Lattice-Based Cryptography

Chris Peikert
University of Michigan

QCrypt 2016

Agenda

(1) Foundations: lattice problems, SIS/LWE and their applications
(2) Ring-Based Crypto: NTRU, Ring-SIS/LWE and ideal lattices
(3) Practical Implementations: BLISS, NewHope, Frodo, HElib, $\Lambda \circ \lambda, \ldots$
(4) Along the Way: open questions, research directions

Foundations

Lattice-Based Cryptography

Lattice-Based Cryptography

Lattice-Based Cryptography

Why?

- Efficient: linear, embarrassingly parallel operations

Lattice-Based Cryptography

Why?

- Efficient: linear, embarrassingly parallel operations
- Resists quantum attacks (so far)

Lattice-Based Cryptography

Why?

- Efficient: linear, embarrassingly parallel operations
- Resists quantum attacks (so far)
- Security from mild worst-case assumptions

Lattice-Based Cryptography

Why?

- Efficient: linear, embarrassingly parallel operations
- Resists quantum attacks (so far)
- Security from mild worst-case assumptions
- Solutions to 'holy grail' problems in crypto: FHE and related

What's a Lattice?

- A periodic 'grid' in \mathbb{Z}^{m}. (Formally: full-rank additive subgroup.)

What's a Lattice?

- A periodic 'grid' in \mathbb{Z}^{m}. (Formally: full-rank additive subgroup.)
- Basis $\mathbf{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right\}$:

$$
\mathcal{L}=\sum_{i=1}^{m}\left(\mathbb{Z} \cdot \mathbf{b}_{i}\right)
$$

What's a Lattice?

- A periodic 'grid' in \mathbb{Z}^{m}. (Formally: full-rank additive subgroup.)
- Basis $\mathbf{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right\}$:

$$
\mathcal{L}=\sum_{i=1}^{m}\left(\mathbb{Z} \cdot \mathbf{b}_{i}\right)
$$

What's a Lattice?

- A periodic 'grid' in \mathbb{Z}^{m}. (Formally: full-rank additive subgroup.)
- Basis $\mathbf{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right\}$:

$$
\mathcal{L}=\sum_{i=1}^{m}\left(\mathbb{Z} \cdot \mathbf{b}_{i}\right)
$$

(Other representations too ...)

What's a Lattice?

- A periodic 'grid' in \mathbb{Z}^{m}. (Formally: full-rank additive subgroup.)
- Basis $\mathbf{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right\}$:

$$
\mathcal{L}=\sum_{i=1}^{m}\left(\mathbb{Z} \cdot \mathbf{b}_{i}\right)
$$

(Other representations too ...)

Hard Lattice Problems

- Find/detect 'short' nonzero lattice vectors: (Gap)SVP ${ }_{\gamma}$, SIVP $_{\gamma}$
- For $\gamma=\operatorname{poly}(m)$, solving appears to require $2^{\Omega(m)}$ time (and space).

A Hard Problem: Short Integer Solution [Ajtai'96]

- $\mathbb{Z}_{q}^{n}=n$-dimensional integer vectors modulo q

A Hard Problem: Short Integer Solution [Ajtai'96]

- $\mathbb{Z}_{q}^{n}=n$-dimensional integer vectors modulo q

$$
\left(\begin{array}{c}
\mid \\
a_{1} \\
\mid
\end{array}\right)
$$

$\in \mathbb{Z}_{q}^{n}$

A Hard Problem: Short Integer Solution [Ajtai'96]

- $\mathbb{Z}_{q}^{n}=n$-dimensional integer vectors modulo q
- Goal: find nontrivial $z_{1}, \ldots, z_{m} \in\{0, \pm 1\}$ such that:

$$
z_{1} \cdot\left(\begin{array}{c}
\mid \\
\mathbf{a}_{1} \\
\mid
\end{array}\right)+z_{2} \cdot\left(\begin{array}{c}
\mid \\
\mathbf{a}_{2} \\
\mid
\end{array}\right)+\cdots+z_{m} \cdot\left(\begin{array}{c}
\mid \\
\mathbf{a}_{m} \\
\mid
\end{array}\right)=\left(\begin{array}{l}
\mid \\
0 \\
\mid
\end{array}\right) \in \mathbb{Z}_{q}^{n}
$$

A Hard Problem: Short Integer Solution [Ajtai'96]

- $\mathbb{Z}_{q}^{n}=n$-dimensional integer vectors modulo q
- Goal: find nontrivial $\mathbf{z} \in\{0, \pm 1\}^{m}$ such that:

$$
\underbrace{\left(\begin{array}{ccc}
\cdots & \mathbf{A} & \cdots
\end{array}\right)}_{m}(\mathbf{z})=\mathbf{0} \in \mathbb{Z}_{q}^{n}
$$

A Hard Problem: Short Integer Solution [Ajtai'96]

- $\mathbb{Z}_{q}^{n}=n$-dimensional integer vectors modulo q
- Goal: find nontrivial $\mathbf{z} \in\{0, \pm 1\}^{m}$ such that:

$$
\underbrace{\left(\begin{array}{ccc}
& & \\
\cdots & \mathbf{A} & \cdots
\end{array}\right)}_{m}(\mathrm{z})=\mathbf{0} \in \mathbb{Z}_{q}^{n}
$$

Collision-Resistant Hash Function

- Set $m>n \log _{2} q$. Define 'shrinking' $f_{\mathrm{A}}:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$

$$
f_{\mathrm{A}}(\mathrm{x})=\mathbf{A} \mathbf{x}
$$

A Hard Problem: Short Integer Solution [Ajtai'96]

