
How to Share a Lattice Trapdoor:
Threshold Protocols for Signatures and (H)IBE

Rikke Bendlin∗ Sara Krehbiel† Chris Peikert‡

Abstract

We develop secure threshold protocols for two important operations in lattice cryptography, namely,
generating a hard lattice Λ together with a “strong” trapdoor, and sampling from a discrete Gaussian
distribution over a desired coset of Λ using the trapdoor. These are the central operations of many crypto-
graphic schemes: for example, they are exactly the key-generation and signing operations (respectively)
for the GPV signature scheme, and they are the public parameter generation and private key extraction
operations (respectively) for the GPV IBE. We also provide a protocol for trapdoor delegation, which is
used in lattice-based hierarchical IBE schemes. Our work therefore directly transfers all these systems to
the threshold setting.

Our protocols provide information-theoretic (i.e., statistical) security against adaptive corruptions in
the UC framework, and they are private and robust against an optimal number of semi-honest or malicious
parties. Our Gaussian sampling protocol is both noninteractive and efficient, assuming either a trusted
setup phase (e.g., performed as part of key generation) or a sufficient amount of interactive but offline
precomputation, which can be performed before the inputs to the sampling phase are known.

∗Department of Computer Science, Aarhus University. Email: rikkeb@cs.au.dk. Supported by the Danish National Research
Foundation and The National Science Foundation of China (under the grant 61061130540) for the Sino-Danish Center for the Theory
of Interactive Computation, within which part of this work was performed; and also from the CFEM research center (supported by
the Danish Strategic Research Council). Part of this work was performed while visiting the Georgia Institute of Technology.
†School of Computer Science, College of Computing, Georgia Institute of Technology. Email: sarak@gatech.edu
‡School of Computer Science, College of Computing, Georgia Institute of Technology. Email: cpeikert@cc.gatech.edu.

Supported by the Alfred P. Sloan Foundation and the National Science Foundation under CAREER Award CCF-1054495. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

1 Introduction

A threshold cryptographic scheme [DF89] is one that allows any quorum of h out of ` trustees to jointly
perform some privileged operation(s) by following a specified protocol, and remains correct and secure even if
up to some t < h of the parties deviate from the protocol adversarially. For example, in a threshold signature
scheme any h trustees can sign an agreed-upon message, and no t malicious players (who may even pool their
knowledge and coordinate their actions) can prevent the signature from being produced, nor forge a valid
signature on a new message. Similarly, a threshold encryption scheme requires at least h trustees to decrypt
a ciphertext. Threshold cryptography is very useful for both distributing trust and increasing robustness in
systems that perform high-value operations, such as certificate authorities (CAs) or private-key generators in
identity-based encryption (IBE) systems.

Desirable efficiency properties in a threshold system include: (1) efficient local computation by the
trustees; (2) low interaction—e.g., one broadcast message from each party—when performing the privileged
operations; and (3) key sizes and public operations that are independent of the number of trustees. For
example, while it might require several parties to sign a message, it is best if the signature can be verified
without even being aware that it was produced in a distributed manner.

Over the years many elegant and rather efficient threshold systems have been developed. To name just a few
representative works, there are simple variants of the ElGamal cryptosystem, Canetti and Goldwasser’s [CG99]
version of the CCA-secure Cramer-Shoup cryptosystem [CS98], and Shoup’s [Sho00] version of the RSA
signature scheme. These systems, along with almost all others in the literature, are based on number-theoretic
problems related to either integer factorization or the discrete logarithm problem in cyclic groups. As is
now well-known, Shor’s algorithm [Sho97] would unfortunately render all these schemes insecure in a
“post-quantum” world with large-scale quantum computers.

Lattice-based cryptography. Recently, lattices have been recognized as a viable foundation for quantum-
resistant cryptography, and the past few years have seen the rapid growth of many rich lattice-based systems.
A fruitful line of research, starting from the work of Gentry, Peikert and Vaikuntanathan (GPV) [GPV08],
has resulted in secure lattice-based hash-and-sign signatures and (hierarchical) identity-based encryption
schemes [CHKP10, ABB10], along with many more applications (e.g., [GKV10, BF11b, BF11a, AFV11]).
All these schemes rely at heart on two nontrivial algorithms: the key-generation algorithm produces a lattice Λ
together with a certain kind of “strong” trapdoor (e.g., a short basis of Λ) [Ajt99, AP09], while the signing/key-
extraction algorithms use the trapdoor to randomly sample a short vector from a discrete Gaussian distribution
over a certain coset Λ + c, which is determined by the message or identity [GPV08]. Initially, both tasks
were rather complicated algorithmically, and in particular the Gaussian sampling algorithm involved several
adaptive iterations, so it was unclear whether either task could be efficiently and securely distributed among
several parties. Recently, however, both key generation and Gaussian sampling have been simplified and made
more efficient and parallel [Pei10, MP12]. This is the starting point for our work.

Our results. We give threshold protocols for the main nontrivial operations in lattice-based signature and
(H)IBE schemes, namely: (1) generating a lattice Λ together with a strong trapdoor of the kind recently
proposed in [MP12], (2) sampling from a discrete Gaussian distribution over a desired coset of Λ, and
(3) delegating a trapdoor for a higher-dimensional extension of Λ. Since these are the only secret-key
operations used in the signature and (H)IBE schemes of [GPV08, CHKP10, ABB10, MP12] and several other
related works, our protocols can be plugged directly into all those schemes to distribute the signing algorithms
and the (H)IBE private-key generators. In Section 4 we show how this is (straightforwardly) done for the
simplest of these applications, namely, the GPV signature scheme [GPV08]; the GPV IBE scheme and other
applications work similarly.

1

Our protocols have several desirable properties:

• They provide information-theoretic (i.e., statistical) security for adaptive corruptions. By information-
theoretic security, we mean that the security of the key-generation and sampling protocols themselves
relies on no computational assumption—instead, the application alone determines the assumption
(usually, the Short Integer Solution assumption [Ajt96, MR04] for digital signatures, and Learning With
Errors [Reg05] for identity-based encryption). We work in a version of the universal composability
(UC) framework [Can01], specialized to the threshold setting, and as a result also get strong security
guarantees for protocols under arbitrary composition.

• They are secure for an optimal threshold of semi-honest or active (malicious) parties, which is deter-
mined by the precise communication model and setup assumption. For example, we can tolerate h− 1
semi-honest parties assuming trusted setup (see below), or t = h− 1 malicious parties in a model with
both broadcast and private channels, using the verifiable secret sharing scheme of [RB89]. (Recall
that h is the number of (semi-)honest parties the protocol requires to execute successfully, and the
robustness threshold t is an upper bound on the number of malicious parties.)

• The public key and trapdoor “quality” (i.e., the width of the discrete Gaussian that can be sampled
using the trapdoor; smaller width means higher quality) are essentially the same as in the standalone
setting. In particular, their sizes are independent of the number of trustees; the individual shares of the
trapdoor are the same size as the trapdoor itself; and the protocols work for the same lattice parameters
as in the standalone setting, up to small constant factors.

• They have noninteractive and very efficient online phases (corresponding to the signing or key-extraction
operations), assuming either (1) a setup phase in which certain shares are distributed by a trusted party
(e.g., as part of key generation), or (2) the parties themselves perform a sufficient amount of interactive
precomputation in an offline phase (without relying on any trusted party). We provide protocols for
these two settings in Section 3 and Appendix A, respectively.

Regarding the final item, the trusted setup model is the one used by Canetti and Goldwasser [CG99]
for constructing threshold chosen ciphertext-secure threshold cryptosystems: as part of the key-generation
process, a trusted party also distributes shares of some appropriately distributed secrets to the parties, which
they can later use to perform an a priori bounded number of noninteractive threshold operations. Or, in lieu of
a trusted party, the players can perform some interactive precomputation (offline, before the desired coset is
known) to generate the needed randomness. The downside is that this precomputation is somewhat expensive,
since the only solution we have for one important step (namely, sampling shares of a Gaussian-distributed
value over Z) is to use somewhat generic information-theoretic multiparty computation tools. On the plus
side, the circuit for this sampling task is rather shallow, with depth just slightly super-constant ω(1), so the
round complexity of the precomputation is not very high. We emphasize that the expensive precomputation is
executed offline, before the applications decides which lattice cosets will be sampled from, and that the online
protocols remain efficient and non-interactive.

Our protocols rely on the very simple form of the new type of strong trapdoor recently proposed in [MP12],
and the parallel and offline nature of recent standalone Gaussian sampling algorithms [Pei10, MP12].1 A key
technical challenge is that the security of the sampling algorithms from [Pei10, MP12] crucially relies on
the secrecy of some intermediate random variables known as “perturbations.” However, in order to obtain a
noninteractive protocol we need the parties to publicly reveal certain information about these perturbations.
Fortunately, we can show that the leaked information is indeed simulatable, and so security is unharmed. See
Section 3 and in particular Lemma 3.2 for further details.

1In particular, it appears very difficult to implement, in a noninteractive threshold fashion, iterative sampling algorithms like those
from [Kle00, GPV08] which use the classical trapdoor notion of a short basis.

2

Open problems. In addition to simple, non-interactive protocols for discrete Gaussian sampling with
trusted setup, in Appendix A we give efficient protocols for discrete Gaussian sampling that avoid both trusted
setup and online interaction by using (offline) access to a functionality FSampZ, which produces shares of
Gaussian-distributed values over the integers Z (see Appendix A.1 for details). We show how to instantiate
FSampZ using a (somewhat inefficient) interactive protocol using generic MPC techniques. It remains an
interesting open problem to design discrete Gaussian sampling protocols without trusted setup whose offline
precomputation is efficient and/or non-interactive as well. An efficient realization of FSampZ would yield such
a solution, but there may be other routes as well.

Another intriguing problem is to give a simple and noninteractive threshold protocol for inverting the LWE
function gA(s, e) = stA + et mod q (for short error vector e) using a shared trapdoor. We find it surprising
that, while in the standalone setting this inversion task is conceptually and algorithmically much simpler than
Gaussian sampling, we have not yet been able to find a simple threshold protocol for it.2 Such a protocol
could, for example, be useful for obtaining threshold analogues of the chosen ciphertext-secure cryptosystems
from [Pei09, MP12], without going through a generic IBE-to-CCA transformation [BCHK07].

Related work in threshold lattice cryptography. A few works have considered lattice cryptography in
the threshold setting. For encryption schemes, Bendlin and Damgård [BD10] gave a threshold version of
Regev’s CPA-secure encryption scheme based on the learning with errors (LWE) problem [Reg05]. Related
work by Myers et al. [MSs11] described threshold decryption for fully homomorphic cryptosystems. Xie et
al. [XXZ11] gave a threshold CCA-secure encryption scheme from any lossy trapdoor function (and hence
from lattices/LWE [PW08]), though its public key and encryption runtime grow at least linearly with the
number of trustees. For signatures, Feng et al. [FGM10] gave a threshold signature scheme where signing
proceeds sequentially through each trustee, making the scheme highly interactive; also, the scheme is based
on NTRUSign, which has been broken [NR06]. Cayrel et al. [CLRS10] gave a lattice-based threshold ring
signature scheme, in which at least t trustees are needed to create an anonymous signature. In that system, each
trustee has its own public key, and verification time grows linearly with the number of trustees. In summary,
lattice-based threshold schemes to date have either been concerned with distributing the decryption operation
in public-key cryptosystems, and/or have lacked key efficiency properties typically asked of threshold systems
(which our protocols do enjoy). Also, other important applications such as (H)IBE have yet to be realized in a
threshold manner.

