Lattice-Based Cryptography

Chris Peikert
University of Michigan

QCrypt 2016

24

Agenda

@ Foundations: lattice problems, SIS/LWE and their applications

® Ring-Based Crypto: NTRU, Ring-SIS/LWE and ideal lattices

© Practical Implementations: BLISS, NewHope, Frodo, HElib, AoA, ...

O Along the Way: open questions, research directions

)

24

Foundations

/24

Lattice-Based Cryptography

m@od@
gég /8(— ————— > %\
ro = \

(Images courtesy xked.org)

Lattice-Based Cryptography

(Images courtesy xked.org)

/24

Lattice-Based Cryptography

P Efficient: linear, embarrassingly parallel operations

(Images courtesy xked.org) 4/24

Lattice-Based Cryptography

P Efficient: linear, embarrassingly parallel operations

P Resists quantum attacks (so far)

(Images courtesy xked.org) 4/24

Lattice-Based Cryptography

: : . B

WINSER S

P Efficient: linear, embarrassingly parallel operations

P Resists quantum attacks (so far)

> Security from mild worst-case assumptions

(Images courtesy xked.org) 4/24

Lattice-Based Cryptography

P Efficient: linear, embarrassingly parallel operations
P Resists quantum attacks (so far)

> Security from mild worst-case assumptions

» Solutions to ‘holy grail’ problems in crypto: FHE and related

(Images courtesy xked.org) 4/24

What's a Lattice?

» A periodic ‘grid" in Z™. (Formally: full-rank additive subgroup.)

5/24

What's a Lattice?

» A periodic ‘grid’ in Z™. (Formally: full-rank additive subgroup.)

» Basis B={by,...,b,}:

L = i(z - b;)
=1

ba

by

/24

What's a Lattice?

» A periodic ‘grid’ in Z™. (Formally: full-rank additive subgroup.)

» Basis B={by,...,b,}:

L = i(z - b;)
=1

b

\

by

/24

What's a Lattice?

» A periodic ‘grid’ in Z™. (Formally: full-rank additive subgroup.)

» Basis B={by,...,b,}:
L = Y (Zb)
1=1

(Other representations too .. .)

b

\

by

/24

What's a Lattice?

P> A periodic ‘grid’ in Z™. (Formally: full-rank additive subgroup.)

» Basis B ={by,...,by,}:

L = Y (Zb) by
i=1 — —
L
ol _—— |b2

(Other representations too ...)

Hard Lattice Problems
» Find/detect ‘short’ nonzero lattice vectors: (Gap)SVP,, SIVP,

> For v = poly(m), solving appears to require 2°(™) time (and space).

5/24

A Hard Problem: Short Integer Solution [ajtai'os]

» Z; = n-dimensional integer vectors modulo ¢

/24

A Hard Problem: Short Integer Solution [ajtai'os]

> 77 = n-dimensional integer vectors modulo ¢

)

24

A Hard Problem: Short Integer Solution [ajtai'os]

» Z; = n-dimensional integer vectors modulo ¢

» Goal: find nontrivial z1,. .., zp, € {0, £1} such that:

z1- lar] + 22 lax] + - + 2 |an] =(0] €Z]

24

A Hard Problem: Short Integer Solution [ajtai'os]

» Z; = n-dimensional integer vectors modulo ¢
» Goal: find nontrivial z € {0, £1}" such that:

A - ||z|=0ez

24

A Hard Problem: Short Integer Solution [ajtai'os]

» Z; = n-dimensional integer vectors modulo ¢
» Goal: find nontrivial z € {0, £1}" such that:

A - ||z|=0ez

m
Collision-Resistant Hash Function

> Set m > nlog, q. Define ‘shrinking’ fa: {0,1}" — Zy

fa(x) = Ax

A Hard Problem: Short Integer Solution [ajtai'os]

» Z; = n-dimensional integer vectors modulo ¢
» Goal: find nontrivial z € {0, £1}" such that:

A - ||z|=0ez

m
Collision-Resistant Hash Function

> Set m > nlog, q. Define ‘shrinking’ fa: {0,1}" — Zy

fa(x) = Ax

» Collision x,x" € {0,1}"™ where Ax = Ax' ...

