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Abstract

We consider a problem of active diagnosis, where
the goal is to efficiently identify an unknown ob-
ject by sequentially selecting, and observing, the
responses to binary valued queries. We assume
that query observations are noisy, and further that
the noise is persistent, meaning that repeating a
query does not change the response. Previous
work in this area either assumed the knowledge
of the query noise distribution, or that the noise
level is sufficiently low so that the unknown ob-
ject can be identified with high accuracy. We
make no such assumptions, and introduce an al-
gorithm that returns a ranked list of objects, such
that the expected rank of the true object is opti-
mized. Furthermore, our algorithm does not re-
quire knowledge of the query noise distribution.

1 Introduction

We study an active diagnosis problem where the goal is
to identify an unknown object while minimizing the num-
ber of binary questions posed about that object. This
problem arises in various places such as pool-based ac-
tive learning (Dasgupta, 2004; Nowak, 2008; Golovin and
Krause, 2010), disease diagnosis (Loveland, 1985; Yu
et al., 2009), fault diagnosis in computer networks (Rish
et al., 2005), toxic chemical identification (Bhavnani et al.,
2007), image processing (Korostelev and Kim, 2000), com-
puter vision (Swain and Stricker, 1993; Geman and Je-
dynak, 1996), job scheduling (Kosaraju et al., 1999), and
the adaptive traveling salesperson problem (Gupta et al.,
2010). These problems can be characterized in terms of
a set Θ = {θ1, · · · , θM} of M different objects and a set
Q = {q1, · · · , qN} of N distinct subsets of Θ known as
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queries. An unknown object θ ∈ Θ is generated with a cer-
tain a priori probability distribution Π = (π1, · · · , πM ),
i.e., πi = Pr(θ = θi), and the goal is to identify θ through
as few queries as possible, where a query q ∈ Q returns a
value of 1 if θ ∈ q, and 0 otherwise. In many applications,
the responses to queries are corrupted by noise. For exam-
ple, in active learning, the objects are classifiers, queries are
labels to fixed test points, and the noise is due to a faulty or-
acle. Similarly, in fault diagnosis, objects may correspond
to components, queries to alarms, and the noise is either
due to unreliable connections or faulty devices.

The problem of active diagnosis/active learning in the pres-
ence of query noise has been studied by Kääriäinen (2006)
and Nowak (2008, 2009), where the noise is assumed to be
independent, in that posing the same query twice may yield
different responses. This assumption suggests repeated se-
lection of a query as a possible strategy to overcome query
noise. The algorithms presented in (Kääriäinen, 2006;
Nowak, 2008, 2009) are based on this principle. However,
in certain applications, resampling or repeating a query
does not change the query response, thereby confining an
active diagnosis algorithm to non-repeatable queries.

For example, in the emergency response problem of toxic
chemical identification (Bhavnani et al., 2007), a first re-
sponder is faced with the task of rapidly identifying the
toxic chemical by posing symptom-based queries to a vic-
tim. The responses to these symptom queries are often in
error due to reasons such as mis-identification of a symp-
tom by a victim or a delayed onset of a symptom, in which
case the victim’s response is unlikely to change upon re-
peated queries. Similarly, in a fault diagnosis problem, the
response to alarms/probes could be in error due to faulty
alarms, in which case these responses would not change on
repeated interrogations.

This more stringent noise model where queries cannot be
resampled is referred to as persistent noise (Rényi, 1961;
Hanneke, 2007). It has been studied earlier in the situa-
tion where the number of persistent errors is restricted such
that unique identification of the unknown object θ is guar-
anteed (Bellala et al., 2009; Golovin et al., 2010). In par-
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ticular, if we associate each object θi with a length N bit
string whose jth element is 1 iff θi ∈ qj , then, the num-
ber of query errors is restricted to be less than half of the
minimum Hamming distance between any two object bit
strings. This is often not reasonable as the minimum Ham-
ming distance could be very small, such as in WISER1 (a
toxic chemical database) where it is equal to 1.

In this paper, we consider the problem of active diagno-
sis under persistent noise with no restriction on the number
of persistent errors. We assume the object set Θ and the
query set Q are finite, and that only one object from Θ is
“present”. Unlike the previous two noise models where the
unknown object θ can be identified with certainty after suf-
ficiently many queries, in our model it may not be possible
to identify θ even after all queries are made.

