
High-Throughput Universally Composable
Threshold FHE Decryption

Guy Zyskind

Fhenix

Tel Aviv, Israel

guy@fhenix.io

Doron Zarchy

Fhenix

Tel Aviv, Israel

doron@fhenix.io

Max Leibovich

Fhenix

Tel Aviv, Israel

max@fhenix.io

Chris Peikert

Fhenix

University of Michigan

Ann Arbor, MI, USA

chris@fhenix.io,cpeikert@umich.edu

Abstract
Threshold Fully Homomorphic Encryption (FHE) enables arbitrary

computation on encrypted data, while distributing the decryption

capability across multiple parties. A primary application of inter-

est is low-communication multi-party computation (MPC), which

benefits from a fast and secure threshold FHE decryption protocol.

Several works have addressed this problem, but all existing solu-

tions rely on “noise flooding” for security. This incurs significant

overhead and necessitates large parameters in practice, making it

unsuitable for many real-world deployments. Some constructions

have somewhat better efficiency, but at the cost of weaker, non-

simulation-based security definitions, which limits their usability

and composability.

In this work, we propose a novel threshold FHE decryption proto-

col that avoids “noise flooding” altogether, and provides simulation-

based security. Rather thanmasking the underlying ciphertext noise,

our technique securely removes it via an efficient MPC rounding

procedure. The cost of this MPC is mitigated by an offline/online

design that preprocesses special gates for secure comparisons in the

offline phase, and has low communication and computation in the

online phase. This approach is of independent interest, and should

also benefit other MPC protocols (e.g., secure machine learning)

that make heavy use of non-linear comparison operations.

We prove our protocol secure in the Universal Composability

(UC) framework, and it can be generally instantiated for a variety

of adversary models (e.g., security-with-abort against a dishon-

est majority, or guaranteed output delivery with honest majority).

Compared to the state of the art, our protocol offers significant

gains both in the adversary model (i.e., dishonest vs. honest ma-

jority) and practical performance: empirically, our online phase

obtains approximately 20,000× better throughput, and up to a 37×
improvement in latency.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3744884

CCS Concepts
• Security and privacy→ Cryptography; Distributed systems
security; Security protocols; Key management.

Keywords
Fully Homomorphic Encryption, Threshold FHE, Universal Com-

posability, Secure Comparison

ACM Reference Format:
Guy Zyskind, Doron Zarchy, Max Leibovich, and Chris Peikert. 2025. High-

Throughput Universally Composable Threshold FHE Decryption. In Proceed-
ings of the 2025 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’25), October 13–17, 2025, Taipei, Taiwan. ACM, New York, NY,

USA, 15 pages. https://doi.org/10.1145/3719027.3744884

1 Introduction
Since the introduction of the first Fully Homomorphic Encryption

(FHE) scheme [30] about 16 years ago, FHE has received intense

sustained interest from both academia and industry. This is of no

surprise, since FHE enables a wide array of powerful secure ap-

plications. In its simplest form, FHE enables a client to delegate

arbitrary computations on its private data to an untrusted server,

without revealing anything about the data. More specifically: the

client first encrypts its data using an FHE scheme, yielding a cipher-

text (which hides the data) that is sent to the server. The server then

homomorphically evaluates any desired function on the ciphertext,

yielding a new ciphertext that encrypts the value of the function

on the data, which is returned to the client. Finally, the client uses

its secret key to decrypt the derived ciphertext, thus recovering the

function value.

Another very important application of FHE is to secure multi-
party computation (MPC), which enables several parties to com-

pute a function on their individual secret inputs, without revealing

anything but the final result. The standard approach here relies

on threshold FHE, which securely distributes the decryption key

across all the parties (typically, using some form of secret sharing).

Each party encrypts its own input, then the desired function is

homomorphically evaluated on these ciphertexts, then a qualified

subset of the parties jointly runs a threshold decryption protocol

(using their shares of the secret key) to recover the final answer.

This threshold decryption is the most delicate step, since it must

https://orcid.org/0000-0001-6656-6312
https://orcid.org/0000-0003-3891-154X
https://orcid.org/0000-0001-7027-3176
https://orcid.org/0000-0003-0419-7501
https://doi.org/10.1145/3719027.3744884
https://doi.org/10.1145/3719027.3744884

CCS ’25, October 13–17, 2025, Taipei, Taiwan Guy Zyskind, Doron Zarchy, Max Leibovich, and Chris Peikert

reveal the underlying plaintext and nothing more (about the secret

key or the like).

Every well studied FHE scheme is based on some variant of

the Learning With Errors (LWE) problem [44]. LWE is believed to

resist quantum attacks, and is the foundation for countless other

cryptographic constructions, from basic public-key encryption to

countless powerful and versatile concepts (see [43] for a survey).

In general, most of these constructions can benefit from being

“thresholdized,” i.e., distributing their secret keys and decryption

operations across several entities, to eliminate single points of

failure.

Given the importance of threshold decryption for FHE and LWE-

based encryption more broadly, many works have addressed this

problem in recent years (e.g., [2, 4, 21, 35, 37], to name just a few).

However, all of these protocols are either too inefficient for most ap-

plications [2, 4, 21, 37]; rely on new operational models (involving

additional trusted parties) or computational assumptions (for practi-

cal efficiency) [35, 42, 51]; or settle for less than simulation security,

instead resorting to weaker security definitions (e.g., [6, 19, 22])

that can be insufficient for the desired applications.

Noise flooding and its discontent. While all these works differ in

some respects, every one that applies to FHE uses some form of

noise flooding. The basic reason for this arises from the structure of

“standalone” FHE/LWE decryption, which works in two steps:

(1) First, we compute the inner product ⟨c, s⟩ of the ciphertext c
and secret-key vector s. This yields a “noisy encoding” of the
plaintext 𝜇, of the form 𝜇 + 𝑒 for some small enough error

(or noise) term 𝑒 .

(2) Then, we “round away” the noise 𝑒 to recover the plaintext 𝜇

itself.

In other words, the overall decryption function is the rounded inner
product of the ciphertext and the secret key.

In the threshold setting, each decrypting party typically holds a

share of the secret key, under some linear secret-sharing scheme.

Thanks to the linearity, the parties can locally compute a sharing

of the inner product ⟨s, c⟩ = 𝜇 + 𝑒 , i.e., the noisy plaintext. At this

point, the parties could simply reveal their shares to obtain the

noisy plaintext, and round away the error. Alas, this would be fatal
for security, since the noise (combined with some knowledge of

the encryption randomness) leaks secret information that can even

be used to recover the secret key. In particular, there is no hope of

simulating this threshold decryption protocol using knowledge of

the plaintext alone.

Noise flooding addresses this issue by having the decrypting

parties add a large amount of extra noise before revealing their

decryption shares. This statistically masks, or “floods,” the original

noise 𝑒 , enabling a simulation-based security proof. However, this

comes at a high cost: it requires the original noise rate to be very

small—asymptotically negligible—so to compensate, the other LWE

parameters must be made much larger to ensure security. This

results in significantly larger ciphertexts and slower homomorphic

operations, compared to the standalone setting.

Indeed, the current state-of-the-art proposed by Dahl et al. [21],
which is the only scheme having an adequate form of (simulation-

based) security and reasonable performance in practice, walks this

fine line by using bootstrapping to switch to small noise rate and

large LWE parameters just prior to threshold decryption (and not

for regular FHE ciphertexts and operations). Yet this still imposes

a high computational cost: a single decryption takes hundreds of

milliseconds on a well-equipped 128-core machine. More impor-

tantly, being compute-bounded like this limits the throughput of
the protocol, i.e., the number of possible decryptions per server per

unit of time—regardless of the speed of the network.

Given the growing interest in practical threshold FHE systems

(e.g., [38, 48, 50, 53]), there is a clear need for approaches that are

more efficient and scalable. In particular, a low-computation and low-
communication protocol would have much higher throughput than

existing ones, even if it required slightly more rounds of interaction.

In fact, if the latency of the extra rounds was less than the savings

in computation time, such a protocol could even have better latency

as well. This is the approach we pursue in this work.

1.1 Our Contribution
We propose a novel approach to threshold decryption for widely

used FHE schemes, and LWE-based encryption more generally. Our

protocol uses small LWE parameters—matching those for the stan-

dalone setting, in fact—and requires low computation and commu-

nication, at the cost of a slight increase in the rounds of interaction.

As shown by our evaluation, it thereby achieves substantially higher

throughput than the state of the art, and, in most realistic network

settings, even lower latency as well. Crucially, we accomplish all this

without compromising on security, obtaining strong simulation-

based security in the universal composability (UC) framework [10]

for a variety of adversary models.

In contrast to all prior work on threshold FHE, our protocol

completely avoids the costly “noise flooding” technique—in fact, it

adds no additional noise at all (thus preserving the LWE parameters

of standalone schemes). Instead, we devise a novel MPC-based ap-
proach for removing the ciphertext error during decryption. High

efficiency is obtained from an offline-online structure, where the

offline phase can be executed at any time before the ciphertext to be

decrypted is available, and the online phase takes a small number

of rounds and uses very little computation and communication. We

also highly optimize the offline phase and show empirically that it

is efficient enough to support real-time usage in practice.

At a more technical level, some highlights of our results include

the following.

(1) Our protocol is designed in the abstract Arithmetic Black Box

(ABB) model (see, e.g., [20, 26]), making it simple to express

and analyze, and very generally instantiable for a variety of

adversary models (e.g., dishonest majority, honest majority,

semi-honest or robust, static or adaptive corruptions, etc.).

(2) Empirically, our evaluation shows that our protocol is orders

of magnitude more efficient than the state of the art [21]. In

an instantiation of our protocol with the SPDZ
2
𝑘 protocol

for dishonest majority [33], we achieve up to 20,000× better

throughput, and up to 37× lower latency for decrypting a

single ciphertext.

(3) As a main ingredient, we develop new efficient MPC pro-

tocols for comparison-type functions (less-than, mod, etc.)

for moderate-size inputs (e.g., 64–256 bits). These protocols

require very low communication and round complexity in

High-Throughput Universally Composable
Threshold FHE Decryption CCS ’25, October 13–17, 2025, Taipei, Taiwan

their online phase, at the cost of a moderate but very practi-

cal offline phase. This contribution should be of independent

interest for many other MPC protocols and applications,

such as secure Machine Learning (e.g., [36, 47, 52]).

1.2 Technical Overview
The basic approach behind our protocol is to entirely avoid noise

flooding, and instead use MPC to completely remove the noise before
anything is revealed to the parties. This sidesteps the complexi-

ties of managing noise, and dramatically simplifies the security

analysis—instead of subtle arguments about noise distributions, we

just prove that our MPC protocol is UC-secure. Therefore, the par-

ties effectively have access only to an idealized decryption function,

and in particular they learn nothing except the decrypted plain-

text. We do not need to resort to novel security models or special

game-based definitions.

Of course, securely removing noise requires secure comparisons,

which typically involves bit-level operations that can be expensive

if implemented naïvely in MPC [12, 23, 24, 40]. To avoid such a cost,

we introduce a novel approach that trades a somewhat larger offline

phase for a much cheaper online phase. More concretely, in the

offline phase we build special preprocessed (i.e., input-independent)

“gates” of moderate size, so that in the online phase the parties can

securely perform the rounding step using just two “layers” of these

gates. Our empirical evaluation shows that this protocol achieves

much higher throughput and even significantly lower latency than

prior noise-flooding approaches, delivering fast threshold FHE de-

cryption in practice.

We next give a high-level technical overview of our threshold

decryption protocol. For simplicity of presentation and generality

of instantiation, it operates in the abstract Arithmetic Black-Box

(ABB) model for the ring Z
2
𝑘 . Essentially, the ABB provides an

idealized trusted party that: stores secret values in Z
2
𝑘 , including

random bits that it generates; computes desired products and linear

combinations of stored values; and reveals values upon request by

the honest parties. We stress that powers of two are popular choices

of moduli in FHE and LWE-based cryptography, but we can also

trivially support any other choice as well, by cheaply “modulus-

switching” to a power of two just before decryption.

Let 𝑞 = 2
𝑘
be the ciphertext modulus and 𝑝 = 2

𝑚 ≪ 𝑞 be the

plaintext modulus, and let 𝐿 = 𝑞/𝑝 . The secret key is a vector s
over Z𝑞 = Z

2
𝑘 , which is stored in the ABB. When the honest parties

wish to decrypt a ciphertext c, they proceed as follows:

(1) Inner product. They instruct the ABB to internally compute

the “noisy message” 𝑧 = ⟨c, s⟩ = 𝐿 · 𝜇+𝑒 , where 𝜇 ∈ Z𝑝 is the

message and 𝑒 ∈ [0, 𝐿) is the noise. This is done by taking a

linear combination, which is purely local computation in a

typical instantiation of the ABB.

(2) Error extraction. They engage in a lightweight MPC pro-

tocol, in which the ABB computes and stores the error, as

𝑒 = 𝑧 mod 𝐿 (still stored as an element of Z
2
𝑘).

(3) Message recovery. They instruct the ABB to cancel out the

noise value by computing 𝑧−𝑒 = 𝐿 · 𝜇 (again using linearity),

then have ABB open this value, which reveals 𝜇 itself.