A Hard Problem: Short Integer Solution [ajtai'os]

» Z; = n-dimensional integer vectors modulo ¢
» Goal: find nontrivial z € {0, £1}" such that:

A - ||z|=0ez

m
Collision-Resistant Hash Function

> Set m > nlog, q. Define ‘shrinking’ fa: {0,1}" — Zy

fa(x) = Ax

» Collision x,x" € {0,1}" where Ax = Ax' ...

...yields solution z = x — x’ € {0, +1}".

6 /24

Cool! (But what does this have to do with lattices?)

7/24

Cool! (But what does this have to do with lattices?)

> A € Zy*™ defines a ‘g-ary’ lattice:

LYA)={zeZ™ : Az =0}

7/24

Cool! (But what does this have to do with lattices?)

(0, q)

> A € Zy*™ defines a ‘g-ary’ lattice:

LYA)={zeZ™ : Az =0}

7/24

Cool! (But what does this have to do with lattices?)

(0,49)
> A € Zy*™ defines a ‘g-ary’ lattice:
LYA)={zeZ™ : Az=0} 1]
[\ 4.0
» ‘Short’ solutions z lie in O \ c ,?/

7/24

Cool! (But what does this have to do with lattices?)

(0, 9)
> A € Zy*™ defines a ‘g-ary’ lattice:
LYA)={zeZ™ : Az=0} 1]
[\ 4.0
» ‘Short’ solutions z lie in Q \ c ,?/

Worst-Case to Average-Case Reduction [Ajtai'96,...]

Finding ‘short’ (||z|| < 8 < ¢) nonzero z € L(A)
(for uniformly random A € Z3*™)

)
solving GapSVPg ., SIVP3 4 on any n-dim lattice

Application: Dlgltal Signatures [GentryPeikertVaikuntanathan'08]

» Generate uniform vk = A with secret ‘trapdoor’ sk = T.

/24

Application: Dlgltal Signatures [GentryPeikertVaikuntanathan'08]

» Generate uniform vk = A with secret ‘trapdoor’ sk = T.

> Sign(T, u1): use T to sample a short z € Z"™ s.t. Az = H(u) € Zy.

24

Application: Dlgltal Signatures [GentryPeikertVaikuntanathan'08]

» Generate uniform vk = A with secret ‘trapdoor’ sk = T.
> Sign(T, u1): use T to sample a short z € Z"™ s.t. Az = H(u) € Zy.
Draw z from a distribution that reveals nothing about secret key:

+

+y
+
T+

T PR
4
++
F+ 0+
o
+ FE ey e
s T et
e + .+ h +
+ e i s TR RS
T gt "’"’+*&"¥+*f"+¢"*+ ot
+hat et + +ht 4
+ +h o et +T
+ +++tr1;. o . ﬁ"’t#
PUEAIREE - E LR
Pt PR
Tt P T e
AT A I e S ++++++++tr+++++++++
R T T

Application: Dlgltal Signatures [GentryPeikertVaikuntanathan'08]

» Generate uniform vk = A with secret ‘trapdoor’ sk = T.

> Sign(T, u1): use T to sample a short z € Z"™ s.t. Az = H(u) € Zy.

Draw z from a distribution that reveals nothing about secret key:

+

+y
+
T+

++;r

HFr +
+ 4t h +
R o s R
T e e
LR o + FEAT A
Hhata A + A

+ - L
ot +J5-’5j" + . G
SR A +
AL+ 5
+a+ +
-:--:- :—t++++++++++ ++++ = ++++++ e
+ + + A+
+ ++-:_+-:_++++++++ + o ++ + +T

+hat e
P

» Verify(A, i1, z): check that Az = H(u) and z is sufficiently short.

/ 24

Application: Dlgltal Signatures [GentryPeikertVaikuntanathan'08]

» Generate uniform vk = A with secret ‘trapdoor’ sk = T.

> Sign(T, u1): use T to sample a short z € Z"™ s.t. Az = H(u) € Zy.

