Chris Peikert University of Michigan

QCrypt 2016

1 Foundations: lattice problems, SIS/LWE and their applications

2 Ring-Based Crypto: NTRU, Ring-SIS/LWE and ideal lattices

3 Practical Implementations: BLISS, NewHope, Frodo, HElib, $\Lambda \circ \lambda$, ...

4 Along the Way: open questions, research directions

Foundations

Why?

Efficient: linear, embarrassingly parallel operations

Why?

- Efficient: linear, embarrassingly parallel operations
- Resists quantum attacks (so far)

Why?

- Efficient: linear, embarrassingly parallel operations
- Resists quantum attacks (so far)
- Security from mild worst-case assumptions

Why?

- Efficient: linear, embarrassingly parallel operations
- Resists quantum attacks (so far)
- Security from mild worst-case assumptions
- Solutions to 'holy grail' problems in crypto: FHE and related

• A periodic 'grid' in \mathbb{Z}^m . (Formally: full-rank additive subgroup.)

• A periodic 'grid' in \mathbb{Z}^m . (Formally: full-rank additive subgroup.)

• Basis
$$\mathbf{B} = {\mathbf{b}_1, \dots, \mathbf{b}_m}$$
 :

$$\mathcal{L} = \sum_{i=1}^m (\mathbb{Z} \cdot \mathbf{b}_i)$$

• A periodic 'grid' in \mathbb{Z}^m . (Formally: full-rank additive subgroup.)

• Basis
$$\mathbf{B} = {\mathbf{b}_1, \dots, \mathbf{b}_m}$$
 :

$$\mathcal{L} = \sum_{i=1}^m (\mathbb{Z} \cdot \mathbf{b}_i)$$

• A periodic 'grid' in \mathbb{Z}^m . (Formally: full-rank additive subgroup.)

Basis
$$\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_m\}$$
:

$$\mathcal{L} = \sum_{i=1}^{m} (\mathbb{Z} \cdot \mathbf{b}_i)$$

(Other representations too ...)

A periodic 'grid' in \mathbb{Z}^m . (Formally: full-rank additive subgroup.)

► Basis
$$\mathbf{B} = {\mathbf{b}_1, \dots, \mathbf{b}_m}$$
:

$$\mathcal{L} = \sum_{i=1}^m (\mathbb{Z} \cdot \mathbf{b}_i)$$
(Other representations too ...)

Hard Lattice Problems

Find/detect 'short' nonzero lattice vectors: (Gap)SVP_γ, SIVP_γ

For $\gamma = \text{poly}(m)$, solving appears to require $2^{\Omega(m)}$ time (and space).

▶ $\mathbb{Z}_q^n = n$ -dimensional integer vectors modulo q

▶ $\mathbb{Z}_q^n = n$ -dimensional integer vectors modulo q

- ▶ $\mathbb{Z}_q^n = n$ -dimensional integer vectors modulo q
- <u>Goal</u>: find nontrivial $z_1, \ldots, z_m \in \{0, \pm 1\}$ such that:

$$z_1 \cdot \begin{pmatrix} | \\ \mathbf{a}_1 \\ | \end{pmatrix} + z_2 \cdot \begin{pmatrix} | \\ \mathbf{a}_2 \\ | \end{pmatrix} + \cdots + z_m \cdot \begin{pmatrix} | \\ \mathbf{a}_m \\ | \end{pmatrix} = \begin{pmatrix} | \\ 0 \\ | \end{pmatrix} \in \mathbb{Z}_q^n$$

- ▶ $\mathbb{Z}_q^n = n$ -dimensional integer vectors modulo q
- Goal: find nontrivial $\mathbf{z} \in \{0, \pm 1\}^m$ such that:

- ▶ $\mathbb{Z}_q^n = n$ -dimensional integer vectors modulo q
- Goal: find nontrivial $\mathbf{z} \in \{0, \pm 1\}^m$ such that:

$$\underbrace{\left(\cdots \quad \mathbf{A} \quad \cdots \right)}_{m} \left(\mathbf{z} \right) = \mathbf{0} \in \mathbb{Z}_{q}^{n}$$

Collision-Resistant Hash Function

Set $m > n \log_2 q$. Define 'shrinking' $f_{\mathbf{A}} \colon \{0,1\}^m \to \mathbb{Z}_q^n$

