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1. INTRODUCTION

The support vector machines (SVMs) are among the widely used methods in classi�cation problems. When the class sizes are
biased, however, the SVMs are known to show undesirable behavior. By applying different penalties on each of the classes,
the cost sensitive extension of SVM can handle the problem. Chew et al. [1] proposed 2ν-SVM with parameter ν+ and ν−,
which serve as the lower bound of the fraction of the support vectors and the upper bound of the fraction of the bounded
support vectors of each class. The 2ν-SVM has a solution surface on two dimensional space determined by ν+ and ν−, which
complicates solving the problem. When the SVM is balanced (ν+=ν−), the both bounds become to be similar and hence the
problem boils down to a simpler problem. In this project, we want to �nd the entire solution path for the balanced 2ν-SVM
using the recent observation that the solution path for the SVM is piecewise linear in ν [2] and compare the result to the standard
C-SVM in unbalanced dataset.

2. COST-SENSITIVE SUPPORT VECTOR MACHINES

Given a set of n training data xi ∈ Rd and its label yi ∈ {−1, 1}, the support vector machine(SVM) �nds the optimal separating
hyperplanes based on the maximum margin principle. By incorporating a positive de�nite kernel k(x,x′), the SVM implicitly
seeks the hyperplanes in a high dimensional Hilbert spaceH. The kernel function corresponds to an inner product inH through
k(x,x′) = 〈Φ(x), Φ(x′)〉 where Φ denotes a map that transforms a point in Rd into H [3]. The standard SVM or C-SVM
solves the following quadratic program:

min
w,b,ξ

1
2
‖w‖2 + C

∑

i

ξi (PC)

s.t. yi(〈w,Φ(xi)〉+ b) ≥ 1− ξi, ξi ≥ 0 for i = 1, 2, . . . , n.

The standard SVM, however, treats equally the two different kinds of misclassi�cation: false positives and false negatives.
As a result, the SVM is known to show biased results in favor of a class more data available when unbalanced datasets are used.
In many applications, some types of errors may have more importance than other types of errors. In spam �ltering, for example,
accepting spam mails can be acceptable while rejecting important messages can be disastrous. Since these differences are
ignored, the standard SVMs show limited performance. To address these problems, cost-sensitive SVMs have been proposed.
In particular, we will consider 2C-SVM and 2ν-SVM.

The 2C-SVM assigns two different costs to each types of errors: Cγ for a false negative and C(1−γ) for a false positive[4].
The cost asymmetry γ ∈ [0, 1] controls the ratio of false positives and false negatives. Let I+ = {i : yi = +1} and I− = {i :
yi = −1}. Then the 2C-SVM is formulated as the following:

min
w,b,ξ

1
2
‖w‖2 + Cγ

∑

i∈I+

ξi + C(1− γ)
∑

i∈I−

ξi (P2C)

s.t. yi(〈w,Φ(xi)〉+ b) ≥ 1− ξi, ξi ≥ 0 for i = 1, 2, . . . , n.

The optimal w ∈ H is the normal vector de�ning the hyperplane {z ∈ H : 〈w, z〉+ b = 0}. The sign of the function

f(x) = 〈w, Φ(x)〉+ b



determines whether a point is in the positive class(+) or in the negative class(-). By solving the Lagrangian of the primal
problem, we can obtain the dual problem

min
α

1
2

∑

i,j

αiαjyiyjk(xi,xj)−
∑

i

αi (D2C)

s.t. 0 ≤ αi ≤ Cγ for i ∈ I+

0 ≤ αi ≤ C(1− γ) for i ∈ I−
n∑

i=1

αiyi = 0.

The 2ν-SVM, the other cost-sensitive SVM presented above, has the following formulation [1]:

min
w,b,ξ,ρ

1
2
‖w‖2 − νρ +

γ

n

∑

i∈I+

ξi +
1− γ

n

∑

i∈I−

ξi (P2ν)

s.t. yi(〈w, Φ(xi)〉+ b) ≥ ρ− ξi, ξi ≥ 0 for i = 1, 2, . . . , n

ρ ≥ 0

with its dual

min
α

1
2

∑

i,j

αiαjyiyjk(xi,xj) (D2ν)

s.t. 0 ≤ αi ≤ γ

n
for i ∈ I+

0 ≤ αi ≤ 1− γ

n
for i ∈ I−

n∑

i=1

αiyi = 0,

n∑

i=1

αi ≥ ν.