The only nontrivial step is the secure computation (by ABB) of

𝑧 mod 𝐿 from 𝑧. Doing so naïvely requires concretely too many

rounds and/or too much communication for our purposes [23].

Instead, we take a novel approach of computing the mod operation

using just two layers of moderate-size preprocessed “gates,” for

very specially designed functions; see Section 3.3 for details.

An interesting side note is that these gates are inspired by works

on Function Secret Sharing (FSS), which allows to perform MPC

with very little or even no interaction [7, 8, 55]—but usually at

high computational and/or storage cost, and often requiring novel

hardness assumptions. While precomputing our gates is somewhat

(but not very) costly, it allows us to compute secure comparisons

using a small constant number of rounds and low communication

in the online phase. For example, for 𝑘 = 64, which is a value of

interest in this work and in many others (given the prevalence of

64-bit architectures), the online phase requires only three sequential

openings from the ABB (two of which are randomly “masked,” and

hence can be handled more efficiently). Finally, since the online

phase has very low communication and computation, it allows

us to scale up the number of parallel decryptions to obtain high

throughput.

2 Preliminaries
2.1 Notation
For a positive integer 𝑛, define [𝑛] = {0, 1, . . . , 𝑛 − 1}. (We caution

that this notation almost overlaps with the one for stored values

in FABB, but the intended meaning should always be clear from

context.) Let Z𝐴 be the quotient ring of integers modulo a positive

integer 𝐴; in this work, 𝐴 is always a power of two.

2.2 Arithmetic Black Box (ABB) Model
In the MPC literature, the Arithmetic Black Box (ABB) model is

a widely used abstraction for secure low-level arithmetic opera-

tions [20, 25, 28, 34]. The ABB model supports basic operations,

including addition and multiplication, on elements of some specific

ring or field; in this work, we exclusively use rings of the form

Z
2
𝑘 . The ABB greatly simplifies the design, presentation, and mod-

ularity of protocols that use it, by abstracting away the underlying

cryptographic mechanisms like secret-sharing schemes and MACs.

The functionalityFABB (Figure 1) formalizes the Arithmetic Black

Box model as an idealized trusted party in the UC framework,

defining an abstraction for secure, reactive arithmetic computations.

It allows parties to input, perform arithmetic operations on, and

reveal secret values that are stored within the functionality. We

present just FABB’s “core” definition, which can be paired with any

standard “shell” corresponding to the adversary model, e.g., honest

majority with fairness, dishonest majority with abort, adaptive

security, etc.

Formally, we present our decryption protocol in the FABB-hybrid
model using the UC framework, and show that it perfectly realizes

an abstract decryption functionality having the same shell as FABB.
This makes our protocol highly general and applicable, since it

automatically inherits the specific efficiency and security features

of any particular realization of FABB with a given shell.

For convenience of usage, we have slightly modified the interface

of FABB as follows:

• We have elided the Input command, because our protocols

do not use it.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Guy Zyskind, Doron Zarchy, Max Leibovich, and Chris Peikert

Functionality FABB for ring 𝑅 = Z
2
𝑘

• Random Bit Generation: On input (RandBit, sid, id)
from all honest parties (where id is fresh), send that

tuple to the adversary, sample uniform 𝑏 ← {0, 1}, and
store (id, 𝑏).
• Linear Combination: On input

(LinComb, sid, id, (id𝑗) 𝑗 , 𝑐 ∈ 𝑅, (𝑐 𝑗 ∈ 𝑅) 𝑗) from

all honest parties (where each id𝑗 is stored in memory

and id is fresh), send that tuple to the adversary,

retrieve each (id𝑗 , 𝑥 𝑗) from memory, compute

𝑦 = 𝑐 +∑𝑗 𝑐 𝑗 · 𝑥 𝑗 ∈ 𝑅, and store (id, 𝑦).
• Multiplication: On input (Mult, sid, id, id1, id2) from
all honest parties (where id1, id2 are stored in memory

and id is fresh), send that tuple to the adversary, retrieve
(id1, 𝑥), (id2, 𝑦) from memory, compute 𝑧 = 𝑥 · 𝑦 ∈ 𝑅,
and store (id, 𝑧).
• Opening: On input (Open, sid, id, 𝑙) from all honest

parties, where 𝑙 ≤ 𝑘 (and id is present in memory),

retrieve (id, 𝑦) from memory, let 𝑦′ = 𝑦 mod 2
𝑙
, and

output (Open, sid, id, 𝑙, 𝑦′) to the adversary and to all

the parties.

Figure 1: Arithmetic black box functionality

• We have added the RandBit command, which generates and

stores a uniformly random bit with some specified identi-

fier. This has known implementations [23, 28, 46] that are

compatible with existing realizations of FABB for Z
2
𝑘 .

• We have made the Open command a “truncated opening,”

where only the least-significant 𝑙 bits of the stored value are

revealed, for some desired 𝑙 ≤ 𝑘 . This enhancement can be

implemented generically (in terms of the standard full open-

ing) by using RandBit and linear operations to randomize

the most-significant 𝑘 − 𝑙 bits of the revealed value. Or, in

some realizations of FABB this can be implemented more

directly and efficiently; e.g., with Shamir sharing over Ga-

lois rings [20, 27], revealing just the low 𝑙 bits of each share

opens just the low 𝑙 bits of the shared value.

Notation. When defining protocols that use FABB, it is cumber-

some to use its formal interface, so for convenience we instead use

some more natural notation.

We write [𝑥]𝑘 to denote a value 𝑥 ∈ Z
2
𝑘 that has been stored in

the functionality FABB; this value is implicitly identified by some

unique id associated with 𝑥 .1 The ids for ephemeral variables are

distinct (not reused) across multiple calls to the same session of a

protocol. Note that a public value can be stored in FABB by calling

LinCombwith empty sets of identifiers id𝑗 and coefficients 𝑐 𝑗 , and 𝑐

equal to the public value.

1
Note that this matches the widespread notation for secret-shared values, and this is

by intent: the reader may think of values stored in FABB as being secret-shared among

the parties, in a typical realization of FABB . However, we do not use any secret-sharing
scheme explicitly, but instead abstract it away with FABB .

We overload the operators + and · instead of explicitly calling

FABB’s LinComb andMult commands. For example, [𝑧]𝑘 = [𝑥]𝑘 ·
[𝑦]𝑘 + 𝑐 denotes that the values 𝑥,𝑦 stored in FABB are multiplied

using the Mult command, then the constant value 𝑐 is added using

LinComb, and the resulting value 𝑧 is stored in FABB’s memory.

This overloading of notation is commonly used in prior works,

e.g., [34].

We also extend FABB for the ring Z
2
𝑘 to store and operate on

values in Z
2
𝑙 , for any 𝑙 < 𝑘 . We denote such stored values by [𝑥]𝑙 ,

later opening at most 𝑙 of their bits, and implicitly “down-cast”

stored values modulo smaller powers of two as needed. All this is

well defined via the natural (mod-2
𝑙
) ring homomorphism from Z

2
𝑘

to Z
2
𝑙 . In other words, we can generically obtain this enhancement

by using, in place of 𝑥 ∈ Z
2
𝑙 itself, any 𝑥 ∈ Z

2
𝑘 for which 𝑥 ≡ 𝑥

(mod 2
𝑙). Moreover, in typical realizations of FABB like [20, 29],

this can be implemented more directly and efficiently, simply by

reducing each share by a correspondingly smaller modulus.

2.2.1 Realizing FABB. Protocols that realize FABB for various adver-
sary models has been extensively studied in the literature (though

more often in the prime-field case, whereas we work with power-

of-two modulus).

• Dishonest majority. Most commonly, the setting of dis-

honest majority (with abort) is covered by SPDZ line of

work (over Z
2
𝑘), e.g., [20, 23, 28, 29]. In this setting, additive

secret-sharing is used, and all shares are authenticated via

information-theoretic message authentication codes (MACs).

This technique is very efficient, as it adds very little overhead

compared to a realization for semi-honest adversaries.

• Honest (super-)majority. In these settings, it is common

to use either replicated secret-sharing (for a small number

of parties, due to the size of the shares) or Shamir secret

sharing over Galois rings. These techniques provide both

semi-honest and active security, and have been explored

in several works [21, 29]. In the case of an honest super-

majority (i.e., 𝑡 < 𝑛/3 corrupt parties), using standard error-

correction techniques on the parties’ revealed shares can

ensure robustness and fairness; see, e.g., [29] for details.

Essentially all realizations of FABB work via some linear secret-

sharing scheme, which means that LinComb can be performed

locally (with no communication between parties) using linear op-

erations on shares. By contrast, Mult typically requires some com-

munication, and is often implemented by preprocessing Beaver

multiplication triples [3, 15, 26].

2.3 Preprocessed Gates
Our protocols obtain their online efficiency from the offline prepa-

ration and careful use of preprocessed gates. Let 𝐹 : 𝐴 → 𝐵 be an

arbitrary function, where 𝐴 = Z2
𝑎 and 𝐵 = Z

2
𝑏 . A preprocessed

gate for 𝐹 consists of:

(1) a stored value [𝑟]𝑎 in FABB of some secret, uniformly random

masking term 𝑟 ∈ 𝐴, and
(2) a lookup table

(
[𝑦𝑥 ′]𝑏

)
𝑥 ′∈𝐴 , stored in FABB, of all the outputs

𝑦𝑥 ′ = 𝐹 (𝑥 ′ − 𝑟) of the shifted function.

Conceptually, the gate can be seen as a kind of naïve function secret

sharing of 𝐹 .

High-Throughput Universally Composable
Threshold FHE Decryption CCS ’25, October 13–17, 2025, Taipei, Taiwan

To apply such a gate to a stored [𝑥]𝑎 , yielding the stored output

[𝐹 (𝑥)]𝑏 , the parties simply:

(1) Let 𝑥 ′ = FABB .Open([𝑥]𝑎 + [𝑟]𝑎). (Here 𝑥 ′ = 𝑥 + 𝑟 ∈ 𝐴 is

the “masked” input.)

(2) Output [𝑦𝑥 ′]𝑏 = [𝐹 (𝑥 ′ − 𝑟)]𝑏 = [𝐹 (𝑥)]𝑏 . (This just identifies
the appropriate stored value in FABB corresponding to 𝑥 ′.)

This uses one call to FABB .Open; the remainder is one invocation

of LinComb (recall that this is typically realized locally, with no

communication) and a local computation of the stored output’s iden-

tifier. Observe that if 𝑟 ∈ 𝐴 is uniformly random and independent of

everything else, then this procedure is information-theoretically se-

cure, because the only revealed value is 𝑥 ′, which perfectly hides 𝑥 .

More generally, we also consider gates for parts of functions
whose domains 𝐴 are infinite additive groups, like 𝐴 = Z. In this

case, the mask value 𝑟 is from some suitable finite subset of the

domain, and the lookup table is

(
[𝐹 (𝑥 ′−𝑟)]𝑏

)
𝑥 ′∈𝑋 ′ for some suitable

finite 𝑋 ′ ⊂ 𝐴. Applying such a gate to a stored [𝑥]𝑎 is an ad-hoc

process, because opening 𝑥 ′ = 𝑥 + 𝑟 ∈ 𝐴 may reveal information

about 𝑥 , and also it might be that 𝑥 ′ ∉ 𝑋 ′. Instead, we will take care
to open only partial values that fully mask the stored input, and to

guarantee that the needed output is stored in the lookup table. Our

Sign gates, as constructed in Section 4.2 and used in Section 3.3, are

the primary example of this.

3 Distributed LWE Decryption via MPC
Rounding

In this section we define an abstract ideal functionality for decrypt-

ing LWE ciphertexts—in particular, decryption in all widely used

FHE schemes—and give a protocol that uses FABB to perfectly real-

ize this functionality. The functionality is defined in Section 3.1, the

protocol and its main subroutine are defined in Sections 3.2 and 3.3,

and suggested parameterizations are given in Section 3.4.

3.1 Functionality FDecrypt
Here we define and discuss our abstract ideal functionality FDecrypt
(Figure 2) for decrypting LWE ciphertexts. It is parameterized by

a power-of-two ciphertext modulus 𝑞 = 2
𝑘
and plaintext modulus

𝑝 = 2
𝑚
for some positive integers 𝑘 > 𝑚. These parameters are

used globally throughout this work.

The functionality FDecrypt has two commands: Init, which gen-

erates a public/secret key pair, and Decrypt, which may be called

many times to decrypt given ciphertexts. The Decrypt command

simply outputs the rounded (from Z𝑞 to Z𝑝) inner product of the

given ciphertext and the secret key.

Discussion. The functionality is parameterized by a KeyGen al-

gorithm for the underlying LWE-based cryptosystem. The Init com-

mand simply runs this algorithm, stores the secret key s for later
use, and outputs the public key to all parties. In our realization

we assume a secure FABB-aided procedure for KeyGen, which can

be obtained generically by standard MPC techniques, or more ef-

ficiently using the scheme’s specific structure. For example, we

can generate public LWE samples for a secret s by sampling secret

random errors and using FABB’s linearity features.

