How to Use a Short Basis: Trapdoors for Hard Lattices and New Cryptographic Constructions

Chris Peikert SRI

Work with Craig Gentry and Vinod Vaikuntanathan
$i \quad i$

Digital Signatures

Digital Signatures

Digital Signatures

Trapdoor Permutations [DiffieHellman76]

- Public function f, secret "trapdoor" f^{-1}

Trapdoor Permutations [DiffieHellman76]

- Public function f, secret "trapdoor" f^{-1}

Trapdoor Permutations [DiffieHellman76]

- Public function f, secret "trapdoor" f^{-1}

Trapdoor Permutations [DiffieHellman76]

- Public function f, secret "trapdoor" f^{-1}

Trapdoor Permutations [DiffieHellman76]

- Public function f, secret "trapdoor" f^{-1}

- Candidates: [RSA78,Rabin79,Paillier99]
\checkmark "General assumption"
\checkmark Applications: digital signatures, OT, NIZK, ...

Trapdoor Permutations [DiffieHellman76]

- Public function f, secret "trapdoor" f^{-1}

- Candidates: [RSA78,Rabin79,Paillier99]
\checkmark "General assumption"
\checkmark Applications: digital signatures, OT, NIZK, ...
- All rely on hardness of factoring
x Complex: 2048-bit exponentiation
x Lack of diversity
x Broken by quantum algorithms [Shor]

Lattice-Based Cryptography

What's To Like

- Simple \& efficient: linear ops, small integers
- Resist subexp \& quantum attacks (so far)
- Security from worst-case hardness [Ajtai,...]

Lattice-Based Cryptography

What's To Like

- Simple \& efficient: linear ops, small integers
- Resist subexp \& quantum attacks (so far)
- Security from worst-case hardness [Ajtai, ...]

What's Known

(1) One-way \& collision-resistant functions [Ajtai,...,MicciancioRegev]
(2) Public-key encryption [AjtaiDwork,Regev]
(3) Recent developments [LyubMicc,PeikWat,...]

Lattice-Based Cryptography

What's To Like

- Simple \& efficient: linear ops, small integers
- Resist subexp \& quantum attacks (so far)
- Security from worst-case hardness [Ajtai,...]

What's Known

(1) One-way \& collision-resistant functions [Ajtai,...,MicciancioRegev]
(2) Public-key encryption [AjtaiDwork,Regev]
(3) Recent developments [LyubMicc,PeikWat,...]

What's Missing

- Everything else!

Practical signatures, protocols, "advanced" crypto, ...

Results: New Lattice-Based Crypto

(1) Preimage sampleable trapdoor functions

Results: New Lattice-Based Crypto

(1) Preimage sampleable trapdoor functions

Results: New Lattice-Based Crypto

(1) Preimage sampleable trapdoor functions

Results: New Lattice-Based Crypto

(1) Preimage sampleable trapdoor functions

Results: New Lattice-Based Crypto

(1) Preimage sampleable trapdoor functions

- Generate (x, y) in two equivalent ways:

Results: New Lattice-Based Crypto

(1) Preimage sampleable trapdoor functions

- Generate (x, y) in two equivalent ways:

- "As good as" trapdoor permutations in many applications

Results: New Lattice-Based Crypto

(1) Preimage sampleable trapdoor functions

- Generate (x, y) in two equivalent ways:

- "As good as" trapdoor permutations in many applications
(2) "Hash and sign" signatures: FDH etc.

Results: New Lattice-Based Crypto

(1) Preimage sampleable trapdoor functions

- Generate (x, y) in two equivalent ways:

- "As good as" trapdoor permutations in many applications
(2) "Hash and sign" signatures: FDH etc.

3 Identity-based encryption, OT [PVW], NCE [CDMW], NISZK [PV], ...

Results: New Lattice-Based Crypto

(1) Preimage sampleable trapdoor functions

- Generate (x, y) in two equivalent ways:

- "As good as" trapdoor permutations in many applications
(2) "Hash and sign" signatures: FDH etc.
(3) Identity-based encryption, OT [PVW], NCE [CDMW], NISZK [PV], ...