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x}$

- ▶ $\mathbb{Z}_q^n = n$ -dimensional integer vectors modulo q
- Goal: find nontrivial $\mathbf{z} \in \{0, \pm 1\}^m$ such that:

$$\underbrace{\left(\cdots \quad \mathbf{A} \quad \cdots \right)}_{m} \left(\mathbf{z} \right) = \mathbf{0} \in \mathbb{Z}_{q}^{n}$$

Collision-Resistant Hash Function

Set $m > n \log_2 q$. Define 'shrinking' $f_{\mathbf{A}} \colon \{0,1\}^m \to \mathbb{Z}_q^n$

$$f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x}$$

• Collision $\mathbf{x}, \mathbf{x}' \in \{0, 1\}^m$ where $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{x}' \dots$

- ▶ $\mathbb{Z}_q^n = n$ -dimensional integer vectors modulo q
- Goal: find nontrivial $\mathbf{z} \in \{0, \pm 1\}^m$ such that:

$$\underbrace{\left(\cdots \quad \mathbf{A} \quad \cdots \right)}_{m} \left(\mathbf{z} \right) = \mathbf{0} \in \mathbb{Z}_{q}^{n}$$

Collision-Resistant Hash Function

• Set $m > n \log_2 q$. Define 'shrinking' $f_{\mathbf{A}} \colon \{0,1\}^m \to \mathbb{Z}_q^n$

$$f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x}$$

• Collision $\mathbf{x}, \mathbf{x}' \in \{0, 1\}^m$ where $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{x}' \dots$

... yields solution $\mathbf{z} = \mathbf{x} - \mathbf{x}' \in \{0, \pm 1\}^m$.

•
$$\mathbf{A} \in \mathbb{Z}_q^{n \times m}$$
 defines a 'q-ary' lattice:
 $\mathcal{L}^{\perp}(\mathbf{A}) = \{ \mathbf{z} \in \mathbb{Z}^m : \mathbf{A}\mathbf{z} = \mathbf{0} \}$

•
$$\mathbf{A} \in \mathbb{Z}_q^{n \times m}$$
 defines a 'q-ary' lattice:
 $\mathcal{L}^{\perp}(\mathbf{A}) = \{ \mathbf{z} \in \mathbb{Z}^m : \mathbf{A}\mathbf{z} = \mathbf{0} \}$

•
$$\mathbf{A} \in \mathbb{Z}_q^{n \times m}$$
 defines a 'q-ary' lattice:
 $\mathcal{L}^{\perp}(\mathbf{A}) = \{ \mathbf{z} \in \mathbb{Z}^m : \mathbf{A}\mathbf{z} = \mathbf{0} \}$

'Short' solutions z lie in

▶
$$\mathbf{A} \in \mathbb{Z}_q^{n \times m}$$
 defines a 'q-ary' lattice:

$$\mathcal{L}^{\perp}(\mathbf{A}) = \{\mathbf{z} \in \mathbb{Z}^m : \mathbf{A}\mathbf{z} = \mathbf{0}\}$$

'Short' solutions z lie in

Worst-Case to Average-Case Reduction [Ajtai'96,...]

Finding 'short' ($||\mathbf{z}|| \leq \beta \ll q$) nonzero $\mathbf{z} \in \mathcal{L}^{\perp}(\mathbf{A})$ (for uniformly random $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$) \Downarrow solving GapSVP_{$\beta\sqrt{n}$}, SIVP_{$\beta\sqrt{n}$} on any *n*-dim lattice

• Generate uniform $vk = \mathbf{A}$ with secret 'trapdoor' $sk = \mathbf{T}$.

• Generate uniform $vk = \mathbf{A}$ with secret 'trapdoor' $sk = \mathbf{T}$.

Sign (\mathbf{T}, μ) : use \mathbf{T} to sample a short $\mathbf{z} \in \mathbb{Z}^m$ s.t. $\mathbf{A}\mathbf{z} = H(\mu) \in \mathbb{Z}_q^n$.

- Generate uniform $vk = \mathbf{A}$ with secret 'trapdoor' $sk = \mathbf{T}$.
- Sign(T, µ): use T to sample a short z ∈ Z^m s.t. Az = H(µ) ∈ Zⁿ_q. Draw z from a distribution that reveals nothing about secret key:

- Generate uniform $vk = \mathbf{A}$ with secret 'trapdoor' $sk = \mathbf{T}$.
- Sign(T, µ): use T to sample a short z ∈ Z^m s.t. Az = H(µ) ∈ Zⁿ_q. Draw z from a distribution that reveals nothing about secret key:

Verify($\mathbf{A}, \mu, \mathbf{z}$): check that $\mathbf{A}\mathbf{z} = H(\mu)$ and \mathbf{z} is sufficiently short.