Organization. The remainder of the paper is organized as follows. In Section 2 we overview the relevant
background on lattices, secret sharing, and the UC framework. In Section 3 we review the standalone
key-generation and discrete Gaussian sampling algorithms of [MP12], present our functionalities for these
algorithms in the threshold setting, and show how these functionalities can be implemented efficiently
and noninteractively using trusted setup. At the end of Section 3 we additionally provide a functionality
and protocol for trapdoor delegation. Finally, in Section 4 we detail a simple example application of our
protocols, namely, a threshold version of the GPV signature scheme [GPV08] realizing the threshold signature
functionality of [ADN06]. In the appendix, we remove the trusted setup assumption and show how to instead
use offline interaction to implement all our functionalities.

2 Preliminaries

We denote the reals by R and the integers by Z. For a positive integer `, we let [`] = {1, . . . , `}.
2We note that it is possible to give a threshold protocol using a combination of Gaussian sampling and trapdoor delega-

tion [CHKP10, MP12], but it is obviously no simpler than Gaussian sampling alone.

3

A square symmetric real matrix Σ is positive definite, written Σ > 0, if xtΣx > 0 for all nonzero x.
Positive definiteness defines a partial ordering on symmetric matrices: we say that Σ1 > Σ2 if (Σ1−Σ2) > 0.
For any nonsingular matrix B ∈ Rn×n, the symmetric matrix Σ = BBt is positive definite. We say that
B is a square root of Σ > 0, written B =

√
Σ, if BBt = Σ. Every Σ > 0 has a square root; moreover,

the square root is unique up to right-multiplication by an orthogonal matrix, i.e., B′ =
√

Σ if and only if
B′ = BQ for some orthogonal matrix Q. A square root can be computed efficiently using, e.g., the Cholesky
decomposition. The largest singular value (also called spectral norm or operator norm) of a real matrix X is
defined as s1(X) = maxu6=0‖Xu‖/‖u‖. For convenience, we sometime write a scalar s to mean the scaled
identity matrix sI, whose dimension will be clear from context.

2.1 Continuous Gaussians

The n-dimensional Gaussian function ρ : Rn → (0, 1] is defined as

ρ(x)
∆
= exp(−π · ‖x‖2) = exp(−π · 〈x,x〉).

Applying a linear transformation given by a nonsingular real matrix B yields the Gaussian function

ρB(x) := ρ(B−1x) = exp
(
−π ·

〈
B−1x,B−1x

〉)
= exp

(
−π · xtΣ−1x

)
,

where Σ = BBt > 0. Because ρB is distinguished only up to Σ, we usually refer to it as ρ√Σ.
Normalizing ρ√Σ by its total measure

∫
Rn ρ√Σ(x) dx =

√
det Σ over Rn, we obtain the probability

distribution function of the (continuous) Gaussian distribution D√Σ. It is easy to check that a random
variable x having distribution D√Σ can be written as

√
Σ · z, where z has spherical Gaussian distribution D1.

Therefore, the random variable x has covariance

E
x∼D√Σ

[
x · xt

]
=
√

Σ · E
z∼D1

[
z · zt

]
·
√

Σ
t

=
√

Σ · I

2π
·
√

Σ
t

=
Σ

2π
,

by linearity of expectation. (The I/(2π) covariance of z ∼ D1 arises from the independence of its entries,
which are each distributed as D1 in one dimension, and therefore have variance 1/(2π).) For convenience, in
this paper we implicitly scale all covariance matrices by a 2π factor, and refer to Σ as the covariance matrix
of D√Σ.

2.2 Lattices and Discrete Gaussians

A lattice Λ is a discrete additive subgroup of Rm for some m ≥ 0. In this work we are only concerned with
full-rank integer lattices, which are additive subgroups of Zm with finite index. Most recent cryptographic
applications use a particular family of so-called q-ary integer lattices, which contain qZm as a sublattice for
some integer q, which in this work will always be bounded by poly(n). For positive integers n and q, let
A ∈ Zn×mq be arbitrary, and define the full-rank m-dimensional q-ary lattice

Λ⊥(A) = {z ∈ Zm : Az = 0 mod q}.

For any u ∈ Znq admitting an integral solution x ∈ Zm to Ax = u mod q, define the coset (or shifted lattice)

Λ⊥u (A) = Λ⊥(A) + x = {z ∈ Zm : Az = u mod q}.

Note that for n,m, q ≤ 2 and m > Cn log q for some fixed constant C > 1, the columns of a uniformly
random matrix A ∈ Zn×mq generate all of Znq with all but negl(n) probability.

4

Let Λ ⊂ Rm be a lattice, let c ∈ Rm, and let Σ > 0 be a positive definite matrix. The discrete Gaussian
distribution DΛ+c,

√
Σ is simply the Gaussian distribution D√Σ restricted so that its support is the coset Λ + c.

That is, for all x ∈ Λ + c,

DΛ+c,
√

Σ(x) =
ρ√Σ(x)

ρ√Σ(Λ + c)
∝ ρ√Σ(x).

A discrete Gaussian is said to be spherical with parameter s > 0 if its covariance matrix is s2I.
We recall an important definition and some useful properties of discrete Gaussian distributions on lattices.

For ε > 0, the smoothing parameter [MR04] ηε(Λ) of a lattice Λ is defined as the smallest s > 0 such that
ρ1/s(Λ

∗ \ {0}) ≤ ε, where Λ∗ is the dual lattice (whose precise definition we will not need here). Here we
generalize the smoothing parameter to non-spherical Gaussians; note that this definition is consistent with the
partial ordering on positive definite matrices.

Definition 2.1 (Smoothing parameter). Let Σ > 0 be any positive definite matrix. We say that
√

Σ ≥ ηε(Λ)

if ηε(
√

Σ
−1 · Λ) ≤ 1, or equivalently, if ρ√

Σ−1(Λ∗\{0}) ≤ ε.

The following lemma is a slight generalization of [Reg05, Claim 3.8] (see also [MR04, Lemma 4.1]) to
non-spherical Gaussians, obtained by applying a linear transformation to the Gaussian function and lattice.
Informally, it says that every coset of Λ has essentially the same mass under ρ√Σ, when

√
Σ exceeds the

smoothing parameter of Λ. The corollary then follows by a routine calculation.

Lemma 2.2. For any m-dimensional lattice Λ, real ε > 0, r ≥ ηε(Λ), and c ∈ Rm, we have ρ√Σ(Λ + c) ∈
[1± ε] · ZΛ,r, where ZΛ,r depends only on Λ and r (not c).

Corollary 2.3. Let Λ′ ⊆ Λ be full-rank lattices, and let
√

Σ ≥ ηε(Λ′) for some ε > 0. For x← DΛ,
√

Σ, the
marginal distribution of c = x mod Λ′ is within statistical distance ε/2 from uniform over Λ/Λ′, and the
conditional distribution of x given c is DΛ′+c,

√
Σ.

The following special case of [MP12, Lemma 2.4] says that for uniformly random A and appropriate
parameters, the lattice Λ⊥(A) has small smoothing parameter with very high probability.

Lemma 2.4. Let n,m, q ≥ 2 be positive integers and C > 1 be a fixed constant such that m > Cn log q,
and let A ∈ Zn×mq be uniformly random. For any fixed ωn = ω(

√
log n) there exists some ε = negl(n) such

that ηε(Λ⊥(A)) ≤ ωn except with probability 2−Ω(n).

Finally, we need the “convolution lemma” of [Pei10, Theorem 3.1].

Lemma 2.5. Let Σ1,Σ2 > 0 be positive definite matrices, with Σ = Σ1 +Σ2 > 0 and Σ−1 = Σ−1
1 +Σ−1

2 >
0. Let Λ1,Λ2 be lattices such that

√
Σ1 ≥ ηε(Λ1) and

√
Σ2 ≥ ηε(Λ2) for some positive ε ≤ 1/2, and let

c1, c2 ∈ Rm be arbitrary. In the following experiment:

choose x2 ← DΛ2+c2,
√

Σ2
, then choose x1 ← x2 +DΛ1+c1−x2,

√
Σ1

,

the marginal distribution of x1 is within statistical distance 8ε of DΛ1+c1,
√

Σ.

Throughout the paper we often attach a factor ωn = ωn(n) = ω(
√

log n), which represents an arbitrary
fixed function that grows asymptotically faster than

√
log n, to Gaussian parameters

√
Σ (or ω2

n to covariance
matrices Σ). In exposition we usually omit reference to these factors, but we always retain them where needed
in formal expressions.

5

2.3 Secret Sharing for Additive Groups

In this work we will need to distribute secret lattice points among multiple players, so that any sufficiently
large number of players is able to reconstruct the points, but smaller subsets collectively get no information
about the secret. Because a lattice Λ is an infinite additive group (and in particular is not a field), it is not
immediately amenable to standard secret-sharing techniques like those of [Sha79]. Fortunately, for our
purposes it will suffice to share elements of a suitable finite quotient group G = Λ/Λ̄, where the sublattice
Λ̄ ⊆ Λ is “sparse” enough in Λ that an element of G identifies an element of Λ with enough specificity
for our applications. There is a rich theory of secret sharing for arbitrary additive groups and modules,
e.g., [DF94, Feh98]. Here we recall the relevant material in enough generality for our purposes.

Let G be a finite abelian (additive) group with identity element 0. The exponent of G, denoted e(G), is
the smallest positive integer m such that mg = g + g + · · ·+ g = 0 for every g ∈ G. We have that G is a
module over the ring R = Ze(g), which gives the following form of Shamir’s (t+ 1)-out-of-` secret-sharing
scheme [Sha79]. Let t < ` be positive integers, where t denotes a bound on the number of corrupt players
out of ` total. Suppose that G is an R-module for some ring R which has efficiently computable operations
and `+ 1 known elements U = {r0 = 0, r1, . . . , r`} ⊆ R such that ri − rj is invertible in R (i.e., a unit) for
every i 6= j. For example, in our protocols we will have e(G) = qd for some public integers q ≥ 2 and d ≥ 1,
so we can take R = Zqd and ri = i mod qd, as long as ` is smaller than every prime divisor of q. When this
condition does not hold, we can use an extension ring instead, as described below.

To share a value g ∈ G, one chooses a formal polynomial f(X) =
∑t

j=0 fjX
j ∈ G[X] of degree at

most t, where f0 = g and the fi ∈ G for i ≥ 1 are uniformly random and independent. Player i ∈ [`] is
publicly associated with the value ri ∈ R, and gets the share si = f(ri) =

∑t−1
j=0 r

j
i fj ∈ G. Usually we let f

be implicit, denoting the ith player’s share as JgKi and the tuple of all shares by JgK. Note that the product
group Gk is also an additive group with exponent e(G), so we can share vectors or matrices with entries in G
as above, using the same ring Ze(G). (Equivalently, this is just an independent entry-wise sharing.)

The above scheme has several important properties (whose proofs are straightforward; see, e.g., [Feh98]):

• It is ideal: the shares si ∈ G belong to the same set as the shared value g ∈ G.

• It is perfectly secret: for any shared value g ∈ G, any tuple of up to t shares si is distributed uniformly.

• It is perfectly correct and robust: any t+ 1 shares si of g (along with their corresponding evaluation
points ri) can be used to efficiently recover f(X), and hence g = f0 = f(0), by interpolation.

Moreover, given at least 3t+ 1 values s′i (along with the corresponding evaluation points ri), where at
least 2t+ 1 are correct shares s′i = f(ri) of g and the remaining t may be arbitrary, one can efficiently
recover f(X) and hence g = f0 using, e.g., the Welch-Berlekamp algorithm for unambiguous decoding
of Reed-Solomon codes. (The algorithm is usually described for codes defined over finite fields, but its
proof of correctness goes through without modification in our setting.)