New Algorithmic Tool

- "Oblivious decoder" on lattices

Lattices

A lattice $\mathcal{L} \subset \mathbb{R}^{n}$ having basis $\mathbf{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is:

$$
\mathcal{L}=\sum_{i=1}^{n}\left(\mathbb{Z} \cdot \mathbf{b}_{i}\right)
$$

Lattices

A lattice $\mathcal{L} \subset \mathbb{R}^{n}$ having basis $\mathbf{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is:

$$
\mathcal{L}=\sum_{i=1}^{n}\left(\mathbb{Z} \cdot \mathbf{b}_{i}\right)
$$

Lattices

A lattice $\mathcal{L} \subset \mathbb{R}^{n}$ having basis $\mathbf{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is:

$$
\mathcal{L}=\sum_{i=1}^{n}\left(\mathbb{Z} \cdot \mathbf{b}_{i}\right)
$$

Shortest Vector Problem (SVP $_{\gamma}$)

- Given \mathbf{B}, find (nonzero) $\mathbf{v} \in \mathcal{L}$ within γ factor of shortest.

Lattices

A lattice $\mathcal{L} \subset \mathbb{R}^{n}$ having basis $\mathbf{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is:

$$
\mathcal{L}=\sum_{i=1}^{n}\left(\mathbb{Z} \cdot \mathbf{b}_{i}\right)
$$

Shortest Vector Problem (SVP ${ }_{\gamma}$)

- Given \mathbf{B}, find (nonzero) $\mathbf{v} \in \mathcal{L}$ within γ factor of shortest.

Absolute Distance Decoding (ADD_{β})

- Given B and target $\mathbf{t} \in \mathbb{R}^{n}$, find some $\mathbf{v} \in \mathcal{L}$ within distance β.

Complexity of Lattice Problems

$\mathbf{S V P}_{\gamma}$ in the Worst Case

$\gamma=$| $O(1)$ | $\operatorname{poly}(n)$ | 2^{n} |
| :---: | :---: | :---: |
| NP-hard
 $[$ Ajt,Mic,Kho $]$ | 2^{n} time | poly (n) time |
| $[$ AKS $]$ | $[L L L, S c h] ~$ | |

Complexity of Lattice Problems

SVP $_{\gamma}$ in the Worst Case

$$
\gamma=\begin{array}{ccc}
O(1) & \operatorname{poly}(n) & 2^{n} \\
\hline \text { NP-hard } & 2^{n} \text { time } & \operatorname{poly}(n) \text { time } \\
{[\text { Ajt,Mic,Kho }]} & {[\text { AKS }]} & {[\text { LLL,Sch }]}
\end{array}
$$

Average-Case

-

random lattice

Complexity of Lattice Problems

SVP $_{\gamma}$ in the Worst Case

$$
\gamma=\begin{array}{ccc}
O(1) & \operatorname{poly}(n) & 2^{n} \\
\hline \begin{array}{c}
\text { NP-hard } \\
{[\text { Ajt,Mic,Kho }]}
\end{array} & 2^{n} \text { time } & \text { poly }(n) \text { time } \\
{[\text { AKS }]} & {[L L L, S c h]}
\end{array}
$$

Average-Case

-

$$
\begin{aligned}
& \quad \mathrm{ADD}_{\beta} \\
& \text { random lattice }
\end{aligned}
$$ as hard as \quad $$
\begin{gathered}
\mathrm{SVP}_{\beta \cdot n} \\
\text { every lattice }
\end{gathered}
$$
\]

- Decoding hard on average, too

Complexity of Lattice Problems

SVP $_{\gamma}$ in the Worst Case

$$
\gamma=\begin{array}{ccc}
O(1) & \operatorname{poly}(n) & 2^{n} \\
\hline \begin{array}{c}
\text { NP-hard } \\
{[\text { Ajt,Mic,Kho }]}
\end{array} & 2^{n} \text { time } & \operatorname{poly}(n) \text { time } \\
{[\text { AKS }]} & {[\text { LLL,Sch }]}
\end{array}
$$

Average-Case

-

$$
\begin{array}{ccc}
\quad \mathrm{ADD}_{\beta} \\
\text { random lattice }
\end{array}
$$ as hard as \quad $$
\begin{gathered}
\mathrm{SVP}_{\beta \cdot n} \\
\text { every lattice }
\end{gathered}
$$
\]

- Decoding hard on average, too

Bottom Line

- On random lattices, SVP_{γ} and ADD_{β} seem exponentially hard

GGH Signatures [GoldreichGoldwasserHalevi96]

