ,i

〈
v
Ĉ,i
, ·
〉
.(106)

Now construct the tensor

Â =
1

(2m− 1)!

1

n

n∑
i=1

∑
σ∈S2m−1

Yi,σ(1) ⊗ Ŵ
(
Yi,σ(2) ⊗ · · · ⊗ Yi,σ(m)

)
⊗ · · ·

Ŵ
(
Yi,σ(m+1) ⊗ · · · ⊗ Yi,σ(2m−1)

)
.

(107)

Using simple unfolding techniques we can transform Â in to the operator T̂ :

T̂ =
1

(2m− 1)!

1

n

n∑
i=1

∑
σ∈S2m−1

Yi,σ(1) ⊗ Ŵ
(
Yi,σ(2) ⊗ · · · ⊗ Yi,σ(m)

)
· · ·

〈
Ŵ
(
Yi,σ(m+1) ⊗ · · · ⊗ Yi,σ(2m−1)

)
, ·
〉
,

(108)
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as well as its Hermitian, T̂H :

1

(2m− 1)!

1

n

n∑
i=1

∑
σ∈S2m−1

Ŵ
(
Yi,σ(m+1) ⊗ · · · ⊗ Yi,σ(2m−1)

)
· · ·

〈
Yi,σ(1) ⊗ Ŵ

(
Yi,σ(2) ⊗ · · · ⊗ Yi,σ(m)

)
, ·
〉
.

(109)

Let v1, . . . , vm be the top m eigenvectors of T̂ T̂H , which will be el-
ements of `2

(
Rd
)⊗m

. These vectors are estimates of ‖Bp̃1‖−1
2 Bp̃1 ⊗

Ŵ
√
w1 (Bp̃1)⊗m−1 , . . . , ‖Bp̃m‖−1

2 Bp̃m⊗Ŵ
√
wm (Bp̃m)⊗m−1 (possibly mul-

tiplied by −1). The factors in front of the tensors normalize the tensors to
have norm 1.

Using a transform of the form in Lemma A.2, we can implement a trans-
form

U : `2
(
Rd
)⊗m

→H S

(
`2
(
Rd
)⊗m−1

, `2
(
Rd
))

(110)

which maps simple tensors x1 ⊗ · · · ⊗ xm to x1 〈x2 ⊗ · · · ⊗ xm, ·〉.
Applying this transform to v1, . . . , vm yields estimates of

‖Bp̃i‖−1

`2(Rd)
Bp̃i

〈
Ŵ
√
wi (Bp̃i)

⊗m−1 , ·
〉

, for all i. At this point

one simply needs to find vectors q1, . . . , qm which are not or-
thogonal to Ŵ

√
w1 (Bp̃1)⊗m−1 , . . . , Ŵ

√
wm (Bp̃m)⊗m−1 to get

‖Bp̃i‖−1

`2(Rd)
Bp̃i

〈
Ŵ
√
wi (Bp̃i)

⊗m−1 , qi

〉
, which is Bp̃i, . . . , Bp̃i up to

scaling. Such vectors can be found by simply using a tensor populated by
iid standard normal random variables. After this we can recover p̃1, . . . , p̃m,
up to scaling, by simply applying B−1, which we would then want to
normalize to sum to one. Alternatively we could take the largest left
singular vector of these operators. We will call these estimates p̂1, . . . , p̂m.

Using the data we can estimate the tensor
∑m

i=1wip̃
⊗m−1
i with the esti-

mator

Ê =
1

2m− 1

1

n

n∑
i=1

∑
σ∈S2m−1

Xi,σ(1) ⊗ · · · ⊗Xi,σ(m−1).(111)

To estimate the mixture proportions we find the value of α = (α1, . . . , αm)
which minimizes ∥∥∥∥∥Ê −

m∑
i=1

αip̂i
⊗m−1

∥∥∥∥∥ .(112)
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APPENDIX D: CONSISTENCY OF RECOVERY ALGORITHM

Here we show that the recovery algorithm for categorical distributions
described in Appendix C is consistent. Let C, Ĉ, T, T̂ ,W, and Ŵ be as they
were defined Appendix C and Section 8 of the main text. The crux of our
algorithm is the recovery of the eigenvectors of TTH , from which we then
recover the mixture components through the application of linear and con-
tinuous transforms to the eigenvectors. In order to simplify the notation in
our explanation we will assume that the norms of p̃1, . . . , p̃m are distinct.
We do this so that there are gaps in the spectral decomposition of TTH

thus making the random dominating measure trick unnecessary. Were this
not the case, we could simply represent the probability vectors as densities
with respect to some dominating measure which makes their norms distinct,
as we did in the previous section. Because of this assumption we can simply
set B to be the identity operator. From this we have that pi = p̃i for all i
and Xi,j = Yi,j for all i and j. The following theorem demonstrates that the
algorithm does indeed recover the eigenvectors of TTH .