• It is homomorphic: if g, g′ ∈ G have respective shares si = f(ri), s
′
i = f ′(ri) for i ∈ [`], then

si + s′i = (f + f ′)(ri) and rsi = (rf)(ri) are respective shares of g + g′ and rg for any r ∈ R.
Moreover, let G′ ⊆ G be a subgroup; then s̄i = si mod G′ are shares of ḡ = g mod G′, via the
polynomial f̄(X) = f(X) mod G′[X]. Additionally, if g ∈ G′, then si − s̄i ∈ G′ are shares of g.

Secret sharing with extension rings. The above scheme works when the number of parties ` is less than
every prime divisor of e(G). When this is not the case (e.g., when using q = 2k, which is a convenient
choice for the trapdoor construction described in Section 3.1), we can instead share elements from the vector
groupGk, which is a module over a certain extension ring of Ze(G) that has a suitable set U of size pk, where p
is the smallest prime divisor of e(G). By choosing k ≥ logp(`+ 1), we can share elements of G among `
players using shares in Gk, or even amortize the sharing of up to k elements in G at a time.

6

In brief, we use the extension ring R = Ze(G)[X]/F (X) for any monic degree-k polynomial F (X) =∑k
i=0 FiX

i ∈ Ze(G)[X] that is irreducible modulo every prime dividing e(G). Then it can be verified
that Gk is an R-module, where multiplication R × Gk → Gk is defined by the rule X · (g0, . . . , gk−1) =
(0, g0, . . . , gk−2)− (F0 · gk−1, . . . , Fk−1 · gk−1). An element of R is a unit if and only if it is nonzero modulo
every prime integer divisor of e(G), so letting p be the smallest such divisor, the polynomial residues in R
with coefficients in {0, . . . , p− 1} give us pk elements ri ∈ R such that ri − rj is a unit for all i 6= j, as
needed. See, for example, [DF94] or [Feh98, Chapter 3] for full details.

Verifiable secret sharing. To recover a shared value, our protocols instruct honest parties to broadcast
their respective shares and then reconstruct the value from the announced shares. As mentioned above, the
Welch-Berlekamp algorithm efficiently reconstructs the shared value given at least 2t+ 1 correct shares and
up to t incorrect ones (which may come from malicious parties), which means we can tolerate any t < `/3
malicious parties. Assuming appropriate communication channels, it is possible to improve this threshold to
any t < `/2 malicious parties by using a verifiable secret sharing (VSS) protocol, e.g., the one of [RB89].
The share-distribution and reconstruction steps of our protocols can be straightforwardly modified to use VSS,
but we omit these modifications for simplicity of exposition.

2.4 UC Framework

We frame our results in the Universal Composability (UC) framework [Can00, Can01]. In the UC framework,
security is defined by considering a probabilistic polynomial-time (PPT) machine Z , called the environment.
In coordination with an adversary that may corrupt some of the players, Z chooses inputs and observes
the outputs of a protocol executed in one of two worlds: a “real” world in which the parties interact with
each other in some specified protocol π while a dummy adversary A (controlled by Z) corrupts players and
controls their interactions with honest players, and an “ideal” world in which the players interact directly
with a functionality F, while a simulator S (communicating with Z) corrupts players and controls their
interactions with F. The views of the environment in these executions are respectively denoted REALπ,A,Z
and IDEALF,S,Z , and the protocol is said to realize the functionality if these two views are indistinguishable. In
this work we are concerned solely with statistical indistinguishability (which is stronger than the computational
analogue), denoted by the relation

s
≈.

Definition 2.6. A protocol π statistically realizes a functionality F (or alternatively, is a UC-secure imple-
mentation of F) if for any probabilistic polynomial-time (PPT) adversary A, there exists a PPT simulator S
such that for all PPT environments Z , we have IDEALF,S,Z

s
≈ REALπ,A,Z .

The universal composition theorem [Can01] informally states that any UC-secure protocol remains
secure under concurrent general composition. This allows for the modular design of functionalities and
protocols which can be composed to produce secure higher-level protocols. Our functionalities implicitly use
standard conventions like delayed public and private outputs, corruptions, etc, which are addressed in detail
in [Can00, Can01].

UC framework for threshold protocols. We consider a specialized case of the UC framework that is
appropriate for modeling threshold protocols. All of our functionalities are called with a session ID of the
form sid = (P, sid′), where P is a set of ` parties representing the individual trustees in the threshold
protocol. We prove security against adversaries that may adaptively corrupt a certain bounded number of
the parties over the entire lifetime of a protocol, and consider both the semi-honest case (in which corrupted
parties still execute the protocol faithfully) and the malicious case. At the time of corruption, the entire

7

view of the player to that point (and beyond) is revealed to the adversary; in particular, we do not assume
secure erasures. For robustness, we additionally require that when the environment issues a command to a
functionality/protocol, it always does so for at least h honest parties in the same round.

Many of our protocols require the parties to maintain and use consistent local states, corresponding to
certain shared random variables that are consumed by the protocols. We note that synchronizing their local
states may be nontrivial, if not every party is involved with executing every command. For this reason we
assume some mechanism for coordinating local state, such as hashing as suggested in [CG99], which deals
with similar synchronization issues.

3 Threshold Key Generation, Gaussian Sampling, and Trapdoor Delegation

In this section, we present UC functionalities and protocols for generating a lattice with a shared trapdoor,
for sampling from a coset of that lattice, and for securely delegating a trapdoor of a higher-dimensional
extension of the lattice. As an example application of these functionalities, in Section 4 we describe
threshold variants of the GPV signature and IBE schemes of [GPV08]; other signature and (H)IBE schemes
(e.g., [CHKP10, ABB10, MP12]) can be adapted similarly (where delegation is needed for HIBE).

We start in Section 3.1 by recalling the recent standalone (non-threshold) key generation and discrete
Gaussian sampling algorithms of [MP12], which form the basis of our protocols. In Section 3.2 we present the
two main functionalities FKG (key generation) and FGS (Gaussian sampling) corresponding to the standalone
algorithms.

• Since key generation tends to be rare in applications, FKG can be realized using trusted setup; alterna-
tively, in Appendix A we realize FKG via an interactive protocol without trusted setup.

• To realize FGS, we define two lower-level “helper” functionalities FPerturb and FCorrect, and give in
Section 3.3 an efficient noninteractive protocol that realizes FGS using access to them. Section 3.2
realizes the helper functionalities noninteractively using trusted setup, and Appendix A realizes them
using offline precomputation (instead of trusted setup).

• Finally, in Section 3.4 we give a functionality FDelTrap and protocol for trapdoor delegation.

3.1 Trapdoors and Standalone Algorithms

We recall the notion of a (strong) lattice trapdoor and associated algorithms recently introduced by Micciancio
and Peikert [MP12] (see that paper for full details and proofs). Let n and q be positive integers and k = dlg qe.
Define the “gadget” vector g = (1, 2, 4, . . . , 2k−1) ∈ Zkq and matrix

G := In ⊗ gt =

· · ·gt · · ·

· · ·gt · · ·
. . .
· · ·gt · · ·

 ∈ Zn×nkq .

The k-dimensional lattice Λ⊥(gt) ⊂ Zk, and hence also the nk-dimensional lattice Λ⊥(G), has smoothing
parameter bounded by sg · ωn, where sg ≤

√
5 is a known constant. There are efficient algorithms that, given

any desired syndrome u ∈ Zq, sample from a discrete Gaussian distribution over the coset Λ⊥u (gt) for any
given parameter s ≥ sg · ωn. Since Λ⊥(G) ⊂ Znk is the direct sum of n copies of Λ⊥(gt), discrete Gaussian
sampling over a desired coset Λ⊥u (G) (with parameter s ≥ sg · ωn) can be accomplished by concatenating n
independent samples over appropriate cosets of Λ⊥(gt).

8

Definition 3.1 ([MP12]). Let m ≥ nk be an integer and define m̄ = m− nk. For A ∈ Zn×mq , we say that
R ∈ Zm̄×nkq is a trapdoor for A with tag H∗ ∈ Zn×nq if A

[
R
I

]
= H∗ ·G. The quality of the trapdoor is

defined to be the spectral norm s1(R).

Note that H∗ is uniquely determined and efficiently computable from R, because G contains the n-by-n
identity as a submatrix. Note also that if R is a trapdoor for A with tag H∗, then it is also a trapdoor for
AH := A− [0 | HG] with tag H∗ −H ∈ Zn×nq .

The key-generation algorithm of [MP12] produces a parity-check matrix A ∈ Zn×mq together with a
trapdoor R having desired tag H∗. It does so by choosing (or being given) a uniformly random Ā ∈ Zn×m̄q

and a random R ∈ Zm̄×nk having small s1(R), and outputs A = [Ā | H∗ ·G− ĀR]. For sufficiently large
m ≥ Cn lg q (where C is a universal constant) and appropriate distribution of R, the output matrix A is
uniformly random, up to negl(n) statistical distance.

The discrete Gaussian sampling algorithm of [MP12] is an instance of the “convolution” approach
from [Pei10]. It works in two phases:

1. In the offline “perturbation” phase, it takes as input a parity-check matrix A, a trapdoor R for A with
some tag H∗ ∈ Zn×nq , and a Gaussian parameter s ≥ Cs1(R) (where C is some universal constant).
It chooses one or more Gaussian perturbation vectors p ∈ Zm (one for each future call to the online
sampling step) having non-spherical covariance Σp that depends only on s and the trapdoor R.

2. In the online “syndrome correction” phase, it is given a syndrome u ∈ Znq and a tag H ∈ Zn×nq . As
long as H∗ −H ∈ Zn×nq is invertible, it chooses z ∈ Znk having Gaussian distribution with parameter
sg · ωn over an appropriate coset of Λ⊥(G), and outputs x = p +

[
R
I

]
z ∈ Λ⊥u (AH), where p is a

fresh perturbation from the offline step.

Informally, the perturbation covariance Σp of p is carefully designed to cancel out the trapdoor-revealing
covariance of y =

[
R
I

]
z, so that their sum has a (public) spherical Gaussian distribution. More formally,

the output x has distribution within negl(n) statistical distance of DΛ⊥u (AH),s·ωn
, and in particular does not

reveal any information about the trapdoor R (aside from an upper bound s on s1(R), which is public).
We emphasize that for security, it is essential that none of the intermediate values p, z or y =

[
R
I

]
z be

revealed, otherwise they could be correlated with x to leak information about the trapdoor R that could lead
to an attack like the one given in [NR06].

3.2 Functionalities for Threshold Sampling

Here we present ideal functionalities corresponding to the above two algorithms. The key-generation and
Gaussian sampling functionalities FKG and FGS are specified in Figure 1 and Figure 2, respectively; they
internally execute the standalone algorithms described above.

To realize FKG, in the trusted setup model (as used in [CG99]) we can simply let the trusted party play
the role of FKG, because key generation is a one-time setup. To realize FGS, for the purpose of modularity we
define two lower-level functionalities FPerturb and FCorrect (Figures 3 and 4), which generate the perturbation
and syndrome-correction components, respectively, as in the standalone sampling algorithm. The FGS,
FPerturb, and FCorrect functionalities are all initialized with a bound B on the number of Gaussian samples
that they will produce in their lifetimes. This is because the trusted setup (or offline precomputation) phases
of our protocols need to prepare sufficient randomness so that the online phases can be noninteractive. (If
the bound B is reached, then the parties can just initialize new copies of FGS, FPerturb, and FCorrect using the
same arguments from FKG.)

9

Functionality FKG

Generate: Upon receiving (gen, sid, Ā ∈ Zn×m̄
q ,H∗ ∈ Zn×n

q , z) from at least h honest parties in P:

• Choose R← Dm̄×nk
Z,z·ωn

and compute a sharing JRK over Zq . Let A = [Ā | H∗ ·G− ĀR].