- "Hard" (public) verification basis B, short (secret) signing basis \mathbf{S}

GGH Signatures [GoldreichGoldwasserHalevi96]

- "Hard" (public) verification basis B, short (secret) signing basis \mathbf{S}
- Sign with "nearest-plane" algorithm [Babai]

GGH Signatures [GoldreichGoldwasserHalevi96]

- "Hard" (public) verification basis B, short (secret) signing basis \mathbf{S}
- Sign with "nearest-plane" algorithm [Babai]

GGH Signatures [GoldreichGoldwasserHalevi96]

- "Hard" (public) verification basis B, short (secret) signing basis \mathbf{S}
- Sign with "nearest-plane" algorithm [Babai]

GGH Signatures [GoldreichGoldwasserHalevi96]

- "Hard" (public) verification basis B, short (secret) signing basis \mathbf{S}
- Sign with "nearest-plane" algorithm [Babai]

GGH Signatures [GoldreichGoldwasserHalevi96]

- "Hard" (public) verification basis B, short (secret) signing basis \mathbf{S}
- Sign with "nearest-plane" algorithm [Babai]

GGH Signatures [GoldreichGoldwasserHalevi96]

- "Hard" (public) verification basis B, short (secret) signing basis \mathbf{S}
- Sign with "nearest-plane" algorithm [Babai]

GGH Signatures [GoldreichGoldwasserHalevi96]

- "Hard" (public) verification basis B, short (secret) signing basis \mathbf{S}
- Sign with "nearest-plane" algorithm [Babai]

GGH Signatures [GoldreichGoldwasserHalevi96]

- "Hard" (public) verification basis B, short (secret) signing basis \mathbf{S}
- Sign with "nearest-plane" algorithm [Babai]

GGH Signatures [GoldreichGoldwasserHalevi96]

- "Hard" (public) verification basis B, short (secret) signing basis \mathbf{S}
- Sign with "nearest-plane" algorithm [Babai]

Issues

(1) Generating short \& hard bases together

- Ad-hoc, no worst-case hardness

GGH Signatures [GoldreichGoldwasserHalevi96]

- "Hard" (public) verification basis B, short (secret) signing basis \mathbf{S}
- Sign with "nearest-plane" algorithm [Babai]

Issues

(1) Generating short \& hard bases together

- Ad-hoc, no worst-case hardness
(2) Secret key leakage
- Total break after several signatures [NguyenRegev]

Gaussians and Lattices

Gaussians and Lattices

Gaussians and Lattices

Gaussians and Lattices

"Uniform" in $\mathbb{R}^{n} \quad$ when \quad std dev \geq shortest basis
[Regev,MicciancioRegev]

Our Trapdoor Function

- "Hard" public basis B, short secret basis \mathbf{S}
[Ajtai99,AP08]

Our Trapdoor Function

- "Hard" public basis B, short secret basis \mathbf{S}
[Ajtai99,AP08]
- Input $\mathbf{v} \in \mathcal{L}$, error \mathbf{e}

Our Trapdoor Function

- "Hard" public basis B, short secret basis \mathbf{S}
[Ajtai99,AP08]
- Input $\mathbf{v} \in \mathcal{L}$, error \mathbf{e}

Our Trapdoor Function

- "Hard" public basis B, short secret basis \mathbf{S}
[Ajtai99,AP08]
- Input $\mathbf{v} \in \mathcal{L}$, error \mathbf{e}
- Uniform output t

Our Trapdoor Function

- "Hard" public basis B, short secret basis \mathbf{S}
[Ajtai99,AP08]
- Input $\mathbf{v} \in \mathcal{L}$, error \mathbf{e}
- Uniform output t

Our Trapdoor Function

- "Hard" public basis B, short secret basis \mathbf{S}
[Ajtai99,AP08]
- Input $\mathbf{v} \in \mathcal{L}$, error \mathbf{e}
- Uniform output t

- Conditional distribution is "discrete Gaussian" $D_{\mathcal{L}, \mathbf{t}}$

Analysis tool in
[Ban,AR,Reg,MR,Pei,...]

Inverting: Gaussian Sampler / Decoder

- Given basis \mathbf{S}, samples $D_{\mathcal{L}, \mathrm{t}}$ for any std dev $\geq \max \left\|\mathbf{s}_{i}\right\|$
- Leaks nothing about \mathbf{S} !