We strongly emphasize that our FDecrypt is not a complete func-

tionality for threshold encryption; it is just a key ingredient in a

Functionality FDecrypt
• Initialize: Once (Init, sid) is received from each hon-

est party, run (𝑝𝑘, s) ← KeyGen, store s, and send

(Init, sid, 𝑝𝑘) to the adversary and all the parties. Do

not act on any further Init commands for this session.

• Decrypt: On input (Decrypt, sid, c) from all the honest

parties, where c is an LWE ciphertext over Z𝑞 , send
(Decrypt, sid, c, ⌊⟨c, s⟩⌉𝑝) to the adversary and to all

the parties, where ⌊𝑥⌉𝑝 :=
⌊ 𝑝
𝑞
· 𝑥

⌉
∈ Z𝑝 .

Figure 2: Functionality for decrypting LWE ciphertexts

protocol to realize such a functionality. In order to be meaningfully

secure, this protocol would need to be designed so that honest par-

ties Decrypt only ciphertexts that are known to be suitably “well

formed.” Otherwise, the Decrypt command would act as an unre-

stricted decryption oracle, from which it is easy to learn the secret

key using standard techniques. Specific restrictions on decrypted

ciphertexts in the threshold setting have been considered in many

prior works (e.g., [21, 35]), and are outside the scope of this work.

3.2 Protocol ΠDecrypt
Here we define our main decryption protocol (Figure 3), which

perfectly realizes FDecrypt in the FABB-hybrid model. (See Section 2.2

for the details of FABB.) Recalling that the ciphertext modulus is

𝑞 = 2
𝑘
and the plaintext modulus is 𝑝 = 2

𝑚 < 𝑞, we let 𝑙 = 𝑘−𝑚 ≥ 1

and 𝐿 = 2
𝑙 = 𝑞/𝑝 .

For Decrypt on a given ciphertext c, the parties use the stored
secret key to linearly compute (inside FABB) the “noisy decryption

value” [𝑧]𝑘 = [𝜇 · 𝐿 + 𝑒]𝑘 , where the message 𝜇 ∈ Z2
𝑚 and the

noise 𝑒 ∈ [𝐿] (for convenience, we shift the noise term to be non-

negative). In other words, the message occupies the high𝑚 bits, and

the noise occupies the low 𝑙 bits. Then, using the Mod𝑙,𝑘 subroutine

(Procedure 1), the parties securely compute and cancel out the noise

term, i.e., they compute [𝑒]𝑘 = [𝑧 mod 𝐿]𝑘 and [𝑧]𝑘−[𝑒]𝑘 = [𝜇 ·𝐿]𝑘 .
Finally, they Open the latter value to get 𝜇.2

The main challenge, therefore, is to securely compute the noise

term [𝑒]𝑘 = [𝑧 mod 𝐿]𝑘 from [𝑧]𝑘 , i.e., mod-𝐿 reduction on a 𝑘-bit

secret input. We give a subroutine for this in Section 3.3 below.

The following is our main security theorem, which follows

straightforwardly from the correctness of our subroutines and the

fact that every opened intermediate value is masked by a fresh

uniformly random value. The formal proof is given in Section A.

Theorem 1. Protocol ΠDecrypt (Figure 3) perfectly realizes FDecrypt in
the FABB-hybrid model, under the same (adaptive corruption) shell.

Recall that the shell of a protocol captures the underlying ad-

versarial model—e.g., static or more general adaptive corruptions,

semi-honest or malicious adversarial behavior, security with abort

or guaranteed output delivery—as well as the “access structure.”

For the access structure, a prevalent choice is the threshold model,

2
We remark that opening the original value 𝑧 itself would reveal the noise in the

ciphertext, which cannot be simulated from the decrypted message alone, and typically

can lead to a complete break of the scheme.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Guy Zyskind, Doron Zarchy, Max Leibovich, and Chris Peikert

Protocol ΠDecrypt

• On input (Init, sid), the parties run a secure FABB-
hybrid protocol for KeyGen that results in a stored

secret key [s]𝑘 and a public key 𝑝𝑘 .

• On input (Decrypt, sid, c), the parties do the following:

(1) Use FABB to compute [𝑧]𝑘 = ⟨c, [s]𝑘 ⟩ + 2
𝑙−1

.

(2) Run Mod𝑙,𝑘 (sid, [𝑧]𝑘) to produce [𝑒]𝑘 .
(3) Call FABB .Open on [𝑧]𝑘 − [𝑒]𝑘 and receive 𝜇′ ∈ Z𝑞

(which is a multiple of 𝐿).

(4) Output 𝜇 = 𝜇′/𝐿 ∈ Z𝑝 .

Figure 3: Protocol for decrypting LWE ciphertext

wherein the functionality reveals all its (past and future) internal

random choices to the adversary once a certain number of parties

have been corrupted.

3.3 Secure Mod and Comparison via LTRand𝑙,𝑘
Here we securely implement the Mod𝑙,𝑘 subroutine and similar

comparison functions, like (modular) less-than-zero ModLTZ𝑘 . We

implement these as “thin wrappers” around a new core abstraction

and efficient procedure we call LTRand𝑙,𝑘 , which is one of our main

technical contributions.

Essentially, LTRand𝑙,𝑘 takes a stored input in Z
2
𝑘 (or [2𝑘]), ran-

domly masks it modulo 2
𝑙
, and returns the (opened) masked value,

the stored mask, and a stored bit indicating whether the former is

less than the latter. Its precise specification is as follows, and our

efficient implementation is given below in Procedure 3.

Input: stored value [𝑧]𝑘 for some 𝑧 ∈ Z
2
𝑘 .

Output: • 𝑧′ = 𝑧 + 𝑟 mod 2
𝑙
for fresh uniformly random 𝑟 ∈ [𝐿],

• stored value [𝑟]𝑘 , and
• stored bit [𝑢]𝑘 , where 𝑢 = (𝑧′

?

< 𝑟) = (𝑧′ − 𝑟
?

< 0) ∈ {0, 1}.
Observe that the output reveals nothing, because 𝑧′ ∈ [2𝑙] is uni-
formly random for any input 𝑧.

Although the interface of LTRand𝑙,𝑘 may seem somewhat ad-

hoc, it is rich enough to directly implement several fundamental

comparison procedures of wide applicability, even beyond our im-

mediate purposes, e.g., secure machine learning [36, 47, 52, 54]. We

next give two useful examples of this.

Secure mod and comparison. Mod𝑙,𝑘 (Procedure 1) securely im-

plements modular reduction, mapping stored input [𝑧]𝑘 to stored

output [𝑧 mod 2
𝑙]𝑘 . Importantly, the output is also a 𝑘-bit value in

Z
2
𝑘 , with zeros in its most significant 𝑘 − 𝑙 bits.3 (Recall that in the

decryption protocol ΠDecrypt, this is needed to extract and cancel

out the ciphertext noise, leaving the message unaffected.)

As an optimization, with a typical realization of FABB it suffices

for LTRand𝑙,𝑘 to produce [𝑢]𝑘−𝑙 instead of [𝑢]𝑘 , which can save

significant storage in our typical setting where 𝑘 − 𝑙 ≪ 𝑘 . This

3
Recall from Section 2.2 that reducing from modulus 2

𝑘
to 2

𝑙
for 𝑙 < 𝑘 is trivially

supported by FABB , but the result has just 𝑙 bits of precision (it is in Z
2
𝑙), whereas

here we need to retain 𝑘 bits of precision, with zeros in the most-significant bits.

is because 2
𝑙 · [𝑢]𝑘−𝑙 can naturally be treated as [2𝑙 · 𝑢]𝑘 in the

underlying secret-sharing schemes.

Procedure 1:Mod𝑙,𝑘 (sid, [𝑧]𝑘)
(1) Run LTRand𝑙,𝑘 (sid, [𝑧]𝑘) to get 𝑧′, [𝑟]𝑘 , [𝑢]𝑘 .
(2) Output [𝑒]𝑘 = 𝑧′ − [𝑟]𝑘 + 2

𝑙 · [𝑢]𝑘 .

Lemma 2. Procedure Mod𝑙,𝑘 is correct.

Proof. The output 𝑒 = 𝑧′ − 𝑟 + 2
𝑙 · 𝑢 satisfies 𝑒 ≡ 𝑧′ − 𝑟 ≡ 𝑧

(mod 2
𝑙) and 𝑒 ∈ [2𝑙], because 𝑧′ − 𝑟 ∈ (−2

𝑙 , 2𝑙) (since 𝑧′, 𝑟 ∈ [2𝑙])
and 𝑢 = (𝑧′ − 𝑟

?

< 0). So, 𝑒 = 𝑧 mod 2
𝑙
, as claimed. □

As another example, for any integer 𝑡 ≥ 1 defining𝑇 = 2
𝑡
, define

the “modular less-than-zero” function ModLTZ𝑡 : Z𝑇 → {0, 1} as

ModLTZ𝑡 (𝑥) :=

{
0 if 𝑥 ∈ [0,𝑇 /2) (mod 𝑇)
1 if 𝑥 ∈ [−𝑇 /2, 0) ≡ [𝑇 /2,𝑇) (mod 𝑇).

(1)

In other words, this corresponds to whether the input’s signed
representative in [−𝑇 /2,𝑇 /2) is less than zero; equivalently, it is

the most-significant bit of the input’s 𝑡-bit unsigned representative

in [0,𝑇). Procedure 2 gives a secure procedure for this function; it
is closely inspired by the MSB procedure in [23]. Observe that it

reveals nothing because the only opened value is 𝑇 /2 times the bit

ℎ′ = ℎ ⊕ 𝑏, which is uniformly random for any input 𝑧.

Procedure 2:ModLTZ𝑡 (sid, [𝑧]𝑡)
(1) Run Mod𝑡−1,𝑡 (sid, [𝑧]𝑡) to get [𝑒]𝑡 = [𝑧 mod 𝑇 /2]𝑡 .
(2) Call FABB .RandBit to get [𝑏]𝑡 .
(3) Call FABB .Open on [𝐻 ′]𝑡 = [𝑧]𝑡 −[𝑒]𝑡 +(𝑇 /2) · [𝑏]𝑡 , yielding

𝐻 ′ = (𝑇 /2) · ℎ′ ∈ Z𝑇 for some ℎ′ ∈ {0, 1}.
(4) Output ℎ′ + [𝑏]𝑡 − 2ℎ′ · [𝑏]𝑡 .

Lemma 3. Procedure ModLTZ𝑡 is correct.

Proof. By Lemma 2, 𝑒 = 𝑧 mod 𝑇 /2, so 𝑧 − 𝑒 ≡ (𝑇 /2) · ℎ
(mod 𝑇), where ℎ =ModLTZ𝑡 (𝑧) ∈ {0, 1}. Therefore, the opened
bit is ℎ′ = ℎ ⊕ 𝑏 ∈ {0, 1}. Finally, ℎ + 𝑏 − 2ℎ′𝑏 = ℎ′ ⊕ 𝑏 = ℎ =

ModLTZ𝑡 (𝑧), as desired. □

Implementation of LTRand𝑙,𝑘 . The LTRand𝑙,𝑘 procedure has an

offline-online structure with a very efficient online phase, thanks

to its usage of rich preprocessed gates, as prepared in the offline

phase. It is parameterized by an input bit length 𝑏 for (most of)

these gates, which determines the following additional parameters:

• For 𝐿 = 2
𝑙
, values in [𝐿] are represented in base 𝐵 = 2

𝑏
, i.e.,

using “digits” of bit length 𝑏.

• The number of digits is therefore 𝑑 = ⌈𝑙/𝑏⌉, where we let
𝐷 = 2

𝑑
, and the bit length of the most-significant digit is

𝑏′ = 𝑙 − (𝑑 − 1)𝑏 ≤ 𝑏, where we let 𝐵′ = 2
𝑏′
.

In the offline phase, LTRand𝑙,𝑘 prepares (using the procedures

given in Section 4) several Sign gates for 𝑏-bit inputs, and one

ModLTZ gate for a (𝑑 + 1)-bit input. Each of these is used just once

in a later call to the online phase.

High-Throughput Universally Composable
Threshold FHE Decryption CCS ’25, October 13–17, 2025, Taipei, Taiwan

The online phase first opens 𝑧′ = 𝑧 + 𝑟 mod 𝐿, where 𝑟 ∈ [𝐿]
is a uniformly random mask constructed from the masks 𝑟𝑖 of the

individual Sign gates—specifically, the 𝑟𝑖 are the base-𝐵 digits of 𝑟 .

(Observe that 𝑟 perfectly masks the low 𝑙 bits of 𝑧, so 𝑧′ reveals
nothing.) It then uses the preprocessed gates to securely compute

(inside FABB) the bit

𝑢 = (𝑧′
?

< 𝑟) ∈ {0, 1}.

Finally, it outputs 𝑧′ and the stored values 𝑟,𝑢.

The main challenge lies with securely computing the bit 𝑢. The

remainder of this subsection describes how we do this using the

preprocessed Sign and ModLTZ gates.

Define the function Sign : Z→ {−1, 0, 1} as

Sign(𝑥) :=


−1 if 𝑥 < 0

0 if 𝑥 = 0

+1 if 𝑥 > 0.

(2)

Our approach is based on the following central recurrence for the

Sign function.