- $\mathbb{Z}_{q}^{n}=n$-dimensional integer vectors modulo q
- Goal: find nontrivial $\mathbf{z} \in\{0, \pm 1\}^{m}$ such that:

$$
\underbrace{\left(\begin{array}{ccc}
& & \\
\cdots & \mathbf{A} & \cdots
\end{array}\right)}_{m}(\mathrm{z})=\mathbf{0} \in \mathbb{Z}_{q}^{n}
$$

Collision-Resistant Hash Function

- Set $m>n \log _{2} q$. Define 'shrinking' $f_{\mathrm{A}}:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$

$$
f_{\mathrm{A}}(\mathbf{x})=\mathbf{A} \mathbf{x}
$$

- Collision $\mathbf{x}, \mathbf{x}^{\prime} \in\{0,1\}^{m}$ where $\mathbf{A x}=\mathbf{A} \mathbf{x}^{\prime} \ldots$

A Hard Problem: Short Integer Solution [Ajtai'96]

- $\mathbb{Z}_{q}^{n}=n$-dimensional integer vectors modulo q
- Goal: find nontrivial $\mathbf{z} \in\{0, \pm 1\}^{m}$ such that:

$$
\underbrace{\left(\begin{array}{ccc}
& & \\
\cdots & \mathbf{A} & \cdots
\end{array}\right)}_{m}(\mathrm{z})=\mathbf{0} \in \mathbb{Z}_{q}^{n}
$$

Collision-Resistant Hash Function

- Set $m>n \log _{2} q$. Define 'shrinking' $f_{\mathrm{A}}:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$

$$
f_{\mathrm{A}}(\mathbf{x})=\mathbf{A} \mathbf{x}
$$

- Collision $\mathbf{x}, \mathbf{x}^{\prime} \in\{0,1\}^{m}$ where $\mathbf{A x}=\mathbf{A} \mathbf{x}^{\prime} \ldots$
\ldots yields solution $\mathbf{z}=\mathbf{x}-\mathbf{x}^{\prime} \in\{0, \pm 1\}^{m}$.
(But what does this have to do with lattices?)

Cool! (But what does this have to do with lattices?)

- $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ defines a ' q-ary' lattice:

$$
\mathcal{L}^{\perp}(\mathbf{A})=\left\{\mathbf{z} \in \mathbb{Z}^{m}: \mathbf{A} \mathbf{z}=\mathbf{0}\right\}
$$

Cool! (But what does this have to do with lattices?)

- $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ defines a ' q-ary' lattice:

$$
\mathcal{L}^{\perp}(\mathbf{A})=\left\{\mathbf{z} \in \mathbb{Z}^{m}: \mathbf{A} \mathbf{z}=\mathbf{0}\right\}
$$

Cool! (But what does this have to do with lattices?)

- $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ defines a ' q-dry' lattice:

$$
\mathcal{L}^{\perp}(\mathbf{A})=\left\{\mathbf{z} \in \mathbb{Z}^{m}: \mathbf{A} \mathbf{z}=\mathbf{0}\right\}
$$

- 'Short' solutions z lie in

Cool! (But what does this have to do with lattices?)

- $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ defines a ' q-ary' lattice:

$$
\mathcal{L}^{\perp}(\mathbf{A})=\left\{\mathbf{z} \in \mathbb{Z}^{m}: \mathbf{A} \mathbf{z}=\mathbf{0}\right\}
$$

- 'Short' solutions z lie in

Worst-Case to Average-Case Reduction [Ajtai'96,...]

Finding 'short' $(\|\mathbf{z}\| \leq \beta \ll q)$ nonzero $\mathbf{z} \in \mathcal{L}^{\perp}(\mathbf{A})$
(for uniformly random $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$)
\Downarrow
solving $\operatorname{GapSVP}_{\beta \sqrt{n}}, \operatorname{SIVP}_{\beta \sqrt{n}}$ on any n-dim lattice

Application: Digital Signatures [GentryPeikertVaikuntanathan'08]

- Generate uniform $v k=\mathbf{A}$ with secret 'trapdoor' $s k=\mathbf{T}$.

Application: Digital Signatures [GentryPeikertVaikuntanathan'08]

- Generate uniform $v k=\mathbf{A}$ with secret 'trapdoor' $s k=\mathbf{T}$.
- $\operatorname{Sign}(\mathbf{T}, \mu):$ use \mathbf{T} to sample a short $\mathbf{z} \in \mathbb{Z}^{m}$ s.t. $\mathbf{A z}=H(\mu) \in \mathbb{Z}_{q}^{n}$.

Application: Digital Signatures [GentryPeikertVaikuntanathan'08]

- Generate uniform $v k=\mathbf{A}$ with secret 'trapdoor' $s k=\mathbf{T}$.
- $\operatorname{Sign}(\mathbf{T}, \mu)$: use \mathbf{T} to sample a short $\mathbf{z} \in \mathbb{Z}^{m}$ s.t. $\mathbf{A z}=H(\mu) \in \mathbb{Z}_{q}^{n}$. Draw \mathbf{z} from a distribution that reveals nothing about secret key:

Application: Digital Signatures [GentryPeikertVaikuntanathan'08]

- Generate uniform $v k=\mathbf{A}$ with secret 'trapdoor' $s k=\mathbf{T}$.
- $\operatorname{Sign}(\mathbf{T}, \mu)$: use \mathbf{T} to sample a short $\mathbf{z} \in \mathbb{Z}^{m}$ s.t. $\mathbf{A z}=H(\mu) \in \mathbb{Z}_{q}^{n}$. Draw \mathbf{z} from a distribution that reveals nothing about secret key:

- Verify $(\mathbf{A}, \mu, \mathbf{z})$: check that $\mathbf{A} \mathbf{z}=H(\mu)$ and \mathbf{z} is sufficiently short.