In this setting, Rish et al. (2005) proposed the use of mu-
tual information or the conditional entropy as a criterion
for selecting queries, where queries are chosen sequentially
to minimize the uncertainty in θ (or maximize information
gain) given the observed responses to the past queries. Af-
ter observing responses to a set of queries, the unknown
object is then estimated to be the object with the maximum
a posteriori probability, θMAP.

However, there are two limitations with this approach.
First, in situations with moderate to high noise, or where
the Hamming distance between object bit strings is low, the
object with the maximum a posteriori probability will be
equal to the true object θ with low probability. Even in the
case where θMAP does converge to the true object θ, it may
require a large number of queries to be inputted. Second,
this algorithm assumes knowledge of the full data model;
in particular, the probability of query errors, which is re-
quired to compute the information gain in the query selec-
tion stage. However, this information is often not known.

To address these issues, we propose a novel rank-based
approach where we output a ranked list of objects rather
than θMAP, where the ranking is based on the posterior
probabilities. The rank-based approach is motivated by the
fact that in many applications there is a domain expert who
makes the final decision on the possible identity of the un-
known object θ. Such a ranking can be useful to a domain
expert who will use domain expertise and other sources of
information to further determine θ. Thus, we propose a
greedy algorithm to minimize the expected rank of the un-
known object θ. Unlike the entropy-based algorithm, the
proposed greedy algorithm does not require the knowledge
of the underlying query noise.

1.1 Additional Related Work

In the noise-free case, this problem has been referred to as
binary testing or object/entity identification (Garey, 1972;

1http://wiser.nlm.nih.gov/
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Figure 1: A bipartite graph along with a binary matrix rep-
resentation of a dataset with 3 objects and 5 queries where
q1 = q3 = {θ1}, q2 = q4 = {θ2, θ3} and q5 = {θ1, θ3}.

Loveland, 1985). The goal of object identification is to con-
struct an optimal binary decision tree where each internal
node in the tree is associated with a query from Q, and
each leaf corresponds to an object from Θ, where optimal-
ity is often with respect to the average depth of the leaf
nodes. This problem of finding an optimal decision tree is
known to be NP-complete (Hyafil and Rivest, 1976). How-
ever, there exists an efficient, greedy algorithm known as
the splitting algorithm or generalized binary search (GBS)
that achieves a logarithmic approximation to the optimal
solution (Dasgupta, 2004; Nowak, 2008).

The problem of pool-based active learning under persistent
noise has been studied by Balcan et al. (2006) and Han-
neke (2007) in the PAC (Probably Approximately Correct)
model. The query set is assumed to be large enough (pos-
sibly infinite) such that it is possible to get arbitrarily close
to the optimal classifier, for any given noise level.

2 Data model

We derive our rank-based algorithm under a very flexible
data model. We present this general model because it en-
compasses two important cases as discussed in Section 5,
which are the main focus of this paper. In each of those
cases, we show that the proposed algorithm can be imple-
mented without any knowledge on the model parameters.

Given an object set Θ = {θ1, · · · , θM} of M different ob-
jects and a query set Q = {q1, · · · , qN} of N distinct sub-
sets of Θ, the relation between the objects and queries can
be represented either by a bipartite network or by anM×N
binary matrix B = [bij ], where bij = 1 if θi ∈ qj , and 0
otherwise. Each row of B is an object bit string, defined
previously. Figure 1 demonstrates a bipartite graph rep-
resentation for a toy dataset along with the binary matrix
associated with it.

We associate each object θi ∈ Θ with a binary random
variable Xi, where Xi = 1 when θ = θi, and 0 other-
wise. Then, X = (X1, · · · , XM ) is a binary random vec-
tor denoting the states of all the objects in Θ, where X ∈
{I1, · · · , IM}, Ii being a binary vector whose ith element
is 1 and remaining elements are 0, and Pr(X = Ii) = πi.