Lemma 4. Let 𝑥, 𝑟 ∈ [𝐵𝑑] = [2𝑏𝑑] have base-𝐵 representations
𝑥 =

∑
𝑖∈[𝑑] 𝑥𝑖 · 𝐵𝑖 with each 𝑥𝑖 ∈ [𝐵], and similarly for 𝑟 . Then the

sign of 𝑥 − 𝑟 is the “sign of weighted signs” of the digit differences:

Sign(𝑥 −𝑟) = Sign
(∑︁
𝑖∈[𝑑]
(𝑥𝑖 −𝑟𝑖) ·𝐵𝑖

)
= Sign

(∑︁
𝑖∈[𝑑]

Sign(𝑥𝑖 −𝑟𝑖) · 2𝑖
)
.

(3)

Proof. If 𝑥𝑑−1 − 𝑟𝑑−1 ≠ 0, then Sign(𝑥 − 𝑟) = Sign(𝑥𝑑−1 − 𝑟𝑑−1),
since

|𝑥𝑑−1 − 𝑟𝑑−1 | · 𝐵𝑑−1 >

��� ∑︁
𝑖∈[𝑑−1]

(𝑥𝑖 − 𝑟𝑖) · 𝐵𝑖
���

by the triangle inequality, the fact that each |𝑥𝑖 − 𝑟𝑖 | ≤ 𝐵 − 1, and

geometric sums. For similar reasons, Sign(𝑥𝑑−1 − 𝑟𝑑−1) equals the
right-hand side of Equation (3), because each |Sign(𝑥𝑖 − 𝑟𝑖) | ≤ 1.

Otherwise, 𝑥𝑑−1 − 𝑟𝑑−1 = 0, so its contribution to each side of

Equation (3) is zero, and the claim holds by induction. □

Similarly to Lemma 4, for any 𝑥, 𝑟 ∈ [𝐵𝑑] with their 𝑑-digit

base-𝐵 representations,

(𝑥
?

< 𝑟) = (𝑥−𝑟
?

< 0) =ModLTZ𝑑+1

(∑︁
𝑖∈[𝑑]

Sign(𝑥𝑖−𝑟𝑖)·2𝑖 mod 2𝐷

)
.

(4)

We emphasize that the weighted sum is in the interval (−𝐷, 𝐷),
so the reduction modulo 2𝐷 does not “wrap around,” hence the

equation holds true. We need this form of the equation because in

our procedure, the weighted sum is computed by FABB, which is

limited to modular arithmetic with a certain amount of precision.

Altogether, Equation (4) gives a very efficient way to securely

compute the bit 𝑢 = (𝑧′
?

< 𝑟) using the preprocessed Sign gates and

ModLTZ gate. Specifically, using the digits 𝑧′𝑖 of 𝑧
′
, we first look up

the stored digit-difference signs [Sign(𝑧′𝑖 − 𝑟𝑖)] from the Sign gates,

then compute their weighted sum, then apply the ModLTZ gate to

the result. Finally, we remark that this approach generalizes to more

“layers” of signs of weighted signs, by applying Lemma 4 inductively.

This yields a tradeoff between the preprocessing computation and

storage, and number of sequential calls to FABB .Open, and can be

helpful for handling larger input moduli (i.e., values of 𝑘).

Procedure 3: LTRand𝑙,𝑘 (sid, [𝑧]𝑘)
Preprocessing phase (before [𝑧]𝑘 is known):

(1) Call PrepModLTZ𝑑+1,𝑚 (sid) (Procedure 7) to prepare a

ModLTZ gate.

(2) For each 𝑖 ∈ [𝑑 − 1], call PrepSign𝑏,𝑑+1
(sid) (Procedure 5) to

prepare a Sign gate

[𝑟𝑖]𝑘 , ([Sign(𝑥𝑖 − 𝑟𝑖)]𝑑+1)𝑥𝑖 ∈[𝐵] .
For 𝑖 = 𝑑 − 1, do the same but with 𝑏′, 𝐵′ in place of 𝑏, 𝐵

(respectively).

(3) Compute [𝑟]𝑘 =
∑

𝑖∈[𝑑] [𝑟𝑖]𝑘 · 𝐵𝑖 .
⊲ 𝑟 = (𝑟𝑑−1 · · · 𝑟1𝑟0)𝐵 is the base-𝐵 representation of a

uniformly random 𝑟 ∈ [𝐿].
Online phase (once [𝑧]𝑘 is known):

(1) Call FABB .Open on [𝑧]𝑙 + [𝑟]𝑙 and receive 𝑧′ ∈ [𝐿].
⊲ 𝑧′ = 𝑧 + 𝑟 mod 𝐿

(2) Express 𝑧′ in base 𝐵, as 𝑧′ =
∑

𝑖∈[𝑑] 𝑧
′
𝑖 · 𝐵𝑖 where 𝑧′𝑖 ∈ [𝐵],

and 𝑧′
𝑑−1
∈ [𝐵′].

(3) For each 𝑖 ∈ [𝑑], let [𝑦𝑖]𝑑+1 = [Sign(𝑧′𝑖 − 𝑟𝑖)]𝑑+1 from the

corresponding Sign gate.

(4) Compute [𝑦]𝑑+1 =
∑

𝑖∈[𝑑] [𝑦𝑖]𝑑+1 · 2𝑖 .
(5) Apply (as defined in Section 2.3) the ModLTZ gate to [𝑦]𝑑+1,

yielding [𝑢]𝑘 . ⊲ 𝑢 = (𝑧′
?

< 𝑟), by Equation (4)

(6) Output 𝑧′, [𝑟]𝑘 , [𝑢]𝑘 .

Lemma 5. Procedure LTRand𝑙,𝑘 is correct.

Proof. Adopting the procedure’s notation, we analyze the val-

ues that are computed and opened by FABB. First, on Line (1),

FABB opens 𝑧′ = 𝑧 + 𝑟 mod 𝐿, where 𝑟 ∈ [𝐿] is uniformly ran-

dom. Then, by the correctness of the Sign gates, Lines (3) and (4)

compute 𝑦 =
∑

𝑖∈[𝑑] Sign(𝑧′𝑖 − 𝑟𝑖) · 2
𝑖

mod 2𝐷 . Then, by Equa-

tion (4) and the correctness of the ModLTZ gate, Line (5) computes

𝑢 = (𝑧′
?

< 𝑟). □

3.4 Efficiency and Parameters
Communication and rounds. The online phase of the protocol

ΠDecrypt has very low communication and computation, and few

rounds. Specifically, each invocation ofDecrypt has three sequential
calls to FABB .Open:

(1) at the start of LTRand, to reveal a masked 𝑙-bit value;

(2) when applying the ModLTZ gate in LTRand, to reveal a

masked (𝑑 + 1)-bit value; and
(3) when opening the decrypted message, to reveal an unmasked

𝑘-bit value.

So, the total number of opened bits is 𝑙 + (𝑑 + 1) +𝑘 . The rest of the
online phase is either local computation or calls to FABB .LinComb,
which in a typical realization are also just local computation. There

are no calls to FABB .Mult in the online phase.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Guy Zyskind, Doron Zarchy, Max Leibovich, and Chris Peikert

Gate storage and offline efficiency. Each call toDecrypt consumes,

and hence requires producing, several preprocessed gates in FABB.
Specifically, it uses (ignoring the masking values, which are in-

significant):

• One ModLTZ gate, represented by a table of 2
𝑑+1

stored𝑚-

bit values (using the optimization mentioned in Section 3.3).

• 𝑑 = ⌈𝑙/𝑏⌉ Sign gates, each represented by a table of 𝐵 = 2
𝑏

(or 𝐵′ = 2
𝑏′
, for the most-significant digit) stored (𝑑 + 1)-bit

values.

Therefore, the total bit length of the stored gates is

(𝑑 + 1) · ((𝑑 − 1) · 2𝑏 + 2
𝑏′) +𝑚 · 2𝑑+1 . (5)

This is approximately optimized for 𝑏 ≈ 𝑑 ≈
√
𝑙 =
√
𝑘 −𝑚 (because

the 2
𝑏
and 2

𝑑+1
factors dominate their respective terms), though

finer-grained optimization tends to produce somewhat larger 𝑑 and

somewhat smaller 𝑏.

The offline cost is roughly proportional to the total number of

entries in the tables, because the preprocessing makes roughly that

many calls to FABB .Mult (plus local computation); see Section 4.

The total number of table entries is roughly 𝑑 · 2𝑏 + 2
𝑑+1

, which

again is optimized for 𝑏 ≈ 𝑑 ≈
√
𝑙 .

Realization with SPDZ
2
𝑘 . We give some concrete communication

and storage numbers when FABB is instantiated using the SPDZ
2
𝑘

protocol [20], for the realistic example parameters

𝑘 = 64 , 𝑚 = 1 , 𝑏 = 8 and hence 𝑑 = 8 , 𝑏′ = 7.

We use 𝑠 = 64 for the MAC’s statistical security parameter, which

is also the statistical security level of each call to FABB .Open.
Naïvely, using the SPDZ

2
𝑘 protocol exactly as written, the three

sequential calls to FABB .Open each take three broadcast rounds, for

a total of nine rounds. More specifically, each call to FABB .Open
runs the SPDZ

2
𝑘 SingleCheck procedure4, which first broadcasts

shares of the value, then commitments to shifted MAC shares, then

those shares themselves, and checks their validity (i.e., that the

committed shares were opened correctly and sum to zero).

Fortunately, due to the specific structure of our protocol, we

believe it suffices to use just five broadcast rounds. This is because
the first two calls to FABB .Open are for randomly masked values,

and a similar kind of (committed) masking can be done for the

final output. Because these values are masked, they can be revealed

before checking the authenticity (MACs) of the prior values they

depend on, without violating privacy. This allows us to “pipeline”

the rounds associated with the runs of SingleCheck. Specifically:

• the first round commits to shares of a random mask 𝑤 for

the final output, and reveals the shares of the first (masked)

value;

• the second round commits to the shifted MAC shares for the

first value, and reveals the shares of the second (masked)

value;

• the third round announces and checks those shifted MAC

shares (aborting if they are invalid), commits to the shifted

MAC shares of the second value, and reveals the shares of

the final output masked by𝑤 ; etc.

4
There are no calls to FABB .Mult during the online phase, so theBatchCheck procedure
is not needed there.

In the fifth round, if the protocol has not aborted, the committed

shares of the mask𝑤 are also announced and checked; if they are

valid,𝑤 is reconstructed and used to compute the unmasked final

output. Informally, this pipelined approach should be secure be-

cause the only non-random shared value is not revealed until all

of the values that contribute to it have been authenticated. For-

malizing this seems to require a refined definition of FABB and a

ground-up proof for the SPDZ
2
𝑘 protocol, which we leave to future

work.

The communication per party for opening a 𝑡-bit value is as

follows. First, each party reveals its (𝑡+𝑠)-bit share, then it commits

to its (𝑡 + 𝑠)-bit (shifted) MAC share, then it reveals that share. So,

the total communication per party for opening a 𝑡-bit value is just

2(𝑡 + 𝑠) bits, plus the commitments. Our protocol opens values of

𝑡 = 𝑙, 𝑑 + 1, 𝑘 bits, for a total of just 2(𝑙 + (𝑑 + 1) + 𝑘 + 3𝑠) = 656

bits, plus the commitments.

For the gate storage per invocation of Decrypt (again, ignoring
the random mask values), by Equation (5), FABB stores and con-

sumes a total of 17 792 bits. In the SPDZ
2
𝑘 realization of FABB, each

stored 𝑡-bit value has a share size and MAC share size of 𝑡 + 𝑠

bits each. So, adjusting Equation (5), each party stores a total of

2 · ((𝑑 + 1 + 𝑠) · ((𝑑 − 1) · 2𝑏 + 2
𝑏′) + (𝑚 + 𝑠) · 2𝑑+1) = 346 880 bits

(for our example parameters).

4 Preprocessing Procedures
Here we show how to efficiently prepare gates—i.e., random mask

values 𝑟 and corresponding lookup tables—for the Sign andModLTZ

functions. A key commonality is that, as we show, the lookup tables

for both functions can be seen as “structured” linear transforms of
the subset-products of the bits of 𝑟 . These structured transforms

can be evaluated by fast algorithms, roughly analogous to the Fast

Fourier Transform. In Section 4.1 we first give a simple protocol for

computing a random mask value along with the subset-products

of its bits. Then, in Sections 4.2 and 4.3 we derive the fast linear

transforms that map from the subset-product vectors to the lookup

tables.

4.1 Procedure PrepSubsetProds
Let 𝑎 ≥ 1 be an input length (in bits) with 𝐴 = 2

𝑎
, and 𝑐 ≤ 𝑘 be

an output length. Here we give a procedure, in the FABB-hybrid
model, that prepares a uniformly random 𝑟 ∈ [𝐴] and all the subset-
products of its bits, as integers modulo 2

𝑐
.

In what follows, it is convenient to index vectors by subsets. For

this purpose, the subset 𝑆 ⊆ [𝑎] corresponds to the index

∑︁
𝑠∈𝑆

2
𝑠 =

∑︁
𝑖∈[𝑎]

𝛿𝑆,𝑖 · 2𝑖 ∈ [𝐴] ,

where 𝛿𝑆,𝑖 is 1 if 𝑖 ∈ 𝑆 , and 0 otherwise.