Draw z from a distribution that reveals nothing about secret key:

+
+ ot
+
T+

““‘d'++++

_;r+++ +*

+++++1¢

. +

I s
+
P +p++
+

L + T+
+ L+t h +
+ e fi s R
o e e e
ity + + A
++++++++1;. o + HHFRHR AL
Ly R
L Ty
LA A
Pt T ST s
I + + +
+ t il + + L+
+++++':_+':_+ I e +F ++‘tr +tr A
R T T

» Verify(A, i, z): check that Az = H(u) and z is sufficiently short.

P Security: forging a signature for a new message p* requires finding
short z* s.t. Az* = H(u*). This is SIS: hard!

24

Another Hard Problem: Learning With Errors [Regev'0s]

» Parameters: dimension n, modulus ¢ = poly(n), error distribution

/24

Another Hard Problem: Learning With Errors [Regev'0s]

» Parameters: dimension n, modulus ¢ = poly(n), error distribution

» Search: find secret s € Zj given many ‘noisy inner products’

aj < Z; , bi=(s,a;)modgq

az < Z;, , by=(s, az)modgq

24

Another Hard Problem: Learning With Errors [Regev'0s]

» Parameters: dimension n, modulus ¢ = poly(n), error distribution

» Search: find secret s € Zj given many ‘noisy inner products’

a1%ZZ , b1:<S,al>+€1€Zq
RERpRASCE |
ol [r

Vn < error < g, 'rate’ «

24

Another Hard Problem: Learning With Errors [Regev'0s]

» Parameters: dimension n, modulus ¢ = poly(n), error distribution

» Search: find secret s € Zj given many ‘noisy inner products’

A -], (- bt) =sA+é
m\" Jh.

Vn < error < g, 'rate’ «

24

Another Hard Problem: Learning With Errors [Regev'0s]

» Parameters: dimension n, modulus ¢ = poly(n), error distribution

» Search: find secret s € Zj given many ‘noisy inner products’

A -], (- bt) =sA+é
.m\" Jh.

Vn < error < g, 'rate’ «

» Decision: distinguish (A, b) from uniform (A, b)

24

Another Hard Problem: Learning With Errors [Regev'0s]

» Parameters: dimension n, modulus ¢ = poly(n), error distribution

» Search: find secret s € Zj given many ‘noisy inner products’

A -], (- bt) =sA+é
.m\" Jh.

Vn < error < g, 'rate’ «

» Decision: distinguish (A, b) from uniform (A, b)

(n/«)-approx worst case
lattice problems r ¥

(quantum [R'05]) [BFKL'93,R'05,...]

< search-LWE < decision-LWE < crypto

Another Hard Problem: Learning With Errors [Regev'0s]

» Parameters: dimension n, modulus ¢ = poly(n), error distribution

» Search: find secret s € Zj given many ‘noisy inner products’

A -], (- bt) =sA+é
m\" Jh.

Vn < error < g, 'rate’ «

» Decision: distinguish (A, b) from uniform (A, b)

(n/«)-approx worst case
lattice problems r ¥

(quantum [R'05]) [BFKL'93,R'05,...]

< search-LWE < decision-LWE < crypto

» Also fully classical reductions, for worse params [Peikert'09,BLPRS’13]
9/24

LWE is Versatile
What kinds of crypto can we do with LWE?

10/24

LWE is Versatile
What kinds of crypto can we do with LWE?
v Key Exchange, Public Key Encryption
v/ Oblivious Transfer
v Actively Secure Encryption (w/o random oracles)

v Block Ciphers, PRFs

10/24

LWE is Versatile
What kinds of crypto can we do with LWE?

v Key Exchange, Public Key Encryption
v/ Oblivious Transfer
v Actively Secure Encryption (w/o random oracles)

v Block Ciphers, PRFs

vV Identity-Based Encryption (w/ RO)
vV Hierarchical ID-Based Encryption (w/o RO)

10/24

LWE is Versatile
What kinds of crypto can we do with LWE?

v Key Exchange, Public Key Encryption
v/ Oblivious Transfer
v Actively Secure Encryption (w/o random oracles)

v Block Ciphers, PRFs

vV Identity-Based Encryption (w/ RO)
Vv Hierarchical ID-Based Encryption (w/o RO)

1 Fully Homomorphic Encryption

I Attribute-Based Encryption for arbitrary policies

and much, much more. ..