Application: Digital Signatures [GentryPeikertVaikuntanathan'08]

- Generate uniform $v k=\mathbf{A}$ with secret 'trapdoor' $s k=\mathbf{T}$.
- $\operatorname{Sign}(\mathbf{T}, \mu)$: use \mathbf{T} to sample a short $\mathbf{z} \in \mathbb{Z}^{m}$ s.t. $\mathbf{A z}=H(\mu) \in \mathbb{Z}_{q}^{n}$. Draw \mathbf{z} from a distribution that reveals nothing about secret key:

- Verify $(\mathbf{A}, \mu, \mathbf{z})$: check that $\mathbf{A z}=H(\mu)$ and \mathbf{z} is sufficiently short.
- Security: forging a signature for a new message μ^{*} requires finding short \mathbf{z}^{*} s.t. $\mathbf{A} \mathbf{z}^{*}=H\left(\mu^{*}\right)$. This is SIS: hard!

Another Hard Problem: Learning With Errors [Regev'05]

- Parameters: dimension n, modulus $q=\operatorname{poly}(n)$, error distribution

Another Hard Problem: Learning With Errors [Regev'05]

- Parameters: dimension n, modulus $q=\operatorname{poly}(n)$, error distribution
- Search: find secret $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given many 'noisy inner products'

$$
\begin{array}{ll}
\mathbf{a}_{1} \leftarrow \mathbb{Z}_{q}^{n} & , \quad b_{1} \approx\left\langle\mathbf{s}, \mathbf{a}_{1}\right\rangle \bmod q \\
\mathbf{a}_{2} \leftarrow \mathbb{Z}_{q}^{n}, & b_{2} \approx\left\langle\mathbf{s}, \mathbf{a}_{2}\right\rangle \bmod q
\end{array}
$$

Another Hard Problem: Learning With Errors [Regev'05]

- Parameters: dimension n, modulus $q=\operatorname{poly}(n)$, error distribution
- Search: find secret $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given many 'noisy inner products'

$$
\begin{array}{ll}
\mathbf{a}_{1} \leftarrow \mathbb{Z}_{q}^{n} \quad, \quad b_{1}=\left\langle\mathbf{s}, \mathbf{a}_{1}\right\rangle+e_{1} \in \mathbb{Z}_{q} \\
\mathbf{a}_{2} \leftarrow \mathbb{Z}_{q}^{n} \quad, \quad b_{2}=\left\langle\mathbf{s}, \mathbf{a}_{2}\right\rangle+e_{2} \in \mathbb{Z}_{q}
\end{array}
$$

$$
\sqrt{n} \leq \text { error } \ll q \text {, 'rate' } \alpha
$$

Another Hard Problem: Learning With Errors [Regev'05]

- Parameters: dimension n, modulus $q=\operatorname{poly}(n)$, error distribution
- Search: find secret $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given many 'noisy inner products'

$$
\begin{array}{r}
\left(\begin{array}{lll}
\cdots & \mathbf{A} & \cdots
\end{array}\right), \quad\left(\begin{array}{lll}
\cdots & \mathbf{b}^{t} & \cdots
\end{array}\right)=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t},| |\| \|\| \| \|_{|l| l \mid} \\
\sqrt{n} \leq \text { error } \ll q, \text { 'rate' } \alpha
\end{array}
$$

Another Hard Problem: Learning With Errors [Regev'05]

- Parameters: dimension n, modulus $q=\operatorname{poly}(n)$, error distribution
- Search: find secret $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given many 'noisy inner products'

$$
\begin{array}{r}
\left(\begin{array}{lll}
\cdots & \mathbf{A} & \cdots
\end{array}\right), \quad\left(\begin{array}{lll}
\cdots & \mathbf{b}^{t} & \cdots
\end{array}\right)=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t},| |\| \|\| \|\left\|_{\|}\right\|_{\mid \ldots} \\
\sqrt{n} \leq \operatorname{error} \ll q, \text { 'rate' } \alpha
\end{array}
$$

- Decision: distinguish (\mathbf{A}, b) from uniform (\mathbf{A}, b)

Another Hard Problem: Learning With Errors [Regev'05]

- Parameters: dimension n, modulus $q=\operatorname{poly}(n)$, error distribution
- Search: find secret $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given many 'noisy inner products'

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\cdots & \mathbf{A} & \cdots
\end{array}\right), \quad\left(\begin{array}{lll}
\cdots & \mathbf{b}^{t} & \cdots
\end{array}\right)=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t},\left|| |\| \|\| \|_{\|} \|_{\|_{1,}}\right. \\
& \sqrt{n} \leq \text { error } \ll q \text {, 'rate' } \alpha
\end{aligned}
$$

- Decision: distinguish (\mathbf{A}, b) from uniform (\mathbf{A}, \mathbf{b})

LWE is Hard

(n / α)-approx worst case lattice problems

$$
\begin{aligned}
& \text { case } \leq \text { search-LWE } \leq{ }_{\zeta} \text { decision-LWE } \leq \text { crypts } \\
& \text { (quantum }\left[\mathrm{R}^{\prime} 05\right] \text {) } \quad\left[\mathrm{BFKL} \mathrm{~K}^{\prime} 93, \mathrm{R}^{\prime} 05, \ldots\right]
\end{aligned}
$$