High-Throughput Universally Composable
Threshold FHE Decryption CCS ’25, October 13–17, 2025, Taipei, Taiwan

Procedure 4: PrepSubsetProds𝑎,𝑐 (sid)

Output: [𝑟]𝑘 for a uniformly random 𝑟 = (𝑟𝑎−1 · · · 𝑟0)2 ∈ [𝐴],
along with the vector

(
[𝑝𝑆]𝑐

)
𝑆⊆[𝑎] of all the subset-products

𝑝𝑆 =
∏

𝑖∈𝑆 𝑟𝑖 ∈ {0, 1} of the bits 𝑟𝑖 of 𝑟 .
(1) If 𝑎 = 1, call FABB on (RandBit, sid) to generate [𝑟]𝑘 , and

output [𝑟]𝑘 , ([1]𝑐 , [𝑟]𝑐).
(2) Write 𝑎 = 𝑎0 + 𝑎1 for some 𝑎0, 𝑎1 ≥ 1 (typically, 𝑎0 = ⌈𝑎/2⌉).

In parallel, recursively call PrepSubsetProds𝑎0,𝑐
(sid) and

PrepSubsetProds𝑎1,𝑐
(sid) to prepare (respectively)

[𝑟0]𝑘 ,
(
[𝑝𝑆0
]𝑐
)
𝑆0⊆[𝑎0] and [𝑟1]𝑘 ,

(
[𝑝′𝑠1

]𝑐
)
𝑆1⊆[𝑎1] .

(3) Let [𝑟]𝑘 = [𝑟0]𝑘 + 2
𝑎0 · [𝑟1]𝑘 .

(4) For each 𝑆0 ⊆ [𝑎0] and nonempty 𝑆1 ⊆ [𝑎1], use FABB to

compute [𝑝𝑆0∪(𝑎0+𝑆1)]𝑐 = [𝑝𝑆0
]𝑐 · [𝑝′𝑆1

]𝑐 .
(5) Output [𝑟]𝑘 ,

(
[𝑝𝑆]𝑐

)
𝑆⊆[𝑎] .

Lemma 6. Procedure PrepSubsetProds𝑎,𝑐 is correct.

Proof. The base case is correct by inspection. For the recursive

case, first note that 𝑟 = 𝑟0 + 2
𝑎0 · 𝑟1 ∈ [𝐴] = [2𝑎] is uniformly

random because 𝑟0 ∈ [2𝑎0], 𝑟1 ∈ [2𝑎1] are uniform and independent,

by induction. For correctness of the subset-products, observe that

every subset 𝑆 ⊆ [𝑎] is the disjoint union of some 𝑆0 ⊆ [𝑎0]
and the shifted subset 𝑎0 + 𝑆1 for some 𝑆1 ⊆ [𝑎1]. By induction,

𝑝𝑆0
, 𝑝′

𝑆1

are the subset-products of the bits of 𝑟0, 𝑟1 indexed by 𝑆0, 𝑆1

(respectively), so 𝑝𝑆0
· 𝑝′

𝑆1

is the subset-product of the bits of 𝑟 =

𝑟0 + 2
𝑎0 · 𝑟1 indexed by 𝑆 = 𝑆0 ∪ (𝑎0 + 𝑆1). □

Efficiency analysis. The procedure can implemented using a total

of 2
𝑎 − 𝑎 − 1 calls to FABB .Mult. For the base case this is true by

inspection. For the recursive case, a call to Mult is needed only for

nonempty 𝑆0, 𝑆1, because the empty set has subset-product 1. So,

the number of Mult calls satisfies the recurrence𝑀 (𝑎) =𝑀 (𝑎0) +
𝑀 (𝑎1) + (2𝑎0 − 1) (2𝑎1 − 1), which solves to 𝑀 (𝑎) = 2

𝑎 − 𝑎 − 1 by

induction.

The number of sequential “rounds” of (parallel)Mult calls can
be as small as ⌈log

2
𝑎⌉, by always taking 𝑎0 = ⌈𝑎/2⌉.

4.2 Procedure PrepSign
The procedure PrepSign𝑏,𝑑+1

(Procedure 5) prepares a Sign gate for

𝑏-bit inputs, i.e., the domain [𝐵] where 𝐵 = 2
𝑏
, with output modulo

2𝐷 = 2
𝑑+1

. It does this by first preparing the subset-products of the

bits of a (secret) uniformly random 𝑟 ∈ [𝐵], then converts those

subset-products to the vector of Sign(𝑥 − 𝑟) values for all 𝑥 ∈ [𝐵].
The conversion is a linear function with a fast implementation via

a recursive divide-and-conquer procedure, which we give below in

Procedure 6.

Procedure 5: PrepSign𝑏,𝑑+1
(sid)

(1) Call PrepSubsetProds𝑏,𝑑+1
(sid) to prepare [𝑟]𝑘 , [®𝑝]𝑑+1

(2) Output [𝑟]𝑘 , SubsetProdsToSigns𝑏 ([®𝑝]𝑑+1) ⊲ Procedure 6

Fast linear transform from subset-products to signs. Here we de-
rive the fast linear transform that converts the subset-products of

the bits of 𝑟 to the values of Sign(𝑥 − 𝑟), for all 𝑥 ∈ [𝐵]. The key
idea is that the output vector satisfies a simple recurrence relation

in terms of the top bits of 𝑥 and 𝑟 (respectively), and the output

vector for their remaining 𝑏−1 bits each; see Equation (6) below. So,

there is a fast algorithm that recursively evaluates the transform,

analogous to the Fast Fourier Transform.

Because the transform is linear, the algorithm can be imple-

mented straightforwardly on values stored in FABB using just its

LinComb operation, and hence using just local computation (no

communication) in a typical realization of FABB. Therefore, for sim-

plicity of presentation we omit the [·] notation around all the values,
and present the algorithm as operating on the values themselves.

View𝑥, 𝑟 ∈ [𝐵] in binary as𝑥 = (𝑥𝑏−1 · · · 𝑥0)2 and 𝑟 = (𝑟𝑏−1 · · · 𝑟0)2.
When 𝑏 = 1, clearly Sign(𝑥 − 𝑟) = 𝑥0 − 𝑟0. When 𝑏 > 1, the key

insight is that for the “truncated” values 𝑥 ′ = (𝑥𝑏−2 · · · 𝑥0)2 and

𝑟 ′ = (𝑟𝑏−2 · · · 𝑟0)2, we have the recurrence relation

Sign(𝑥 −𝑟) = (𝑥𝑏−1−𝑟𝑏−1) +Sign(𝑥 ′−𝑟 ′) ·
{

1 − 𝑟𝑏−1 if 𝑥𝑏−1 = 0

𝑟𝑏−1 if 𝑥𝑏−1 = 1.

(6)

This can be seen by observing that if 𝑥𝑏−1 ≠ 𝑟𝑏−1, Sign(𝑥 − 𝑟) =
𝑥𝑏−1−𝑟𝑏−1 (the less-significant bits are irrelevant); otherwise, 𝑥𝑏−1−
𝑟𝑏−1 = 0 and hence Sign(𝑥 − 𝑟) = Sign(𝑥 ′ − 𝑟 ′). In the former case,

Sign(𝑥 ′ − 𝑟 ′) is multiplied by 0 in the above expression, and in the

latter case it is multiplied by 1.

Procedure 6: Linear Function SubsetProdsToSigns𝑏 (®𝑝)

Input: ®𝑝 = (𝑝𝑆)𝑆⊆[𝑏] , where 𝑝𝑆 =
∏

𝑖∈𝑆 𝑟𝑖 for some 𝑟 =

(𝑟𝑏−1 · · · 𝑟0)2 ∈ [𝐵]
Output: vector

(
Sign(𝑥 − 𝑟)

)
𝑥∈[𝐵]

(1) If 𝑏 = 0 output (0).
(2) Split ®𝑝 into its initial half ®𝑝 (0) = (𝑝𝑆 ′)𝑆 ′⊆[𝑏−1] and latter half
®𝑝 (1) = 𝑟𝑏−1 · ®𝑝 (0) .

(3) Apply SubsetProdsToSigns𝑏−1
to each half, yielding

®𝑠 (0) = (Sign(𝑥 ′ − 𝑟 ′))𝑥 ′∈[𝐵/2] , ®𝑠 (1) = 𝑟𝑏−1 · ®𝑠 (0)

respectively, where 𝑟 ′ = (𝑟𝑏−2 · · · 𝑟0)2.
(4) Output the vector, indexed by [𝐵], whose initial half is

− 𝑝 (1)∅ · ®1𝐵/2 + (®𝑠
(0) − ®𝑠 (1))

= −𝑟𝑏−1 · ®1𝐵/2 + ®𝑠 (0) · (1 − 𝑟𝑏−1)
and whose latter half is

(𝑝 (0)∅ − 𝑝
(1)
∅) · ®1𝐵/2 + ®𝑠

(1)

= (1 − 𝑟𝑏−1) · ®1𝐵/2 + ®𝑠 (0) · 𝑟𝑏−1 ,

where ®1𝐵/2 is the all-ones vector of dimension 𝐵/2.

The algorithm is correct by its correct recursive computation of

®𝑠 (0) and ®𝑠 (1) , which follows from its linearity and the relationship

between ®𝑝 (0) and ®𝑝 (1) , and by Equation (6). The running time is

𝑂 (𝐵 log𝐵) =𝑂 (𝐵𝑏) additions and subtractions, due to the recursive
divide-and-conquer nature of the algorithm.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Guy Zyskind, Doron Zarchy, Max Leibovich, and Chris Peikert

4.3 Procedure PrepModLTZ
For 𝑑 + 1 ≤ 𝑘 , the procedure PrepModLTZ𝑑+1,𝑚 (Procedure 7) pre-

pares a ModLTZ gate for (𝑑 + 1)-bit inputs, i.e., the domain Z2𝐷

where 𝐷 = 2
𝑑
, with output modulo 2

𝑚
. It does this by first prepar-

ing the subset-products of the bits of a (secret) uniformly random

𝑟 ∈ Z2𝐷 , then converts those subset-products to the vector of

ModLTZ𝑑+1 (𝑥 − 𝑟) values for all 𝑥 ∈ Z2𝐷 . As with PrepSign, the

conversion is a linear function with a fast divide-and-conquer im-

plementation, which we give below in Procedure 8.

Procedure 7: PrepModLTZ𝑑+1,𝑚 (sid)

(1) Call PrepSubsetProds𝑑+1,𝑚 (sid) to prepare [𝑟]𝑑+1, [®𝑝]𝑚
(2) Output [𝑟]𝑑+1, SubsetProdsToModLTZ𝑑+1 ([®𝑝]𝑚)

⊲ Procedure 8

Fast linear transform from subset-products. Here we derive a fast
linear transform that converts the subset-products of the bits of

𝑟 ∈ Z2𝐷 to the values of ModLTZ𝑑+1 (𝑥 − 𝑟) for all 𝑥 ∈ Z2𝐷 . As

above, we give a recurrence relation in terms of the top bits of 𝑥

and 𝑟 (respectively) and their remainders; see Equations (7) and (8)

below. This in turn yields a fast recursive algorithm that evaluates

the transform. As above, because the transform is linear, we express

it as operating on vectors of values themselves, omitting the [·]
notation.

First, for any 𝑎 ≥ 1 and integers 𝑥, 𝑟 ∈ [2𝑎], define

Carry𝑎 (𝑥, 𝑟) := (𝑥 + 𝑟 + 1

?

≥ 2
𝑎)

to be the “carry” (or “overflow”) bit of 𝑥 +𝑟 +1. For convenience, we

also define the trivial base case Carry
0
(𝜀, 𝜀) = 1. Then by inspection,

this function satisfies the recurrence

Carry𝑎 (𝑥, 𝑟) =
{
𝑟𝑎−1 · Carry𝑎−1

(𝑥 ′, 𝑟 ′) if 𝑥𝑎−1 = 0

𝑟𝑎−1 + (1 − 𝑟𝑎−1) · Carry𝑎−1
(𝑥 ′, 𝑟 ′) if 𝑥𝑎−1 = 1,

(7)

where 𝑥 = 𝑥𝑎−1 ·2𝑎−1+𝑥 ′ for its top bit 𝑥𝑎−1 ∈ {0, 1} and remainder

𝑥 ′ ∈ [2𝑎−1], and similarly for 𝑟, 𝑟𝑎−1, 𝑟
′
. This recurrence directly

yields the function SubsetProdsToCarries in Procedure 9 below.