- Generate uniform $vk = \mathbf{A}$ with secret 'trapdoor' $sk = \mathbf{T}$.
- Sign(T, µ): use T to sample a short z ∈ Z^m s.t. Az = H(µ) ∈ Zⁿ_q. Draw z from a distribution that reveals nothing about secret key:

- Verify $(\mathbf{A}, \mu, \mathbf{z})$: check that $\mathbf{A}\mathbf{z} = H(\mu)$ and \mathbf{z} is sufficiently short.
- Security: forging a signature for a new message μ^{*} requires finding short z^{*} s.t. Az^{*} = H(μ^{*}). This is SIS: hard!

▶ Parameters: dimension n, modulus q = poly(n), error distribution

▶ Parameters: dimension n, modulus q = poly(n), error distribution

▶ Search: find secret $\mathbf{s} \in \mathbb{Z}_q^n$ given many 'noisy inner products'

$$\begin{aligned} \mathbf{a}_1 \leftarrow \mathbb{Z}_q^n &, \quad b_1 \approx \langle \mathbf{s} , \mathbf{a}_1 \rangle \mod q \\ \mathbf{a}_2 \leftarrow \mathbb{Z}_q^n &, \quad b_2 \approx \langle \mathbf{s} , \mathbf{a}_2 \rangle \mod q \\ &\vdots \end{aligned}$$

▶ Parameters: dimension n, modulus q = poly(n), error distribution

▶ Search: find secret $\mathbf{s} \in \mathbb{Z}_q^n$ given many 'noisy inner products'

 $\sqrt{n} \leq \operatorname{error} \ll q$, 'rate' α

▶ Parameters: dimension n, modulus q = poly(n), error distribution

Search: find secret $\mathbf{s} \in \mathbb{Z}_q^n$ given many 'noisy inner products'

 $\sqrt{n} \leq \operatorname{error} \ll q$, 'rate' α

▶ Parameters: dimension n, modulus q = poly(n), error distribution

▶ Search: find secret $\mathbf{s} \in \mathbb{Z}_q^n$ given many 'noisy inner products'

$$\left(\cdots \mathbf{A} \cdots\right) \quad , \quad \left(\cdots \mathbf{b}^t \cdots\right) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \mathbf{A} + \mathbf{e}^t$$

 $\sqrt{n} \leq \operatorname{error} \ll q$, 'rate' α

Decision: distinguish (\mathbf{A}, \mathbf{b}) from <u>uniform</u> (\mathbf{A}, \mathbf{b})
Another Hard Problem: Learning With Errors [Regev'05]

▶ Parameters: dimension n, modulus q = poly(n), error distribution

▶ Search: find secret $\mathbf{s} \in \mathbb{Z}_q^n$ given many 'noisy inner products'

 $\sqrt{n} \leq \operatorname{error} \ll q$, 'rate' α

Decision: distinguish (\mathbf{A}, \mathbf{b}) from <u>uniform</u> (\mathbf{A}, \mathbf{b})

LWE is Hard

 $\begin{array}{ll} (n/\alpha) \text{-approx worst case} \\ \text{lattice problems} & \leq \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\$

Another Hard Problem: Learning With Errors [Regev'05]

▶ Parameters: dimension n, modulus q = poly(n), error distribution

▶ Search: find secret $\mathbf{s} \in \mathbb{Z}_q^n$ given many 'noisy inner products'

 $\sqrt{n} \leq \operatorname{error} \ll q$, 'rate' α

Decision: distinguish (\mathbf{A}, \mathbf{b}) from <u>uniform</u> (\mathbf{A}, \mathbf{b})

LWE is Hard

 $\begin{array}{ll} (n/\alpha) \text{-approx worst case} \\ \text{lattice problems} & \leq \\ & & & \\ (\text{quantum [R'05]}) & \text{[BFKL'93,R'05,...]} \end{array}$

Also fully classical reductions, for worse params [Peikert'09,BLPRS'13]

What kinds of crypto can we do with LWE?

What kinds of crypto can we do with LWE?

- ✓ Key Exchange, Public Key Encryption
- ✔ Oblivious Transfer
- ✓ Actively Secure Encryption (w/o random oracles)
- ✔ Block Ciphers, PRFs

What kinds of crypto can we do with LWE?