Another Hard Problem: Learning With Errors [Regev'05]

- Parameters: dimension n, modulus $q=\operatorname{poly}(n)$, error distribution
- Search: find secret $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given many 'noisy inner products'

$$
\begin{array}{r}
\left(\begin{array}{lll}
\cdots & \mathbf{A} & \cdots
\end{array}\right), \quad\left(\begin{array}{lll}
\cdots & \mathbf{b}^{t} & \cdots
\end{array}\right)=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t},| |\| \|\| \|_{\|} \|_{\mid \ldots} \\
\sqrt{n} \leq \operatorname{error} \ll q, \text { 'rate' } \alpha
\end{array}
$$

- Decision: distinguish (A, b) from uniform (A, b)

LWE is Hard

(n / α)-approx worst case lattice problems

$$
\begin{aligned}
& \text { case } \leq \text { search-LWE } \leq{ }_{\zeta} \text { decision-LWE } \leq \text { crypto } \\
& \text { (quantum }\left[\mathrm{R}^{\prime} 05\right] \text {) } \quad\left[\mathrm{BFKL} \mathrm{~K}^{\prime} 93, \mathrm{R}^{\prime} 05, \ldots\right]
\end{aligned}
$$

- Also fully classical reductions, for worse params [Peikert'09,BLPRS'13]

LWE is Versatile

What kinds of crypto can we do with LWE?

LWE is Versatile

What kinds of crypto can we do with LWE?
\checkmark Key Exchange, Public Key Encryption
\checkmark Oblivious Transfer
\checkmark Actively Secure Encryption (w/o random oracles)
\checkmark Block Ciphers, PRFs

LWE is Versatile

What kinds of crypto can we do with LWE?
\checkmark Key Exchange, Public Key Encryption
\checkmark Oblivious Transfer
\checkmark Actively Secure Encryption (w/o random oracles)
\checkmark Block Ciphers, PRFs
$\checkmark \checkmark$ Identity-Based Encryption (w/ RO)
$\checkmark \checkmark$ Hierarchical ID-Based Encryption (w/o RO)

LWE is Versatile

What kinds of crypto can we do with LWE?
\checkmark Key Exchange, Public Key Encryption
\checkmark Oblivious Transfer
\checkmark Actively Secure Encryption (w/o random oracles)
\checkmark Block Ciphers, PRFs
$\checkmark \boldsymbol{\sim}$ Identity-Based Encryption (w/ RO)
$\checkmark \checkmark$ Hierarchical ID-Based Encryption (w/o RO)
!!! Fully Homomorphic Encryption
!!! Attribute-Based Encryption for arbitrary policies and much, much more...

Key Exchange from LWE [Regev'05,LP'11]

$\mathbf{r} \leftarrow \mathbb{Z}^{n}$ (error)

$s \leftarrow Z_{s}^{n}$ (error)

Key Exchange from LWE [Regev'05,LP'11]

$\mathbf{s} \leftarrow \mathbb{Z}^{n}$ (error)

Key Exchange from LWE [Regev'05,LP'11]

Key Exchange from LWE [Regev'05,LP'11]

$$
\begin{aligned}
& 0 \\
& \mathbf{r} \leftarrow \mathbb{Z}^{n} \text { (error) } \\
& \mathbf{r}^{t} \cdot \mathbf{v} \approx \mathbf{r}^{t} \mathbf{A s} \\
& k \approx \mathbf{u}^{t} \cdot \mathbf{s} \approx \mathbf{r}^{t} \mathbf{A} \mathbf{s}
\end{aligned}
$$

Key Exchange from LWE [Regev'05,LP'11]

$$
\begin{aligned}
& 9 \\
& \mathbf{r} \leftarrow \mathbb{Z}^{n} \text { (error) } \\
& \mathbf{r}^{t} \cdot \mathbf{v} \approx \mathbf{r}^{t} \mathbf{A s} \\
& k \approx \mathbf{u}^{t} \cdot \mathbf{s} \approx \mathbf{r}^{t} \mathbf{A} \mathbf{s}
\end{aligned}
$$

$\overline{1}$
$(\mathbf{A}, \mathbf{u}, \mathbf{v}, k)$

Key Exchange from LWE [Regev'05,LP'11]

$$
\mathbf{r} \leftarrow \mathbb{Z}^{n} \text { (error) } \quad \mathbf{s} \leftarrow \mathbb{Z}^{n} \text { (error) }
$$

$\overbrace{\quad(\mathbf{A}, \mathbf{u}, \mathbf{v}, k)}$

Key Exchange from LWE [Regev'05,LP'11]

$$
\mathbf{r} \leftarrow \mathbb{Z}^{n} \text { (error) } \quad \mathbf{s} \leftarrow \mathbb{Z}^{n} \text { (error) }
$$

$\overbrace{\quad(\mathbf{A}, \mathbf{u}, \mathbf{v}, k)}$

Efficiency from Rings

SIS/LWE are (Sort Of) Efficient

$$
\left(\cdots \mathbf{a}_{i} \cdots\right)\left(\begin{array}{c}
\vdots \\
\mathrm{s} \\
\vdots
\end{array}\right)+e_{i}=b_{i} \in \mathbb{Z}_{q}
$$

- Getting one pseudorandom scalar $b_{i} \in \mathbb{Z}_{q}$ requires an n-dim $\bmod -q$ inner product

SIS/LWE are (Sort Of) Efficient

- Getting one pseudorandom scalar $b_{i} \in \mathbb{Z}_{q}$ requires an n-dim $\bmod -q$ inner product
- Can amortize each \mathbf{a}_{i} over many secrets s_{j}, but still $\tilde{O}(n)$ work per scalar output.