Nowwe turn to ModLTZ𝑑+1 (𝑥−𝑟). Identify 𝑥, 𝑟 ∈ Z2𝐷 with their

(𝑑 + 1)-bit representatives in [2𝐷], and recall from Equation (1)

that ModLTZ𝑑+1 (𝑥 − 𝑟) outputs whether 𝑥 − 𝑟 ∈ [−𝐷, 0) ≡ [𝐷, 2𝐷)
(mod 2𝐷). This is equivalent to the 𝑑th bit (counting from 0) of

𝑥 + 𝑟 + 1, where 𝑟 = (2𝐷 − 1) − 𝑟 ∈ [2𝐷] is the integer represented
by the bitwise complement of 𝑟 . So by inspection,

ModLTZ𝑑+1 (𝑥 − 𝑟) ={
𝑟𝑑 + (1 − 2𝑟𝑑) · Carry𝑑 (𝑥 ′, 𝑟 ′) if 𝑥𝑑 = 0

(1 − 𝑟𝑑) + (2𝑟𝑑 − 1) · Carry𝑑 (𝑥 ′, 𝑟 ′) if 𝑥𝑑 = 1,
(8)

where 𝑥 = 𝑥𝑑 · 2𝑑 + 𝑥 ′ for its top bit 𝑥𝑑 ∈ {0, 1} and remainder

𝑥 ′ ∈ [2𝑑], and similarly for 𝑟, 𝑟𝑑 , 𝑟
′
. This equation directly yields the

function SubsetProdsToModLTZ in Procedure 8 below. Similarly to

the above, its running time is 𝑂 (𝐷 log𝐷) =𝑂 (𝐷𝑑) additions and
subtractions.

Procedure 8: Linear Function SubsetProdsToModLTZ𝑑+1 (®𝑝)
Input: ®𝑝 = (𝑝𝑆)𝑆⊆[𝑑+1] , where 𝑝𝑆 =

∏
𝑖∈𝑆 𝑟𝑖 for some 𝑟 =

(𝑟𝑑 · · · 𝑟0)2 ∈ Z2𝐷 with 𝐷 = 2
𝑑
.

Output: vector
(
ModLTZ𝑑+1 (𝑥 − 𝑟)

)
𝑥∈Z

2𝐷

(1) Split the input vector into its initial half ®𝑝 (0) = (𝑝𝑆 ′)𝑆 ′⊆[𝑑]
and latter half ®𝑝 (1) = 𝑟𝑑 · ®𝑝 (0) .

(2) Apply SubsetProdsToCarries𝑑 (Procedure 9) to each half,

yielding

®𝑐 (0) = (Carry(𝑥 ′, 𝑟 ′))𝑥 ′∈[𝐷] , ®𝑐 (1) = 𝑟𝑑 · ®𝑐 (0)

respectively, where 𝑟 ′ = (𝐷 − 1) − (𝑟𝑑−1 · · · 𝑟0)2 ∈ [𝐷].
(3) Output the vector, indexed by Z2𝐷 , whose initial half (in-

dexed by [𝐷]) is

(𝑝 (0)∅ − 𝑝
(1)
∅) · ®1𝐷 − ®𝑐

(0) + 2®𝑐 (1)

= (1 − 𝑟𝑑) · ®1𝐷 + (2𝑟𝑑 − 1) · ®𝑐 (0) ,
and whose latter half is

𝑝
(1)
∅ · ®1𝐷 + ®𝑐

(0) − 2®𝑐 (1) = 𝑟𝑑 · ®1𝐷 + (1 − 2𝑟𝑑) · ®𝑐 (0) .

Procedure 9: Linear Function SubsetProdsToCarries𝑑 (®𝑝)
Input: ®𝑝 = (𝑝𝑆)𝑆⊆[𝑑] , where 𝑝𝑆 =

∏
𝑖∈𝑆 𝑟𝑖 for some 𝑟 =

(𝑟𝑑−1 · · · 𝑟0)2 ∈ [𝐷] with 𝐷 = 2
𝑑
.

Output: vector
(
Carry𝑑 (𝑥, 𝑟)

)
𝑥∈[𝐷] , where 𝑟 = (𝐷 − 1) − 𝑟 .

(1) If 𝑑 = 0, output ®𝑝 = (𝑝∅) = (1).
(2) Split the input vector into its initial half ®𝑝 (0) = (𝑝𝑆 ′)𝑆 ′⊆[𝑑−1]

and latter half ®𝑝 (1) = 𝑟𝑑−1 · ®𝑝 (0) .
(3) Apply SubsetProdsToCarries𝑑−1 to each half, yielding

®𝑐 (0) = ([Carry(𝑥 ′, 𝑟 ′)])𝑥 ′∈[𝐷/2] , ®𝑐 (1) = 𝑟𝑑−1 · ®𝑐 (0)

respectively, where 𝑟 ′ = (𝐷/2 − 1) − (𝑟𝑑−2 · · · 𝑟0)2.
(4) Output the vector of shares, indexed by [𝐷], whose initial

half is

®𝑐 (0) − ®𝑐 (1) = (1 − 𝑟𝑑−1) · ®𝑐 (0) ,
and whose latter half is

(𝑝 (0)∅ − 𝑝
(1)
∅) · ®1𝐷/2 + ®𝑐

(1)

= (1 − 𝑟𝑑−1) · ®1𝐷/2 + 𝑟𝑑−1 · ®𝑐 (0) .

5 Implementation and Evaluation
For an empirical evaluation, we implemented our protocol by realiz-

ing FABB for a dishonest majority, using the SPDZ
2
𝑘 protocol [20].

As a reminder, this uses authenticated additive secret sharing. We

implemented the offline and online parts of our protocols sepa-

rately:
5

(1) Offline phase. This is implemented using the well-known

MP-SPDZ library [33]. In this phase, all Sign and ModLTZ

gates are prepared, as described in Section 4.

(2) Online phase. This is implemented in Rust. Each party

executes a program to handle the protocol’s computation

and communication. Precomputed Sign and ModLTZ gates

are loaded into memory at the start.

5
See https://github.com/FhenixProtocol/thresholdfhe-paper for the code.

https://github.com/FhenixProtocol/thresholdfhe-paper

High-Throughput Universally Composable
Threshold FHE Decryption CCS ’25, October 13–17, 2025, Taipei, Taiwan

We ran all benchmarks on a single AWS c7a.32xlarge instance
with 128 AMD EPYC 9R14 vCPUs and 256 GB of RAM. For the

online phase, the tc utility was used to emulate network conditions

and constraints. This utility allows precise control over network

behavior, such as introducing configurable delays and bandwidth

limitations. The selected network has a fully connected topology

of nodes using TCP for pairwise communication.

To compare with the state of the art [21], we used the same

LWE parameters (𝑛, 𝑞, 𝑝) = (1024, 264, 2) (hence 𝑘 = 64, 𝑚 = 1,

𝑙 = 63), which are also commonly used for TFHE [16] in commercial

implementations.
6
Following Section 3.4, for the input bit length of

the Sign gates we use 𝑏 = 8 ≈
√
𝑙 , which implies that 𝑑 = ⌈𝑙/𝑏⌉ = 8.

We note that [21] only reported their results, but did not pro-

vide a public implementation we could directly benchmark against.

Therefore, we ran our experiments on a similar, though not identi-

cal, system. They also did not report direct throughput results, but

their protocol is CPU-bound by the “squish-and-squash” (bootstrap-

ping) operation, which works in conjunction with noise flooding.

For that reason, we assume they must perform this computation

serially on a single machine, and any parallelization would require

scaling horizontally across machines (which would not improve

throughput). Table 1 shows a benchmark for 4 parties with a net-

work ping time of 1 ms and 1 Gbit bandwidth. We estimate that

the online phase of our protocol has approximately 37 times better

latency and about 20 000 times better throughput in this setting.

Protocol Latency ms Throughput (Dec/sec)

[21] 315.62 3.18

Our online 8.48 64 319

Table 1: Comparison of latency and throughput for 4 parties
with 1 ms ping time and 1 Gbit bandwidth (online phase only).

5.1 Different Network Conditions
Table 2 shows how the end-to-end latency of the online phase

changes according to the number of parties, or under increased

network latency. Note that bandwidth does not affect the latency

of a single decryption, since throughout the protocol the parties

perform only a small amount of communication. By contrast, the

network latency does have an effect, because the online phase does

three sequential public openings, and in this implementation, two

more rounds of authenticity checks.

4 Parties 8 Parties 16 Parties
Ping Time 1 ms 8.483 10.086 24.230

Ping Time 10 ms 55.616 55.490 56.979

Table 2: Time (in ms) of the online decryption protocol, for a
single ciphertext.

Our protocol achieves very high throughput. Since the online

phase has very little communication and computation (in contrast

6
For example, see https://docs.zama.ai/tfhe-rs.

to previous works), the throughput can scale to thousands and even

tens of thousands of decryptions per second on a single server,

regardless of network latency. This is captured in Table 3, which

shows throughput under various conditions. It appears that the

CPU is the bottleneck for 1 ms and 10 ms ping times (because there

is little difference in throughput for these settings), but the network

is the bottleneck for 100 ms ping times.

5.2 Preprocessing
To empirically benchmark our preprocessing protocols that con-

struct Sign and ModLTZ gates, we implemented them using the

MP-SPDZ [33] implementation of SPDZ
2
𝑘 . To provide good esti-

mates for our own protocols, we separate out the costs to generate

shared random bits and multiplication triples (see below for these),

since there are many different ways to do this (e.g., [23, 28, 46]).

All tests were run with the default MP-SPDZ value of two parties,

1 ms ping time and 1 Gbit/sec bandwidth. Table 4 shows the costs

to produce a gate, as a function of its input bit length. (Both kinds

of gates take roughly the same time to produce for the same input

length, since the bulk of the work is done in PrepSubsetProds.) Ta-

ble 5 shows that it takes only about 1.35 sec and 79 MB of online

communication (per party) to preprocess enough material for 1000

runs of ΠDecrypt.

Triple-generation communication. Our preprocessing protocols

use secure multiplications and random bit generation via FABB.
For each call to ΠDecrypt, the preprocessing uses only about 𝑏𝑑

random bits, but requires significantly more multiplications, so

these are the main cost. Following the analysis in Section 4.1, the

preprocessing does 2478 = 𝑑 (2𝑏−𝑏−1)+(2𝑑+1−𝑑−2)multiplications

(recall that 𝑏 = 𝑑 = 8). In SPDZ
2
𝑘 (and SPDZ more generally), each

multiplication consumes one Beaver triple [3], a form of correlated

randomness.

In our setting, Beaver triples should be generated in large batches

offline, and the communication tends to be the bottleneck. Several

works have focused on reducing the communication for maliciously

secure triple generation; notable approaches include SPDZ
2
𝑘 [20],

Overdrive2k [41], MonZ
2
𝑘 a [11], MHz2k [14], LowGear 2.0 [45], and

Multipars [32]. In terms of communication, Multipars is the current

state of the art, with a reported amortized communication cost (per

party) of 14.9 kbit per triple. In our protocols, this corresponds to

approximately 4.5 MB of communication per decryption.

6 Related Work
Threshold FHE is a well studied problem, as it is a cornerstone

for constant-round MPC (e.g., [2, 39]) and threshold cryptography

more generally (e.g., [5, 13, 31]). And yet, all prior simulation-secure

schemes use some flavor of noise flooding in their decryption pro-

tocols. The first proposed solution in the literature provided an

actively secure protocol (with abort) for a small number of parties

(due to the use of replicated secret sharing) [4]. This was later im-

proved to full security and any number of parties [2]. Both works

used somewhat expensive zero-knowledge proofs for active secu-

rity, which was sufficient for low-depth circuits and non-real-time

applications such as SPDZ pre-processing [26], but not in general.

https://docs.zama.ai/tfhe-rs

CCS ’25, October 13–17, 2025, Taipei, Taiwan Guy Zyskind, Doron Zarchy, Max Leibovich, and Chris Peikert

100 Mbit/sec 1 Gbit/sec

1 ms

4 8 16

18,612

4,307
1,075

parties

D
e
c
/s

e
c

4 8 16

64,319

28,504

10,915

parties

D
e
c
/s

e
c

10 ms

4 8 16

18,426

3,842
1,049

parties

D
e
c
/s

e
c

4 8 16

61,174

24,583

10,010

parties

D
e
c
/s

e
c

100 ms

4 8 16

11,605

1,963
512

parties

D
e
c
/s

e
c

4 8 16

30,715

9,647
4,999

parties

D
e
c
/s

e
c

Table 3: Throughput of the online phase under varying network conditions, measured across different number of parties
(4, 8, 16), bandwidths (100 Mbit/sec, 1 Gbit/sec), and ping times (1 ms, 10 ms and 100 ms).

Input length Gates/sec Communication per gate (kB)

4 94 004 0.35

5 44 770 0.83

6 13 428 1.82

7 10 966 3.84

8 6350 7.90

9 3400 16.06

Table 4: Throughput and communication of our gate-
preprocessing protocol (ignoring the cost of triple and
random-bit generation), for various bit-input lengths.

The work of [18] obtains a robust protocol with much better ef-

ficiency by assuming an honest (two-thirds) super-majority and

utilizing well-known error-correction techniques.

The works of [5, 13] give a generic “universal thresholdizer”

that converts any cryptosystem into a threshold variant. Like all

prior schemes, they use noise flooding, which requires a super-

polynomial modulus-to-noise ratio, making them too inefficient in

practice. In addition, these works propose new variants of linear

secret sharing that have large share sizes, leading to additional

Gate Gates/Dec Time (sec) Data (MB)

Sign 8 1.06 63.23

ModLTZ 1 0.29 16.06

Total 9 1.35 79.29

Table 5: Costs (ignoring triple and random-bit generation) of
our preprocessing protocols, per thousand decryptions.

computational and communication costs in practice (and a worse

dependence on the total number of parties), and also potentially

raise security concerns [17]. Recently, the concurrent and indepen-

dent work of [9] improved this approach by obtaining a smaller

ciphertext modulus, and preprocessing the zero-knowledge proofs

of validity in an offline phase; however, it still uses noise flooding,

and the modulus grows exponentially in the number of parties.