10 /24

Key Exchange from LWE [Regev'0s,LP'11]

ﬁ r < Z" (error) s < Z" (error) %\

11/24

Key Exchange from LWE [Regev'0s,LP'11]

ﬁ r < Z" (error) A 7y s < Z" (error) %\

ut%rt-AEZZ

11 /24

Key Exchange from LWE [Regev'0s,LP'11]

ﬁ r < Z" (error) A 2y s < Z" (error) a\

ut%rt-AEZZ

V%A-SGZZL

11 /24

Key Exchange from LWE [Regev'0s,LP'11]

/% r < Z" (error) A 2y s < Z" (error)

=0

ul~rt-Aezp

va-seZ;1

rt-va~rtAs E~ut-s~rtAs

11 /24

Key Exchange from LWE [Regev'0s,LP'11]

/% r < Z" (error) A 2y s < Z" (error)

=0

ul~rt-Aezp

va-sEZZI1

11 /24

Key Exchange from LWE [Regev'0s,LP'11]

/% r < Z" (error) A 2y s < Z" (error)

=0

ul~rt-Aezp

va-seZ;1

rt-va~rtAs E~ut-s~rtAs

(A'7 u’ V’ k)
by decision-LWE

11 /24

Key Exchange from LWE [Regev'0s,LP'11]

/% r < Z" (error) A 2y s < Z" (error)

=0

ul~rt-Aezp

va-seZ;1

rt-va~rtAs E~ut-s~rtAs

(A'7 u’ V’ k)
by decision-LWE

11 /24

Efficiency from Rings

12/24

SIS/LWE are (Sort Of) Efficient

» Getting one pseudorandom
scalar b; € Zq requires an n-dim
mod-q inner product

(az) S —|—67;:bi€Zq

13 /24

SIS/LWE are (Sort Of) Efficient

» Getting one pseudorandom
scalar b; € Zq requires an n-dim
mod-q inner product

(rai)|s|te =bi€Zg Can amortize each a; over many
: secrets s;, but still O(n) work
per scalar output.

13 /24

SIS/LWE are (Sort Of) Efficient

» Getting one pseudorandom
scalar b; € Zq requires an n-dim
mod-q inner product

(rai)|s|te =bi€Zg Can amortize each a; over many

secrets s;, but still O(n) work
per scalar output.

P> Cryptosystems have rather large keys:

13 /24

SIS/LWE are (Sort Of) Efficient

» Getting one pseudorandom
scalar b; € Zq requires an n-dim
mod-q inner product

(rai)|s|te =bi€Zg Can amortize each a; over many
: secrets s;, but still O(n) work
per scalar output.

P> Cryptosystems have rather large keys:

pk = A , b | 7 Q(n)

n

» Inherently > n? time to encrypt & decrypt an n-bit message.

13 /24

Wishful Thinking. . .

» Get n pseudorandom scalars
from just one (cheap)

a [x|s|+]e| = | by GZZIZ product operation?

> Replace Zy*"-chunks by Zg.

14 /24

Wishful Thinking. ..

» Get n pseudorandom scalars
from just one (cheap)

a [x|s|+]e| = | by GZZIZ product operation?

> Replace Z;*"-chunks by Zj.

» How to define the product ‘x' so that (a;, b;) is pseudorandom?

14 /24

Wishful Thinking. ..

» Get n pseudorandom scalars
from just one (cheap)

a [x|s|+]e| = | by GZZIZ product operation?

> Replace Z;*"-chunks by Zj.

» How to define the product ‘x' so that (a;, b;) is pseudorandom?

» Careful! With small error, coordinate-wise multiplication is insecure!

14 /24

Wishful Thinking. . .

» Get n pseudorandom scalars
from just one (cheap)

a [x|s|+]e| = | by GZ; product operation?

