
Lattice-Based Cryptography

Chris Peikert
University of Michigan

QCrypt 2016

1 / 24



Agenda

1 Foundations: lattice problems, SIS/LWE and their applications

2 Ring-Based Crypto: NTRU, Ring-SIS/LWE and ideal lattices

3 Practical Implementations: BLISS, NewHope, Frodo, HElib, Λ◦λ, . . .

4 Along the Way: open questions, research directions

2 / 24



Foundations

3 / 24



Lattice-Based Cryptography

N
=
p · q

y =
g
x mod p

m
e mod N

e(ga, gb)

=⇒

(Images courtesy xkcd.org)

Why?

I Efficient: linear, embarrassingly parallel operations

I Resists quantum attacks (so far)

I Security from mild worst-case assumptions

I Solutions to ‘holy grail’ problems in crypto: FHE and related

4 / 24



Lattice-Based Cryptography

N
=
p · q

y =
g
x mod p

m
e mod N

e(ga, gb)

=⇒

(Images courtesy xkcd.org)

Why?

I Efficient: linear, embarrassingly parallel operations

I Resists quantum attacks (so far)

I Security from mild worst-case assumptions

I Solutions to ‘holy grail’ problems in crypto: FHE and related

4 / 24



Lattice-Based Cryptography

N
=
p · q

y =
g
x mod p

m
e mod N

e(ga, gb)

=⇒

(Images courtesy xkcd.org)

Why?

I Efficient: linear, embarrassingly parallel operations

I Resists quantum attacks (so far)

I Security from mild worst-case assumptions

I Solutions to ‘holy grail’ problems in crypto: FHE and related

4 / 24



Lattice-Based Cryptography

N
=
p · q

y =
g
x mod p

m
e mod N

e(ga, gb)

=⇒

(Images courtesy xkcd.org)

Why?

I Efficient: linear, embarrassingly parallel operations

I Resists quantum attacks (so far)

I Security from mild worst-case assumptions

I Solutions to ‘holy grail’ problems in crypto: FHE and related

4 / 24



Lattice-Based Cryptography

N
=
p · q

y =
g
x mod p

m
e mod N

e(ga, gb)

=⇒

(Images courtesy xkcd.org)

Why?

I Efficient: linear, embarrassingly parallel operations

I Resists quantum attacks (so far)

I Security from mild worst-case assumptions

I Solutions to ‘holy grail’ problems in crypto: FHE and related

4 / 24



Lattice-Based Cryptography

N
=
p · q

y =
g
x mod p

m
e mod N

e(ga, gb)

=⇒

(Images courtesy xkcd.org)

Why?

I Efficient: linear, embarrassingly parallel operations

I Resists quantum attacks (so far)

I Security from mild worst-case assumptions

I Solutions to ‘holy grail’ problems in crypto: FHE and related

4 / 24



What’s a Lattice?

I A periodic ‘grid’ in Zm. (Formally: full-rank additive subgroup.)

I Basis B = {b1, . . . ,bm} :

L =

m∑
i=1

(Z · bi)

(Other representations too . . . )

O

Hard Lattice Problems
I Find/detect ‘short’ nonzero lattice vectors: (Gap)SVPγ , SIVPγ

I For γ = poly(m), solving appears to require 2Ω(m) time (and space).

5 / 24



What’s a Lattice?

I A periodic ‘grid’ in Zm. (Formally: full-rank additive subgroup.)

I Basis B = {b1, . . . ,bm} :

L =

m∑
i=1

(Z · bi)

(Other representations too . . . )

O

b1

b2

Hard Lattice Problems
I Find/detect ‘short’ nonzero lattice vectors: (Gap)SVPγ , SIVPγ

I For γ = poly(m), solving appears to require 2Ω(m) time (and space).

5 / 24



What’s a Lattice?

I A periodic ‘grid’ in Zm. (Formally: full-rank additive subgroup.)

I Basis B = {b1, . . . ,bm} :

L =

m∑
i=1

(Z · bi)

(Other representations too . . . )

O

b1

b2

Hard Lattice Problems
I Find/detect ‘short’ nonzero lattice vectors: (Gap)SVPγ , SIVPγ

I For γ = poly(m), solving appears to require 2Ω(m) time (and space).

5 / 24



What’s a Lattice?

I A periodic ‘grid’ in Zm. (Formally: full-rank additive subgroup.)

I Basis B = {b1, . . . ,bm} :

L =

m∑
i=1

(Z · bi)

(Other representations too . . . ) O

b1

b2

Hard Lattice Problems
I Find/detect ‘short’ nonzero lattice vectors: (Gap)SVPγ , SIVPγ

I For γ = poly(m), solving appears to require 2Ω(m) time (and space).

5 / 24



What’s a Lattice?

I A periodic ‘grid’ in Zm. (Formally: full-rank additive subgroup.)

I Basis B = {b1, . . . ,bm} :

L =

m∑
i=1

(Z · bi)

(Other representations too . . . ) O

b1

b2

Hard Lattice Problems
I Find/detect ‘short’ nonzero lattice vectors: (Gap)SVPγ , SIVPγ

I For γ = poly(m), solving appears to require 2Ω(m) time (and space).