In recent years, probably due to recent advances in practical FHE

and its applications (e.g., [1, 38, 48, 50, 53]), we have seen more

work on efficient threshold FHE decryption. However, all of these

works weaken the model or strengthen the assumptions in at least

one of the following ways: adopting game-based security, limiting

High-Throughput Universally Composable
Threshold FHE Decryption CCS ’25, October 13–17, 2025, Taipei, Taiwan

the number of decryptions, assuming additional trusted parties,

or making new non-standard hardness assumptions. The works

of [6, 19, 22] avoid noise flooding and select masking noise from

a much narrower range, but as a result they obtain only certain

limited forms of game-based security, making it hard to reason

about their security in a larger protocol. These schemes also suf-

fer from other limitations and potential security vulnerabilities, as

discussed in [42]. Alternatively, the work of [35] provides a very

efficient semi-honest and simulation-secure threshold decryption

scheme for LWE-based public-key encryption, without resorting

to noise flooding. However, the protocol does not perform secure

homomorphic operations on ciphertexts; additionally, its practi-

cally efficient version relies on a new ad-hoc hardness assumption

called Known-Norm Ring-LWE. Other recent works [42, 51] obtain
better efficiency by adopting specialized, non-standard models that

assume incorruptible trusted parties.

We consider the recent work of [21] to be the current state of

the art in terms of practical threshold FHE decryption. It uses a

technique from [18] to obtain a robust protocol assuming an honest

(two-thirds) super-majority. While this work significantly improves

LWE parameters needed to support noise flooding, its latency and

throughput are orders of magnitude worse than ours (see Section 5).

Additionally, this work is limited to an honest majority, whereas

ours can support any type of adversary model, as long as it has a

realization of FABB.
In summary, in contrast to this long line of prior works, ours

is the only protocol to construct an efficient and UC-secure thresh-
old FHE decryption scheme without noise flooding. Our protocol
supports any adversary model that has a realization of FABB realiza-
tion, including a dishonest-majority adversary via SPDZ

2
𝑘 , and an

honest-majority adversary via standard Shamir secret-sharing tech-

niques over Galois rings [27, 49]. For an honest two-thirds super-

majority, our protocol is also robust via the same error-correcting

techniques used in other works [18, 21].

References
[1] A. Al Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli, N. Genise,

S. Halevi, H. Hunt, A. Kim, Y. Lee, et al. OpenFHE: Open-source fully homo-

morphic encryption library. In Proceedings of the 10th workshop on encrypted
computing & applied homomorphic cryptography, pages 53–63, 2022.

[2] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs.

Multiparty computation with low communication, computation and interaction

via threshold FHE. pages 483–501, 2012.

[3] D. Beaver. Efficient multiparty protocols using circuit randomization. pages

420–432, 1991.

[4] R. Bendlin and I. Damgård. Threshold decryption and zero-knowledge proofs

for lattice-based cryptosystems. In Theory of Cryptography Conference, pages
201–218, 2010.

[5] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. R. Rasmussen, and

A. Sahai. Threshold cryptosystems from threshold fully homomorphic encryption.

pages 565–596, 2018.

[6] K. Boudgoust and P. Scholl. Simple threshold (fully homomorphic) encryption

from LWE with polynomial modulus. pages 371–404, 2023.

[7] E. Boyle, N. Chandran, N. Gilboa, D. Gupta, Y. Ishai, N. Kumar, and M. Rathee.

Function secret sharing for mixed-mode and fixed-point secure computation.

pages 871–900, 2021.

[8] E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. pages 337–367, 2015.

[9] Z. Brakerski, O. Friedman, A. Marmor, D. Mutzari, Y. Spiizer, and N. Trieu. Thresh-

old FHE with efficient asynchronous decryption. Cryptology ePrint Archive,

Paper 2025/712, 2025.

[10] R. Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In FOCS, pages 136–145, 2001.
[11] D. Catalano, M. D. Raimondo, D. Fiore, and I. Giacomelli. MonZ

2
𝑘 a: Fast mali-

ciously secure two party computation on Z
2
𝑘 . In Public-Key Cryptography, pages

357–386, 2020.

[12] O. Catrina and S. de Hoogh. Improved primitives for secure multiparty integer

computation. In Security and Cryptography for Networks, pages 182–199, 2010.
[13] J. H. Cheon, W. Cho, and J. Kim. Improved universal thresholdizer from iterative

shamir secret sharing. Journal of Cryptology, 38(1):15, 2025.
[14] J. H. Cheon, D. Kim, and K. Lee. Mhz2k: MPC from HE over Z

2
𝑘 with new

packing, simpler reshare, and better ZKP. pages 426–456, 2021.

[15] K. Chida, K. Hamada, D. Ikarashi, R. Kikuchi, D. Genkin, Y. Lindell, and A. Nof.

Fast large-scale honest-majority MPC for malicious adversaries. Journal of
Cryptology, 36(3):15, 2023.

[16] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: Fast fully homo-

morphic encryption over the torus. Journal of Cryptology, 33(1):34–91, 2020.
[17] W. Cho, J. Kim, and C. Lee. (In)Security of threshold fully homomorphic encryp-

tion based on Shamir secret sharing. Cryptology ePrint Archive, 2024.
[18] A. Choudhury, J. Loftus, E. Orsini, A. Patra, and N. P. Smart. Between a rock and

a hard place: Interpolating between MPC and FHE. pages 221–240, 2013.

[19] S. Chowdhury, S. Sinha, A. Singh, S. Mishra, C. Chaudhary, S. Patranabis,

P. Mukherjee, A. Chatterjee, and D. Mukhopadhyay. Efficient threshold FHE

with application to real-time systems. Cryptology ePrint Archive, 2022.
[20] R. Cramer, I. Damgård, D. Escudero, P. Scholl, and C. Xing. SPDZ

2
𝑘 : Efficient

MPC mod 2
𝑘
for dishonest majority. pages 769–798, 2018.

[21] M. Dahl, D. Demmler, S. E. Kazdadi, A. Meyre, J. Orfila, D. Rotaru, N. P. Smart,

S. Tap, and M. Walter. Noah’s ark: Efficient threshold-FHE using noise flooding.

In Workshop on Encrypted Computing & Applied Homomorphic Cryptography,
pages 35–46, 2023.

[22] X. Dai, W. Wu, and Y. Feng. Key lifting: Multi-key fully homomorphic encryption

in plain model without noise flooding. Cryptology ePrint Archive, 2022.
[23] I. Damgård, D. Escudero, T. K. Frederiksen, M. Keller, P. Scholl, and N. Volgushev.

New primitives for actively-secure MPC over rings with applications to private

machine learning. In IEEE Symposium on Security and Privacy, pages 1102–1120,
2019.

[24] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Unconditionally secure

constant-rounds multi-party computation for equality, comparison, bits and

exponentiation. In Theory of Cryptography Conference, pages 285–304, 2006.
[25] I. Damgård and J. B. Nielsen. Universally composable efficient multiparty com-

putation from threshold homomorphic encryption. pages 247–264, 2003.

[26] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from

somewhat homomorphic encryption. Lecture Notes in Computer Science, pages

643–662, 2012.

[27] D. Escudero. Multiparty Computation over Z/2𝑘Z. PhD thesis, University of

Aarhus, 2021.

[28] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl. Improved primitives

for MPC over mixed arithmetic-binary circuits. In CRYPTO, pages 823–852, 2020.
[29] D. Escudero, C. Xing, and C. Yuan. More efficient dishonest majority secure

computation over Z
2
𝑘 via galois rings. pages 383–412, 2022.

[30] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

[31] K. D. Gür, J. Katz, and T. Silde. Two-round threshold lattice-based signatures

from threshold homomorphic encryption. In Post-Quantum Cryptography, pages
266–300, 2024.

[32] S. Hasler, P. Reisert, M. Rivinius, and R. Küsters. Multipars: Reduced-

communication MPC over Z
2
𝑘 . Proc. Priv. Enhancing Technol., 2024(2):5–28,

2024.

[33] M. Keller. MP-SPDZ: A versatile framework for multi-party computation. pages

1575–1590, 2020.

[34] H. Lipmaa and T. Toft. Secure equality and greater-than tests with sublinear

online complexity. pages 645–656, 2013.

[35] D. Micciancio and A. Suhl. Simulation-secure threshold PKE from LWE with

polynomial modulus. IACR Commun. Cryptol., 1(4):2, 2024.
[36] P. Mohassel and Y. Zhang. SecureML: A system for scalable privacy-preserving

machine learning. In IEEE Symposium on Security and Privacy, pages 19–38, 2017.
[37] C. Mouchet, J. R. Troncoso-Pastoriza, J. Bossuat, and J. Hubaux. Multiparty

homomorphic encryption from ring-learning-with-errors. In Privacy Enhancing
Technologies Symposium, volume 2021, pages 291–311, 2021.

[38] C. V. Mouchet, J.-P. Bossuat, J. R. Troncoso-Pastoriza, and J.-P. Hubaux. Lattigo:

A multiparty homomorphic encryption library in Go. In Workshop on Encrypted
Computing and Applied Homomorphic Cryptography, pages 64–70, 2020.

[39] P. Mukherjee and D. Wichs. Two round multiparty computation via multi-key

FHE. pages 735–763, 2016.

[40] T. Nishide and K. Ohta. Multiparty computation for interval, equality, and

comparison without bit-decomposition protocol. In Public Key Cryptography,
pages 343–360, 2007.

[41] E. Orsini, N. P. Smart, and F. Vercauteren. Overdrive2k: Efficient secure MPC

over Z
2
𝑘 from somewhat homomorphic encryption. In CT-RSA, pages 254–283,

2020.

[42] A. Passelègue and D. Stehlé. Low communication threshold fully homomorphic

encryption. In ASIACRYPT, pages 297–329, 2024.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Guy Zyskind, Doron Zarchy, Max Leibovich, and Chris Peikert

[43] C. Peikert. A decade of lattice cryptography. Foundations and Trends in Theoretical
Computer Science, 10(4):283–424, 2016.

[44] O. Regev. On lattices, learningwith errors, random linear codes, and cryptography.

J. ACM, 56(6):1–40, 2009. Preliminary version in STOC 2005.

[45] P. Reisert, M. Rivinius, T. Krips, and R. Küsters. Overdrive LowGear 2.0: Reduced-

bandwidth MPC without sacrifice. In ASIA CCS, pages 372–386, 2023.
[46] D. Rotaru and T. Wood. MArBled circuits: Mixing arithmetic and boolean circuits

with active security. pages 227–249, 2019.

[47] T. Ryffel, P. Tholoniat, D. Pointcheval, and F. R. Bach. AriaNN: Low-interaction

privacy-preserving deep learning via function secret sharing. In Privacy Enhanc-
ing Technologies Symposium, volume 2022, pages 291–316, 2022.

[48] S. Sav, A. Pyrgelis, J. R. Troncoso-Pastoriza, D. Froelicher, J. Bossuat, J. S. Sousa,

and J. Hubaux. POSEIDON: privacy-preserving federated neural network learn-

ing. In Network and Distributed System Security Symposium, 2021.

[49] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[50] R. Solomon, R. Weber, and G. Almashaqbeh. smartfhe: Privacy-preserving smart

contracts from fully homomorphic encryption. In EuroS&P, pages 309–331, 2023.
[51] Y. Sugizaki, H. Tsuchida, T. Hayashi, K. Nuida, A. Nakashima, T. Isshiki, and

K. Mori. Threshold fully homomorphic encryption over the torus. pages 45–65,

2023.

[52] S. Wagh, D. Gupta, and N. Chandran. SecureNN: 3-party secure computation for

neural network training. In Privacy Enhancing Technologies Symposium, pages

26–49, 2019.

[53] G. Zyskind, Y. Erez, T. Langer, I. Grossman, and L. Bondarevsky. FHE-Rollups:

Scaling confidential smart contracts on ethereum and beyond. In ACM Inter-
national Symposium on Blockchain and Secure Critical Infrastructure, pages 1–9,
2024.

[54] G. Zyskind, T. South, and A. Pentland. Don’t forget private retrieval: distributed

private similarity search for large language models. CoRR, abs/2311.12955, 2023.
[55] G. Zyskind, A. Yanai, and A. S. Pentland. High-throughput three-party DPFs

with applications to ORAM and digital currencies. pages 4152–4166, 2024.

A Security of ΠDecrypt
We establish the security of our protocol in the universal com-

posability (UC) framework [10]. We first restate Theorem 1 for

convenience, then prove it.

Theorem 1. Protocol ΠDecrypt (Figure 3) perfectly realizes FDecrypt in
the FABB-hybrid model, under the same (adaptive corruption) shell.

