Lattice Cryptography for the Internet

Chris Peikert Georgia Institute of Technology

Post-Quantum Cryptography 2 October 2014

Lattice-Based Cryptography

Lattice-Based Cryptography

Lattice-Based Cryptography

Amazing!

- Simple, efficient, and highly parallel crypto schemes
- Resists attacks by quantum algorithms (so far)
- Security from worst-case complexity assumptions
- Solves "holy grail" problems in crypto: FHE, obfuscation, ...

Trapdoor functions and CCA-secure encryption (w/o ROM)

- Trapdoor functions and CCA-secure encryption (w/o ROM)
- Signatures schemes (w/ and w/o ROM)

- Trapdoor functions and CCA-secure encryption (w/o ROM)
- Signatures schemes (w/ and w/o ROM)
- (Hierarchical) identity-based encryption

- Trapdoor functions and CCA-secure encryption (w/o ROM)
- Signatures schemes (w/ and w/o ROM)
- (Hierarchical) identity-based encryption
- Attribute-based encryption

- Trapdoor functions and CCA-secure encryption (w/o ROM)
- Signatures schemes (w/ and w/o ROM)
- (Hierarchical) identity-based encryption
- Attribute-based encryption
- Fully homomorphic encryption

- Trapdoor functions and CCA-secure encryption (w/o ROM)
- Signatures schemes (w/ and w/o ROM)
- (Hierarchical) identity-based encryption
- Attribute-based encryption
- Fully homomorphic encryption
- Functional encryption

- Trapdoor functions and CCA-secure encryption (w/o ROM)
- Signatures schemes (w/ and w/o ROM)
- (Hierarchical) identity-based encryption
- Attribute-based encryption
- Fully homomorphic encryption
- Functional encryption
- General-purpose obfuscation

- Trapdoor functions and CCA-secure encryption (w/o ROM)
- Signatures schemes (w/ and w/o ROM)
- (Hierarchical) identity-based encryption
- Attribute-based encryption
- Fully homomorphic encryption
- Functional encryption

. . .

General-purpose obfuscation

Meanwhile, in the Real World...

- Trapdoor functions and CCA-secure encryption (w/o ROM)
- Signatures schemes (w/ and w/o ROM)
- (Hierarchical) identity-based encryption
- Attribute-based encryption
- Fully homomorphic encryption
- Functional encryption

. . .

General-purpose obfuscation

Meanwhile, in the Real World...

The vast majority of (public-key) crypto used in practice: signatures and key exchange/transport, over the Internet.

A first step towards Internet standards for lattice cryptography.

A first step towards Internet standards for lattice cryptography.

* AKE from *any* passively secure KEM (à la IKEv2, RFC 5996)

- A first step towards Internet standards for lattice cryptography.
 - ★ AKE from *any* passively secure KEM
 - ★ New, efficient KEMs from ring-LWE

(à la IKEv2, RFC 5996)

(à la RSA-KEM, RFC 5990)

- A first step towards Internet standards for lattice cryptography.
 - ★ AKE from any passively secure KEM (à la IKEv2, RFC 5996)
 - ★ New, efficient KEMs from ring-LWE (à la RSA-KEM, RFC 5990)
- Technical contribution: a new 'reconciliation' mechanism yielding additive (not multiplicative) ciphertext overhead for lattice encryption.

- A first step towards Internet standards for lattice cryptography.
 - ★ AKE from *any* passively secure KEM (à la IKEv2, RFC 5996)
 - ★ New, efficient KEMs from ring-LWE (à la RSA-KEM, RFC 5990)
- Technical contribution: a new 'reconciliation' mechanism yielding additive (not multiplicative) ciphertext overhead for lattice encryption.
 - * Bit-for-bit encryption, plus fixed-size 'prelude'

- A first step towards Internet standards for lattice cryptography.
 - ★ AKE from *any* passively secure KEM (à la IKEv2, RFC 5996)
 - ★ New, efficient KEMs from ring-LWE (à la RSA-KEM, RFC 5990)
- Technical contribution: a new 'reconciliation' mechanism yielding additive (not multiplicative) ciphertext overhead for lattice encryption.
 - ★ Bit-for-bit encryption, plus fixed-size 'prelude'
 - Improves prior ciphertext sizes by up to 2x, at essentially no cost (in security, runtime, key sizes, etc.)