Inverting: Gaussian Sampler / Decoder

- Given basis \mathbf{S}, samples $D_{\mathcal{L}, \mathbf{t}}$ for any std dev $\geq \max \left\|\mathbf{s}_{i}\right\|$
- Leaks nothing about \mathbf{S} !
- Randomized nearest-plane [Babai,Klein]

Inverting: Gaussian Sampler / Decoder

- Given basis \mathbf{S}, samples $D_{\mathcal{L}, \mathbf{t}}$ for any std dev $\geq \max \left\|\mathbf{s}_{i}\right\|$
- Leaks nothing about \mathbf{S} !
- Randomized nearest-plane [Babai,Klein]

Inverting: Gaussian Sampler / Decoder

- Given basis \mathbf{S}, samples $D_{\mathcal{L}, \mathbf{t}}$ for any std dev $\geq \max \left\|\mathbf{s}_{i}\right\|$
- Leaks nothing about \mathbf{S} !
- Randomized nearest-plane [Babai,Klein]

Inverting: Gaussian Sampler / Decoder

- Given basis \mathbf{S}, samples $D_{\mathcal{L}, \mathbf{t}}$ for any std dev $\geq \max \left\|\mathbf{s}_{i}\right\|$
- Leaks nothing about \mathbf{S} !
- Randomized nearest-plane [Babai,Klein]

Inverting: Gaussian Sampler / Decoder

- Given basis \mathbf{S}, samples $D_{\mathcal{L}, \mathbf{t}}$ for any std dev $\geq \max \left\|\mathbf{s}_{i}\right\|$
- Leaks nothing about \mathbf{S} !
- Randomized nearest-plane [Babai,Klein]

[Klein]: std dev $\leq \min \left\|\tilde{\mathbf{s}}_{i}\right\| \Rightarrow$ solves CVP variant

Inverting: Gaussian Sampler / Decoder

- Given basis \mathbf{S}, samples $D_{\mathcal{L}, \mathbf{t}}$ for any std dev $\geq \max \left\|\mathbf{s}_{i}\right\|$
- Leaks nothing about \mathbf{S} !
- Randomized nearest-plane [Babai,Klein]

[Klein]: std dev $\leq \min \left\|\tilde{\tilde{i}}_{i}\right\| \Rightarrow$ solves CVP variant
[This work]: std $\operatorname{dev} \geq \max \left\|\tilde{\mathbf{s}}_{i}\right\| \Rightarrow$ samples $D_{\mathcal{L}, \mathrm{t}}$ exactly*

Identity-Based Encryption

- Proposed by [Shamir84]:

Identity-Based Encryption

- Proposed by [Shamir84]:
- Master keys mpk, msk

Identity-Based Encryption

- Proposed by [Shamir84]:
- Master keys mpk, msk
- With mpk: encrypt to ID "Alice" or "Bob" or ...

Identity-Based Encryption

- Proposed by [Shamir84]:
- Master keys mpk, msk
- With mpk: encrypt to ID "Alice" or "Bob" or ...
- With $m s k$: extract $s k_{\text {Alice }}$ or $s k_{\text {Bob }}$ or ...

Identity-Based Encryption

- Proposed by [Shamir84]:
- Master keys mpk, msk
- With mpk: encrypt to ID "Alice" or "Bob" or ...
- With $m s k$: extract $s k_{\text {Alice }}$ or $s k_{\text {Bob }}$ or ...
- [BonehFranklin01]: bilinear pairings

Identity-Based Encryption

- Proposed by [Shamir84]:
- Master keys mpk, msk
- With mpk: encrypt to ID "Alice" or "Bob" or ...
- With $m s k$: extract $s k_{\text {Alice }}$ or $s k_{\text {Bob }}$ or ...
- [BonehFranklin01]: bilinear pairings
- [Cocks01]: quadratic residuosity $(\bmod N=p q)$

Identity-Based Encryption

- Proposed by [Shamir84]:
- Master keys mpk, msk
- With mpk: encrypt to ID "Alice" or "Bob" or ...
- With $m s k$: extract $s k_{\text {Alice }}$ or $s k_{\text {Bob }}$ or ...
- [BonehFranklin01]: bilinear pairings
- [Cocks01]: quadratic residuosity $(\bmod N=p q)$