> Replace Z;*"-chunks by Zj.

» How to define the product ‘x' so that (a;, b;) is pseudorandom?

» Careful! With small error, coordinate-wise multiplication is insecure!

Answer

» ‘%' = multiplication in a polynomial ring: e.g., Z4[X]/(X™ +1).

Fast and practical with FFT: nlogn operations mod q.

4
14°/24

Wishful Thinking. . .

» Get n pseudorandom scalars
from just one (cheap)

a [x|s|+]e| = | by GZ; product operation?

> Replace Z;*"-chunks by Zj.

» How to define the product ‘x' so that (a;, b;) is pseudorandom?

» Careful! With small error, coordinate-wise multiplication is insecure!

Answer

» ‘%' = multiplication in a polynomial ring: e.g., Z4[X]/(X™ +1).

Fast and practical with FFT: nlogn operations mod q.

» Same ring structures used in NTRU cryptosystem [HPS'9g],

compact one-way / CR hash functions [Mic'02,PR'06,LM'06,...]

4
14°/24

LWE Over Rings, Over Simplified

> Let‘R =7Z[X]/(X"+1) ‘ for n a power of two, and

Ry =R/qR

15 /24

LWE Over Rings, Over Simplified

> Let‘R =ZIX]/(X™"+1) ‘ for n a power of two, and | R, = R/qR

* Elements of R, are deg < n polynomials with mod-g coefficients

* Operations in R, are very efficient using FFT-like algorithms

15 /24

LWE Over Rings, Over Simplified

> Let‘R =ZIX]/(X™"+1) ‘ for n a power of two, and | R, = R/qR

* Elements of R, are deg < n polynomials with mod-g coefficients

* Operations in R, are very efficient using FFT-like algorithms

» Search: find secret ring element s(X) € R, given:

a1<—Rq , blzs-al—i—eleRq
a2<—Rq , bgzs-ag—i-eQGRq
a3 R, , b3=s-a3+e3€ Ry (ei € R are 'small’)

15 /24

LWE Over Rings, Over Simplified

> Let‘R =ZIX]/(X™"+1) ‘ for n a power of two, and | R, = R/qR

* Elements of R, are deg < n polynomials with mod-g coefficients

* Operations in R, are very efficient using FFT-like algorithms

» Search: find secret ring element s(X) € R, given:

a1<—Rq , blzs-al—i—eleRq
a2<—Rq , bgzs-ag—i-eQGRq
az+ Ry , by=s-a3+es € Ry (ei € R are 'small’)

» Decision: distinguish (a; , b;) from uniform (a; , b;) € Ry X Ry
(with noticeable advantage)

15 /24

Hardness of Rlng—LWE [LyubashevskyPeikertRegev'10]
» Two main theorems (reductions):

s SRS e s 2 o e

on ideal lattices in R 5 N
(quantum, (classical,
any R = Ok) any cyclotomic R)

16 /24

Hardness of Rlng—LWE [LyubashevskyPeikertRegev'10]
» Two main theorems (reductions):

s SRS e s 2 o e

on ideal lattices in R 5 N
(quantum, (classical,
any R = Ok) any cyclotomic R)

@ If you can find s given (a; , b;), then you can find approximately
shortest vectors in any ideal lattice in R (using a quantum algorithm).

16 /24

Hardness of Rlng—LWE [LyubashevskyPeikertRegev'10]
» Two main theorems (reductions):

s SRS e s 2 o e

on ideal lattices in R 5 5
(quantum, (classical,
any R = Ok) any cyclotomic R)

@ If you can find s given (a; , b;), then you can find approximately
shortest vectors in any ideal lattice in R (using a quantum algorithm).

@® If you can distinguish (a; , b;) from (a; , b;), then you can find s.

16 /24

Hardness of Rlng—LWE [LyubashevskyPeikertRegev'10]
» Two main theorems (reductions):

s SRS e s 2 o e

on ideal lattices in R 5 N
(quantum, (classical,
any R = Ok) any cyclotomic R)

@ If you can find s given (a; , b;), then you can find approximately
shortest vectors in any ideal lattice in R (using a quantum algorithm).