- ✓ Key Exchange, Public Key Encryption
- ✔ Oblivious Transfer
- ✓ Actively Secure Encryption (w/o random oracles)
- ✔ Block Ciphers, PRFs

_ _ _ _ _ _ _ _ .

- ✓✓ Identity-Based Encryption (w/ RO)
- ✓✓ Hierarchical ID-Based Encryption (w/o RO)

What kinds of crypto can we do with LWE?

- ✓ Key Exchange, Public Key Encryption
- ✔ Oblivious Transfer
- ✓ Actively Secure Encryption (w/o random oracles)
- ✔ Block Ciphers, PRFs

_ _ _ _ _ _ _ _ .

_ _ _ _ _ _ _ _ .

- ✓✓ Identity-Based Encryption (w/ RO)
- ✓✓ Hierarchical ID-Based Encryption (w/o RO)
 - !!! Fully Homomorphic Encryption
 - !!! Attribute-Based Encryption for arbitrary policies

and much, much more...

 $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times n} \qquad \mathbf{s} \leftarrow \mathbb{Z}^n \text{ (error)} \qquad \bigwedge$

 $\mathbf{u}^t \approx \mathbf{r}^t \cdot \mathbf{A} \in \mathbb{Z}_q^n$

Efficiency from Rings

$$(\cdots \mathbf{a}_i \cdots) \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + e_i = \mathbf{b}_i \in \mathbb{Z}_q$$

- Getting one pseudorandom scalar $b_i \in \mathbb{Z}_q$ requires an *n*-dim mod-*q* inner product
- Can amortize each a_i over many secrets s_j, but still Õ(n) work per scalar output.

$$(\cdots \mathbf{a}_i \cdots) \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + e_i = \mathbf{b}_i \in \mathbb{Z}_q$$

- Getting one pseudorandom scalar $b_i \in \mathbb{Z}_q$ requires an *n*-dim mod-*q* inner product
- Can amortize each a_i over many secrets s_j, but still Õ(n) work per scalar output.
- Cryptosystems have rather large keys:

$$pk = \underbrace{\left(\begin{array}{c} \vdots \\ \mathbf{A} \\ \vdots \end{array}\right)}_{n} \quad , \quad \begin{pmatrix} \vdots \\ \mathbf{b} \\ \vdots \end{pmatrix} \right\} \Omega(n)$$

$$(\cdots \mathbf{a}_i \cdots) \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + e_i = \mathbf{b}_i \in \mathbb{Z}_q$$

- Getting one pseudorandom scalar $b_i \in \mathbb{Z}_q$ requires an *n*-dim mod-*q* inner product
- Can amortize each a_i over many secrets s_j, but still Õ(n) work per scalar output.
- Cryptosystems have rather large keys:

$$pk = \underbrace{\begin{pmatrix} \vdots \\ \mathbf{A} \\ \vdots \\ n \end{pmatrix}}_{n} , \quad \begin{pmatrix} \vdots \\ \mathbf{b} \\ \vdots \end{pmatrix} \right\} \Omega(n)$$

lnherently $\geq n^2$ time to encrypt & decrypt an *n*-bit message.

$$\begin{pmatrix} \vdots \\ \mathbf{a}_i \\ \vdots \end{pmatrix} \star \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + \begin{pmatrix} \vdots \\ \mathbf{e}_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \mathbf{b}_i \\ \vdots \end{pmatrix} \in \mathbb{Z}_q^n$$

- Get n pseudorandom scalars from just one (cheap) product operation?
- ▶ Replace $\mathbb{Z}_q^{n \times n}$ -chunks by \mathbb{Z}_q^n .

$$\begin{pmatrix} \vdots \\ \mathbf{a}_i \\ \vdots \end{pmatrix} \star \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + \begin{pmatrix} \vdots \\ \mathbf{e}_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \mathbf{b}_i \\ \vdots \end{pmatrix} \in \mathbb{Z}_q^n$$

Get n pseudorandom scalars from just one (cheap) product operation?

• Replace
$$\mathbb{Z}_q^{n \times n}$$
-chunks by \mathbb{Z}_q^n .

Question

• How to define the product ' \star ' so that $(\mathbf{a}_i, \mathbf{b}_i)$ is pseudorandom?

$$\begin{pmatrix} \vdots \\ \mathbf{a}_i \\ \vdots \end{pmatrix} \star \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + \begin{pmatrix} \vdots \\ \mathbf{e}_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \mathbf{b}_i \\ \vdots \end{pmatrix} \in \mathbb{Z}_q^n$$

Get n pseudorandom scalars from just one (cheap) product operation?