SIS/LWE are (Sort Of) Efficient

- Getting one pseudorandom scalar $b_{i} \in \mathbb{Z}_{q}$ requires an n-dim $\bmod -q$ inner product
- Can amortize each \mathbf{a}_{i} over many secrets s_{j}, but still $\tilde{O}(n)$ work per scalar output.
- Cryptosystems have rather large keys:

SIS/LWE are (Sort Of) Efficient

- Getting one pseudorandom scalar $b_{i} \in \mathbb{Z}_{q}$ requires an n-dim $\bmod -q$ inner product
- Can amortize each \mathbf{a}_{i} over many secrets s_{j}, but still $\tilde{O}(n)$ work per scalar output.

Wishful Thinking. . .

$$
\left(\begin{array}{c}
\vdots \\
\mathbf{a}_{i} \\
\vdots
\end{array}\right) \star\left(\begin{array}{c}
\vdots \\
\mathrm{s} \\
\vdots
\end{array}\right)+\left(\begin{array}{c}
\vdots \\
\mathbf{e}_{i} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\mathrm{b}_{i} \\
\vdots
\end{array}\right) \in \mathbb{Z}_{q}^{n}
$$

- Get n pseudorandom scalars from just one (cheap) product operation?
- Replace $\mathbb{Z}_{q}^{n \times n}$-chunks by \mathbb{Z}_{q}^{n}.

Wishful Thinking. . .

$$
\left(\begin{array}{c}
\vdots \\
\mathbf{a}_{i} \\
\vdots
\end{array}\right) \star\left(\begin{array}{c}
\vdots \\
\mathrm{s} \\
\vdots
\end{array}\right)+\left(\begin{array}{c}
\vdots \\
\mathbf{e}_{i} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\mathrm{b}_{i} \\
\vdots
\end{array}\right) \in \mathbb{Z}_{q}^{n}
$$

- Get n pseudorandom scalars from just one (cheap) product operation?
- Replace $\mathbb{Z}_{q}^{n \times n}$-chunks by \mathbb{Z}_{q}^{n}.

Question

- How to define the product ' \star ' so that $\left(\mathrm{a}_{i}, \mathrm{~b}_{i}\right)$ is pseudorandom?

Wishful Thinking. . .

$$
\left(\begin{array}{c}
\vdots \\
\mathbf{a}_{i} \\
\vdots
\end{array}\right) \star\left(\begin{array}{c}
\vdots \\
\mathrm{s} \\
\vdots
\end{array}\right)+\left(\begin{array}{c}
\vdots \\
\mathbf{e}_{i} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\mathrm{b}_{i} \\
\vdots
\end{array}\right) \in \mathbb{Z}_{q}^{n}
$$

- Get n pseudorandom scalars from just one (cheap) product operation?
- Replace $\mathbb{Z}_{q}^{n \times n}$-chunks by \mathbb{Z}_{q}^{n}.

Question

- How to define the product ' \star ' so that $\left(\mathrm{a}_{i}, \mathrm{~b}_{i}\right)$ is pseudorandom?
- Careful! With small error, coordinate-wise multiplication is insecure!

Wishful Thinking. . .

$$
\left(\begin{array}{c}
\vdots \\
\mathbf{a}_{i} \\
\vdots
\end{array}\right) \star\left(\begin{array}{c}
\vdots \\
\mathrm{s} \\
\vdots
\end{array}\right)+\left(\begin{array}{c}
\vdots \\
\mathbf{e}_{i} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\mathbf{b}_{i} \\
\vdots
\end{array}\right) \in \mathbb{Z}_{q}^{n}
$$

- Get n pseudorandom scalars from just one (cheap) product operation?
- Replace $\mathbb{Z}_{q}^{n \times n}$-chunks by \mathbb{Z}_{q}^{n}.

Question

- How to define the product ' \star ' so that $\left(\mathbf{a}_{i}, \mathbf{b}_{i}\right)$ is pseudorandom?
- Careful! With small error, coordinate-wise multiplication is insecure!

Answer

- ' \star ' $=$ multiplication in a polynomial ring: e.g., $\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$.

Fast and practical with FFT: $n \log n$ operations $\bmod q$.

Wishful Thinking. . .

$$
\left(\begin{array}{c}
\vdots \\
\mathbf{a}_{i} \\
\vdots
\end{array}\right) \star\left(\begin{array}{c}
\vdots \\
\mathbf{s} \\
\vdots
\end{array}\right)+\left(\begin{array}{c}
\vdots \\
\mathbf{e}_{i} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\mathbf{b}_{i} \\
\vdots
\end{array}\right) \in \mathbb{Z}_{q}^{n}
$$

- Get n pseudorandom scalars from just one (cheap) product operation?
- Replace $\mathbb{Z}_{q}^{n \times n}$-chunks by \mathbb{Z}_{q}^{n}.

Question

- How to define the product ' \star ' so that $\left(\mathbf{a}_{i}, \mathbf{b}_{i}\right)$ is pseudorandom?
- Careful! With small error, coordinate-wise multiplication is insecure!

Answer

- ' \star ' $=$ multiplication in a polynomial ring: e.g., $\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$.

Fast and practical with FFT: $n \log n$ operations $\bmod q$.

- Same ring structures used in NTRU cryptosystem [HPS'98], compact one-way / CR hash functions [Mic'02,PR'06,LM'06,...]