Proof. We define an ideal-process adversarySDecrypt (Figure 4)—
i.e., a simulator—that runs in the ideal execution with FDecrypt, and
simulates all the messages from the dummy adversary A to the

environment Z in the protocol ΠDecrypt. Because ΠDecrypt has no

direct communication between parties (all interaction is via FABB),
these messages consist entirely of forwarded messages from FABB
to A, which SDecrypt must simulate using its access to FDecrypt. We

show thatZ’s view of the execution of ΠDecrypt with dummy adver-

saryA is identically distributed to its view of the ideal execution of

FDecrypt with SDecrypt. We focus on the case of adaptive corruptions,

of which static corruptions are a special case.

The main ideas behind the simulator are as follows. Observe

that in the protocol ΠDecrypt, the honest parties do not have any

secret inputs or outputs; the only secret values are the random

bits chosen by FABB (and any values derived from them, like the

secret key). Also, in the protocol, FABB opens only randomly masked
intermediate values, along with the final decrypted message. So,

SDecrypt merely runs the code of the honest parties together with

the shell of FABB (which reflects the adversarial model), but not its

core code (whichmakes the random choices and performs arithmetic

operations). Instead, SDecrypt simulates the opened masked values

by choosing them uniformly at random, and it uses the decrypted

plaintext provided by FDecrypt as the final opened value.

Adaptive corruption of certain subsets of parties can cause the

shell to reveal the functionality’s internal state to the adversary.

Specifically, in the real execution, FABB would reveal all its internal

random choices to A; and in the corresponding ideal execution,

FDecrypt would reveal just its stored secret key (which is its only

internal state) to SDecrypt. In this event, to simulate FABB’s random
choices, SDecrypt simply computes the corresponding unmasked

values using the secret key, then solves for (the bits of) the cor-

responding masks, and uses these as the simulated internal ran-

dom choices of FABB. The remainder of the simulation follows the

ΠDecrypt protocol exactly, running the full FABB (i.e., shell and core)

starting from its simulated internal state.

The shell of FABB may (or may not) allowZ, viaA, to delay mes-

sages between FABB and the honest parties, in particular modeling

security with abort (or guaranteed output delivery, respectively).

In the simulated interaction between the honest parties and FABB’s
shell, SDecrypt merely follows Z’s dictates in this respect. Also,

SDecrypt handles delivery of eachDecryptmessage between an hon-

est party and FDecrypt according to howZ controls delivery of the

final Open command and response between the party and FABB
(see Line (3) of Figures 3 and 4).

To reflect themodular structure ofΠDecrypt, we defineSDecrypt via
a collection of simulator subroutines SMod𝑙,𝑘

,SLTRand𝑙,𝑘 , etc., which
respectively simulate the honest parties’s interactions with, and

internal random choices of, FABB in the corresponding protocol

subroutines Mod𝑙,𝑘 , LTRand𝑙,𝑘 , etc. In particular, we assume that

there is a correct simulator subroutine SKeyGen for the FABB-hybrid
KeyGen protocol subroutine. Each simulator subroutine takes the

same inputs and produces the same outputs as its corresponding

protocol subroutine. Recall that none of these are secret—the no-

tation [𝑧]𝑘 is just an alias for the unique public identifier id𝑧 of a
value 𝑧 stored in FABB.

By the correctness of the Mod𝑙,𝑘 protocol subroutine (Lemma 2)

and the fact that the simulation proceeds exactly according to the

real protocol execution except for the openings of uniformly random

masked values, it can be seen by inspection that the simulation is

identically distributed to the real protocol execution. □

Procedure 10: SMod𝑙,𝑘
(sid, [𝑧]𝑘) (cf. Procedure 1)

(1) Run SLTRand𝑙,𝑘 (sid, [𝑧]𝑘) to get 𝑧′, [𝑟]𝑘 , [𝑢]𝑘 .
(2) Send the LinComb command corresponding to the compu-

tation of [𝑒]𝑘 as in Line (2) of Mod𝑙,𝑘 , and output [𝑒]𝑘 .
If the value of 𝑧 is given, pass it to SLTRand𝑙,𝑘 (sid, [𝑧]𝑘).

The proceduresSSubsetProdsToSigns𝑏 andSSubsetProdsToModLTZ𝑑+1
sim-

ply send the LinComb commands corresponding to the linear com-

binations evaluated by the linear functions SubsetProdsToSigns𝑏

and SubsetProdsToModLTZ𝑑+1, respectively. These functions do

not use the Open or RandBit commands, so we do not need to

simulate any openings or internal random choices of FABB.

High-Throughput Universally Composable
Threshold FHE Decryption CCS ’25, October 13–17, 2025, Taipei, Taiwan

Simulator SDecrypt

Run the honest parties’ protocol code together with the shell

of FABB, simulating Open outputs from FABB, as follows.
• When a dummy honest party attempts to send

(Init, sid) to FDecrypt, run that party’s protocol code on

that command within the subroutine SKeyGen (sid).
• When a dummy honest party attempts to send

(Decrypt, sid, c) to FDecrypt:
(1) As in Line (1) of ΠDecrypt, send (to FABB’s shell) the

LinComb command corresponding to the

computation of [𝑧]𝑘 .
(2) Call SMod𝑙,𝑘

(sid, [𝑧]𝑘), which outputs [𝑒]𝑘 .
(3) As in Line (3) of ΠDecrypt:

– send (to FABB’s shell) the LinComb command

corresponding to [𝜇′]𝑘 = [𝑧]𝑘 − [𝑒]𝑘 ;
– send (to FABB’s shell) the (Open, sid, [𝜇′]𝑘 , 𝑘)
command, and whenZ delivers it, deliver the

above (Decrypt, sid, c) command to FDecrypt;
– upon receipt of (Decrypt, sid, c, 𝜇) from FDecrypt,
send (from FABB’s shell) the tuple
(Open, sid, [𝜇′]𝑘 , 𝑘, 𝜇′ = 𝐿 · 𝜇 ∈ Z𝑞)
corresponding to the opening of 𝜇′.

Upon a corruption, if the secret key s is revealed by FDecrypt,
for each ciphertext c from a prior Decrypt command, give

𝑧 = ⟨c, s⟩ ∈ Z𝑞 to the corresponding run of SMod𝑙,𝑘
(sid, [𝑧]𝑘).

Figure 4: Simulator for ΠDecrypt (cf. Figure 3)

Procedure 13: SPrepSign𝑏,𝑑+1

(sid) (cf. Procedure 5)

(1) Call SPrepSubsetProds𝑏,𝑑+1

(sid) to simulate the preparation of

[𝑟]𝑘 , [®𝑝]𝑑+1.

(2) Output [𝑟]𝑘 ,SSubsetProdsToSigns𝑏 ([®𝑝]𝑑+1).
If the value of 𝑟 is given, pass it to SPrepSubsetProds𝑏,𝑑+1

(sid).

Procedure 14: SPrepModLTZ𝑑+1,𝑘
(sid) (cf. Procedure 7)

(1) Call SPrepSubsetProds𝑑+1,𝑚
(sid) to simulate the preparation of

[𝑟]𝑑+1, [®𝑝]𝑚 .
(2) Output [𝑟]𝑑+1,SSubsetProdsToModLTZ𝑑+1

([®𝑝]𝑚).
To simulate the application of the gate on [𝑦]𝑑+1:

(1) Send the LinComb command corresponding to the

computation of [𝑦′]𝑑+1 = [𝑦]𝑑+1 + [𝑟]𝑑+1, and the

command (Open, sid, [𝑦′]𝑑+1, 𝑑 + 1).
(2) Once FABB’s shell would respond, choose 𝑦′ ← Z2𝐷 and

reply with the tuple (Open, sid, [𝑦′]𝑑+1, 𝑑 + 1, 𝑦′).
If the value of 𝑦 is given after 𝑦′ is opened, compute

𝑟 = 𝑦′ − 𝑦 mod 2𝐷 and give it to SPrepSubsetProds𝑑+1,𝑚
(sid).

Procedure 11: SLTRand𝑙,𝑘 (sid, [𝑧]𝑘) (cf. Procedure 3)
Preprocessing phase:

(1) Call SPrepModLTZ𝑑+1,𝑚
(sid) (Procedure 14) to simulate the

preparation of a ModLTZ gate.

(2) For each 𝑖 ∈ [𝑑 − 1], call SPrepSign𝑏,𝑑+1

(sid) (Procedure 13) to
simulate the preparation of a Sign gate with masking value

[𝑟𝑖]𝑘 . For 𝑖 = 𝑑 − 1, do the same but with 𝑏′, 𝐵′ in place of

𝑏, 𝐵 (respectively).

(3) Send the LinComb command corresponding to the compu-

tation of [𝑟]𝑘 , as in Line (3) of LTRand𝑙,𝑘 .

Online phase:
(1) As in Line (1) of LTRand𝑙,𝑘 , send the LinComb com-

mand corresponding to [𝑧′]𝑘 = [𝑧]𝑘 + [𝑟]𝑘 and the

command (Open, sid, [𝑧′]𝑙 , 𝑙). Once FABB’s shell would

respond, choose 𝑧′ ← [𝐿] and reply with the tuple

(Open, sid, [𝑧′]𝑙 , 𝑙, 𝑧′).
(2) As in Line (2) of LTRand𝑙,𝑘 , express 𝑧

′
in base 𝐵.

(3) For each 𝑖 ∈ [𝑑], let [𝑦𝑖]𝑑+1 be (the identifier of) the 𝑧′𝑖 th
entry of the 𝑖th precomputed Sign gate.

(4) As in Line (4) of LTRand𝑙,𝑘 , send the LinComb tuple corre-

sponding to the computation of [𝑦]𝑑+1.

(5) Call SPrepModLTZ𝑑+1,𝑚
(sid) to simulate the application (as in

Section 2.3) of the ModLTZ gate on [𝑦]𝑑+1, yielding [𝑢]𝑘 .
(6) Output 𝑧′, [𝑟]𝑘 , [𝑢]𝑘 .

Internal randomness upon corruption:
If the value of 𝑧 is given after 𝑧′ is opened in Line (1):

(1) Let 𝑟 = 𝑧′ − 𝑧 mod 𝐿, and write 𝑟 in base 𝐵, as

𝑟 =
∑

𝑖∈[𝑑] 𝑟𝑖 · 𝐵𝑖 for 𝑟𝑖 ∈ [𝐵].
(2) For each 𝑖 ∈ [𝑑], give 𝑟𝑖 to the corresponding run of

SPrepSign𝑏,𝑑+1

(sid).
(3) Compute 𝑦 from the 𝑧′𝑖 , 𝑟𝑖 (as in Lines (3) and (4) of

Procedure 3) and give it to SPrepModLTZ𝑑+1,𝑚
(if the

application of the gate has already been simulated).

Procedure 12: SPrepSubsetProds𝑎,𝑐 (sid) (cf. Procedure 4)

(1) If 𝑎 = 1, send the command (RandBit, sid, [𝑟]𝑘), and output

[𝑟]𝑘 , ([1]𝑐 , [𝑟]𝑐).
(2) As in Line (2) of Procedure 4, write 𝑎 = 𝑎0 + 𝑎1 and call (in

parallel) SPrepSubsetProds𝑎
0
,𝑐
(sid) and SPrepSubsetProds𝑎

1
,𝑐
(sid)

to simulate the preparation of [𝑟0]𝑘 ,
(
[𝑝𝑆0
]𝑐
)
𝑆0⊆[𝑎0] and

[𝑟1]𝑘 ,
(
[𝑝′

𝑆1

]𝑐
)
𝑆1⊆[𝑎1] , respectively.

(3) Send the LinComb command corresponding to [𝑟]𝑘 =

[𝑟0]𝑘 + 2
𝑎0 · [𝑟1]𝑘 .

(4) For each 𝑆0 ⊆ [𝑎0] and nonempty 𝑆1 ⊆ [𝑎1], send the com-

mand (Mult, sid, [𝑝𝑆0∪(𝑎0+𝑆1)]𝑐 , [𝑝𝑆0
]𝑐 , [𝑝′𝑆1

]𝑐).
(5) Output [𝑟]𝑘 ,

(
[𝑝𝑆]𝑐

)
𝑆⊆[𝑎] .

If, upon corruption, the value of 𝑟 ∈ [2𝑎] is given:
• If 𝑎 = 1, reveal toZ that 𝑟 ∈ {0, 1} was the random choice

made by the above RandBit call (and the value of [𝑟]𝑘).
• Otherwise, express 𝑟 = 𝑟0 + 2

𝑎0 · 𝑟1 for 𝑟𝑖 ∈ [2𝑎𝑖] and
𝑖 ∈ {0, 1}, and give 𝑟𝑖 to SPrepSubsetProds𝑎𝑖 ,𝑐 (sid).

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview

	2 Preliminaries
	2.1 Notation
	2.2 Arithmetic Black Box (ABB) Model
	2.3 Preprocessed Gates

	3 Distributed LWE Decryption via MPC Rounding
	3.1 Functionality FDecrypt
	3.2 Protocol Decrypt
	3.3 Secure Mod and Comparison via LTRandl,k
	3.4 Efficiency and Parameters

	4 Preprocessing Procedures
	4.1 Procedure PrepSubsetProds
	4.2 Procedure PrepSign
	4.3 Procedure PrepModLTZ

	5 Implementation and Evaluation
	5.1 Different Network Conditions
	5.2 Preprocessing

	6 Related Work
	References
	A Security of Decrypt