Similarly, let Zj be a binary random variable denoting the
observed response to query qj . Then, Z = (Z1, · · · , ZN ) is
a binary random vector denoting the observed responses to
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Figure 2: (a) Noise model (b) Unreliable connections (c) Noisy query responses

all queries inQ, where Z ∈ {0, 1}N . We wish to define the
joint distribution of (X,Z), for which it remains to specify
the conditional distribution of Z given X. Towards this
end, we present the model describing the relation between
an observed response Zj to the object state vector X.

For any query qj , let paj := {i : bij = 1} denote the ob-
jects that are connected to it. In the ideal case when there
is no noise, the response Zj of query qj is given by the OR
operation of the binary states of the objects in paj . More
generically, the response of a query qj can be modeled as
shown in Figure 2(a). This noise model has been referred
to as the Y model (Le and Hadjicostis, 2007). Here, for any
i ∈ paj , Xij denotes the binary state of object θi as per-
ceived at query qj . This corresponds to randomness due to
unreliable connections in a fault-diagnosis problem. Fur-
thermore, Yj which denotes the outcome of the OR oper-
ation on {Xij}i∈paj

, is observed as Zj . The relationship
between Yj and Zj corresponds to noise due to unreliable
alarms in a fault-diagnosis problem or a faulty oracle in an
active learning setting. This noise model can be completely
characterized by the parameters 0 ≤ γxij , p

x
j ≤ 1, x = 0, 1,

as shown in Figures 2(b) and 2(c). For any query qj ∈ Q,
and x = 0, 1,

γxij = Pr(Xij = 1− x|Xi = x), ∀i ∈ paj

and pxj = Pr(Zj = 1− x|Yj = x).

Finally, let QA denote the subset of queries indexed by
A ⊆ {1, · · · , N}, and ZA the random variables associ-
ated with those queries, e.g, if A = {1, 4, 7}, then QA =
{q1, q4, q7} and ZA = (Z1, Z4, Z7). Then, we make the
standard assumption that the observed responses to queries
are conditionally independent given the states of all the ob-
jects, i.e.,

Pr(ZA = zA|Xi = 1) =
∏
j∈A

Pr(Zj = zj |Xi = 1),

where by Xi = 1, we implicitly mean X = Ii. This as-
sumption holds reasonably well in many practical appli-
cations as noise is usually generated independently. For
example, in the problem of fault diagnosis, it can be rea-
sonable to assume that all connections and alarms fail in-
dependently.

3 Active Diagnosis under Persistent noise

We will now formally state the problem of active diag-
nosis. As mentioned earlier, unique identification of θ is
no longer guaranteed. Hence, the goal of active diagno-
sis under persistent noise is to maximize some function
f(QA, zA), which denotes the quality of the estimate of
θ, subject to a constraint on the number of queries made,
i.e.,

maxA⊆{1,··· ,N} f(QA, zA)

s.t. |A| ≤ k.

Finding an optimal solution to this problem is NP-
complete. Instead, the queries can be chosen sequentially
by greedily maximizing the quality function, given the ob-
served responses to the past queries, i.e.,

q∗ := argmax
q∈Q\QA

EZ [f(QA ∪ {q}, [zA, Z])

− f(QA, zA)|ZA = zA] (1)

where Z is the random variable associated with query q.

In the case of entropy-based active diagnosis, this quality
function is given by f(QA, zA) = H(θ)−H(θ|zA), which
is the reduction in conditional entropy, or the information
gain. Given the observed responses zA to previously se-
lected queries QA, the next query is chosen to be

q∗ = argmin
q∈Q\QA

∑
z=0,1

Pr(Z = z|zA)H(X|zA, z)

where the conditional entropy H(X|zA, z) is given by

−
M∑
i=1

Pr(Xi = 1|zA, z) log2(Pr(Xi = 1|zA, z)).

The computation of these posterior probabilities requires
the knowledge of the complete noise distribution or the pa-
rameters in the noise model. In the next section, we pro-
pose a rank-based greedy algorithm that depends instead
on the likelihoods and the prior probability distribution. We
then exploit this fact in Section 5 to develop algorithms that
do not require knowledge of the query noise parameters.
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4 Rank-Based Active Query Selection

Given the observed responses zA to a set of queries QA,
we define the rank of an object θi to be

R(θi|zA) =

M∑
j=1

I
{

Pr(Xj = 1|zA) ≥ Pr(Xi = 1|zA)
}

=

M∑
j=1

I
{
πjPr(zA|Xj = 1) ≥ πiPr(zA|Xi = 1)

}
,

where I{E} is an indicator function which takes the value
1 when the event E is true, and 0 otherwise. Note that
R(θi|zA) takes a small value when θi has a high poste-
rior probability and a large value when the posterior prob-
ability is small. In addition, when multiple objects have
the same posterior probabilities, each object is assigned the
worst case ranking, as shown in Figure 3.