- A first step towards Internet standards for lattice cryptography.
 - ★ AKE from any passively secure KEM (à la IKEv2, RFC 5996)
 - ★ New, efficient KEMs from ring-LWE (à la RSA-KEM, RFC 5990)
- Technical contribution: a new 'reconciliation' mechanism yielding additive (not multiplicative) ciphertext overhead for lattice encryption.
 - ★ Bit-for-bit encryption, plus fixed-size 'prelude'
 - Improves prior ciphertext sizes by up to 2x, at essentially no cost (in security, runtime, key sizes, etc.)
 - Applies to all (ring-)LWE-based encryption schemes

- A first step towards Internet standards for lattice cryptography.
 - ★ AKE from any passively secure KEM (à la IKEv2, RFC 5996)
 - ★ New, efficient KEMs from ring-LWE (à la RSA-KEM, RFC 5990)
- Technical contribution: a new 'reconciliation' mechanism yielding additive (not multiplicative) ciphertext overhead for lattice encryption.
 - * Bit-for-bit encryption, plus fixed-size 'prelude'
 - Improves prior ciphertext sizes by up to 2x, at essentially no cost (in security, runtime, key sizes, etc.)
 - * Applies to all (ring-)LWE-based encryption schemes

Not in this work: parameters, security estimates, implementation

- A first step towards Internet standards for lattice cryptography.
 - ★ AKE from *any* passively secure KEM (à la IKEv2, RFC 5996)
 - ★ New, efficient KEMs from ring-LWE (à la RSA-KEM, RFC 5990)
- Technical contribution: a new 'reconciliation' mechanism yielding additive (not multiplicative) ciphertext overhead for lattice encryption.
 - * Bit-for-bit encryption, plus fixed-size 'prelude'
 - ★ Improves prior ciphertext sizes by up to 2x, at essentially no cost (in security, runtime, key sizes, etc.)
 - * Applies to all (ring-)LWE-based encryption schemes
- Not in this work: parameters, security estimates, implementation
 - ★ Follow-up [BCNS'14]: TLS/SSL suite (in C) using these components, with estimated > 128 bit security: practical!

Basic Goal: mutually authenticate parties and provide them a "consistent view" of completed session (including key k).

- Basic Goal: mutually authenticate parties and provide them a "consistent view" of completed session (including key k).
- Adversary controls network, session initiation, may corrupt parties.

- Basic Goal: mutually authenticate parties and provide them a "consistent view" of completed session (including key k).
- Adversary controls network, session initiation, may corrupt parties.
- Many intricate models and definitions, offering strong guarantees. [BR'93,BR'95,Kra'96,BCK'98,Sho'99,CK'01-02,LMQ'03,Kra'05,...]

- ▶ We focus on "SK-security with post-specified peer" model [CK'02a]
 - * Designed explicitly with Internet in mind
 - * 'Responder' identity is discovered *during* protocol; can conceal identities

- ▶ We focus on "SK-security with post-specified peer" model [CK'02a]
 - * Designed explicitly with Internet in mind
 - * 'Responder' identity is discovered *during* protocol; can conceal identities
- A version of Krawczyk's "SIGn-and-MAc" (SIGMA) protocol [Kra'03] satisfies this security definition, assuming DDH

- ▶ We focus on "SK-security with post-specified peer" model [CK'02a]
 - * Designed explicitly with Internet in mind
 - * 'Responder' identity is discovered *during* protocol; can conceal identities
- A version of Krawczyk's "SIGn-and-MAc" (SIGMA) protocol [Kra'03] satisfies this security definition, assuming DDH
- ▶ Internet Key Exchange (RFC 5996) based on this model & protocol

- ▶ We focus on "SK-security with post-specified peer" model [CK'02a]
 - * Designed explicitly with Internet in mind
 - * 'Responder' identity is discovered *during* protocol; can conceal identities
- A version of Krawczyk's "SIGn-and-MAc" (SIGMA) protocol [Kra'03] satisfies this security definition, assuming DDH
- Internet Key Exchange (RFC 5996) based on this model & protocol

Our Results

We generalize SIGMA, replacing its underlying DH mechanism with any passively secure KEM.