The 2ν-SVM is an extension of ν-SVM, which is proposed by Schölkopf et al [5]. The ν-SVM replaces the parameter C with
two other parameters ν and ρ. Compared to the C in the standard SVM, ν has more intuitive meaning; precisely, ν serves as
an upper bound on the fraction of margin errors and a lower bound on the fraction of support vectors. The ν-SVM, however,
is proved to solve the same problem as the C-SVM [6]. Furthermore, cost-sensitive extensions of both C-SVM and ν-SVM
are also shown to have same solutions [7]. Reparameterizing ν and γ with ν+ and ν− reveals the similar interpretations of the
parameters as in the ν-SVM

#{margin errors}+
n+

≤ ν+ =
νn

2γn+
≤ #{support vectors}+

n+

#{margin errors}−
n−

≤ ν− =
νn

2(1− γ)n−
≤ #{support vectors}−

n−

where #{margin errors}+(#{margin errors}−) and #{support vectors}+(#{support vectors}−) denote the number of margin
errors and the number of support vectors from the positive (negative) class, respectively.

2.1. Balanced 2ν-SVM

When ν+ = ν−, the following holds

ν+ = ν− ⇔ γ =
n−
n

.

In this case, above bounds for both positive and negative classes becomes similar and hence called balanced 2ν-SVM. Since
all training errors are margin errors, ν+ (ν−) also serves as an upper bound on the fraction of training errors for the positive
(negative) class. Thus the balanced 2ν-SVM causes the two types of misclassi�cations alike.



3. PATH ALGORITHM

Introducing the parameter λ = 1
C and applying the balanced condition γ = n−

n , we can rewrite P2C as

min
w,b,ξ

λ

2
‖w‖2 +

n−
n

∑

i∈I+

ξi +
n+

n

∑

i∈I−

ξi (P2λ)

s.t. yi(〈w, Φ(xi)〉+ b) ≥ 1− ξi, ξi ≥ 0 for i = 1, 2, . . . , n

with its dual

min
α

1
2λ

∑

i,j

αiαjyiyjk(xi,xj)−
∑

i

αi (D2λ)

s.t. 0 ≤ αi ≤ γ =
n−
n

for i ∈ I+

0 ≤ αi ≤ 1− γ =
n+

n
for i ∈ I−

n∑

i=1

αiyi = 0.

Then the solution becomes

w =
1
λ

∑

i

αiyiΦ(xi) (1)

with corresponding decision function

g(x) = sgn(〈w, Φ(x)〉+ b).

Hastie et al. [2] demonstrated that the Lagrange multipliers α of the C-SVM are piecewise-linear in λ and developed an
algorithm for �nding the solution path. For the balanced 2C-SVM, we can show that similar properties and algorithm exist.
Except the initialization, the path algorithm is similar to [2]. Since the computational complexity of the algorithm can be
comparable to that of computing a quadratic programming, we can �nd the entire solution path ef�ciently.

The algorithm �nds the solution path as λ decreases from a large value toward zero. During the process, the path algorithm
monitors the three active sets.

• E = {i : yif(xi) = 1},

• R = {i : yif(xi) > 1},

• L = {i : yif(xi) < 1}.

Then the following implications can be obtained from the Karush-Kuhn-Tucker (KKT) conditions

i ∈ R ⇒αi = 0

i ∈ L ⇒αi =
n−
n

for i ∈ I+, αi =
n+

n
for i ∈ I−.

3.1. Initialization

The proof of next lemma follows the similar course as in [2].

Lemma 1. For suf�ciently large λ, αi = n−
n for i ∈ I+ and αi = n+

n for i ∈ I−. Any values of b ∈ [−1, 1] gives the same cost
n−
n

∑
i∈I+

ξi + n+
n

∑
i∈I− ξi = 2n+n−

n .

Proof. For suf�ciently large λ, w vanishes from (1) and then f(x) = b. For any values of b ∈ [−1, 1], α should satisfy∑n
i=1 αiyi = 0 and minimize the cost n−

n

∑
i∈I+

ξi + n+
n

∑
i∈I− ξi. If b ∈ (−1, 1), ξi > 0,∀i and hence αi = n−

n for i ∈ I+

and αi = n+
n for i ∈ I−. If b = −1, ξi > 0 and αi = n−

n for i ∈ I+. From
∑n

i=1 αiyi = 0, αi = n+
n for i ∈ I−. For b = 1,

similar approach proves the lemma.



This lemma implies that all the training points lie in L ∪ E and satisfy

yif(xi) = yi

( 〈w∗, Φ(xi)〉
λ

+ b

)
≤ 1, ∀i

where

w =
1
λ
w∗

=
1
λ

∑

i

αiyiΦ(xi)

=
1
λ


n−

n

∑

i∈I+

Φ(xi)− n+

n

∑

i∈I−

Φ(xi)


 .

Then we can obtain the initial value of λ and b

λ0 =
〈w∗,Φ(xi+)〉 − 〈w∗, Φ(xi−)〉

2

b0 = −〈w
∗,Φ(xi+)〉+ 〈w∗, Φ(xi−)〉

〈w∗,Φ(xi+)〉 − 〈w∗, Φ(xi−)〉
where

i+ = arg max
i
〈w∗, Φ(xi)〉for i ∈ I+

i− = arg min
i
〈w∗, Φ(xi)〉for i ∈ I−.