• Send (gen, sid,A, JRKi) to each party i in P , and (gen, sid,A,H∗, z) to the adversary.

Figure 1: Key generation functionality

Functionality FGS

Initialize: Upon receiving (init, sid,A, JRKi,H∗, s, B) from at least h honest parties i in P:

• Reconstruct R and store sid, A, R, H∗, s, and B.
• Send (init, sid) to each party in P , and (init, sid,A,H∗, s, B) to the adversary.

Sample: Upon receiving (sample, sid,H ∈ Zn×n
q ,u ∈ Zn

q) from at least h honest parties in P , if H∗ −H ∈
Zn×n
q is invertible and fewer than B calls to sample have already been made:

• Sample x← DΛ⊥u (AH),s·ωn
using the algorithm from [MP12] with trapdoor R.

• Send (sample, sid,x) to all parties in P , and (sample, sid,H,u,x) to the adversary.

Figure 2: Gaussian sampling functionality

We next describe the helper functionalities FPerturb and FCorrect, and describe how they can be realized
efficiently and noninteractively using trusted setup.

3.2.1 Perturbation

Our perturbation functionalityFPerturb (Figure 3) corresponds to the offline perturbation phase of the standalone
sampling algorithm. The perturb command does not take any inputs, so its results can be precomputed offline,
before the command is actually invoked. The possibility of precomputation introduces one subtlety in the
definition of the functionality, however. Notice that the functionality asks the adversary for share values JpKi

for the corrupted parties, then generates shares for the honest parties that are consistent with those shares;
clearly this does not affect the secrecy of p. This formulation is needed for proving security of a protocol that
precomputes shares of perturbations before any real calls to perturb are made (we give such a protocol in
Appendix A.4). It allows the simulator to choose shares on its own when simulating the precomputation, and
ensures that the functionality later distributes shares that are consistent with the simulation. Observe that with
trusted setup, FPerturb can be trivially realized by just precomputing and distributing shares of B samples in
the initialization phase, which the parties then consume in the online phase.

Note that FPerturb distributes shares JpKi of a perturbation p to the players, which themselves do not reveal
any information about p to the adversary, just as in the standalone Gaussian sampling algorithm. However, in
order for the perturbation to be useful in the later syndrome-correction phase, the parties will need to know
(and so FPerturb reveals) some partial information about p, namely, the syndromes w̄ = [Ā | −ĀR] · p ∈ Znq
and w = [0 | G] · p ∈ Znq . This is the main significant difference with the standalone setting, in which these
same syndromes are calculated internally but never revealed. Informally, Lemma 3.2 below shows that the
syndromes are uniformly random (up to negligible error), and hence can be simulated without knowing p.
Furthermore, p will still be a usable perturbation even after w̄,w are revealed, because it has an appropriate
(non-spherical) Gaussian parameter which sufficiently exceeds the smoothing parameter of an appropriate
lattice. This fact will be used later in the proof of security for our FGS realization.

10

Functionality FPerturb

Initialize: Upon receiving (init, sid,A−H∗ = [Ā | −ĀR], JRKi, s, B) from at least h honest parties i in P:

• Reconstruct R to compute covariance matrix Σp = s2 − s2
g [RI] [Rt I] and store sid, A−H∗ , and Σp.

• Send (init, sid) to all parties in P and (init, sid,A−H∗ , s, B) to the adversary.

Perturb: Upon receiving (perturb, sid) from at least h honest parties in P , if fewer than B calls to perturb have
already been made:

• Choose p← DZm,
√

Σp·ωn
.

• Compute w̄ = A−H∗ · p ∈ Zn
q and w = [0 | G] · p ∈ Zn

q .

• Send (perturb, sid, w̄,w) to the adversary, and receive back shares JpKi ∈ Zm
q for each currently

corrupted party i in P .
• Generate a uniformly random sharing JpK consistent with the shares received in the previous step.
• Send (perturb, sid, JpKi, w̄,w) to each party i in P .

Figure 3: Perturbation functionality

Lemma 3.2. Let Ā ∈ Zn×m̄q be uniformly random for m̄ = m− nk ≥ n lg q + ω(log n), let

B =

[
Ā −ĀR

G

]
= (Ā⊕G)

[
I −R

I

]
∈ Z2n×(m̄+nk)

q

(where ⊕ denotes the direct sum), and let Λ = Λ⊥(B). Then with all but negl(n) probability over the choice
of Ā, we have ηε(Λ⊥(B)) ≤

√
5(s1(R) + 1) · ωn for some ε = negl(n).

In particular, for p ← DZm,
√

Σp
where

√
Σp ≥ 6(s1(R) + 1) · ωn ≥ 2ηε(Λ

⊥(B)), the syndrome

u = (w̄,w) = Bp ∈ Z2n
q is negl(n)-far from uniform, and the conditional distribution of p given u is

D
Λ⊥u (B),

√
Σp

.

Proof. By Lemma 2.4, we have ηε′(Λ⊥(Ā)) ≤ 2 ·ωn (with overwhelming probability) for some ε′ = negl(n).
Also as shown in [MP12], we have ηε′(Λ⊥(G)) ≤

√
5 · ωn (see Section 3.1). This implies that

ηε(Λ
⊥(Ā⊕G)) ≤

√
5 · ωn

where (1 + ε) = (1 + ε′)2, and in particular ε = negl(n).
Since T =

[
I −R

I

]
is unimodular with inverse T−1 =

[
I R

I

]
, it is easy to verify that Λ⊥(B) =

T−1 · Λ⊥(Ā⊕G), and hence

ηε(Λ
⊥(B)) ≤ s1(T−1) · ηε(Λ⊥(Ā⊕G)) ≤

√
5(s1(R) + 1) · ωn.

3.2.2 Syndrome Correction

Our functionality FCorrect (Figure 4) corresponds to the syndrome-correction step of the standalone sampling
algorithm. Because its output y must lie in a certain coset Λ⊥v (A), where v depends on the desired final
syndrome u, the functionality must be invoked online. As indicated in the overview, the standalone algorithm
samples z← Λ⊥v (G) and defines y =

[
R
I

]
z. The functionality does the same, but outputs only shares of y

to their respective owners. This ensures that no information about y is revealed to the adversary. (Note that
the input syndrome v itself is not revealed in the standalone algorithm, but in our setting v is determined

11

Functionality FCorrect

Initialize: Upon receiving (init, sid, JRKi, B) from at least h honest parties i in P:

• Reconstruct R and store sid, R, and B.
• Send (init, sid) to all parties in P and (init, sid,B) to the adversary.

Correct: Upon receiving (correct, sid,v) from at least h honest parties in P , if fewer than B calls to correct
have already been made:

• Sample z← DΛ⊥v (G),sg·ωn
and compute y = [RI] z.

• Send (correct, sid,v) to the adversary, receive shares JyKi ∈ Zm
q for each currently corrupted party i,

and generate a uniformly random sharing JyK consistent with these shares.
• Send (correct, sid, JyKi) to each party i in P .

Figure 4: Syndrome correction functionality

entirely by public information, so it is known to the adversary.) Also, just like FPerturb, the functionality asks
the simulator for shares for the corrupted parties, to make precomputation simulatable.

Realizing FCorrect with a noninteractive protocol relies crucially on the parallel and offline nature of the
corresponding step in the standalone algorithm. In particular, we use the fact that without knowing v in
advance, the algorithm can precompute partial samples for each of the q = poly(n) scalar values v ∈ Zq,
and then linearly combine n such partial samples to answer a query for a full syndrome v ∈ Znq .

In the trusted setup model, the protocol realizing FCorrect is as follows.

1. In the offline phase, a trusted party uses the trapdoor R (with tag H∗) to distribute shares as follows.
For each j ∈ [n] and v ∈ Zq, the party initializes queues Qij,v for each party i, does the following B
times, and then gives each of the resulting queues Qij,v to party i.

• Sample zj,v ← DΛ⊥v (gt),sg·ωn
.

• Compute yj,v =
[
R
I

]
(ej ⊗ zj,v), where ej ∈ Zn denotes the jth standard basis vector. Note that

AH · yj,v = (H∗ −H)G · (ej ⊗ zj,v) = (H∗ −H)(v · ej),

where as always, AH = A− [0 | HG] for any H ∈ Zn×nq .

• Generate a sharing for yj,v, and add Jyj,vKi to queue Qij,v for each party i ∈ P .

2. In the online phase, upon receiving (correct, sid,v), each party i dequeues an entry Jyj,vj Ki from
Qj,vj for each j ∈ [n], and locally outputs JyKi =

∑
j∈[n]Jyj,vj K

i. Note that by linearity and the
homomorphic properties of secret sharing, the shares JyKi recombine to y =

[
R
I

]
z ∈ Zm for some

Gaussian-distributed z of parameter sg · ωn, such that AH · y = (H∗ −H) · v ∈ Znq .

Without trusted setup, we give in Appendix A.3 an efficient protocol for FCorrect that operates in a
similar way, populating the local queues Qij,v during the offline phase in a distributed manner using standard
share-blinding and multiplication functionalities, among others.

3.2.3 Legal Uses of the Functionalities

Putting the key-generation and Gaussian sampling operations into separate functionalities FKG and FGS (and
FDelTrap for delegation, in Section 3.4 below), and realizing FGS using the helper functionalities FPerturb and
FCorrect, aids modularity and simplifies the analysis of our protocols. However, as a side effect it also raises a

12

technical issue in the UC framework, since environments can in general provide functionalities with arbitrary
inputs, even on behalf of honest users. The issue is that the functionalities are all designed to be initialized
with some common, valid state—namely, shares of a trapdoor R for a matrix A as produced by FKG on valid
inputs—but it might be expensive or impossible for the corresponding protocols to check the consistency and
validity those shares. Moreover, such checks would be unnecessary in the typical case where an application
protocol, such as a threshold signature scheme, initializes the functionalities as intended.3

Therefore, we prove UC security for a restricted class of environments Z that always initialize our
functionalities with valid arguments. In particular, environments in Z can instruct parties to instantiate FKG
only with appropriate arguments Ā, z. Similarly, FGS (and FDelTrap) can be initialized only with a matrix A,
tag H∗, and shares of a trapdoor R matching those of a prior call to the gen command of FKG, and with a
sufficiently large Gaussian parameter s ≥ Cs1 · ωn, where s1 is a high-probability upper bound on s1(R) for
the trapdoor R generated by FKG. The functionalities FPerturb and FCorrect (which in any case are not intended
for direct use by applications) also must be initialized using a prior output of FKG.

More formally, an environment Z is said to be in the class Z if it satisfies the following conditions
specific to our functionalities:

• When Z instructs honest parties to run the gen command of FKG, the input matrix Ā ∈ Zn×m̄q

and parameter z must correspond with a statistically secure instantiation of the trapdoor generator
from [MP12]. Concretely, Ā must be statistically close to uniformly random, and the Gaussian
parameter z and dimension m̄ must jointly be sufficiently large. As shown in [MP12], one valid
instantiation is to let z ≥ 2ωn and m̄ ≥ Cn lg q for any fixed constant C > 1.

• When Z instructs honest parties to run the init commands of FGS, FPerturb, or FCorrect, the matrix A,
tag H∗, and shares JRKi provided as the parties’ inputs must match those of a prior call to FKG.gen. In
addition, these init commands must all use the same Gaussian parameter s, which must be sufficiently
large relative to the Gaussian parameter z and dimension m̄ used in that call to FKG.gen. Specifically,
we require s ≥ Cz(

√
m̄+

√
n log q) · ωn for a certain universal constant C. By the results of [MP12],

this guarantees that with overwhelming probability over the choice of R, we have s ≥ C ′s1(R) · ωn
for some universal constant C ′, which ensures that our πGS protocol produces the proper distribution.