@® If you can distinguish (a; , b;) from (a; , b;), then you can find s.
» Then:

decision R-LWE < lots of crypto J

16 /24

Hardness of Rlng—LWE [LyubashevskyPeikertRegev'10]
» Two main theorems (reductions):

s SRS e s 2 o e

on ideal lattices in R 5 5
(quantum, (classical,
any R = Ok) any cyclotomic R)

@ If you can find s given (a; , b;), then you can find approximately
shortest vectors in any ideal lattice in R (using a quantum algorithm).

@® If you can distinguish (a; , b;) from (a; , b;), then you can find s.
» Then:

decision R-LWE < lots of crypto J

* If you can break the crypto, then you can distinguish (a; , b;) from
(ai s bz) ..

16 /24

Ideal Lattices

» Say R =Z[X]/(X™+ 1) for power-of-two n. (Or R = Ox.)
» An ideal Z C R is closed under 4+ and —, and under - with R.

17 /24

Ideal Lattices

» Say R =Z[X]/(X™+ 1) for power-of-two n. (Or R = Ox.)
» Anideal Z C R is closed under 4+ and —, and under - with R.

To get ideal lattices, embed R and its ideals into R™. How?

17 /24

Ideal Lattices

» Say R =Z[X]/(X™+ 1) for power-of-two n. (Or R = Ok))

» Anideal Z C R is closed under 4+ and —, and under - with R.

To get ideal lattices, embed R and its ideals into R™. How?
@ Obvious answer: ‘coefficient embedding’

aw+auX+ - Fap, 1 X" 1eR — (agy...,an—1) € Z"

17 /24

Ideal Lattices

» Say R =Z[X]/(X™+ 1) for power-of-two n. (Or R = Ox.)

» Anideal Z C R is closed under 4+ and —, and under - with R.

To get ideal lattices, embed R and its ideals into R™. How?
@ Obvious answer: ‘coefficient embedding’

aw+auX+ - Fap, 1 X" 1eR — (agy...,an—1) € Z"

+ is coordinate-wise, but analyzing - is cumbersome.

17 /24

Ideal Lattices

» Say R =Z[X]/(X™+ 1) for power-of-two n. (Or R = Ok))
» Anideal Z C R is closed under 4+ and —, and under - with R.

To get ideal lattices, embed R and its ideals into C". How?
@ Obvious answer: ‘coefficient embedding’

aw+a X+ Fa 1 X" PeER = (ag,...,an_1) €Z"
+ is coordinate-wise, but analyzing - is cumbersome.

@® Minkowski: ‘canonical embedding.” Let w = exp(wi/n) € C, so roots
of X" +1 are w!,w?,...,w? 1. Embed:

a(X)eR +— (aw!),alw?),..., aw? 1) e

17 /24

Ideal Lattices

» Say R =Z[X]/(X™+ 1) for power-of-two n. (Or R = Ok))
» Anideal Z C R is closed under 4+ and —, and under - with R.

To get ideal lattices, embed R and its ideals into C". How?
@ Obvious answer: ‘coefficient embedding’

aw+a X+ Fa 1 X" PeER = (ag,...,an_1) €Z"
+ is coordinate-wise, but analyzing - is cumbersome.

® Minkowski: ‘canonical embedding.” Let w = exp(mi/n) € C, so roots
of X" +1 are w!,w?,...,w? 1. Embed:

a(X)eR +— (aw!),alw?),..., aw? 1) e

Both + and - are coordinate-wise.

17 /24

|deal Lattices
» Say R =Z[X]/(X™+ 1) for power-of-two n. (Or R = Ox.)
» Anideal Z C R is closed under 4+ and —, and under - with R.

To get ideal lattices, embed R and its ideals into R™. How?
@ Obvious answer: ‘coefficient embedding’

aw+a X+ Fa 1 X" PeER = (ag,...,an_1) €Z"
+ is coordinate-wise, but analyzing - is cumbersome.

® Minkowski: ‘canonical embedding.” Let w = exp(mi/n) € C, so roots
of X" +1 are w!,w?,...,w? 1. Embed:

a(X)eR +— (aw!),alw?),..., aw? 1) e

Both + and - are coordinate-wise.