• Replace
$$\mathbb{Z}_q^{n \times n}$$
-chunks by \mathbb{Z}_q^n .

Question

- How to define the product ' \star ' so that $(\mathbf{a}_i, \mathbf{b}_i)$ is pseudorandom?
- Careful! With small error, coordinate-wise multiplication is insecure!

$$\begin{pmatrix} \vdots \\ \mathbf{a}_i \\ \vdots \end{pmatrix} \star \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + \begin{pmatrix} \vdots \\ \mathbf{e}_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \mathbf{b}_i \\ \vdots \end{pmatrix} \in \mathbb{Z}_q^n$$

Get n pseudorandom scalars from just one (cheap) product operation?

• Replace
$$\mathbb{Z}_q^{n \times n}$$
-chunks by \mathbb{Z}_q^n .

Question

How to define the product '*' so that (a_i, b_i) is pseudorandom?

Careful! With small error, coordinate-wise multiplication is insecure!

Answer

• '*' = multiplication in a polynomial ring: e.g., $\mathbb{Z}_q[X]/(X^n+1)$.

Fast and practical with FFT: $n \log n$ operations mod q.

$$\begin{pmatrix} \vdots \\ \mathbf{a}_i \\ \vdots \end{pmatrix} \star \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + \begin{pmatrix} \vdots \\ \mathbf{e}_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \mathbf{b}_i \\ \vdots \end{pmatrix} \in \mathbb{Z}_q^n$$

Get n pseudorandom scalars from just one (cheap) product operation?

• Replace
$$\mathbb{Z}_q^{n \times n}$$
-chunks by \mathbb{Z}_q^n .

Question

How to define the product '*' so that (a_i, b_i) is pseudorandom?

Careful! With small error, coordinate-wise multiplication is insecure!

Answer

• '*' = multiplication in a polynomial ring: e.g., $\mathbb{Z}_q[X]/(X^n+1)$.

Fast and practical with FFT: $n \log n$ operations mod q.

Same ring structures used in NTRU cryptosystem [HPS'98], compact one-way / CR hash functions [Mic'02,PR'06,LM'06,...]

• Let
$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for n a power of two, and $R_q = R/qR$

• Let
$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for n a power of two, and $R_q = R/qR$

- ★ Elements of R_q are deg < n polynomials with mod-q coefficients
- * Operations in R_q are very efficient using FFT-like algorithms

• Let
$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for n a power of two, and $R_q = R/qR$

- ★ Elements of R_q are deg < n polynomials with mod-q coefficients
- * Operations in R_q are very efficient using FFT-like algorithms

Search: find secret ring element $s(X) \in R_q$, given:

$$\begin{array}{ll} a_1 \leftarrow R_q &, \quad b_1 = s \cdot a_1 + e_1 \in R_q \\ a_2 \leftarrow R_q &, \quad b_2 = s \cdot a_2 + e_2 \in R_q \\ a_3 \leftarrow R_q &, \quad b_3 = s \cdot a_3 + e_3 \in R_q \end{array} \qquad (e_i \in R \text{ are 'small'})$$

• Let
$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for n a power of two, and $R_q = R/qR$

- ★ Elements of R_q are deg < n polynomials with mod-q coefficients
- * Operations in R_q are very efficient using FFT-like algorithms

Search: find secret ring element $s(X) \in R_q$, given:

$$\begin{array}{ll}a_{1}\leftarrow R_{q} &, \quad b_{1}=s\cdot a_{1}+e_{1}\in R_{q}\\ a_{2}\leftarrow R_{q} &, \quad b_{2}=s\cdot a_{2}+e_{2}\in R_{q}\\ a_{3}\leftarrow R_{q} &, \quad b_{3}=s\cdot a_{3}+e_{3}\in R_{q} \\ &\vdots \end{array} \qquad (e_{i}\in R \text{ are 'small'})$$

▶ Decision: distinguish (a_i, b_i) from uniform $(a_i, b_i) \in R_q \times R_q$ (with noticeable advantage)

Two main theorems (reductions):

Two main theorems (reductions):

 If you can <u>find</u> s given (a_i, b_i), then you can <u>find</u> approximately shortest vectors in <u>any</u> ideal lattice in R (using a quantum algorithm).