LWE Over Rings, Over Simplified

- Let $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for n a power of two, and $R_{q}=R / q R$

LWE Over Rings, Over Simplified

- Let $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for n a power of two, and $R_{q}=R / q R$
* Elements of R_{q} are deg $<n$ polynomials with mod- q coefficients
\star Operations in R_{q} are very efficient using FFT-like algorithms

LWE Over Rings, Over Simplified

- Let $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for n a power of two, and $R_{q}=R / q R$
* Elements of R_{q} are deg $<n$ polynomials with $\bmod -q$ coefficients
\star Operations in R_{q} are very efficient using FFT-like algorithms
- Search: find secret ring element $s(X) \in R_{q}$, given:

$$
\begin{array}{ll}
a_{1} \leftarrow R_{q} & , \quad b_{1}=s \cdot a_{1}+e_{1} \in R_{q} \\
a_{2} \leftarrow R_{q} & , \quad b_{2}=s \cdot a_{2}+e_{2} \in R_{q} \\
a_{3} \leftarrow R_{q} & , \quad b_{3}=s \cdot a_{3}+e_{3} \in R_{q}
\end{array} \quad\left(e_{i} \in R\right. \text { are 'small') }
$$

LWE Over Rings, Over Simplified

- Let $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for n a power of two, and $R_{q}=R / q R$

夫 Elements of R_{q} are deg $<n$ polynomials with mod- q coefficients

* Operations in R_{q} are very efficient using FFT-like algorithms
- Search: find secret ring element $s(X) \in R_{q}$, given:

$$
\begin{array}{ll}
a_{1} \leftarrow R_{q} \quad, \quad & b_{1}=s \cdot a_{1}+e_{1} \in R_{q} \\
a_{2} \leftarrow R_{q} \quad, \quad & b_{2}=s \cdot a_{2}+e_{2} \in R_{q} \\
a_{3} \leftarrow R_{q} \quad, \quad & b_{3}=s \cdot a_{3}+e_{3} \in R_{q}
\end{array} \quad\left(e_{i} \in R\right. \text { are 'small') }
$$

- Decision: distinguish $\left(a_{i}, b_{i}\right)$ from uniform $\left(a_{i}, b_{i}\right) \in R_{q} \times R_{q}$ (with noticeable advantage)

Hardness of Ring-LWE [LyubashevskyPeikertRegev' 10]

- Two main theorems (reductions):
worst-case approx-SVP on ideal lattices in R
\leq_{\nwarrow} search R-LWE \leq_{τ} decision R-LWE
(quantum,
any $R=\mathcal{O}_{K}$)
(classical,
any cyclotomic R)

Hardness of Ring-LWE [LyubashevskyPeikertRegev'10]

- Two main theorems (reductions):
worst-case approx-SVP on ideal lattices in R
\leq_{\nwarrow} search R-LWE \leq_{τ} decision R-LWE
(quantum,
any $\left.R=\mathcal{O}_{K}\right) \quad$ any cyclotomic R)
(1) If you can find s given $\left(a_{i}, b_{i}\right)$, then you can find approximately shortest vectors in any ideal lattice in R (using a quantum algorithm).

Hardness of Ring-LWE [LyubashevskyPeikertRegev'10]

- Two main theorems (reductions):
worst-case approx-SVP on ideal lattices in R

(1) If you can find s given $\left(a_{i}, b_{i}\right)$, then you can find approximately shortest vectors in any ideal lattice in R (using a quantum algorithm).
(2) If you can distinguish $\left(a_{i}, b_{i}\right)$ from $\left(a_{i}, b_{i}\right)$, then you can find s.

Hardness of Ring-LWE [LyubashevskyPeikertRegev'10]

- Two main theorems (reductions):
worst-case approx-SVP on ideal lattices in R

(1) If you can find s given $\left(a_{i}, b_{i}\right)$, then you can find approximately shortest vectors in any ideal lattice in R (using a quantum algorithm).
(2) If you can distinguish $\left(a_{i}, b_{i}\right)$ from $\left(a_{i}, b_{i}\right)$, then you can find s.
- Then:

$$
\text { decision } R \text {-LWE } \leq \text { lots of crypto }
$$

Hardness of Ring-LWE [LyubashevskyPeikertRegev'10]

- Two main theorems (reductions):
worst-case approx-SVP on ideal lattices in R

(quantum,
any $R=\mathcal{O}_{K}$)
(classical,
any cyclotomic R)
(1) If you can find s given $\left(a_{i}, b_{i}\right)$, then you can find approximately shortest vectors in any ideal lattice in R (using a quantum algorithm).
(2) If you can distinguish $\left(a_{i}, b_{i}\right)$ from $\left(a_{i}, b_{i}\right)$, then you can find s.
- Then:

decision R-LWE \leq lots of crypto

* If you can break the crypto, then you can distinguish $\left(a_{i}, b_{i}\right)$ from $\left(a_{i}, b_{i}\right) \ldots$

Ideal Lattices

- Say $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for power-of-two n.
- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under with R.

Ideal Lattices

- Say $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for power-of-two n.
- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under \cdot with R.

To get ideal lattices, embed R and its ideals into \mathbb{R}^{n}. How?

Ideal Lattices

- Say $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for power-of-two n.
- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under \cdot with R.

To get ideal lattices, embed R and its ideals into \mathbb{R}^{n}. How?
(1) Obvious answer: 'coefficient embedding'

$$
a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1} \in R \quad \mapsto \quad\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{Z}^{n}
$$

Ideal Lattices

- Say $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for power-of-two n.
- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under \cdot with R.