Error distribution is Gaussian in canonical embedding.

17 /24

Ideal Lattices

> Say R =7Z[X]/(X?+1). Embeddings map X + =i.

Ideal Lattices

> Say R =7Z[X]/(X?+1). Embeddings map X + =i.
» 7=(X—2,-3X+1) is an ideal in R.

18 /24

Ideal Lattices

> Say R =7Z[X]/(X?+1). Embeddings map X + =i.
» 7=(X—2,-3X+1) is an ideal in R.

(Approximate) Shortest Vector Problem

» Given (an arbitrary basis of) an arbitrary ideal Z C R,
find a nearly shortest nonzero a € 7.

107 24

Complexity of Ideal Lattices

® We know approx-R-SVP < R-LWE (quantumly). Other direction?
Can we solve R-LWE using an oracle for approx- R-SVP?

19 /24

Complexity of Ideal Lattices

® We know approx-R-SVP < R-LWE (quantumly). Other direction?
Can we solve R-LWE using an oracle for approx- R-SVP?

R-LWE samples (a;, b;) don't readily translate to ideals in R.

19 /24

Complexity of Ideal Lattices

® We know approx-R-SVP < R-LWE (quantumly). Other direction?
Can we solve R-LWE using an oracle for approx- R-SVP?

R-LWE samples (a;, b;) don't readily translate to ideals in R.

@® How hard/easy is poly(n)-R-SVP? (In cyclotomics etc.)

19 /24

Complexity of Ideal Lattices

® We know approx-R-SVP < R-LWE (quantumly). Other direction?
Can we solve R-LWE using an oracle for approx- R-SVP?

R-LWE samples (a;, b;) don't readily translate to ideals in R.

@® How hard/easy is poly(n)-R-SVP? (In cyclotomics etc.)

* Despite much ring structure (e.g., subfields, Galois), no significant
improvement versus general n-dim lattices is known.

19 /24

Complexity of Ideal Lattices

® We know approx-R-SVP < R-LWE (quantumly). Other direction?
Can we solve R-LWE using an oracle for approx- R-SVP?

R-LWE samples (a;, b;) don't readily translate to ideals in R.

@® How hard/easy is poly(n)-R-SVP? (In cyclotomics etc.)

* Despite much ring structure (e.g., subfields, Galois), no significant
improvement versus general n-dim lattices is known.

* But 20V 10gn)_SVP is quantum poly-time solvable in prime-power
cyclotomics, and maybe other rings [CDPR'16,BS5'16,K'16,CDW'16]

19 /24

Complexity of Ideal Lattices

® We know approx-R-SVP < R-LWE (quantumly). Other direction?
Can we solve R-LWE using an oracle for approx- R-SVP?

R-LWE samples (a;, b;) don't readily translate to ideals in R.

@® How hard/easy is poly(n)-R-SVP? (In cyclotomics etc.)

* Despite much ring structure (e.g., subfields, Galois), no significant
improvement versus general n-dim lattices is known.

* But 20V 19gn)_SVP is quantum poly-time solvable in prime-power
cyclotomics, and maybe other rings [CDPR'16,BS5'16,K'16,CDW'16]

* There is a 2%(V7/1087) barrier for the main technique. Can it be
circumvented?

19 /24

Implementations

20/24

Key Exchange

» NewHope [ADPS'15]: Ring-LWE key exchange a /a [LPR'10,P'14],
with many optimizations and conjectured > 200-bit quantum security.

21/24

Key Exchange

» NewHope [ADPS'15]: Ring-LWE key exchange a /a [LPR'10,P'14],
with many optimizations and conjectured > 200-bit quantum security.

Comparable to or even faster than state-of-the-art ECDH w/ 128-bit
(non-quantum) security.

21/24

Key Exchange
» NewHope [ADPS'15]: Ring-LWE key exchange a /a [LPR'10,P'14],
with many optimizations and conjectured > 200-bit quantum security.

Comparable to or even faster than state-of-the-art ECDH w/ 128-bit
(non-quantum) security.