Two main theorems (reductions):

- **1** If you can find s given (a_i, b_i) , then you can find approximately shortest vectors in any ideal lattice in R (using a quantum algorithm).
- 2 If you can distinguish (a_i, b_i) from (a_i, b_i) , then you can find s.

Two main theorems (reductions):

 If you can <u>find</u> s given (a_i, b_i), then you can <u>find</u> approximately shortest vectors in <u>any</u> ideal lattice in R (using a quantum algorithm).

2 If you can distinguish (a_i, b_i) from (a_i, b_i) , then you can find s.

Then:

decision R-LWE \leq lots of crypto

Two main theorems (reductions):

 If you can <u>find</u> s given (a_i, b_i), then you can <u>find</u> approximately shortest vectors in <u>any</u> ideal lattice in R (using a quantum algorithm).

2 If you can distinguish (a_i, b_i) from (a_i, b_i) , then you can find s.

Then:

decision R-LWE \leq lots of crypto

★ If you can break the crypto, then you can distinguish (a_i, b_i) from (a_i, b_i) ...

Say $R = \mathbb{Z}[X]/(X^n + 1)$ for power-of-two n. (Or $R = \mathcal{O}_{K}$.)

An ideal $\mathcal{I} \subseteq R$ is closed under + and -, and under \cdot with R.

Say
$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for power-of-two n . (Or $R = \mathcal{O}_{K.}$)

An ideal $\mathcal{I} \subseteq R$ is closed under + and -, and under \cdot with R.

To get ideal lattices, embed R and its ideals into \mathbb{R}^n . How?

Say
$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for power-of-two n . (Or $R = \mathcal{O}_{K}$.)

An ideal $\mathcal{I} \subseteq R$ is closed under + and -, and under \cdot with R.

To get ideal lattices, embed R and its ideals into \mathbb{R}^n . How? **1** Obvious answer: 'coefficient embedding'

$$a_0 + a_1 X + \dots + a_{n-1} X^{n-1} \in R \quad \mapsto \quad (a_0, \dots, a_{n-1}) \in \mathbb{Z}^n$$

Say
$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for power-of-two n . (Or $R = \mathcal{O}_{K}$.)

An ideal $\mathcal{I} \subseteq R$ is closed under + and -, and under \cdot with R.

To get ideal lattices, embed R and its ideals into \mathbb{R}^n . How? 1 Obvious answer: 'coefficient embedding'

$$a_0 + a_1 X + \dots + a_{n-1} X^{n-1} \in R \quad \mapsto \quad (a_0, \dots, a_{n-1}) \in \mathbb{Z}^n$$

+ is coordinate-wise, but analyzing \cdot is cumbersome.
Say $R = \mathbb{Z}[X]/(X^n + 1)$ for power-of-two n. (Or $R = \mathcal{O}_{K}$.)

An ideal $\mathcal{I} \subseteq R$ is closed under + and -, and under \cdot with R.

To get ideal lattices, embed R and its ideals into \mathbb{C}^n . How? ① Obvious answer: 'coefficient embedding'

$$a_0 + a_1 X + \dots + a_{n-1} X^{n-1} \in R \quad \mapsto \quad (a_0, \dots, a_{n-1}) \in \mathbb{Z}^n$$

+ is coordinate-wise, but analyzing \cdot is cumbersome.

2 Minkowski: 'canonical embedding.' Let $\omega = \exp(\pi i/n) \in \mathbb{C}$, so roots of $X^n + 1$ are $\omega^1, \omega^3, \dots, \omega^{2n-1}$. Embed:

$$a(X) \in R \quad \mapsto \quad (a(\omega^1), a(\omega^3), \dots, a(\omega^{2n-1})) \in \mathbb{C}^n$$

Say $R = \mathbb{Z}[X]/(X^n + 1)$ for power-of-two n. (Or $R = \mathcal{O}_{K}$.)

An ideal $\mathcal{I} \subseteq R$ is closed under + and -, and under \cdot with R.

To get ideal lattices, embed R and its ideals into \mathbb{C}^n . How? ① Obvious answer: 'coefficient embedding'

$$a_0 + a_1 X + \dots + a_{n-1} X^{n-1} \in R \quad \mapsto \quad (a_0, \dots, a_{n-1}) \in \mathbb{Z}^n$$

+ is coordinate-wise, but analyzing \cdot is cumbersome.