Given the observed responses zA to a set of queriesQA, we
define the objective function f(QA, zA) to be the expected
rank of the unknown object θ, i.e.,

Eθ[R(θ|zA)] =

M∑
i=1

Pr(Xi = 1|zA)R(θi|zA), (2)

and the goal is to minimize this expected rank. Substitut-
ing this objective function in (1), we get the criterion for
choosing the next query to be

q∗ = argmin
q∈Q\QA

∑
z=0,1

Pr(Z = z|zA)Eθ[R(θ|zA, z)]

= argmin
q∈Q\QA

∑
z=0,1

M∑
i=1

πiPr(zA, z|Xi = 1)

Pr(zA)
R(θi|zA, z)

= argmin
q∈Q\QA

∑
z=0,1

M∑
i=1

πiPr(zA, z|Xi = 1)R(θi|zA, z) (3)

where (3) follows as Pr(zA) does not depend on query q.
Given the knowledge of γxij , p

x
j , and πi, the greedy algo-

rithm can now be implemented. In the noise-free case with
uniform prior on the objects, this rank-based greedy algo-
rithm reduces to GBS.

5 Noise Independent Active Query Selection

We now consider two special cases of the noise model dis-
cussed in Section 2 that appear in many applications, and
present a noise independent estimate of the objective in (3).
More specifically, we provide a good upper bound on the
likelihood function, which can then be used to accurately
predict the ranks of the objects. We also show that in some
cases it is possible to estimate the true ranks exactly with
limited knowledge on the query noise. We use the result
in the following lemma to derive the upper bound on the
likelihood function.

θ1 θ2 θ3 θ4 θ5
Pr(Xi = 1|zA) 0.2 0.2 0.3 0.2 0.1
R(θi|zA) 4 4 1 4 5

Figure 3: Demonstration of worst case ranking

Lemma 1. Let h, k be integers with 0 ≤ h ≤ k and k ≥ 1.
Then, for any 0 < p < 1,

ph(1− p)k−h ≤ εhh(1− εh)k−h (4)

where εh = h
k . If it is known that p ≤ p2 < 1, then

(4) holds with εh = min{p2, hk}. If it is known that p ≥
p1 > 0, then (4) holds with εh = max{p1, hk}. If it is
known that 0 < p1 ≤ p ≤ p2 < 1, then (4) holds with
εh = min{p2,max{p1, hk}}.

Proof. For any given k and h, let g(p) := log[ph(1 −
p)k−h]. It can be easily verified that g′(p) = 0 when p = h

k

and g′′(p)|p=h
k
< 0 which implies that g(p) ≤ g(hk ), ∀ p,

from which the inequality in (4) follows.

In addition, when p ≤ p2, we need to show that the bound
can be improved to

ph(1− p)k−h ≤

{
ph2 (1− p2)k−h if p2 ≤ h

k ,(
h
k

)h (
1− h

k

)k−h
if p2 > h

k .

Note that the second part of this result, where p2 > h/k
follows from the above result. Hence, it remains to show
that ∀ p2 ≤ h

k , ph(1 − p)k−h ≤ ph2 (1 − p2)k−h, which is
equivalent to showing that ∀h ≥ kp2, g(p2)− g(p) ≥ 0.

g(p2)− g(p) = h log
p2(1− p)
p(1− p2)

+ k log
1− p2
1− p

≥ kp2 log
p2(1− p)
p(1− p2)

+ k log
1− p2
1− p

= k

[
p2 log

p2
p

+ (1− p2) log
1− p2
1− p

]
≥ 0

where the first inequality follows from h ≥ kp2 (the first
log is ≥ 0 since p ≤ p2) and the last inequality follows
from the non-negativity of Kullback-Leibler divergence.
The other two cases can be proved in a similar manner.