Google has experimentally deployed NewHope+ECDH in Chrome
canary and its own web servers.

21/24

Key Exchange

» NewHope [ADPS'15]: Ring-LWE key exchange a /a [LPR'10,P'14],
with many optimizations and conjectured > 200-bit quantum security.

Comparable to or even faster than state-of-the-art ECDH w/ 128-bit
(non-quantum) security.

Google has experimentally deployed NewHope+ECDH in Chrome
canary and its own web servers.

» Frodo [BCDMNNRS'16]: removes the ring! Plain-LWE key exchange,
with many tricks and optimizations. Conjectured > 128-bit quantum
security.

21/24

Key Exchange
» NewHope [ADPS'15]: Ring-LWE key exchange a /a [LPR'10,P'14],
with many optimizations and conjectured > 200-bit quantum security.

Comparable to or even faster than state-of-the-art ECDH w/ 128-bit
(non-quantum) security.

Google has experimentally deployed NewHope+ECDH in Chrome
canary and its own web servers.

» Frodo [BCDMNNRS'16]: removes the ring! Plain-LWE key exchange,
with many tricks and optimizations. Conjectured > 128-bit quantum
security.

About 10x slower than NewHope, but only ~2x slower than ECDH.

21 /24

Digital Signatures

» Most implementations follow design from [Lyubashevsky'09/'12,...].

22 /24

Digital Signatures

» Most implementations follow design from [Lyubashevsky'09/'12,...].

» BLISS [DDLL'13]: optimized implementation in this framework.

22 /24

Digital Signatures

» Most implementations follow design from [Lyubashevsky'09/'12,...].
» BLISS [DDLL'13]: optimized implementation in this framework.

» Compelling efficiency:

System Sig (Kb) PK (Kb) KSign/sec KVer/sec

RSA-4096 4.0 4.0 0.1 7.5
ECDSA-256 0.5 0.25 9.5 25
BLISS 5.6 7.0 8.0 33

(Conjectured > 128 bits of security, openssl implementations.)

Other Implementations

» HEIlib [HaleviShoup]: an ‘assembly language’ for fully homomorphic
encryption (FHE).

23 /24

Other Implementations

» HEIib [HaleviShoup]: an ‘assembly language’ for fully homomorphic
encryption (FHE).

Implements many advanced FHE features, holds most speed records

23 /24

Other Implementations

» HEIlib [HaleviShoup]: an ‘assembly language’ for fully homomorphic
encryption (FHE).

Implements many advanced FHE features, holds most speed records

» AoA (L O L) [CrockettPeikert'16]: a general-purpose, high-level
framework aimed at advanced lattice cryptosystems.

23 /24

Other Implementations

» HEIlib [HaleviShoup]: an ‘assembly language’ for fully homomorphic
encryption (FHE).

Implements many advanced FHE features, holds most speed records

» AoA (L O L) [CrockettPeikert'16]: a general-purpose, high-level
framework aimed at advanced lattice cryptosystems.

Focuses on modularity, safety, and consistency with best theory.

23 /24

Conclusions

P Lattices are a very attractive foundation for ‘post-quantum’ crypto,
both ‘basic’ and ‘advanced.’

24 /24

Conclusions

P Lattices are a very attractive foundation for ‘post-quantum’ crypto,
both ‘basic’ and ‘advanced.’

» Cryptanalysis/security estimates for concrete parameters is subtle and
ongoing, but maturing.

24 /24

Conclusions

P Lattices are a very attractive foundation for ‘post-quantum’ crypto,
both ‘basic’ and ‘advanced.’

» Cryptanalysis/security estimates for concrete parameters is subtle and
ongoing, but maturing.

» A big success story for rigorous theory and practical engineering alike!

24 /24

Conclusions

P Lattices are a very attractive foundation for ‘post-quantum’ crypto,
both ‘basic’ and ‘advanced.’

» Cryptanalysis/security estimates for concrete parameters is subtle and
ongoing, but maturing.

P> A big success story for rigorous theory and practical engineering alike!

Thanks!

24 /24