2 Minkowski: 'canonical embedding.' Let $\omega = \exp(\pi i/n) \in \mathbb{C}$, so roots of $X^n + 1$ are $\omega^1, \omega^3, \dots, \omega^{2n-1}$. Embed:

$$a(X) \in R \quad \mapsto \quad (a(\omega^1), a(\omega^3), \dots, a(\omega^{2n-1})) \in \mathbb{C}^n$$

Both + and \cdot are coordinate-wise.

Say $R = \mathbb{Z}[X]/(X^n + 1)$ for power-of-two n. (Or $R = \mathcal{O}_{K}$.)

An ideal $\mathcal{I} \subseteq R$ is closed under + and -, and under \cdot with R.

To get ideal lattices, embed R and its ideals into \mathbb{R}^n . How? ① Obvious answer: 'coefficient embedding'

$$a_0 + a_1 X + \dots + a_{n-1} X^{n-1} \in R \quad \mapsto \quad (a_0, \dots, a_{n-1}) \in \mathbb{Z}^n$$

+ is coordinate-wise, but analyzing \cdot is cumbersome.

2 Minkowski: 'canonical embedding.' Let $\omega = \exp(\pi i/n) \in \mathbb{C}$, so roots of $X^n + 1$ are $\omega^1, \omega^3, \dots, \omega^{2n-1}$. Embed:

$$a(X) \in R \quad \mapsto \quad (a(\omega^1), a(\omega^3), \dots, a(\omega^{2n-1})) \in \mathbb{C}^n$$

Both + and \cdot are coordinate-wise.

Error distribution is Gaussian in canonical embedding.

Say $R = \mathbb{Z}[X]/(X^2 + 1)$. Embeddings map $X \mapsto \pm i$.

Say R = Z[X]/(X² + 1). Embeddings map X → ±i.
I = ⟨X - 2, -3X + 1⟩ is an ideal in R.

Say R = Z[X]/(X² + 1). Embeddings map X → ±i.
I = ⟨X - 2, -3X + 1⟩ is an ideal in R.

(Approximate) Shortest Vector Problem

• Given (an arbitrary basis of) an arbitrary ideal $\mathcal{I} \subseteq R$, find a nearly shortest nonzero $a \in \mathcal{I}$.

1 We know approx-R-SVP $\leq R$ -LWE (quantumly). Other direction?

Can we solve R-LWE using an oracle for approx-R-SVP?

● We know approx-R-SVP ≤ R-LWE (quantumly). Other direction? Can we solve R-LWE using an oracle for approx-R-SVP?

R-LWE samples (a_i, b_i) don't readily translate to ideals in *R*.

- We know approx-R-SVP $\leq R$ -LWE (quantumly). Other direction? Can we solve R-LWE using an oracle for approx-R-SVP? R-LWE samples (a_i, b_i) don't readily translate to ideals in R.
- **2** How hard/easy is poly(n)-R-SVP? (In cyclotomics etc.)

- 1 We know approx-R-SVP $\leq R$ -LWE (quantumly). Other direction? Can we solve R-LWE using an oracle for approx-R-SVP? R-LWE samples (a_i, b_i) don't readily translate to ideals in R.
- **2** How hard/easy is poly(n)-R-SVP? (In cyclotomics etc.)
 - ★ Despite much ring structure (e.g., subfields, Galois), no significant improvement versus general *n*-dim lattices is known.

- We know approx-R-SVP $\leq R$ -LWE (quantumly). Other direction? <u>Can we solve R-LWE using an oracle for approx-R-SVP? R-LWE samples (a_i, b_i) don't readily translate to ideals in R.</u>
- **2** How hard/easy is poly(*n*)-*R*-SVP? (In cyclotomics etc.)
 - ★ Despite much ring structure (e.g., subfields, Galois), no significant improvement versus general *n*-dim lattices is known.
 - ★ But 2^{O(√n log n)}-SVP is quantum poly-time solvable in prime-power cyclotomics, and maybe other rings [CDPR'16,BS'16,K'16,CDW'16]

- We know approx-R-SVP $\leq R$ -LWE (quantumly). Other direction? Can we solve R-LWE using an oracle for approx-R-SVP? R-LWE samples (a_i, b_i) don't readily translate to ideals in R.
- **2** How hard/easy is poly(*n*)-*R*-SVP? (In cyclotomics etc.)
 - ★ Despite much ring structure (e.g., subfields, Galois), no significant improvement versus general *n*-dim lattices is known.
 - ★ But 2^{O(√n log n)}-SVP is quantum poly-time solvable in prime-power cyclotomics, and maybe other rings [CDPR'16,BS'16,K'16,CDW'16]
 - * There is a $2^{\Omega(\sqrt{n}/\log n)}$ barrier for the main technique. Can it be circumvented?