We emphasize that these restrictions on the environment are not actually limiting in any meaningful way,
since our functionalities are only intended to serve as subroutines in higher-level applications, e.g. threshold
signatures and (H)IBE. When designing a protocol φ that uses these functionalities (see, e.g., Section 4) one
simply needs to ensure that φ does so in a manner consistent with the above conditions. Then composing φ
with our protocols πKG, πGS, πPerturb, and πCorrect (which we prove secure against environments in Z) will
yield a secure protocol against any t-limited environment.

3.3 Gaussian Sampling Protocol

Figure 5 defines a protocol πGS that realizes the Gaussian sampling functionality FGS in the (FPerturb,FCorrect)-
hybrid model. Its sample command simply makes one call to each of the main commands of FPerturb and
FCorrect, adjusting the requested syndrome as necessary to ensure that the syndrome of the final output is
the desired one. (This is done exactly as in the standalone algorithm.) The shares of the perturbation p and
syndrome-correction term y are then added locally and announced, allowing the players to reconstruct the
final output x = p + y. The security of πGS is formalized in Theorem 3.3, and proved via the simulator SGS
in Figure 6.

3This issue is not limited to our setting, and can arise any time the key-generation and secret-key operations of a threshold scheme
are put into separate functionalities. We note that using “joint state” [CR03] does not appear to resolve the issue, because it only
allows multiple instances of the same protocol to securely share some joint state.

13

An essential point is that given the helper functionalities, the protocol πGS is completely noninteractive,
i.e., no messages are exchanged among the parties, except when broadcasting their shares of the final output.
Similarly, recall that our realizations of FPerturb and FCorrect are also noninteractive, either when using trusted
setup or offline precomputation (see Appendix A). In other words, in the fully realized sampling protocol, the
parties can sample from any desired coset using only local computation, plus one broadcast of the final output
shares. We emphasize that this kind of noninteractivity is nontrivial, because the number of possible cosets is
exponentially large.

Protocol πGS in the (FPerturb, FCorrect)-hybrid model

Initialize: On input (init, sid,A, JRKi,H∗, s, B), party i stores H∗, calls FPerturb(init, sid,A−H∗ , JRKi, s, B)
and FCorrect(init, sid, JRKi, B), and outputs (init, sid).

Sample: On input (sample, sid,H,u), if H∗−H ∈ Zn×n
q is invertible, and if fewer than B calls to sample have

already been made, then party i does:

• Call FPerturb(perturb, sid) and receive (perturb, sid, JpKi, w̄,w).
• Compute v = (H∗ −H)−1(u− w̄)−w ∈ Zn

q .

• Call FCorrect(correct, sid,v) and receive (correct, sid, JyKi).
• Broadcast JxKi = JpKi + JyKi and reconstruct x = p + y from the announced shares.
• Output (sample, sid,x).

Figure 5: Gaussian sampling protocol

Simulator SGS

Initialize: Upon receiving (init, sid,A,H∗, s, B) from FGS, reveal to Z (init, sid) as outputs of both FPerturb
and FCorrect to each currently corrupted party and any party that is corrupted in the future.

Sample: Upon receiving (sample, sid,H,u,x) from FGS:

• Choose uniform and independent w̄,w ∈ Zn
q and compute v = (H∗ −H)−1(u− w̄)−w ∈ Zn

q .

• On behalf of FPerturb, send (perturb, sid, w̄,w) to Z and receive back shares JpKi for each currently
corrupted party i in P . Generate a uniformly random sharing JpK of p = 0 consistent with these
shares. Send (perturb, sid, JpKi, w̄,w) to each corrupted party i in P on behalf of FPerturb.

• On behalf of FCorrect, send (correct, sid,v) to Z and receive back shares JyKi for each currently
corrupted party i in P . Generate a uniformly random sharing JyK of y = x consistent with these
shares. Send (correct, sid, JyKi) to each corrupted party i in P on behalf of FCorrect.

• Broadcast JxKi = JpKi + JyKi on behalf of each honest party i.

Corruption: When Z requests to corrupt party i, for each previous call to sample, reveal the corresponding
messages (perturb, sid, JpKi, w̄,w) and (correct, sid, JyKi) to party i on behalf of FPerturb and FCorrect,
respectively.

Figure 6: Simulator for πGS

Theorem 3.3. Protocol πGS statistically realizes FGS in the (FPerturb, FCorrect)-hybrid model for t-limited
environments in Z .

Proof sketch. The simulator SGS in Figure 6 maintains consistent sharings of p = 0 and y = x for each call
to sample, and it releases player i’s shares of these values (on behalf of FPerturb and FCorrect) upon corruption

14

of player i. The fact that p and y in SGS are from incorrect distributions is not detectable (even statistically)
by the environment Z , because it sees at most t shares of each, and the shares are consistent with announced
shares of x = p + y.

The only other significant issues relate to (1) the syndromes w̄,w output publicly by FPerturb in the
(FPerturb,FCorrect)-hybrid world, versus the simulator’s choices of those values on behalf of FPerturb in the
ideal world; and (2) the distribution (conditioned on any fixed w̄,w) of the final output x in both worlds.
For item (1), as proved in Lemma 3.2, in the hybrid world the syndromes w̄,w are jointly uniform and
independent (up to negligible statistical distance) over the choice of p by FPerturb, just as they are when
produced by the simulator. Moreover, conditioned on any fixed values of w̄,w, the distribution of p in the
hybrid world is a discrete Gaussian with covariance Σp over a certain lattice coset Λ⊥u (B), and the actual
value of p from this distribution is perfectly hidden by the secret-sharing scheme.

For item (2), the above facts imply that in the hybrid world, x = p + y has spherical discrete Gaussian
distribution DΛ⊥u (AH),s, just as the output x of FGS does in the ideal world (up to negligible statistical error
in both cases). The proof is essentially identical to that of the “convolution lemma” from [MP12], which
guarantees the correctness of the standalone sampling algorithm (as run by FGS in the ideal world). The only
slight difference is that in the hybrid world, p’s distribution (conditioned on any fixed values of w̄,w) is
a discrete Gaussian with parameter

√
Σp over a coset of Λ⊥(B), instead of over Zm as in the standalone

algorithm. Fortunately, Lemma 3.2 says that
√

Σp ≥ 2ηε(Λ
⊥(B)), and this is enough to adapt the proof

from [MP12] to the different distribution of p.
Finally, by the homomorphic properties of secret sharing, the shares JpKi + JyKi announced by the honest

parties are jointly distributed exactly as a fresh sharing of x as produced by the simulator. We conclude that
the hybrid and real views are statistically indistinguishable, as desired.

3.4 Trapdoor Delegation

The trapdoor delegation functionality FDelTrap given in Figure 7 corresponds to the algorithm DelTrap for
delegating a lattice trapdoor in [MP12], which is used in hierarchical IBE schemes. The functionality is
initialized with shares of a trapdoor R for some A ∈ Zn×mq . For an extended matrix A′ = [AH|A1] ∈
Zn×(m+nk)
q (where AH = A − [0 | HG]) and tag H′ ∈ Zn×nq , FDelTrap outputs shares of a trapdoor R′

for A′ with tag H′, where the distribution of R′ is Gaussian and in particular is independent of R.
A realization of FDelTrap in the FGS-hybrid model is given by πDelTrap in Figure 8. It is entirely straight-

forward, since the standalone algorithm from [MP12] just draws several Gaussian samples over appropriate
(publicly computable) cosets of Λ⊥(A), so we omit the proof of security.

4 Threshold Signatures and IBE

Here we apply our protocols in a straightforward manner to give threshold versions of the signature and identity-
based encryption schemes from [GPV08]. Other signature and (H)IBE schemes that use key-generation and
Gaussian sampling as “black boxes” can be similarly adapted to the threshold setting.

The GPV schemes. For security parameter n, modulus q and message spaceM, the GPV signature scheme
uses a hash function H : M→ Znq , which is modeled as a random oracle, and two algorithms GenTrap and
SampleD. At a high level, GenTrap(n, q,m) generates a nearly uniform matrix A ∈ Zn×mq together with
a trapdoor R. Using these, SampleD(A,R,u, s) generates a Gaussian sample (for any sufficiently large

15

Functionality FDelTrap

Initialize: Upon receiving (init, sid,A, JRKi,H∗, s, B) from at least h honest parties in P:

• Reconstruct trapdoor R and its invertible tag H for A, and store sid, A, R, H∗ and s.

• Send (init, sid) to each party in P , and (init, sid,A, s, B) to the adversary.

Delegate: Upon receiving (delegate, sid,H,A1,H
′) from at least h honest parties in P:

• If H∗ −H ∈ Zn×n
q is invertible, using the Gaussian sampling algorithm from [MP12] with trapdoor

R, sample each column of R′ independently from a discrete Gaussian with parameter s over the
appropriate coset of Λ⊥(AH), so that AH ·R′ = H′ ·G−A1.

• Compute a sharing JR′K over Zq, and send (delegate, sid, JR′Ki) to each party i, and
(delegate, sid,H,A1,H

′) to the adversary.

Figure 7: Functionality for delegating a lattice trapdoor

Protocol πDelTrap in the FGS-hybrid model

Initialize: On input (init, sid,A, JRKi,H∗, s, B), call FGS(init, sid,A, JRKi,H∗, s, Bnk).

Delegate: On input (delegate, sid,H,A1,H
′), party i does the following:

• For each j = 1, . . . , nk, call FGS(sample, sid,H,u) where u is the jth column of H′G−A1; receive
(sample, sid, r′j) from FGS and let r′j be the jth column of R′.

• Output (sample, sid,R′).

Figure 8: Protocol for delegating a lattice trapdoor

parameter s) over the lattice coset Λ⊥u (A). Ignoring the exact selection of parameters, the stateful version of
the signature scheme consists of the following three algorithms:

• KeyGen(1n): Let (A,R) ← GenTrap(n, q,m) and output verification key vk = A and signing key
sk = R.

• Sign(sk, µ ∈ M): If (µ, σ) is already in local storage, output the signature σ. Otherwise, let x ←
SampleD(A,R, H(µ), s) and store (µ, σ). Output the signature σ = x.

• Verify(vk, µ, σ = x): If Ax = H(m) and x is sufficiently short, then accept; otherwise, reject.

See [GPV08] for the proof of (strong) unforgeability under worst-case lattice assumptions.
In the GPV identity-based encryption scheme, the setup algorithm is the same as KeyGen above, and

the master public and secret keys are simply the verification and signing keys above. The secret key for an
individual identity is a signature on that identity. Since we are concerned only with thresholdizing the signing
and key-extraction algorithms, the details of the encryption and decryption algorithms are unchanged and
irrelevant here, so we need only give threshold version of KeyGen and Sign.

Thresholdizing. In order to obtain a threshold signature scheme, KeyGen and Sign must be done in a
distributed way, so that the signing key sk = R is distributed among the participating parties and a valid
signature σ can only be produced by a quorum of participating parties. In Figure 9 we recall (from [ADN06])
a formal functionality for threshold signatures. (Recall that P is the set of trustees, or parties authorized to
receive shares of the signing key.)

16

Functionality FTSig

Generate: Upon receiving (gen, sid,B) from at least h honest parties in P , send (gen, sid,B) to the adversary,
receive and record verification key v, and send (gen, sid, v) to each party in P .

Sign: Upon receiving (sign, sid,m) from at least h honest parties in P , if fewer than B calls to sign have already
been made:

• Send (sign, sid,m) to the adversary and receive signature σ.

• If there is no record of (m,σ, v, 0), record (m,σ, v, 1) and send (sign, sid,m, σ) to each party in P .

Verify: Upon receiving (ver, sid,m, σ, v′) from any party p ∈ P:

• Send (ver, sid,m, σ, v′) to the adversary and receive (ver, sid,m, φ).