3.2. Tracing the path

As λ decreases, the algorithm keeps track of the following events:

A. A point enters E from L or R.

B. A point leaves E and joins either R or L.

We let αl
j and λl denote the parameters right after the lth event and f l(x) the function at this point. De�ne El similarly and

suppose |El| = m. Since

f(x) =
1
λ




n∑

j=1

yjαjk(xj ,x) + α0


 ,

for λl > λ > λl+1 we have

f(x) =
[
f(x)− λl

λ
f l(x)

]
+

λl

λ
f l(x)

=
1
λ


∑

j∈El

yj(αj − αl
j)k(x,xj) + α0 − αl

0λlf
l(x)


 . (2)

The last equality holds because for this range of λ only points in El change their αj , while all other points in Rl or Ll have
�xed. Since yif(xi) = 1 for all i ∈ El, we have

∑

j∈El

δjyiyjk(xi,xj) = λl − λ, ∀i ∈ El

where δj = αl
j − αj .



Now let Kl be the m×m matrix such that [Kl]ij = yiyjk(xi,xj) for i, j ∈ El. Then we have

Klδ = (λl − λ)1

where 1 is an m× 1 vector of ones. If Kl has full rank, we obtain

b = K−1
l 1,

and hence

αj = αl
j − (λl − λ)bj , j ∈ El. (3)

Substituting this result into (2), we have

f(x) =
λl

λ
[f l(x)− hl(x)] + hl(x) (4)

where

hl(x) =
∑

j∈El

bjk(x,xj).

Therefore, the αj for j ∈ E are piecewise-linear in λ. Fig. 1 shows an example path of a Lagrange multiplier αi. If Kl is not
invertible, some of the αi have non-unique paths. These cases are rare in practice and discussed more in [2].

Fig. 1. An example of piece-wise linear path of αi(λ)

3.3. Finding the next breakpoint

The (l + 1)-st event is detected as soon as one of the following things happen:
A. Some xj for which j ∈ Ll ∪Rl hits the hyperplane, meaning yif(xj) = 1. Then, from (4), we know that

λ = λl
f l(xj)− hl(xj)

yi − hl(xj)
.

B. Some αj for which j ∈ El reaches 0 or 1. In this case, from (3), we know, respectively, that

λ =
−αl

j + λlbj

bj
, λ =

1− αl
j + λlbj

bj
.

The next event corresponds to the largest such λ satisfying λ < λl.



Table 1. Minimizing the train error estimates
Train Time(s) Train Asym(%) Train err(%) Test err(%) Miss(%) FA(%)

banana 1csvm 729.89 8.5 7.25(-) 13.59(-) 11.99(-) 14.84(-)
2csvm 682.39 8.5 7.25(-) 12.71(-) 13.61(-) 12.00(-)

heart 1csvm 89.37 10.98 13.75(1.98) 16.4(3.08) 22.11(6.87) 11.81(4.21)
2csvm 107.021 10.98 13.88(1.94) 17.00(3.26) 21.08(5.95) 13.62(5.32)

thyroid 1csvm 57.62 38.66 1.69(0.92) 5.64(2.56) 10.00(7.57) 3.68(3.07)
2csvm 84.17 38.66 1.78(1.00) 6.13(3.06) 9.78(5.91) 4.62(3.50)

breast 1csvm 191.70 41.83 23.45(1.81) 26.79(4.76) 70.83(12.50) 7.56(5.27)
2csvm 207.39 41.83 26.42(1.96) 27.96(4.09) 45.91(11.68) 20.87(6.58)

Table 2. Minimizing the train minmax error estimates
Train Time(s) Train Asym(%) Train err(%) Test err(%) Miss(%) FA(%)

banana 1csvm 734.07 8.5 9.10(-) 13.04(-) 10.14(-) 15.32(-)
2csvm 688.05 8.5 9.33(-) 13.81(-) 12.73(-) 14.66(-)

heart 1csvm 89.64 10.98 19.78(2.73) 18.1(3.46) 21.73(6.05) 15.00(4.72)
2csvm 97.37 10.98 19.22(3.16) 17.8(3.28) 20.17(6.06) 15.84(5.79)

thyroid 1csvm 57.74 38.66 3.92(2.32) 6.08(2.41) 9.04(7.01) 4.71(3.02)
2csvm 84.25 38.66 3.77(2.21) 6.57(3.01) 8.08(6.19) 5.91(4.06)

breast 1csvm 191.53 41.83 47.14(6.00) 37.35(7.41) 50.74(13.42) 31.85(10.33)
2csvm 207.03 41.83 37.56(3.76) 32.77(4.89) 37.33(12.35) 31.06(7.50)

4. EXPERIMENTS

The source codes for the 2C-SVM were written based on the SvmPath package [8]. For experiments, the benchmark datasets
named �banana�, �heart�, �thyroid�, and �breast� were used. These datasets can be obtained at http://ida.first.fhg.
de/projects/bench/. In the datasets, 100 pairs of training set and test set exist. The dimensions of the datasets are 2, 13,
5 and 9, and the sizes of the training sets are 400, 170, 140, and 200.