- ▶ We focus on "SK-security with post-specified peer" model [CK'02a]
 - Designed explicitly with Internet in mind
 - * 'Responder' identity is discovered *during* protocol; can conceal identities
- A version of Krawczyk's "SIGn-and-MAc" (SIGMA) protocol [Kra'03] satisfies this security definition, assuming DDH
- Internet Key Exchange (RFC 5996) based on this model & protocol

Our Results

- We generalize SIGMA, replacing its underlying DH mechanism with any passively secure KEM.
- This works because:
 - * SIGMA has 'initiator' who speaks first: can send KEM public key
 - * Security proof uses only 'KEM-like' properties of DH

- ▶ We focus on "SK-security with post-specified peer" model [CK'02a]
 - Designed explicitly with Internet in mind
 - * 'Responder' identity is discovered *during* protocol; can conceal identities
- A version of Krawczyk's "SIGn-and-MAc" (SIGMA) protocol [Kra'03] satisfies this security definition, assuming DDH
- Internet Key Exchange (RFC 5996) based on this model & protocol

Our Results

- We generalize SIGMA, replacing its underlying DH mechanism with any passively secure KEM.
- This works because:
 - $\star\,$ SIGMA has 'initiator' who speaks first: can send KEM public key
 - * Security proof uses only 'KEM-like' properties of DH
- Bottom line: minor changes to protocol design should make standardization and implementation easier.

▶ Passive security: $(pk, c, k) \stackrel{c}{\approx} (pk, c, k^*)$ where k^* uniform & independ.

▶ Passive security: $(pk, c, k) \stackrel{c}{\approx} (pk, c, k^*)$ where k^* uniform & independ.

• Active (CCA) security: same, even with $Decaps_{sk}(\cdot)$ oracle

▶ Passive security: $(pk, c, k) \stackrel{c}{\approx} (pk, c, k^*)$ where k^* uniform & independ.

• Active (CCA) security: same, even with $Decaps_{sk}(\cdot)$ oracle

Some practical actively secure KEMs:

RSA-OAEP [BR'94,Shoup'01]: security from RSA (in ROM)

▶ Passive security: $(pk, c, k) \stackrel{c}{\approx} (pk, c, k^*)$ where k^* uniform & independ.

Active (CCA) security: same, even with Decaps_{sk}(·) oracle

Some practical actively secure KEMs:

- 1 RSA-OAEP [BR'94,Shoup'01]:
- **2** RSA-KEM (RFC 5990):

security from RSA (in ROM) from RSA (in ROM)

▶ Passive security: $(pk, c, k) \stackrel{c}{\approx} (pk, c, k^*)$ where k^* uniform & independ.

• Active (CCA) security: same, even with $Decaps_{sk}(\cdot)$ oracle

Some practical actively secure KEMs:

1 RSA-OAEP [BR'94,Shoup'01]:security from RSA (in ROM)2 RSA-KEM (RFC 5990):from RSA (in ROM)3 "Hashed ElGamal" [BR'97,CS'98,ABR'01]:from DDH (in ROM)

▶ Passive security: $(pk, c, k) \stackrel{c}{\approx} (pk, c, k^*)$ where k^* uniform & independ.

• Active (CCA) security: same, even with $Decaps_{sk}(\cdot)$ oracle

Some practical actively secure KEMs:

RSA-OAEP [BR'94,Shoup'01]: security from RSA (in ROM)
RSA-KEM (RFC 5990): from RSA (in ROM)
"Hashed ElGamal" [BR'97,CS'98,ABR'01]: from DDH (in ROM)
REACT transform [OP'01]: from inj. trapdoor function (in ROM)

▶ Passive security: $(pk, c, k) \stackrel{c}{\approx} (pk, c, k^*)$ where k^* uniform & independ.