5.1 Constant Noise Level

We begin with the following special case of the noise
model, where γxij = 0, ∀i, j, x and 0 < pxj = p < 1, ∀j, x.
This noise model has been used in the context of pool-
based active learning with a faulty oracle (Hanneke, 2007;
Nowak, 2009), experimental design (Rényi, 1961), com-
puter vision, and image processing (Korostelev and Kim,
2000), where the responses to some queries are assumed to
be randomly flipped. In this setting,

Pr(Zj = zj |Xi = 1) = p|bij−zj |(1− p)1−|bij−zj |.
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More generally,

Pr(ZA = zA|Xi = 1) = pδi,A(1− p)|A|−δi,A ,

where δi,A =
∑
j∈A |bij − zj |, is the local Hamming dis-

tance between the true responses of θi to queries inQA, and
the observed responses zA. Using the result in Lemma 1,
the above likelihood function can be upper bounded by

Pr(zA|Xi = 1) :=

(
δi,A
|A|

)δi,A (
1− δi,A
|A|

)|A|−δi,A
.

Note that the lemma also states that given any additional
information on the noise parameter p, this bound can be
further improved. Let R(θi|zA) denote the estimated rank
of object θi based on these upper bounds:

R(θi|zA) :=

M∑
j=1

I
{
πjPr(zA|Xj = 1)

≥ πiPr(zA|Xi = 1)
}
, (5)

Then, the query selection criterion in (3) can be replaced
by the following noise-independent criterion

argmin
q∈Q\QA

∑
z=0,1

M∑
i=1

πiPr(zA, z|Xi = 1)R(θi|zA, z). (6)

The result in Proposition 1 presents conditions under which
the true rank can be estimated accurately. It states that, un-
der uniform prior on the objects, it suffices to know whether
p < 0.5 or p > 0.5, for the estimated ranks to be exactly
equal to the true ranks.

More generally, for any given prior Π with ρ :=
mini πi/maxi πi, it suffices to know whether p < ρ

1+ρ

or p > 1
1+ρ , for the estimated ranks to be equal to the true

ranks. However, even in the case where ρ
1+ρ ≤ p < 0.5

or 0.5 < p ≤ 1
1+ρ , it turns out that the estimated ranks

will be equal to the true ranks for most of the objects, as
demonstrated by the experiments in the Supplemental2.

Proposition 1. Let zA be the observed responses to a se-
quence of queries QA ⊆ Q, under some unknown noise
parameter p. Let ρ := mini πi/maxi πi. Given a p ∈
(0, ρ

1+ρ ) such that 0 < p ≤ p, or a p ∈ ( 1
1+ρ , 1) such that

1 > p ≥ p, the estimated ranks R(θ|zA) computed only
with the knowledge of p or p are equal to the true ranks
R(θ|zA), ∀ θ ∈ Θ.

Proof. Let |A| = k. Consider the case where ∃ p ∈
(0, ρ/(1 + ρ)) such that 0 < p ≤ p (The other case where
∃ p ∈ (1/(1 + ρ), 1) such that 1 > p ≥ p can be proved
in a similar manner). Note from the definitions of R(θ|zA)

2available at www-personal.umich.edu/˜gowtham

and R(θ|zA) that the result follows by showing the fol-
lowing relational equivalence between the true probabili-
ties and the estimated probabilities: ∀i, j

πiPr(zA|Xi = 1) ≥ πjPr(zA|Xj = 1)⇐⇒
πiPr(zA|Xi = 1) ≥ πjPr(zA|Xj = 1), (7)

where the true likelihood and the estimated likelihood of
any object θi are given by Pr(zA|Xi = 1) = phi(1 −
p)k−hi and Pr(zA|Xi = 1) = εhi

i (1− εi)k−hi , hi = δi,A
and εi := min{hi/k, p}.