In all experiments, the radial basis function (Gaussian) kernel k(x,x′) = exp(− |x−x′|2
2σ2 ) was used where σ is the kernel

width. As λ decreases from a large value toward zero, the path algorithm �nds a set of classi�ers. Fig. 2 illustrates the �rst and
the �nal steps of the balanced 2C-SVM path algorithm for the two dimensional dataset �banana�. Each column corresponds
to one of three different kernel widths. A wide kernel result in relatively high error rates, while a narrow kernel over�ts the
training set. Thus searching for a optimal kernel width is necessary.

For a given kernel width σ, the 5-fold cross validation selected the optimal values of λ and Lagrange multipliers αi that
showed lowest training errors or lowest minmax errors. Fig. 3 shows an example of error estimates for different values of λ. If
σ = 2.390, the train error and minmax estimates were minimized when λ = 0.0016 and λ = 0.0022, respectively.

Then the optimal kernel width σ was chosen among the results of 5-fold cross validation with 50 different values of kernel
widths (Fig. 4). After each training, the classi�ers were veri�ed using the test datasets and the test error, miss, and false
alarm rate estimates were computed (Fig. 5). The averages and standard deviations of error estimates over 30 permutations for
each dataset except �banana� are presented in Table 1 and Table 2. The averages train time and the train dataset asymmetries,
|n+−n−|

n , are also shown in the tables.
As can be seen, the train error estimates and the test error estimates of 1C-SVM and the balanced 2C-SVM only show

minor differnences. However, the differences in false positive rates and false negative rates are observed to be lowered in the
balanced 2C-SVM. In the dataset that shows large train class asymmetry, in particular, the improvement is noticeable.

5. CONCLUSION

In this project, we discussed the shortcomings of the standard C-SVM and reviewed two cost-sensitive SVMs. The solutions
of the 2C-SVM, however, exist on the two dimensional space determined by the parameters C+ = Cγ and C− = C(1 − γ).
As a result, �nding the solution surface of 2C-SVM becomes complicated. By considering the special case C+n+ = C−n−,



(a) �rst step with RBF kernel width 0.1 (b) �rst step with RBF kernel width 1 (c) �rst step with RBF kernel width 3

(d) �nal step with RBF kernel width 0.1 (e) �nal step with RBF kernel width 1 (f) �nal step with RBF kernel width 3
Fig. 2. Examples of 2C-SVM for �banana� dataset. The �rst and last steps of the path algorithms for three different RBF kernel
widths are illustrated. '+' indicates positive class samples and '.' indecates negative class samples. Thick solid lines are the
separating hyperplane and narrow lines are the margins.

(a) Train error estimates over λ (b) Train minmax error estimates over λ

Fig. 3. The change of train error estimates and minmax error estimates with respect to the change of λ.



(a) Train error estimates over σ (b) Train minmax error estimates over σ

Fig. 4. Train error estimates and minmax error estimates for 50 values of σ.

the balanced 2C-SVM simpli�es the problem. As depicted in Fig. 6, Bach et al. observed that this condition corresponds to a
line in the (C+, C−) space [9].

The balanced 2C-SVM enables to initialize the path algorithm without computing a quadratic programming. Then by
following the result that the Lagrange multipliers αi are piece-wise linear in λ = 1

C , we could �nd the solution path for the
balanced 2C-SVM.

As expected from the balancedness, we could observe that the disparities in the false positive rates and the false negatives
rates decrease when the two classes sizes are highly unbalanced. Thus, the balanced 2C-SVM can be used to address the
problems caused by the unbalanced dataset.

An interesting futher research can be �nding the entire solution surface in the 2-dimensional parameter space based on the
result of the balanced 2C-SVM. Establishing an solution path algorithm along the cost asymmety γ will facilitate the process.
Finding good values of kernel widths in ef�cient ways is also an interesting topic.



(a) 1C-SVM with lowest train error (b) 1C-SVM with lowest minmax train error

(c) 2C-SVM with lowest train error (d) 2C-SVM with lowest minmax train error
Fig. 5. After training, the classi�ers are veri�ed with the test datasets. The separating hyperplanes are overlapped over a test
data set.

Fig. 6. The balanced 2C-SVM corresponds a line in the (C+, C−) space.
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