To get ideal lattices, embed R and its ideals into \mathbb{R}^{n}. How?
(1) Obvious answer: 'coefficient embedding'

$$
a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1} \in R \quad \mapsto \quad\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{Z}^{n}
$$

+ is coordinate-wise, but analyzing • is cumbersome.

Ideal Lattices

- Say $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for power-of-two n.
- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under - with R.

To get ideal lattices, embed R and its ideals into \mathbb{C}^{n}. How?
(1) Obvious answer: 'coefficient embedding'

$$
a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1} \in R \quad \mapsto \quad\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{Z}^{n}
$$

+ is coordinate-wise, but analyzing • is cumbersome.
(2) Minkowski: 'canonical embedding.' Let $\omega=\exp (\pi i / n) \in \mathbb{C}$, so roots of $X^{n}+1$ are $\omega^{1}, \omega^{3}, \ldots, \omega^{2 n-1}$. Embed:

$$
a(X) \in R \quad \mapsto \quad\left(a\left(\omega^{1}\right), a\left(\omega^{3}\right), \ldots, a\left(\omega^{2 n-1}\right)\right) \in \mathbb{C}^{n}
$$

Ideal Lattices

- Say $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for power-of-two n.
- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under - with R.

To get ideal lattices, embed R and its ideals into \mathbb{C}^{n}. How?
(1) Obvious answer: 'coefficient embedding'

$$
a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1} \in R \quad \mapsto \quad\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{Z}^{n}
$$

+ is coordinate-wise, but analyzing • is cumbersome.
(2) Minkowski: 'canonical embedding.' Let $\omega=\exp (\pi i / n) \in \mathbb{C}$, so roots of $X^{n}+1$ are $\omega^{1}, \omega^{3}, \ldots, \omega^{2 n-1}$. Embed:

$$
a(X) \in R \quad \mapsto \quad\left(a\left(\omega^{1}\right), a\left(\omega^{3}\right), \ldots, a\left(\omega^{2 n-1}\right)\right) \in \mathbb{C}^{n}
$$

Both + and \cdot are coordinate-wise.

Ideal Lattices

- Say $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for power-of-two n.
- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under - with R.

To get ideal lattices, embed R and its ideals into \mathbb{R}^{n}. How?
(1) Obvious answer: 'coefficient embedding'

$$
a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1} \in R \quad \mapsto \quad\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{Z}^{n}
$$

+ is coordinate-wise, but analyzing • is cumbersome.
(2) Minkowski: 'canonical embedding.' Let $\omega=\exp (\pi i / n) \in \mathbb{C}$, so roots of $X^{n}+1$ are $\omega^{1}, \omega^{3}, \ldots, \omega^{2 n-1}$. Embed:

$$
a(X) \in R \quad \mapsto \quad\left(a\left(\omega^{1}\right), a\left(\omega^{3}\right), \ldots, a\left(\omega^{2 n-1}\right)\right) \in \mathbb{C}^{n}
$$

Both + and \cdot are coordinate-wise.
Error distribution is Gaussian in canonical embedding.

Ideal Lattices

- Say $R=\mathbb{Z}[X] /\left(X^{2}+1\right)$. Embeddings map $X \mapsto \pm i$.

Ideal Lattices

- Say $R=\mathbb{Z}[X] /\left(X^{2}+1\right)$. Embeddings map $X \mapsto \pm i$.
- $\mathcal{I}=\langle X-2,-3 X+1\rangle$ is an ideal in R.

Ideal Lattices

- Say $R=\mathbb{Z}[X] /\left(X^{2}+1\right)$. Embeddings map $X \mapsto \pm i$.
- $\mathcal{I}=\langle X-2,-3 X+1\rangle$ is an ideal in R.

(Approximate) Shortest Vector Problem

- Given (an arbitrary basis of) an arbitrary ideal $\mathcal{I} \subseteq R$, find a nearly shortest nonzero $a \in \mathcal{I}$.

Complexity of Ideal Lattices

(1) We know approx- R-SVP $\leq R$-LWE (quantumly). Other direction?

Can we solve R-LWE using an oracle for approx- R-SVP?

Complexity of Ideal Lattices

(1) We know approx- R-SVP $\leq R$-LWE (quantumly). Other direction?

Can we solve R-LWE using an oracle for approx- R-SVP?
R-LWE samples $\left(a_{i}, b_{i}\right)$ don't readily translate to ideals in R.

Complexity of Ideal Lattices

(1) We know approx- R-SVP $\leq R$-LWE (quantumly). Other direction?

Can we solve R-LWE using an oracle for approx- R-SVP?
R-LWE samples $\left(a_{i}, b_{i}\right)$ don't readily translate to ideals in R.
(2) How hard/easy is poly (n) - R-SVP? (In cyclotomics etc.)

Complexity of Ideal Lattices

(1) We know approx- R-SVP $\leq R$-LWE (quantumly). Other direction?

Can we solve R-LWE using an oracle for approx- R-SVP?
R-LWE samples (a_{i}, b_{i}) don't readily translate to ideals in R.
(2) How hard/easy is poly (n) - R-SVP? (In cyclotomics etc.)

* Despite much ring structure (e.g., subfields, Galois), no significant improvement versus general n-dim lattices is known.

Complexity of Ideal Lattices

(1) We know approx- R-SVP $\leq R$-LWE (quantumly). Other direction?

Can we solve R-LWE using an oracle for approx- R-SVP?
R-LWE samples $\left(a_{i}, b_{i}\right)$ don't readily translate to ideals in R.
(2) How hard/easy is poly (n) - R-SVP? (In cyclotomics etc.)