• If v′ = v and (m,σ, v, 1) is recorded, then send (ver, sid,m, 1) to p.

• If v′ = v and there is no recorded (m,σ′, v, 1), then record (m,σ, v, 0) and send (ver, sid,m, 0) to p.

• If some (m,σ, v′, 1) is recorded, then send (ver, sid,m, 1) to p.

• If some (m,σ, v′, 0) is recorded, then send (ver, sid,m, 0) to p.

• Otherwise, record (m,σ, v′, φ) and send (ver, sid,m, σ, φ) to p.

Figure 9: Threshold signature functionality

To construct a protocol for threshold GPV signatures we need threshold analogues of GenTrap and
SampleD; these are the functionalities FKG and FGS (from Section 3), respectively. FKG produces A as
usual, but each party i receives a share JRKi of the trapdoor. To produce a signature, each party i in a
quorum of signers simply calls FGS.sample with his share JRKi, and this allows them to collectively produce
a signature σ.

In Figure 10 we present a protocol for threshold GPV signatures in the (FKG,FGS)-hybrid model. Note
that it obeys all the constraints on the usage of FKG and FGS described in Section 3.2.3. Its security is easily
proved using the correspondence between FKG and KeyGen, and FGS and Sign, so we state Theorem 4.1
without proof.

Theorem 4.1. The protocol πThreshGPV securely realizes FTSig, assuming the unforgeability of the GPV
signature scheme (with the same parameters) under chosen-message attacks.

References

[ABB10] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model. In
EUROCRYPT, pages 553–572. 2010.

[ADN06] J. F. Almansa, I. Damgård, and J. B. Nielsen. Simplified threshold RSA with adaptive and
proactive security. In EUROCRYPT, pages 593–611. 2006.

[AFV11] S. Agrawal, D. M. Freeman, and V. Vaikuntanathan. Functional encryption for inner product
predicates from learning with errors. In ASIACRYPT. 2011. To appear.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems. Quaderni di Matematica, 13:1–32, 2004.
Preliminary version in STOC 1996.

[Ajt99] M. Ajtai. Generating hard instances of the short basis problem. In ICALP, pages 1–9. 1999.

17

Protocol πThreshGPV in the (FKG,FGS)-hybrid model

Generate: On input (gen, sid,B):

• The parties run an information-theoretically secure coin-flipping protocol to choose a uniformly
random Ā ∈ Zn×m̄

q , and let H∗ = In (the n-by-n identity matrix).

• Each party i calls FKG(gen, sid, Ā,H∗, z = 2 · ωn) and receives (gen, sid,A, JRKi).

• Each party i calls FGS(init, sid,A, JRKi,H∗ = In, s = Cz · O(
√
n log q) · ωn, B) and outputs

(gen, sid,A).

Sign: On input (sign, sid,m), if fewer than B calls to sign have already been made, then party i does:

• First check if (sid,m, σ) is already in local storage. If so, output (sign, sid,m, σ).

• Otherwise, compute u = H(m), call FGS(sample, sid,H = 0,u), and receive (sample, sid, x̄ ∈
Zm
q). Interpret x̄ as the unique integer vector x ∈ Zm with entries in [−q/2, q/2), store (sid,m, σ =

x) locally, and output (sign, sid,m, σ).

Verify: Upon receiving (ver, sid,m, σ = x, v′):

• Each party i checks that v′ = A, that Ax = H(m), and that ‖x‖ ≤ s
√
m. If so, then party i outputs

(ver, sid,m, 1), otherwise it outputs (ver, sid,m, 0).

Figure 10: Threshold GPV Signatures

[ALR11] G. Asharov, Y. Lindell, and T. Rabin. Perfectly-secure multiplication for any < n/3. In CRYPTO,
pages 240–258. 2011.

[AP09] J. Alwen and C. Peikert. Generating shorter bases for hard random lattices. Theory of Computing
Systems, 48(3):535–553, April 2011. Preliminary version in STACS 2009.

[BCHK07] D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based
encryption. SIAM J. Comput., 36(5):1301–1328, 2007.

[BD10] R. Bendlin and I. Damgård. Threshold decryption and zero-knowledge proofs for lattice-based
cryptosystems. In TCC, pages 201–218. 2010.

[BF11a] D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions. In EURO-
CRYPT, pages 149–168. 2011.

[BF11b] D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary fields and new tools
for lattice-based signatures. In Public Key Cryptography, pages 1–16. 2011.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In STOC, pages 1–10. 1988.

[Can00] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/.

[Can01] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
FOCS, pages 136–145. 2001.

[CG99] R. Canetti and S. Goldwasser. An efficient threshold public key cryptosystem secure against
adaptive chosen ciphertext attack. In EUROCRYPT, pages 90–106. 1999.

18

http://eprint.iacr.org/

[CHKP10] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a lattice basis. In
EUROCRYPT, pages 523–552. 2010.

[CLRS10] P.-L. Cayrel, R. Lindner, M. Rückert, and R. Silva. A lattice-based threshold ring signature scheme.
In Proceedings of the First international conference on Progress in cryptology: cryptology and
information security in Latin America, LATINCRYPT’10, pages 255–272. Springer-Verlag,
Berlin, Heidelberg, 2010. ISBN 3-642-14711-9, 978-3-642-14711-1.

[CR03] R. Canetti and T. Rabin. Universal composition with joint state. In CRYPTO, pages 265–281.
2003.

[CS98] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In CRYPTO, pages 13–25. 1998.

[DF89] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In CRYPTO, pages 307–315. 1989.

[DF94] Y. Desmedt and Y. Frankel. Perfect homomorphic zero-knowledge threshold schemes over any
finite abelian group. SIAM J. Discrete Math., 7(4):667–679, 1994.

[Feh98] S. Fehr. Span Programs over Rings and How to Share a Secret from a Module. Master’s thesis,
ETH Zurich, Institute for Theoretical Computer Science, 1998.

[FGM10] T. Feng, Y. Gao, and J. Ma. Changeable threshold signature scheme based on lattice theory.
International Conference on E-Business and E-Government, 0:1311–1315, 2010. doi:http:
//doi.ieeecomputersociety.org/10.1109/ICEE.2010.335.

[GKV10] S. D. Gordon, J. Katz, and V. Vaikuntanathan. A group signature scheme from lattice assumptions.
In ASIACRYPT, pages 395–412. 2010.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In STOC, pages 197–206. 2008.

[Kle00] P. N. Klein. Finding the closest lattice vector when it’s unusually close. In SODA, pages 937–941.
2000.

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
EUROCRYPT. 2012.

[MR04] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures.
SIAM J. Comput., 37(1):267–302, 2007. Preliminary version in FOCS 2004.

[MSs11] S. Myers, M. Sergi, and a. shelat. Threshold fully homomorphic encryption and secure computa-
tion. Cryptology ePrint Archive, Report 2011/454, 2011. http://eprint.iacr.org/.

[NR06] P. Q. Nguyen and O. Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU
signatures. J. Cryptology, 22(2):139–160, 2009. Preliminary version in Eurocrypt 2006.

[Pei09] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In STOC,
pages 333–342. 2009.

[Pei10] C. Peikert. An efficient and parallel Gaussian sampler for lattices. In CRYPTO, pages 80–97.
2010.

19

http://eprint.iacr.org/

[PW08] C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In STOC, pages
187–196. 2008.

[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority
(extended abstract). In STOC, pages 73–85. 1989.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6):1–40, 2009. Preliminary version in STOC 2005.

[Sha79] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[Sho97] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

[Sho00] V. Shoup. Practical threshold signatures. In EUROCRYPT, pages 207–220. 2000.

[XXZ11] X. Xie, R. Xue, and R. Zhang. Efficient threshold encryption from lossy trapdoor functions. In
PQCrypto, pages 163–178. 2011.

A Protocols Without Trusted Setup

Here we show how to realize threshold key generation FKG and discrete Gaussian sampling FGS without
relying on any trusted setup. Given the protocol in Section 3.3, for FGS it suffices to realize FCorrect and
FPerturb. The rest of the section is organized as follows:

• In Section A.1 we formalize three low-level utility functionalities FBlind, FMult, and FSampZ used by
several of our protocols, and we describe how these functionalities are realized.

• In Section A.2 we give a protocol realizing FKG using the utility functionalities. This simple protocol
and security analysis are representative of the techniques we use (in more complex ways) in later
protocols as well.

• In Section A.3 we give a realization of FCorrect that uses an additional utility functionality FGadget,
which we define and realize there.

• Finally, in Section A.4 we realize FPerturb using a simple extension of FSampZ, which we also realize
there.

A.1 Utility Functionalities

We first present the low-level utility functionalities.

Blinding. The blinding functionalityFBlind (Figure 11) simply accepts shares of some value over an arbitrary
additive group G, and distributes fresh shares of the same value. Our later protocols will use blinding and the
homomorphic properties of secret sharing to reveal the values of shared secrets modulo lattices, and nothing
more.

Realizations of FBlind in various communication models are standard. For example, to realize it against
semi-honest corruptions with private channels is very simple: simply add sufficiently many player-generated
sharings of 0 to the original shares. For malicious corruptions one can use, e.g., subprotocols of the
BGW [BGW88, ALR11] or RB [RB89] protocols, which run in a constant number of rounds. We leave the

20

Functionality FBlind

Blind: Upon receiving (blind, sid, JxKi ∈ G) from at least h honest parties in P:

• Reconstruct x and generate a fresh sharing JyK (over G) of y = x.

• Send (blind, sid, JyKi) to each party i in P , and (blind, sid,G) to the adversary.

Figure 11: Blinding functionality

implementation of FBlind unspecified and simply work in the FBlind-hybrid model where needed. We remark
that our protocols use FBlind only during initialization, so the interaction required to implement it is limited to
the offline phase.

Multiplication. The multiplication functionality FMult (Figure 12) takes shares of two values x, y in a ring
Zqd and returns fresh shares of their product x · y (modulo qd) to the respective parties. By the homomorphic
properties of secret sharing, this generalizes immediately (via local computation alone) to products of vectors
and/or matrices X,Y, so we write the functionality to support this more general capability. To realize FMult
one can use any statistically secure protocol, such as the constant-round protocols of [BGW88, RB89, ALR11];
we leave this choice unspecified and simply work in the FMult-hybrid model where needed.

Functionality FMult

Multiply: Upon receiving (mult, sid, JXKi ∈ Zh×`
qd

, JYKi ∈ Z`×w
qd

) from at least h honest parties i in P:

• Reconstruct X, Y from the shares JXKi, JYKi, respectively.

• Generate a fresh sharing JZK of Z = X ·Y ∈ Zh×w
qd

.

• Send (mult, sid, JZKi) to each party i in P , and (mult, sid, h× `, `× w, d) to the adversary.

Figure 12: Multiplication functionality

Sampling integers. Several of our protocols rely on a low-level functionality FSampZ (Figure 13) for
sampling discrete Gaussians over the integers Z. At a high level, the sample command produces shares of
a discrete Gaussian variable x ∈ Z with a given parameter, where the sharing is over the additive group
Zqd , (i.e., with d digits of precision), and distributes these shares JxKi to the respective parties. Later on in
Section A.4.1 we will extend FSampZ with some additional commands, but for now we only need the sample
command.

Functionality FSampZ

Sample: Upon receiving (sample, sid, h× w, z, d) from at least h honest parties in P:

• Sample X← Dh×w
Z,z·ωn

and generate a fresh sharing JXK over Zqd .

• Send (sample, sid, JXKi) to each party i in P and (sample, sid, h× w, z, d) to the adversary.