Theorem D.1. With T and T̂ defined as above, as n→∞ then∥∥∥TTH − T̂ T̂H∥∥∥
H S

p→ 0.(113)

Proof of Theorem D.1. Let

Q =
m∑
i=1

wip
⊗2m−1
i(114)

and

Q̂ =
1

(2m− 1)!

1

n

n∑
i=1

∑
σ∈S2m−1

Xi,σ(1) ⊗ · · · ⊗Xi,σ(2m−1).(115)

Note that

(I ⊗W ⊗W ) (Q) =

m∑
i=1

wipi ⊗W
(
p⊗m−1
i

)
⊗W

(
p⊗m−1
i

)
(116)

and(
I ⊗ Ŵ ⊗ Ŵ

)
(Q̂) =

1

(2m− 1)!

1

n

n∑
i=1

∑
σ∈S2m−1

Xi,σ(1) ⊗ Ŵ
(
Xi,σ(2) ⊗ · · · ⊗Xi,σ(m)

)
⊗ · · ·

Ŵ
(
Xi,σ(m+1) ⊗ · · · ⊗Xi,σ(2m−1)

)
.
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Since the transform in Lemma A.2 is unitary, we have that

∥∥∥T − T̂∥∥∥
H S

=
∥∥∥(I ⊗W ⊗W ) (Q)−

(
I ⊗ Ŵ ⊗ Ŵ

)(
Q̂
)∥∥∥

`2(Rd)
⊗2m−1 .

(117)

We will now show that
∥∥∥T − T̂∥∥∥ p→ 0.∥∥∥T − T̂∥∥∥ ≤ ∥∥∥T − T̂∥∥∥

H S
(118)

=
∥∥∥(I ⊗W ⊗W )(Q)−

(
I ⊗ Ŵ ⊗ Ŵ

)(
Q̂
)∥∥∥

`2(Rd)
⊗2m−1(119)

≤
∥∥∥(I ⊗W ⊗W )(Q)− (I ⊗W ⊗W )(Q̂)

∥∥∥
`2(Rd)

⊗2m−1(120)

+
∥∥∥(I ⊗W ⊗W )(Q̂)−

(
I ⊗ Ŵ ⊗ Ŵ

)(
Q̂
)∥∥∥

`2(Rd)
⊗2m−1(121)

≤ ‖I ⊗W ⊗W‖
∥∥∥Q− Q̂∥∥∥

`2(Rd)
⊗2m−1(122)

+
∥∥∥I ⊗W ⊗W − I ⊗ Ŵ ⊗ Ŵ∥∥∥∥∥∥Q̂∥∥∥

`2(Rd)
⊗2m−1 .(123)

We have that E
[
Q̂
]

= Q so the first summand goes to zero in probability

by the law of large numbers and Lemma C.2. All we need to show is that∥∥∥I ⊗W ⊗W − I ⊗ Ŵ ⊗ Ŵ∥∥∥ p→ 0.

The following equality is mentioned in [3].

Lemma D.1. Let U1, . . . , Un be defined as in Lemma A.1. Then

‖U1 ⊗ · · · ⊗ Un‖ = ‖U1‖ ‖U2‖ · · · ‖Un‖ .(124)

From Lemma D.1 we have that∥∥∥I ⊗W ⊗W − I ⊗ Ŵ ⊗ Ŵ∥∥∥(125)

≤ ‖I‖
∥∥∥W ⊗W − Ŵ ⊗ Ŵ∥∥∥(126)

=
∥∥∥W ⊗W − Ŵ ⊗ Ŵ∥∥∥(127)

≤
∥∥∥W ⊗W −W ⊗ Ŵ∥∥∥+

∥∥∥W ⊗ Ŵ − Ŵ ⊗ Ŵ∥∥∥(128)

= ‖W‖
∥∥∥W − Ŵ∥∥∥+

∥∥∥Ŵ∥∥∥∥∥∥W − Ŵ∥∥∥(129)

=
(
‖W‖+

∥∥∥Ŵ∥∥∥)∥∥∥W − Ŵ∥∥∥ .(130)
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The left factor converges in probability to 2 ‖W‖ and the right factor con-

verges to 0 in probability and so we have that
∥∥∥T − T̂∥∥∥ p→ 0. From this we

also have that
∥∥∥T̂ T̂H − TTH∥∥∥ p→ 0.

APPENDIX E: ADDITIONAL EXPERIMENTAL DETAILS

For the “random dominating measure” algorithm, the random dominating
measure was generated using the square of iid Gaussian random variables
with mean 0 and standard deviation 0.03. We used the Gaussian random
variables instead of the uniform distribution described in Section B simply
because the Gaussian random measure performed better. Finally we made
one minor adjustment to the algorithm proposed in the main text. If an
estimator yielded a component which has a negative entry, we simply set
the negative entry to zero and renormalise.
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