• Active (CCA) security: same, even with Decaps $_{sk}(\cdot)$ oracle

Some practical actively secure KEMs:

RSA-OAEP [BR'94,Shoup'01]: security from RSA (in ROM)
RSA-KEM (RFC 5990): from RSA (in ROM)
"Hashed ElGamal" [BR'97,CS'98,ABR'01]: from DDH (in ROM)
REACT transform [OP'01]: from inj. trapdoor function (in ROM)
FO transforms [FO'99a,b]: from any CPA-secure encryption (in ROM)

Passive Security

We construct a KEM from ring-LWE (à la [LPR'10,LPR'13]), with a new 'error reconciliation' mechanism: ~ 2x smaller ciphertexts

Passive Security

We construct a KEM from ring-LWE (à la [LPR'10,LPR'13]), with a new 'error reconciliation' mechanism: ≈ 2x smaller ciphertexts

Active Security

There are many construction paradigms, and (semi)generic transformations, for actively secure KEM/encryption schemes.

Passive Security

We construct a KEM from ring-LWE (à la [LPR'10,LPR'13]), with a new 'error reconciliation' mechanism: ~ 2x smaller ciphertexts

- There are many construction paradigms, and (semi)generic transformations, for actively secure KEM/encryption schemes.
- Most are inapplicable, inefficient, or insecure for our KEM!

Passive Security

We construct a KEM from ring-LWE (à la [LPR'10,LPR'13]), with a new 'error reconciliation' mechanism: ≈ 2x smaller ciphertexts

- There are many construction paradigms, and (semi)generic transformations, for actively secure KEM/encryption schemes.
- Most are inapplicable, inefficient, or insecure for our KEM!
 - **×** "Hashed ElGamal:" insecure due to ring-LWE search/decision equiv.

Passive Security

We construct a KEM from ring-LWE (à la [LPR'10,LPR'13]), with a new 'error reconciliation' mechanism: ≈ 2x smaller ciphertexts

- There are many construction paradigms, and (semi)generic transformations, for actively secure KEM/encryption schemes.
- Most are inapplicable, inefficient, or insecure for our KEM!
 - **×** "Hashed ElGamal:" insecure due to ring-LWE search/decision equiv.
 - **X** REACT: insecure: ring-LWE is not OW-PCA, for same reason

Passive Security

We construct a KEM from ring-LWE (à la [LPR'10,LPR'13]), with a new 'error reconciliation' mechanism: ≈ 2x smaller ciphertexts

- There are many construction paradigms, and (semi)generic transformations, for actively secure KEM/encryption schemes.
- Most are inapplicable, inefficient, or insecure for our KEM!
 - **×** "Hashed ElGamal:" insecure due to ring-LWE search/decision equiv.
 - ✗ REACT: insecure: ring-LWE is not OW-PCA, for same reason
 - X OAEP, REACT: inapplicable: need inj. trapdoor funcs (Use [MP'12]?)

Passive Security

We construct a KEM from ring-LWE (à la [LPR'10,LPR'13]), with a new 'error reconciliation' mechanism: ≈ 2x smaller ciphertexts

- There are many construction paradigms, and (semi)generic transformations, for actively secure KEM/encryption schemes.
- Most are inapplicable, inefficient, or insecure for our KEM!
 - **×** "Hashed ElGamal:" insecure due to ring-LWE search/decision equiv.
 - ✗ REACT: insecure: ring-LWE is not OW-PCA, for same reason
 - X OAEP, REACT: inapplicable: need inj. trapdoor funcs (Use [MP'12]?)
 - ✔ FO transforms: these work!
 - Prefer [FO'99b] because it maintains plaintext length
 - Subtlety: RO yields random coins for encryption (Gaussian sampling)

In most prior lattice encryption schemes:

- In most prior lattice encryption schemes:
 - * Sender encodes each msg bit $\mu \in \mathbb{Z}_2 = \{0, 1\}$ as $v = \mu \cdot \lfloor \frac{q}{2} \rfloor \in \mathbb{Z}_q$.