Figure 13: Simplified integer sampling functionality

Because we do not know of any highly efficient algorithms for sampling discrete Gaussians, our realization
uses the general “inverse transform” sampling algorithm, and implements it securely using multiparty

21

computation tools. Recall that inverse sampling involves a close approximation of the cumulative distribution
function. To sample, one chooses a uniformly random u ∈ [0, 1) and looks up the corresponding output value
in the table. An arithmetic circuit implementing this algorithm can be written as an AND of several interval
tests on the input u, so the depth of the circuit is roughly the precision (number of digits) of the entries in
the lookup table, and the width of the circuit is roughly the number of entries in the table. (Other trade-offs
between depth and width are possible as well.)

Importantly, we can implement the inverse sampling method for discrete Gaussians using a table of
size proportional to q = poly(n) for very large parameters z, even though the distribution has support
size proportional to z. This is because for z ∈ [qj , qj+1), the discrete Gaussian of parameter z can be
decomposed using Lemma 2.5 as a convolution of j discrete Gaussians over qjZ, qj−1Z, . . . ,Z having
respective parameters roughly z, z/q, . . . , z/qj . (Note that each parameter can be chosen to be larger than
the smoothing parameter of the respective lattice.) Each of these distributions is highly concentrated on only
poly(n) outputs.

Finally, we emphasize that our higher-level protocols use FSampZ only in their key-generation or initializa-
tion phases, and only with fixed, public Gaussian parameters, so any inefficiencies in a realization of FSampZ
are limited to the offline phase.

A.2 Realizing FKG

The protocol πKG (Figure 14) realizing FKG in the (FBlind,FSampZ)-hybrid model is straightforward, given
the homomorphic properties of the secret-sharing scheme and the simple operation of the standalone trapdoor
generator, which just multiplies a public uniform matrix Ā with a secret Gaussian-distributed matrix R. The
parties first get shares of a Gaussian-distributed trapdoor R using FSampZ, then announce blinded shares of
A1 = −ĀR mod q and reconstruct A1 to determine the public key A = [Ā | A1]. The blinding is needed so
that the announced shares reveal only A1, and nothing more about the honest parties’ shares JRKi themselves.

Protocol πKG in the (FBlind,FSampZ)-hybrid model

Generate: On input (gen, sid, Ā ∈ Zn×m̄
q ,H∗ ∈ Zn×n

q , z), party i does:

• Call FSampZ(sample, sid, m̄× nk, z, 1) and receive (sample, sid, JRKi).

• Call FBlind(blind, sid,−ĀJRKi) and receive (blind, sid, JA1Ki).

• Broadcast JA1Ki and reconstruct A1 = −ĀR from the announced shares.

• Output (gen, sid,A = [Ā | H∗ ·G + A1], JRKi).

Figure 14: Key generation protocol

A simulator SKG for demonstrating the security of πKG is provided in Figure 15. Essentially, security boils
down to the fact that the announced blinded shares −ĀJRKi in the protocol πKG form a uniformly random,
and independent of the honest parties’ outputs JRKi, sharing of A1 = −ĀR, which is exactly what SKG
constructs to simulate the broadcast messages. A full proof is a straightforward application of this observation,
and of the privacy, robustness, and homomorphic properties of the secret-sharing scheme, so we omit it.

Theorem A.1. Protocol πKG statistically realizes FKG in the (FBlind,FSampZ)-hybrid model for t-limited
environments in Z .

22

Simulator SKG

Generate: Upon receiving (gen, sid,A = [Ā | H∗ ·G + A1],H∗, z) from FKG:

• Generate a fresh sharing of A1 over Zq .

• For all currently corrupted parties i, and whenever Z later requests to corrupt a party i, receive the
share JRKi from FKG, and reveal to Z the following functionality outputs to party i:

– (sample, sid, JRKi) on behalf of FSampZ;
– (blind, sid, JA1Ki) on behalf of FBlind.

• Broadcast JA1Ki on behalf of each honest party i.

Figure 15: Simulator for πKG

A.3 Realizing FCorrect

Recall that FCorrect samples and distributes shares of a (non-spherical Gaussian) vector y from a desired coset
of Λ⊥(A). Section 3.2.2 describes how to realize FCorrect with trusted setup, partly by precomputing shares
of samples from each coset of Λ⊥(gt). We next describe how these shares can be obtained from a utility
functionality called FGadget (Figure 16), and how it can easily be realized.

A.3.1 Gadget Functionality

The functionality FGadget (Figure 16) relates to the special gadget vector g and lattice Λ⊥(gt), as defined
in [MP12] and reviewed in Section 3.1. Recall that we have a fixed public vector gt = [1, 2, 4, . . . , 2k−1] ∈
Z1×k
q for k = dlg qe, which defines a full-rank lattice Λ⊥(gt) ⊂ Zk of determinant q whose smoothing

parameter is bounded by sg · ωn, where sg ≤
√

5 is a known constant. The functionality generates shares of a
discrete Gaussian over the coset Λ⊥v (gt) for any desired v ∈ Zq, by running any of the efficient algorithms
described in [MP12].

Functionality FGadget

Sample coset: Upon receiving (cosetsample, sid, v ∈ Zq) from at least h honest parties in P:

• Sample z← DΛ⊥v (gt),sg·ωn
and generate a uniformly random sharing JzK.

• Send (cosetsample, sid, JzKi) to each party i in P , and send (cosetsample, sid, v) to the adversary.

Figure 16: Functionality for operations related to the gadget lattice Λ⊥(gt)

Realizing FGadget is straightforward in the (FSampZ,FBlind)-hybrid model, using the homomorphic proper-
ties of secret sharing: essentially, the parties request shares of a Gaussian-distributed z ∈ Zk from FSampZ,
then broadcast blinded shares of the syndrome u = 〈g, z〉 mod q and recover u, repeating until u = v. (The
blinding is needed so that nothing more than the syndrome is revealed about z.) Implemented naively as in
Figure 17, the expected number of trials (which may be performed in parallel) is almost exactly q = poly(n),
because the syndrome u is negligibly far from uniform since z’s Gaussian parameter is at least the smoothing
parameter of Λ⊥(gt). Alternatively, shares of samples having the wrong syndrome can be stored away and
used as needed later on. Note that in any case, FGadget is only ever called in the offline phase of πCorrect
(Figure 19), so efficiency is not a top priority here.

A simulator SGadget for demonstrating the security of our protocol is provided in Figure 18. For a t-limited

23

Protocol πGadget in the (FSampZ,FBlind)-hybrid model

Sample coset: On input (cosetsample, sid, v ∈ Zq), party i does:

• Call FSampZ(sample, sid, k × 1, sg, 1) and receive (sample, sid, JzKi).

• Call FBlind(blind, sid, 〈g, JzKi〉 mod q) and receive (blind, sid, JuKi).

• Broadcast JuKi and reconstruct u = 〈g, z〉 from the broadcast shares.

• If u = v, output (cosetsample, sid, JzKi). Otherwise, repeat.

Figure 17: Protocol for gadget operations

Simulator SGadget

Sample coset: Upon receiving (cosetsample, sid, v) from FGadget:

• Choose a uniformly random u ∈ Zq , and generate fresh sharings of u and of z = 0 ∈ Zk
q .

• For each currently corrupted party i, reveal to Z the following functionality outputs to party i:

– (sample, sid, JzKi) on behalf of FSampZ;
– (blind, sid, JuKi) on behalf of FBlind.

• Broadcast JuKi on behalf of all honest parties i.

• Unless u = v, repeat.

Corruption: When Z requests to corrupt party i, for each previous call to cosetsample, reveal the corresponding
messages (sample, sid, JzKi) and (blind, sid, JuKi) to party i on behalf of FSampZ and FBlind, respectively.

Figure 18: Simulator for πGadget

adversary, the value of z = 0 and honest parties’ shares remain information theoretically hidden. The
announced (blinded) shares of u in the protocol πGadget form a uniformly random (and independent of the
honest parties’ outputs JzKi) sharing of the (nearly) uniformly random syndrome u = 〈g, z〉, which is exactly
what SGadget constructs to simulate the broadcast messages. A full proof is a straightforward application of
these observations and of the privacy, robustness, and homomorphic properties of secret sharing.

A.3.2 Protocol and Security Analysis

The protocol πCorrect in the (FMult,FGadget)-hybrid model is defined formally in Figure 19. In the initialization
step, for each j ∈ [n] and v ∈ Zq the parties populate each of their local queues Qj,v with at least B entries,
in the following way: each party i uses FGadget, its shares of the trapdoor R, and FMult to obtain a share
of yj,v =

[
R
I

]
(ej ⊗ zj,v) for Gaussian-distributed zj,v ∈ Λ⊥v (gt), and places the share in a queue Qj,v.

(Regarding the arguments to the call to FMult, note that
[

JRKi
I

]
is a valid ith share of

[
R
I

]
, via a constant

sharing polynomial for I, and ej,v ⊗ JzjKi is similarly a valid ith share of ej ⊗ zj,v.) To later answer a correct
request for syndrome v ∈ Znq , each party just draws a share from each of Q1,v1 , . . . , Qn,vn and sums these
shares. By the homomorphic properties of secret sharing, this yields a share of y =

∑
j∈[n] yj,vj =

[
R
I

]
z for

Gaussian z = (z1, . . . , zn) ∈ Λ⊥v (G), as desired.

Theorem A.2. Protocol πCorrect statistically realizesFCorrect in the (FMult,FGadget)-hybrid model for t-limited
environments in Z .

24

Protocol πCorrect in the (FMult,FGadget)-hybrid model

Initialize: On input (init, sid, JRKi, B), party i does:

• Locally store (sid, JRKi) and initialize local queues Qj,v for each j ∈ [n] and v ∈ Zq .
• For each j ∈ [n], while there exists some v ∈ Zq such that Qj,v has fewer than B entries:

– Call FGadget(cosetsample, sid, v) and receive (cosetsample, sid, Jzj,vKi).

– Call FMult(mult, sid,
[

JRKi

I

]
, ej ⊗ Jzj,vKi) and receive (mult, sid, Jyj,vKi), where yj,v =

[RI] (ej ⊗ zj,v).
– Place Jyj,vKi in local queue Qj,v .

• Output (init, sid).

Correct: On input (correct, sid,v), if fewer than B calls to correct have already been made, party i does:

• For each j ∈ [n], dequeue an entry Jyj,vKi from Qj,vj
.

• Locally compute JyKi =
∑

j∈[n]Jyj,vKi.

• Output (correct, sid, JyKi).

Figure 19: Syndrome correction protocol

Simulator SCorrect

Initialize: Upon receiving (init, sid,B) from FCorrect:

• Initialize empty lists Qj,v for each j ∈ [n] and v ∈ Zq .

• For each j ∈ [n], while there exists some v ∈ Zq such that Qj,v has fewer than B unused entries:

– Generate a fresh sharing Jzj,vK of zj,v = 0 ∈ Zk
q , and send (cosetsample, sid, Jzj,vKi) on behalf

of FGadget to each currently corrupted party i in P .
– Generate a fresh sharing Jyj,vK for yj,v = 0 ∈ Zm

q , and send (mult, sid, Jyj,vKi) on behalf of
FMult to each currently corrupted i in P .

– Store (Jzj,vK, Jyj,vK) as an unused entry at the end of list Qj,v .

Correct: Upon receiving (correct, sid,v) from FCorrect:

• For each j ∈ [n], look up the next unused entry (Jzj,vj K, Jyj,vj K) from Qj,vj , and mark it as used for
this call to correct. For each currently corrupted party i in P , send JyKi =

∑
j∈[n]Jyj,vKi to FCorrect

as the desired share for party i.

Corruption: When Z requests to corrupt party i,

• Receive party i’s share JyKi for each previous call of the form (correct, sid,v). Look up the n
corresponding (used) entries (Jzj,vj

K, Jyj,vj
K) in Qj,vj

, and update the value Jyn,vnKi so that JyKi =∑
j∈[n]Jyj,vj Ki.