The above equivalence follows trivially for any pair of ob-
jects θi, θj whose hi = hj . To show that the equivalence
holds even when hi 6= hj , we will show that, for any two
objects θi, θj with priors πi, πj ,

πiPr(zA|Xi = 1) > πjPr(zA|Xj = 1) & (hi 6= hj)

⇐⇒ hj > hi (8a)

and πiPr(zA|Xi = 1) > πjPr(zA|Xj = 1) & (hi 6= hj)

⇐⇒ hj > hi. (8b)

We will first prove (8a), followed by (8b). Note that hj >
hi is equivalent to hj ≥ hi+1. Using the fact that p < ρ

1+ρ

and that for any i, j, πj

πi
≤ maxk πk

mink πk
= 1

ρ , we can show the
converse of (8a) as follows. If hj − hi ≥ 1, then

(hj − hi) log
1− p
p
≥ log

1− p
p

> log
1

ρ
≥ log

πj
πi

=⇒ log πi + hi log
p

1− p
> log πj + hj log

p

1− p
=⇒ log πip

hi(1− p)k−hi > log πjp
hj (1− p)k−hj .

To prove the forward direction, we need to show that

hj ≤ hi =⇒ (hi = hj) or
πiPr(zA|Xi = 1) ≤ πjPr(zA|Xj = 1).

If hj < hi, then πiPr(zA|Xi = 1) < πjPr(zA|Xj =
1) using the converse result with dummy variables i and
j interchanged, thereby proving (8a). Similarly, to prove
the converse of (8b), we need to show that hj > hi leads
to πiPr(zA|Xi = 1) > πjPr(zA|Xj = 1), for which we
need to consider three different cases.
Case 1 : Let hj > hi ≥ kp =⇒ εi = εj = p. Then,

(hj − hi) log
1− p
p
≥ log

1− p
p

> log
1

ρ
≥ log

πj
πi

=⇒ log πi + hi log
p

1− p
> log πj + hj log

p

1− p
=⇒ log πip

hi(1− p)k−hi > log πjp
hj (1− p)k−hj

=⇒ log πiε
hi
i (1− εi)k−hi > log πjε

hj

j (1− εj)k−hj .

Case 2 : Let hj ≥ kp > hi =⇒ εi = hi/k and εj = p.
Then, following along the same lines as above, we have
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log πip
hi(1− p)k−hi > log πjp

hj (1− p)k−hj

=⇒ log πi

(
hi
k

)hi
(

1− hi
k

)k−hi

> log πjp
hj (1− p)k−hj

=⇒ log πiε
hi
i (1− εi)k−hi > log πjε

hj

j (1− εj)k−hj

where the second statement follows from (4) in Lemma 1.
Case 3 : Let kp > hj > hi, which implies εi = hi/k and
εj = hj/k. Defining g1(h) = log[(h/k)h(1 − h/k)k−h]
and g2(h) = log ph(1− p)k−h, we have,

dg1
dh

= log
h/k

1− h
k

<
dg2
dh

= log
p

1− p
< 0,

when h < kp. This implies that g1(h) has a larger slope
than g2(h) when h ∈ [0, kp), and hence

log (εi)
hi (1− εi)k−hi − log (εj)

hj (1− εj)k−hj

> log phi(1− p)k−hi − log phj (1− p)k−hj

= (hj − hi) log
1− p
p

> log
πj
πi

=⇒ log πiε
hi
i (1− εi)k−hi > log πjε

hj

j (1− εj)k−hj ,

thus proving the converse of (8b). The forward direction
can be proved using the converse result in the same way as
it is done for (8a).

5.2 Response-Dependent Noise

We now consider the noise model where the probability of
error depends on the true response. When the true response
is 0, the probability of observing a noisy response is given
by ν0, and by ν1 when the true response is 1, i.e.,

Pr(Zj = 0|Xi = 1) = 1− ν0, if bij = 0,

and Pr(Zj = 0|Xi = 1) = ν1, if bij = 1.

For example, consider the noise model where γ0ij = 0,
γ1ij = γ, ∀i, j, and 0 < p0j = p0 < 1, 0 < p1j = p1 <
1, ∀j. The probability of error depends only on the true
response with ν0 = p0 and ν1 = (1− γ)p1 + γ(1− p0).

Similarly, the noise model in the QMR-DT problem in
the case of single fault can be reduced to this setting with
ν0 = ρl and ν1 = (1− ρl)ρi, where 0 < ρl, ρi < 1 are re-
ferred to as the leak probability and inhibition probability,
respectively (Zheng et al., 2005). This noise model is often
used in the context of fault diagnosis, and is also a special
case of the general model in Section 2.