- In most prior lattice encryption schemes:
 - * Sender encodes each msg bit $\mu \in \mathbb{Z}_2 = \{0,1\}$ as $v = \mu \cdot \lfloor \frac{q}{2} \rfloor \in \mathbb{Z}_q$.
 - * Receiver recovers $w \approx \mu \cdot \lfloor \frac{q}{2} \rfloor$, where \approx comes from LWE error.

- In most prior lattice encryption schemes:
 - * Sender encodes each msg bit $\mu \in \mathbb{Z}_2 = \{0,1\}$ as $v = \mu \cdot \lfloor \frac{q}{2} \rfloor \in \mathbb{Z}_q$.
 - * Receiver recovers $w \approx \mu \cdot \lfloor \frac{q}{2} \rfloor$, where \approx comes from LWE error.
 - * Receiver computes μ by 'rounding:' $\mu = \lfloor v \rceil_2 := \lfloor \frac{2}{q} \cdot v \rceil \in \mathbb{Z}_2$.

- In most prior lattice encryption schemes:
 - * Sender encodes each msg bit $\mu \in \mathbb{Z}_2 = \{0,1\}$ as $v = \mu \cdot \lfloor \frac{q}{2} \rfloor \in \mathbb{Z}_q$.
 - * Receiver recovers $w \approx \mu \cdot \lfloor \frac{q}{2} \rfloor$, where \approx comes from LWE error.
 - * Receiver computes μ by 'rounding:' $\mu = \lfloor v \rceil_2 := \lfloor \frac{2}{q} \cdot v \rceil \in \mathbb{Z}_2$.

- In most prior lattice encryption schemes:
 - * Sender encodes each msg bit $\mu \in \mathbb{Z}_2 = \{0,1\}$ as $v = \mu \cdot \lfloor \frac{q}{2} \rfloor \in \mathbb{Z}_q$.
 - * Receiver recovers $w \approx \mu \cdot \lfloor \frac{q}{2} \rfloor$, where \approx comes from LWE error.
 - * Receiver computes μ by 'rounding:' $\mu = \lfloor v \rceil_2 := \lfloor \frac{2}{q} \cdot v \rceil \in \mathbb{Z}_2$.

Problem: $\log q$ factor overhead per msg bit (plus ctext 'preamble').

Contribution: bit-for-bit error-tolerant reconciliation.

- Contribution: bit-for-bit error-tolerant reconciliation.
- Sender has (pseudo)random $v \in \mathbb{Z}_q$, receiver can recover $w \approx v$.

- Contribution: bit-for-bit error-tolerant reconciliation.
- Sender has (pseudo)random $v \in \mathbb{Z}_q$, receiver can recover $w \approx v$.
- For even q, define 'cross-rounding' function $\langle v \rangle_2 := \lfloor \frac{4}{q} \cdot v \rfloor \mod 2$.

- Contribution: bit-for-bit error-tolerant reconciliation.
- Sender has (pseudo)random $v \in \mathbb{Z}_q$, receiver can recover $w \approx v$.
- For even q, define 'cross-rounding' function ⟨v⟩₂ := L⁴/_q · v ⊥ mod 2. Encoding of Lv₂ is ⟨v⟩₂ ∈ {0,1}. (Maybe biased; doesn't matter!)

- Contribution: bit-for-bit error-tolerant reconciliation.
- Sender has (pseudo)random $v \in \mathbb{Z}_q$, receiver can recover $w \approx v$.
- ▶ For even q, define 'cross-rounding' function $\langle v \rangle_2 := \lfloor \frac{4}{q} \cdot v \rfloor \mod 2$. Encoding of $\lfloor v \rceil_2$ is $\langle v \rangle_2 \in \{0, 1\}$. (Maybe biased; doesn't matter!)