• For all entries (Jzj,vK, Jyj,vK), both used and unused, in each list Qj,v, reveal to Z the messages
(cosetsample, sid, Jzj,vKi) and (mult, sid, Jyj,vKi) to party i on behalf of FGadget and FMult, respec-
tively.

Figure 20: Simulator for πCorrect

Proof sketch. A simulator SCorrect for demonstrating the security of πCorrect is provided in Figure 20. The
only subtlety lies in the fact that outputs from helper functionalities during precomputation must be simulated
before knowing which parties will be corrupted when the corresponding correct calls are made later on. As
mentioned in Section 3.2.2, this is why we designed FCorrect to ask the adversary for shares for the corrupted

25

parties: the simulator generates its own shares when simulating the precomputation, and provides them to the
functionality upon request. Then security boils down to the fact that even though yj,vj =

[
R
I

]
(ej ⊗ zj,vj),

all shares of zj,vj (that the adversary sees) are uniform and independent of the corresponding shares of yj,vj
since FMult blinds its output, so the queuing strategy employed by πCorrect indeed produces shares of y with
the desired distribution.

A.4 Realizing FPerturb

Recall that FPerturb (Figure 3) distributed shares of of perturbations p drawn from the discrete Gaussian
distribution DZm,

√
Σp

, where the covariance Σp depends on the trapdoor R. In the standalone setting, this is

straightforward: first generate a continuous Gaussian p′ ∈ Rm with covariance Σp − I · ω2
n, then randomly

round each coordinate of p′ to a nearby integer (see [Pei10] for details). In the threshold setting, generating a
good perturbation seems quite a bit more difficult, because neither p nor its covariance Σp can be revealed,
since they leak the trapdoor R. Fortunately, we can give a distributed protocol that emulates the standalone
rounding procedure up to sufficient precision.

A.4.1 Extending FSampZ

We first extend the functionality FSampZ (originally defined in Section A.1) with two additional commands,
cosetsample and rround, which support randomized rounding of a shared value x ∈ q−jZ to the integers Z.
Note that while cosetsample and rround are defined for (scalings of) the integer lattice Z, the commands
immediately generalize to vectors and matrices, component-wise. (This is simply because spherical Gaussians
over cosets of Zh×w are just product distributions of Gaussians over cosets of Z.) This extended functionality
is defined formally in Figure 21.

Functionality FSampZ

Sample: Upon receiving (sample, sid, h× w, z, d) from at least h honest parties in P:

• Sample X← Dh×w
Z,z·ωn

and generate a fresh sharing JXK over Zqd .

• Send (sample, sid, JXKi) to each party i in P and (sample, sid, h× w, z, d) to the adversary.

Sample coset: Upon receiving (cosetsample, sid, v ∈ q−jZ/q−j+1Z, z ≥ q−j+1) from at least h honest parties
in P:

• Sample x← Dq−j+1Z+v,z·ωn
and let c = x mod Z.

• Generate a fresh sharing JxK over q−jZ/qZ.

• Send (cosetsample, sid, JxKi, c) to each party i in P , and (cosetsample, sid, c, z) to the adversary.

Randomized round: Upon receiving (rround, sid, JxKi ∈ q−dZ/qZ) from at least h honest parties in P:

• Reconstruct x and let c = x mod Z. Sample an integer z ← x+DZ−c,d·ωn
.

• Generate a fresh sharing JzK over Zq, and send (rround, sid, JzKi, c) to each party i in P , and
(rround, sid, c) to the adversary.

Figure 21: Full integer sampling functionality (which replaces Figure 13)

A protocol πSampZ realizing FSampZ in the FBlind-hybrid model is given in Figure 22. We elaborate
informally on the implementation of the two additional commands, noting that implementation of the sample
command was discussed in Section A.1. We omit a formal security proof for πSampZ, but we remark that while

26

the protocol is somewhat more complicated than the key-generation protocol of Section A.2, its security is
based straightforwardly on the same main observations, plus Lemma 2.5.

Coset sampling. The cosetsample command (which exists mainly to support the randomized-rounding
command, described next) generates a discrete Gaussian variable x with given parameter z ≥ q−j+1 over
the (possibly very dense) lattice q−jZ, such that x’s least significant base-q digit is a specified v. It then
distributes shares JxKi to the respective parties, along with the value c = x mod Z, which also goes to the
adversary.

Naı̈vely implementing cosetsample in our protocol is very simple: the parties just use sample to generate
a Gaussian value qjx ∈ Z with parameter qjz · ωn, shared over Zqj+1 , then reveal their blinded shares
x mod Z to reconstruct c, repeating until the least-significant digit is v. Because z ≥ q−j+1 is large enough,
x’s least significant digit is nearly uniform by Corollary 2.3, and the expected number of trials is almost
exactly q = poly(n). Of course, this procedure throws away many samples; a more efficient implementation
would precompute many trials and store the results according to least-significant digit, so that the online phase
of the command becomes just a noninteractive table lookup. For simplicity, we formally define only the naive
implementation.

Randomized rounding. The rround command takes shares of a value x ∈ q−dZ (represented modulo qZ)
and rounds it to an integer z ∈ Z using Gaussian rounding. It returns shares JzKi to the respective parties,
along with the coset c = x mod Z of the original input, which also goes to the adversary. In our protocol,
the parties broadcast their blinded shares of c = x mod Z to reconstruct c, then use d calls to cosetsample to
round x one digit at a time, from least- to most-significant digit. Note that each call to cosetsample alters the
more-significant digits of x mod Z, but these changes are public.

A.4.2 Protocol and Security Analysis

In brief, our perturbation protocol starts by generating a sharing of a sufficiently high-precision approximation
P ≈

√
Σp with some d digits of precision in its fractional part (i.e., the entries of P are in q−dZ). The

sharing of P can be precomputed as part of the key-generation phase, using general multiparty computation.
To generate a perturbation vector p, the protocol first generates a sharing of a high-precision Gaussian random
variable p′ ∈ q−dZm having covariance PPt ≈ Σp. It does this by invoking FSampZ to generate shares of a
Gaussian-distributed z ∈ Zm, and then invoking FMult to get a fresh sharing of p′ = Pz. The parties then
randomize-round their shared p′ ∈ q−dZm to a shared final perturbation vector p ∈ Zm, using the rround
command of FSampZ. (Recall from A.4.1 that this command reveals c = p′ mod Zm publicly.) Finally, using
the secret-sharing homomorphisms the parties also reconstruct the two syndromes w̄ and w̄. (Recall that
these are eventually needed by the full Gaussian sampling protocol πGS.) Note that once the sharing of P is
computed once and for all, the only trapdoor-dependent work is the relatively efficient call to FMult.

For analyzing security, the essence of the argument is that the public residue c = p′ mod Zm returned by
FSampZ.rround is (nearly) uniformly random, and hence simulatable without knowing p′, because p′ is drawn
from a Gaussian whose parameter exceeds the smoothing parameter of Zm. All the remaining functionalities
simply return independent and properly blinded shares of intermediate values to their respective owners, and
so are trivial to simulate. Therefore, we omit a formal simulator and security proof for πPerturb, which are
tedious (though straightforward given the above intuition).

27

Protocol πSampZ in the FBlind-hybrid model

Sample: On input (sample, sid, h× w, z, d), party i does:

• With the other parties, run an inverse sampling protocol (see A.1 for elaboration) to generate private
output JXKi, where X← Dh×w

Z,z·ωn
.

• Output (sample, sid, JXKi).

Sample coset: On input (cosetsample, sid, v ∈ q−jZ/q−j+1Z, z ≥ q−j+1), party i does:

• Call (sample, sid, 1× 1, qjz, j + 1) and receive (sample, sid, qjJxKi) with x ∈ q−jZ.

• Call FBlind(blind, sid, JxKi mod Z) and receive (blind, sid, JcKi).

• Announce JcKi and reconstruct c from other parties’ announced shares.

• If c mod q−j+1 = v, output (cosetsample, sid, JxKi). Otherwise, repeat.

Randomized round: On input (rround, sid, JxKi ∈ q−dZ/qZ), party i does:

• Call FBlind(blind, sid, JxKi mod Z) and receive a fresh share JcKi of c = x mod Z. Broadcast JcKi.

• Reconstruct c ∈ q−dZ/Z from the announced shares.

• Let v = c and JzKi = JxKi. For j = d, . . . , 1:

– Call (cosetsample, sid,−v mod q−j+1Z,
√
d) as a subroutine, and receive back

(cosetsample, sid, Jx′Ki ∈ q−jZ/qZ, c′ ∈ q−jZ/Z).
– Let v ← v + c′ ∈ q−j+1Z/Z and JzKi ← JzKi + Jx′Ki ∈ q−jZ/qZ, which is an ith share of
z + x′ ∈ q−j+1Z/qZ.

– Truncate JzKi to lie in q−j+1Z/qZ (without changing the underlying shared value) as described
in Section 2.3, i.e., let JzKi ← JzKi − (JzKi mod q−j+1).

• Output (rround, sid, JzKi, c).

Figure 22: Integer sampling protocol

28

Protocol πPerturb in the (FBlind,FMult,FSampZ)-hybrid model

In what follows, define the quotient ring Gd = q−dZ/qZ.

Initialize: On input (init, sid,A−H∗ , JRKi, s, B), party i does:

• With the other parties, run a statistically secure multiparty computation protocol to compute (as a
private output) JPKi shared over Gd, where Σp = s2 − s2

g [RI] [Rt I], and P ≈
√

Σp − d2 · ω2
n

• Locally store sid, A−H∗ , and JPKi, and initialize a local queue Q.

• While Q has fewer than B entries:

– Call FSampZ(sample, sid,m× 1, 1, d+ 1) and receive (sample, sid, JzKi) for some z← Dm
Z,ωn

that is shared over Zqd+1 .
– Call FMult(mult, sid, qd · JPKi, JzKi) and receive (mult, sid, qd · Jp′Ki) where p′ = Pz ∈ Gm

d .
(Above we are multiplying and dividing shares by qd simply to compute an isomorphism between
Gd and Zqd+1 , because FMult expects to receive and return shares over the latter ring.)

– Call FSampZ(rround, sid, Jp′Ki) and receive (rround, sid, JpKi ∈ Zm
q , c = p′ mod Zm), where

p has distribution p +DZm−p′,d·ωn
∈ Zm.

– Call FBlind(blind, sid, [0 | G] · JpKi) and FBlind(blind, sid,A−H∗ · JpKi) and receive back JwKi
and Jw̄Ki, respectively. Broadcast these shares.

– Reconstruct w and w̄ from the announced shares, and put (JpKi, w̄,w) in local queue Q.

• Output (init, sid).

Perturb: On input (perturb, sid), if fewer than B calls to perturb have already been made, party i does:

• Dequeue (JpKi,w, w̄) from local queue Q.

• Output (perturb, sid, JpKi,w, w̄).

Figure 23: Perturbation protocol

29

	Introduction
	Preliminaries
	Continuous Gaussians
	Lattices and Discrete Gaussians
	Secret Sharing for Additive Groups
	UC Framework

	Threshold Key Generation, Gaussian Sampling, and Trapdoor Delegation
	Trapdoors and Standalone Algorithms
	Functionalities for Threshold Sampling
	Perturbation
	Syndrome Correction
	Legal Uses of the Functionalities

	Gaussian Sampling Protocol
	Trapdoor Delegation

	Threshold Signatures and IBE
	Protocols Without Trusted Setup
	Utility Functionalities
	Realizing FKG
	Realizing FCorrect
	Gadget Functionality
	Protocol and Security Analysis

	Realizing FPerturb
	Extending FSampZ
	Protocol and Security Analysis