For any subset of indices A ⊆ {1, · · · , N}, let Ai0 = {j ∈
A : bij = 0} and Ai1 = {j ∈ A : bij = 1} be partitions of
A for each i = 1, · · · ,M such that the true response bij of
object θi to queries inQAi

0
is 0, and that inQAi

1
is 1. Then,

the likelihood function is given by

Pr(ZA = zA|Xi = 1) = ν
δ
i,Ai

0
0 (1− ν0)

|Ai
0|−δi,Ai

0

· ν
δ
i,Ai

1
1 (1− ν1)

|Ai
1|−δi,Ai

1

where δi,Ai
0

=
∑
j∈Ai

0
|0−zj | and δi,Ai

1
=
∑
j∈Ai

1
|1−zj |,

are local Hamming distances between the true responses of
θi to queries inQAi

0
andQAi

1
, and that of their observed re-

sponses. Once again, using Lemma 1, this likelihood func-
tion can be upper bounded by

Pr(ZA = zA|Xi = 1) =

(
1−

δi,Ai
0

|Ai0|

)|Ai
0|−δi,Ai

0

(
δi,Ai

0

|Ai0|

)δ
i,Ai

0

·
(

1−
δi,Ai

1

|Ai1|

)|Ai
1|−δi,Ai

1

(
δi,Ai

1

|Ai1|

)δ
i,Ai

1

.

Hence, the ranks of the objects can be estimated using (5)
and the rank-based query selection can be performed using
(6), without requiring any knowledge of the query noise
parameters.

Unfortunately, it is not possible to extend the result of
Proposition 1 to this case. Yet, the experimental results
in Section 6 demonstrate that the noise-independent rank-
based algorithm performs comparably to the entropy-based
algorithm, which requires knowledge of ν0 and ν1.

6 Experiments
We compare the performance of the proposed rank-based
algorithm with entropy-based query selection, GBS, and
random search, on 2 synthetic datasets, 1 semi-synthetic
dataset, and 1 real dataset. GBS and random search serve as
baselines and are not expected to perform well since GBS
doesn’t account for noise, and random search just selects
queries at random.

The first two datasets are random bipartite networks (Guil-
laume and Latapy, 2004) generated using the standard
Erdös-Rényi (ER) random network model and the Prefer-
ential Attachment (PA) random network model. The third
dataset is a network topology built using the BRITE gen-
erator (Medina et al., 2001), which simulates an Internet-
like topology at the Autonomous Systems level. To gener-
ate a bipartite network of components and probes from the
BRITE network, we used the approach described by Rish
et al. (2005) and Zheng et al. (2005). The last dataset is
the WISER database, which is a toxic chemical database
describing the binary relation between 298 toxic chemicals
and 79 acute symptoms (Szczur and Mashayekhi, 2005).

We generated a random network for each of the ran-
dom network models considered, where each network con-
sisted of around 200 objects and 300 queries. We gen-
erated a BRITE network consisting of 300 objects (com-
ponents/computers) and around 350 queries (probes). For
the synthetic datasets and WISER, we assumed the noise
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Figure 4: The plots in the first column correspond to a dataset generated using ER model, the second column correspond
to a dataset generated using the PA model, the third column corresponds to the WISER database and the last column
corresponds to a BRITE network. In all the experiments, the rank-based algorithm is performed without knowledge of the
noise parameters. These experiments also demonstrate that θMAP is not necessarily equal to the unknown object θ.

model to be that of Section 5.1, and for the BRITE network,
we considered the noise model in Section 5.2. Here, we
present the results under uniform prior where πi = 1/M .
We observed similar performance under non-uniform prior
as shown in the Supplementary material.

Figure 4 shows the worst case rank of the unknown object
θ and the area under the ROC curve as a function of the
number of queries inputted. The ROC curve is generated
as follows: After observing responses to a set of queries,

the objects are ranked based on their posterior probabilities
where ties involving objects with equal posterior probabil-
ities are broken randomly, instead of a worst case ranking.
Given such a ranking of the objects in Θ, the ROC curve
can be obtained by varying the threshold t, where the states
of the top t objects are declared as 1 and the rest 0 leading
to a certain miss rate and false alarm rate. Refer to Supple-
mentary material for more details.