Claim 1: if $v \in \mathbb{Z}_q$ is uniform, then $\lfloor v \rfloor_2$ is uniform given $\langle v \rangle_2$.

- Contribution: bit-for-bit error-tolerant reconciliation.
- Sender has (pseudo)random $v \in \mathbb{Z}_q$, receiver can recover $w \approx v$.
- ▶ For even q, define 'cross-rounding' function $\langle v \rangle_2 := \lfloor \frac{4}{q} \cdot v \rfloor \mod 2$. Encoding of $\lfloor v \rceil_2$ is $\langle v \rangle_2 \in \{0, 1\}$. (Maybe biased; doesn't matter!)

Claim 1: if $v \in \mathbb{Z}_q$ is uniform, then $\lfloor v \rceil_2$ is uniform given $\langle v \rangle_2$. Claim 2: given $\langle v \rangle_2$ and any $w \approx v$, can recover $\lfloor v \rceil_2$.

- Contribution: bit-for-bit error-tolerant reconciliation.
- Sender has (pseudo)random $v \in \mathbb{Z}_q$, receiver can recover $w \approx v$.
- ▶ For even q, define 'cross-rounding' function $\langle v \rangle_2 := \lfloor \frac{4}{q} \cdot v \rfloor \mod 2$. Encoding of $\lfloor v \rceil_2$ is $\langle v \rangle_2 \in \{0, 1\}$. (Maybe biased; doesn't matter!)

Claim 1: if $v \in \mathbb{Z}_q$ is uniform, then $\lfloor v \rceil_2$ is uniform given $\langle v \rangle_2$. Claim 2: given $\langle v \rangle_2$ and any $w \approx v$, can recover $\lfloor v \rceil_2$.

- Contribution: bit-for-bit error-tolerant reconciliation.
- Sender has (pseudo)random $v \in \mathbb{Z}_q$, receiver can recover $w \approx v$.
- ▶ For even q, define 'cross-rounding' function $\langle v \rangle_2 := \lfloor \frac{4}{q} \cdot v \rfloor \mod 2$. Encoding of $\lfloor v \rceil_2$ is $\langle v \rangle_2 \in \{0, 1\}$. (Maybe biased; doesn't matter!)

Claim 1: if $v \in \mathbb{Z}_q$ is uniform, then $\lfloor v \rceil_2$ is uniform given $\langle v \rangle_2$. Claim 2: given $\langle v \rangle_2$ and any $w \approx v$, can recover $\lfloor v \rceil_2$.

$$\blacktriangleright$$
 Let $\boxed{R=\mathbb{Z}[X]/(X^n+1)}$ for n a power of two, and $\boxed{R_q=R/qR}$

- ★ Elts of $R(R_q)$ are deg < n polynomials with integer (mod q) coeffs.
- \star 'Errors' in R are polynomials with small (Gaussian) integer coefficients.
- * Operations in R_q are very efficient using FFT-like algorithms.

$$\blacktriangleright$$
 Let $\boxed{R=\mathbb{Z}[X]/(X^n+1)}$ for n a power of two, and $\boxed{R_q=R/qR}$

- ★ Elts of $R(R_q)$ are deg < n polynomials with integer (mod q) coeffs.
- \star 'Errors' in R are polynomials with small (Gaussian) integer coefficients.
- * Operations in R_q are very efficient using FFT-like algorithms.
- Public key is $(a, b \approx a \cdot s) \in R_q \times R_q$ for secret error $s \in R$.

$$\blacktriangleright$$
 Let $\boxed{R=\mathbb{Z}[X]/(X^n+1)}$ for n a power of two, and $\boxed{R_q=R/qR}$

- ★ Elts of $R(R_q)$ are deg < n polynomials with integer (mod q) coeffs.
- \star 'Errors' in R are polynomials with small (Gaussian) integer coefficients.
- * Operations in R_q are very efficient using FFT-like algorithms.
- <u>Public key</u> is $(a, b \approx a \cdot s) \in R_q \times R_q$ for secret error $s \in R$.
- <u>Encaps</u>: choose error $r \in R$, let $u \approx r \cdot a$, $v \approx r \cdot b \in R_q$, output

$$c = (u \;,\; \langle v \rangle_2) \in R_q \times R_2, \quad \mathrm{key} \; k = \lfloor v \rceil_2 \in R_2.$$