Implementations

NewHope [ADPS'15]: Ring-LWE key exchange a la [LPR'10,P'14], with many optimizations and conjectured ≥ 200-bit quantum security.

NewHope [ADPS'15]: Ring-LWE key exchange a la [LPR'10,P'14], with many optimizations and conjectured ≥ 200-bit quantum security.

Comparable to or even faster than state-of-the-art ECDH w/ 128-bit (non-quantum) security.

NewHope [ADPS'15]: Ring-LWE key exchange a la [LPR'10,P'14], with many optimizations and conjectured ≥ 200-bit quantum security.

Comparable to or even faster than state-of-the-art ECDH w/ 128-bit (non-quantum) security.

Google has experimentally deployed NewHope+ECDH in Chrome canary and its own web servers.

NewHope [ADPS'15]: Ring-LWE key exchange a la [LPR'10,P'14], with many optimizations and conjectured ≥ 200-bit quantum security.

Comparable to or even faster than state-of-the-art ECDH w/ 128-bit (non-quantum) security.

Google has experimentally deployed NewHope+ECDH in Chrome canary and its own web servers.

► Frodo [BCDMNNRS'16]: removes the ring! Plain-LWE key exchange, with many tricks and optimizations. Conjectured ≥ 128-bit quantum security.

NewHope [ADPS'15]: Ring-LWE key exchange a la [LPR'10,P'14], with many optimizations and conjectured ≥ 200-bit quantum security.

Comparable to or even faster than state-of-the-art ECDH w/ 128-bit (non-quantum) security.

Google has experimentally deployed NewHope+ECDH in Chrome canary and its own web servers.

► Frodo [BCDMNNRS'16]: removes the ring! Plain-LWE key exchange, with many tricks and optimizations. Conjectured ≥ 128-bit quantum security.

About 10x slower than NewHope, but only \approx 2x slower than ECDH.

Digital Signatures

Most implementations follow design from [Lyubashevsky'09/'12,...].

Digital Signatures

- Most implementations follow design from [Lyubashevsky'09/'12,...].
- **BLISS** [DDLL'13]: optimized implementation in this framework.

Digital Signatures

- Most implementations follow design from [Lyubashevsky'09/'12,...].
- BLISS [DDLL'13]: optimized implementation in this framework.
- Compelling efficiency:

System	Sig (Kb)	PK (Kb)	KSign/sec	KVer/sec
RSA-4096	4.0	4.0	0.1	7.5
ECDSA-256	0.5	0.25	9.5	2.5
BLISS	5.6	7.0	8.0	33

(Conjectured ≥ 128 bits of security, openssl implementations.)

 HElib [HaleviShoup]: an 'assembly language' for fully homomorphic encryption (FHE).

 HElib [HaleviShoup]: an 'assembly language' for fully homomorphic encryption (FHE).

Implements many advanced FHE features, holds most speed records

 HElib [HaleviShoup]: an 'assembly language' for fully homomorphic encryption (FHE).

Implements many advanced FHE features, holds most speed records

• $\Lambda \circ \lambda$ (L O L) [CrockettPeikert'16]: a general-purpose, high-level framework aimed at advanced lattice cryptosystems.

 HElib [HaleviShoup]: an 'assembly language' for fully homomorphic encryption (FHE).

Implements many advanced FHE features, holds most speed records

• $\Lambda \circ \lambda$ (L O L) [CrockettPeikert'16]: a general-purpose, high-level framework aimed at advanced lattice cryptosystems.

Focuses on modularity, safety, and consistency with best theory.

Lattices are a very attractive foundation for 'post-quantum' crypto, both 'basic' and 'advanced.'

- Lattices are a very attractive foundation for 'post-quantum' crypto, both 'basic' and 'advanced.'
- Cryptanalysis/security estimates for concrete parameters is subtle and ongoing, but maturing.

- Lattices are a very attractive foundation for 'post-quantum' crypto, both 'basic' and 'advanced.'
- Cryptanalysis/security estimates for concrete parameters is subtle and ongoing, but maturing.
- A big success story for rigorous theory and practical engineering alike!

- Lattices are a very attractive foundation for 'post-quantum' crypto, both 'basic' and 'advanced.'
- Cryptanalysis/security estimates for concrete parameters is subtle and ongoing, but maturing.
- A big success story for rigorous theory and practical engineering alike!

Thanks!