Each curve in these figures is averaged over 500 random
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Figure 5: Demonstrates the sensitivity of entropy-based query selection to mis-specification of noise parameters

realizations, where each random realization corresponds to
a random selection of θ ∈ Θ and random generation of the
noisy query responses. The plots in the first column corre-
spond to a dataset generated using the ER model, the sec-
ond column corresponds to the PA model, the third column
corresponds to the WISER database, and the last column to
a BRITE network. For the 2 random network models and
BRITE, the results were observed to be consistent across
different realizations of the underlying bipartite network.

For the ER, PA, and the WISER datasets, we consider two
different values for the probability of error, p = 0.1, 0.2.
The entropy-based query selection is performed assuming
the knowledge of p, whereas the rank-based query selec-
tion is performed using only the fact that p < p = 0.5.
The BRITE networks are simulated using the QMR-DT
noise model, where we considered the leak and the in-
hibition probabilities to be (ρi, ρl) = (0.05, 0.05) and
(0.1, 0.1). This noise model reduces to that in Section 5.2
with ν0 = ρl and ν1 = (1−ρl)ρi. Once again, the entropy-
based query selection is performed assuming the knowl-
edge of ν0 and ν1, whereas the rank-based query selection
is performed using only the fact that ν0, ν1 ≤ p = 0.25.
Also, note from these plots that θMAP is not always equal
to the unknown object θ.

Finally, Figure 5 demonstrates the sensitivity of entropy-
based query selection to mis-specification of the value of
noise parameters. For the ER, PA and the WISER datasets,
the true noise parameter is p = 0.25 while the under-
estimated and the over-estimated curves are obtained using
p = 0.15 and 0.4, respectively. For the BRITE network,
while the true noise parameters are (0.1, 0.1), the other two
curves are obtained using (0.05, 0.05) and (0.15, 0.15).

Once again, the rank-based algorithm is performed with-
out knowledge of the noise parameters. This demonstrates
that the entropy-based query selection can perform poorly
when the noise parameters are mis-specified.

These experiments demonstrate the competitive perfor-
mance of the rank-based algorithm to entropy-based query
selection, despite not having the knowledge of the underly-
ing noise parameters.

7 Conclusions
We study the problem of active diagnosis under persistent
noise, and propose a rank-based greedy algorithm. In this
algorithm, queries are selected sequentially such that the
expected rank of the unknown object is minimized, and
the output is a ranked list of the objects rather than the
object θMAP with the maximum a posteriori probability.
Unlike traditional approaches such as mutual information
(or conditional entropy) based query selection, the rank-
based algorithm does not require the knowledge of the un-
derlying query noise. In addition, we show that in certain
noise models, the ranks estimated with limited knowledge
of the noise parameters are equal to the true ranks. Finally,
we demonstrate through experiments on real and synthetic
datasets, the competitive performance of the proposed al-
gorithm to entropy-based query selection, despite not hav-
ing the knowledge of the underlying query noise.
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A. Rényi. On a problem of information theory. MTA Mat.
Kut. Int. Kozl., 6B:505 – 516, 1961.

I. Rish, M. Brodie, S. Ma, N. Odintsova, A. Beygelzimer,
G. Grabarnik, and K. Hernandez. Adaptive diagnosis in
distributed systems. IEEE Transactions on Neural Net-
works, 16(5):1088 – 1109, 2005.

M. J. Swain and M. A. Stricker. Promising directions in
active vision. International Journal of Computer Vision,
11(2):109–126, 1993.

M. Szczur and B. Mashayekhi. WISER Wireless Informa-
tion System for Emergency Responders. Proceedings of
American Medical Informatics Association Annual Sym-
posium, 2005.

S. Yu, B. Krishnapuram, R. Rosales, and R. B. Rao. Ac-
tive sensing. Proceedings of the Twelfth International
Conference on Artificial Intelligence and Statistics (AIS-
TATS), 2009.

A. X. Zheng, I. Rish, and A. Beygelzimer. Efficient test
selection in active diagnosis via entropy approximation.
In Proceedings of Uncertainty in Artificial Intelligence
(UAI), 2005.