▶ Let
$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for n a power of two, and $R_q = R/qR$

- ★ Elts of $R(R_q)$ are deg < n polynomials with integer (mod q) coeffs.
- \star 'Errors' in R are polynomials with small (Gaussian) integer coefficients.
- * Operations in R_q are very efficient using FFT-like algorithms.
- <u>Public key</u> is $(a, b \approx a \cdot s) \in R_q \times R_q$ for secret error $s \in R$.
- Encaps: choose error $r \in R$, let $u \approx r \cdot a$, $v \approx r \cdot b \in R_q$, output

$$c = (u \ , \ \langle v \rangle_2) \in R_q \times R_2, \quad \mathrm{key} \ k = \lfloor v \rceil_2 \in R_2.$$

• Decaps: recover $k = \lfloor v \rceil_2$ from $\langle v \rangle_2$ and

 $w = u \cdot s \approx r \cdot a \cdot s \approx r \cdot b \approx v.$

$$\blacktriangleright$$
 Let $\boxed{R=\mathbb{Z}[X]/(X^n+1)}$ for n a power of two, and $\boxed{R_q=R/qR}$

- ★ Elts of $R(R_q)$ are deg < n polynomials with integer (mod q) coeffs.
- \star 'Errors' in R are polynomials with small (Gaussian) integer coefficients.
- * Operations in R_q are very efficient using FFT-like algorithms.
- <u>Public key</u> is $(a, b \approx a \cdot s) \in R_q \times R_q$ for secret error $s \in R$.
- Encaps: choose error $r \in R$, let $u \approx r \cdot a$, $v \approx r \cdot b \in R_q$, output

$$c = (u \;,\; \langle v \rangle_2) \in R_q \times R_2, \quad \mathrm{key} \; k = \lfloor v \rceil_2 \in R_2.$$

• Decaps: recover $k = \lfloor v \rceil_2$ from $\langle v \rangle_2$ and

 $w = u \cdot s \approx r \cdot a \cdot s \approx r \cdot b \approx v.$

Passively secure under ring-LWE [LPR'10].

▶ Let
$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for n a power of two, and $R_q = R/qR$

- ★ Elts of $R(R_q)$ are deg < n polynomials with integer (mod q) coeffs.
- \star 'Errors' in R are polynomials with small (Gaussian) integer coefficients.
- * Operations in R_q are very efficient using FFT-like algorithms.
- <u>Public key</u> is $(a, b \approx a \cdot s) \in R_q \times R_q$ for secret error $s \in R$.
- Encaps: choose error $r \in R$, let $u \approx r \cdot a$, $v \approx r \cdot b \in R_q$, output

$$c = (u \;,\; \langle v \rangle_2) \in R_q \times R_2, \quad \mathrm{key}\; k = \lfloor v \rceil_2 \in R_2.$$

• Decaps: recover $k = \lfloor v \rceil_2$ from $\langle v \rangle_2$ and

 $w = u \cdot s \approx r \cdot a \cdot s \approx r \cdot b \approx v.$

- Passively secure under ring-LWE [LPR'10].
- Generalizes (tightly!) to any cyclotomic ring using tools from [LPR'13].

We have taken one (small) step toward "making the Internet safe for lattice cryptography" (or vice versa?)

- We have taken one (small) step toward "making the Internet safe for lattice cryptography" (or vice versa?)
- Much remains to be done: signature protocols, implementations, formal standards, ...

- We have taken one (small) step toward "making the Internet safe for lattice cryptography" (or vice versa?)
- Much remains to be done: signature protocols, implementations, formal standards, ...
- Please help!

- We have taken one (small) step toward "making the Internet safe for lattice cryptography" (or vice versa?)
- Much remains to be done: signature protocols, implementations, formal standards, ...
- Please help!

Thanks!