* Despite much ring structure (e.g., subfields, Galois), no significant improvement versus general n-dim lattices is known.
* But $2^{O(\sqrt{n \log n})}$-SVP is quantum poly-time solvable in prime-power cyclotomics, and maybe other rings [CDPR'16,BS'16, K'16, CDW'16]

Complexity of Ideal Lattices

(1) We know approx- R-SVP $\leq R$-LWE (quantumly). Other direction?

Can we solve R-LWE using an oracle for approx- R-SVP?
R-LWE samples $\left(a_{i}, b_{i}\right)$ don't readily translate to ideals in R.
(2) How hard/easy is poly (n) - R-SVP? (In cyclotomics etc.)

* Despite much ring structure (e.g., subfields, Galois), no significant improvement versus general n-dim lattices is known.
* But $2^{O(\sqrt{n \log n})}$-SVP is quantum poly-time solvable in prime-power cyclotomics, and maybe other rings [CDPR'16,BS'16, K'16, CDW'16]
\star There is a $2^{\Omega(\sqrt{n} / \log n)}$ barrier for the main technique. Can it be circumvented?

Implementations

Key Exchange

- NewHope [ADPS'15]: Ring-LWE key exchange a la [LPR'10,P'14], with many optimizations and conjectured ≥ 200-bit quantum security.

Key Exchange

- NewHope [ADPS'15]: Ring-LWE key exchange a la [LPR'10,P'14], with many optimizations and conjectured ≥ 200-bit quantum security. Comparable to or even faster than state-of-the-art ECDH w/ 128-bit (non-quantum) security.

Key Exchange

- NewHope [ADPS'15]: Ring-LWE key exchange a la [LPR'10,P'14], with many optimizations and conjectured ≥ 200-bit quantum security. Comparable to or even faster than state-of-the-art ECDH w/ 128-bit (non-quantum) security.
Google has experimentally deployed NewHope+ECDH in Chrome canary and its own web servers.

Key Exchange

- NewHope [ADPS'15]: Ring-LWE key exchange a la [LPR'10,P'14], with many optimizations and conjectured ≥ 200-bit quantum security. Comparable to or even faster than state-of-the-art ECDH w/ 128-bit (non-quantum) security.
Google has experimentally deployed NewHope+ECDH in Chrome canary and its own web servers.
- Frodo [BCDMNNRS'16]: removes the ring! Plain-LWE key exchange, with many tricks and optimizations. Conjectured ≥ 128-bit quantum security.

Key Exchange

- NewHope [ADPS'15]: Ring-LWE key exchange a la [LPR'10,P'14], with many optimizations and conjectured ≥ 200-bit quantum security. Comparable to or even faster than state-of-the-art ECDH w/ 128-bit (non-quantum) security.
Google has experimentally deployed NewHope+ECDH in Chrome canary and its own web servers.
- Frodo [BCDMNNRS'16]: removes the ring! Plain-LWE key exchange, with many tricks and optimizations. Conjectured ≥ 128-bit quantum security.

About $10 x$ slower than NewHope, but only $\approx 2 x$ slower than ECDH.

Digital Signatures

- Most implementations follow design from [Lyubashevsky'09/'12,...].

Digital Signatures

- Most implementations follow design from [Lyubashevsky'09/'12,...].
- BLISS [DDLL'13]: optimized implementation in this framework.

Digital Signatures

- Most implementations follow design from [Lyubashevsky'09/'12,...].
- BLISS [DDLL'13]: optimized implementation in this framework.
- Compelling efficiency:

System	Sig (Kb)	PK (Kb)	KSign/sec	KVer/sec
RSA-4096	4.0	4.0	0.1	7.5
ECDSA-256	0.5	0.25	9.5	2.5
BLISS	5.6	7.0	8.0	33

(Conjectured ≥ 128 bits of security, openssl implementations.)

Other Implementations

- HElib [HaleviShoup]: an 'assembly language' for fully homomorphic encryption (FHE).

Other Implementations

- HElib [HaleviShoup]: an 'assembly language' for fully homomorphic encryption (FHE).
Implements many advanced FHE features, holds most speed records

Other Implementations

- HElib [HaleviShoup]: an 'assembly language' for fully homomorphic encryption (FHE).

Implements many advanced FHE features, holds most speed records

- $\Lambda \circ \lambda$ (L O L) [CrockettPeikert'16]: a general-purpose, high-level framework aimed at advanced lattice cryptosystems.

Other Implementations

- HElib [HaleviShoup]: an 'assembly language' for fully homomorphic encryption (FHE).
Implements many advanced FHE features, holds most speed records
- $\Lambda \circ \lambda$ (L O L) [CrockettPeikert'16]: a general-purpose, high-level framework aimed at advanced lattice cryptosystems.

Focuses on modularity, safety, and consistency with best theory.

Conclusions

- Lattices are a very attractive foundation for 'post-quantum' crypto, both 'basic' and 'advanced.'

Conclusions

- Lattices are a very attractive foundation for 'post-quantum' crypto, both 'basic' and 'advanced.'
- Cryptanalysis/security estimates for concrete parameters is subtle and ongoing, but maturing.

Conclusions

- Lattices are a very attractive foundation for 'post-quantum' crypto, both 'basic' and 'advanced.'
- Cryptanalysis/security estimates for concrete parameters is subtle and ongoing, but maturing.
- A big success story for rigorous theory and practical engineering alike!

Conclusions

- Lattices are a very attractive foundation for 'post-quantum' crypto, both 'basic' and 'advanced.'
- Cryptanalysis/security estimates for concrete parameters is subtle and ongoing, but maturing.
- A big success story for rigorous theory and practical engineering alike!

Thanks!