	Lattice-based	QR-based [Cocks,BGH]
$m p k$	random lattice	random $N=p \cdot q$

Identity-Based Encryption

- Proposed by [Shamir84]:
- Master keys mpk, msk
- With mpk: encrypt to ID "Alice" or "Bob" or ...
- With $m s k$: extract $s k_{\text {Alice }}$ or $s k_{\text {Bob }}$ or ...
- [BonehFranklin01]: bilinear pairings
- [Cocks01]: quadratic residuosity $(\bmod N=p q)$

	Lattice-based	QR-based [Cocks,BGH]
$m p k$	random lattice	random $N=p \cdot q$
$m s k$	trapdoor basis	trapdoor p, q

Identity-Based Encryption

- Proposed by [Shamir84]:
- Master keys mpk, msk
- With mpk: encrypt to ID "Alice" or "Bob" or ...
- With $m s k$: extract $s k_{\text {Alice }}$ or $s k_{\text {Bob }}$ or ...
- [BonehFranklin01]: bilinear pairings
- [Cocks01]: quadratic residuosity $(\bmod N=p q)$

	Lattice-based	QR-based [Cocks,BGH]
$m p k$	random lattice	random $N=p \cdot q$
$m s k$	trapdoor basis	trapdoor p, q
$\operatorname{Hash}(I D)$	uniform $\mathbf{y} \in \mathbb{R}^{n}$	uniform $y \in Q R_{N}$

Identity-Based Encryption

- Proposed by [Shamir84]:
- Master keys mpk, msk
- With mpk: encrypt to ID "Alice" or "Bob" or ...
- With $m s k$: extract $s k_{\text {Alice }}$ or $s k_{\text {Bob }}$ or ...
- [BonehFranklin01]: bilinear pairings
- [Cocks01]: quadratic residuosity $(\bmod N=p q)$

	Lattice-based	QR-based [Cocks,BGH]
$m p k$	random lattice	random $N=p \cdot q$
$m s k$	trapdoor basis	trapdoor p, q
$\operatorname{Hash}(I D)$	uniform $\mathbf{y} \in \mathbb{R}^{n}$	uniform $y \in Q R_{N}$
$s k_{I D}$	random $\in f^{-1}(\mathbf{y})$	random \sqrt{y}

Cryptosystem with Master Trapdoor

Cryptosystem with Master Trapdoor

- For $\mathbf{v} \in \mathcal{L}^{*}: \quad\langle\mathbf{v}, p k\rangle=\langle\mathbf{v}, s k\rangle \bmod 1$

Cryptosystem with Master Trapdoor

- For $\mathbf{v} \in \mathcal{L}^{*}: \quad\langle\mathbf{v}, p k\rangle=\langle\mathbf{v}, s k\rangle \bmod 1$
- For $\mathbf{w} \approx \mathbf{v}: \quad\langle\mathbf{v}, p k\rangle \approx\langle\mathbf{w}, s k\rangle \bmod 1$
"quasi"-agreement

Cryptosystem with Master Trapdoor

- For $\mathbf{v} \in \mathcal{L}^{*}: \quad\langle\mathbf{v}, p k\rangle=\langle\mathbf{v}, s k\rangle \bmod 1$
- For $\mathbf{w} \approx \mathbf{v}: \quad\langle\mathbf{v}, p k\rangle \approx\langle\mathbf{w}, s k\rangle \bmod 1$
"quasi"-agreement
- Security: decoding w, a.k.a. "learning with errors"
- Quantum worst-case connection [Regev]
- Now: classical worst-case hardness [P]

Open Problems

(1) Tighter sampling for random lattices ?

Open Problems

(1) Tighter sampling for random lattices ?
(2) Practical "plain model" signatures ?

Open Problems

(1) Tighter sampling for random lattices ?
(2) Practical "plain model" signatures ?
(3) Relate factoring to lattice problems?

Open Problems

(1) Tighter sampling for random lattices?
(2) Practical "plain model" signatures ?
(3) Relate factoring to lattice problems?
(4) "Essence" of quantum-immune crypto?

Open Problems

(1) Tighter sampling for random lattices?
(2) Practical "plain model" signatures ?
(3) Relate factoring to lattice problems ?
(4) "Essence" of quantum-immune crypto ?

Thanks!
(Artwork courtesy of xkcd.org)