5 / 24



A Hard Problem: Short Integer Solution [Ajtai’96]

I Znq = n-dimensional integer vectors modulo q

I Goal: find nontrivial z ∈ {0,±1}m such that:

Collision-Resistant Hash Function

I Set m > n log2 q. Define ‘shrinking’ fA : {0, 1}m → Znq

fA(x) = Ax

I Collision x,x′ ∈ {0, 1}m where Ax = Ax′ . . .

. . . yields solution z = x− x′ ∈ {0,±1}m.

6 / 24



A Hard Problem: Short Integer Solution [Ajtai’96]

I Znq = n-dimensional integer vectors modulo q

I Goal: find nontrivial z ∈ {0,±1}m such that:

z1 ·

 |a1

|



+ z2 ·

 |a2

|



+

· · ·

+ zm ·

 |am
|



=

 |0
|



∈ Znq

Collision-Resistant Hash Function

I Set m > n log2 q. Define ‘shrinking’ fA : {0, 1}m → Znq

fA(x) = Ax

I Collision x,x′ ∈ {0, 1}m where Ax = Ax′ . . .

. . . yields solution z = x− x′ ∈ {0,±1}m.

6 / 24



A Hard Problem: Short Integer Solution [Ajtai’96]

I Znq = n-dimensional integer vectors modulo q

I Goal: find nontrivial z1, . . . , zm ∈ {0,±1} such that:

z1 ·

 |a1

|

 + z2 ·

 |a2

|

 + · · · + zm ·

 |am
|

 =

 |0
|

 ∈ Znq

Collision-Resistant Hash Function

I Set m > n log2 q. Define ‘shrinking’ fA : {0, 1}m → Znq

fA(x) = Ax

I Collision x,x′ ∈ {0, 1}m where Ax = Ax′ . . .

. . . yields solution z = x− x′ ∈ {0,±1}m.

6 / 24



A Hard Problem: Short Integer Solution [Ajtai’96]

I Znq = n-dimensional integer vectors modulo q

I Goal: find nontrivial z ∈ {0,±1}m such that:

· · · · A · · · ·


︸ ︷︷ ︸

m

z

 = 0 ∈ Znq

Collision-Resistant Hash Function

I Set m > n log2 q. Define ‘shrinking’ fA : {0, 1}m → Znq

fA(x) = Ax

I Collision x,x′ ∈ {0, 1}m where Ax = Ax′ . . .

. . . yields solution z = x− x′ ∈ {0,±1}m.

6 / 24



A Hard Problem: Short Integer Solution [Ajtai’96]

I Znq = n-dimensional integer vectors modulo q

I Goal: find nontrivial z ∈ {0,±1}m such that:

· · · · A · · · ·


︸ ︷︷ ︸

m

z

 = 0 ∈ Znq

Collision-Resistant Hash Function
I Set m > n log2 q. Define ‘shrinking’ fA : {0, 1}m → Znq

fA(x) = Ax

I Collision x,x′ ∈ {0, 1}m where Ax = Ax′ . . .

. . . yields solution z = x− x′ ∈ {0,±1}m.

6 / 24



A Hard Problem: Short Integer Solution [Ajtai’96]

I Znq = n-dimensional integer vectors modulo q

I Goal: find nontrivial z ∈ {0,±1}m such that:

· · · · A · · · ·


︸ ︷︷ ︸

m

z

 = 0 ∈ Znq

Collision-Resistant Hash Function
I Set m > n log2 q. Define ‘shrinking’ fA : {0, 1}m → Znq

fA(x) = Ax

I Collision x,x′ ∈ {0, 1}m where Ax = Ax′ . . .

. . . yields solution z = x− x′ ∈ {0,±1}m.

6 / 24



A Hard Problem: Short Integer Solution [Ajtai’96]

I Znq = n-dimensional integer vectors modulo q

I Goal: find nontrivial z ∈ {0,±1}m such that:

· · · · A · · · ·


︸ ︷︷ ︸

m

z

 = 0 ∈ Znq

Collision-Resistant Hash Function
I Set m > n log2 q. Define ‘shrinking’ fA : {0, 1}m → Znq

fA(x) = Ax

I Collision x,x′ ∈ {0, 1}m where Ax = Ax′ . . .

. . . yields solution z = x− x′ ∈ {0,±1}m.

6 / 24



Cool! (But what does this have to do with lattices?)

I A ∈ Zn×mq defines a ‘q-ary’ lattice:

L⊥(A) = {z ∈ Zm : Az = 0}

I ‘Short’ solutions z lie in
O

Worst-Case to Average-Case Reduction [Ajtai’96,. . . ]

Finding ‘short’ (‖z‖ ≤ β � q) nonzero z ∈ L⊥(A)
(for uniformly random A ∈ Zn×m

q )
⇓

solving GapSVPβ
√
n,SIVPβ

√
n on any n-dim lattice

7 / 24



Cool! (But what does this have to do with lattices?)

I A ∈ Zn×mq defines a ‘q-ary’ lattice:

L⊥(A) = {z ∈ Zm : Az = 0}

I ‘Short’ solutions z lie in

O

Worst-Case to Average-Case Reduction [Ajtai’96,. . . ]

Finding ‘short’ (‖z‖ ≤ β � q) nonzero z ∈ L⊥(A)
(for uniformly random A ∈ Zn×m

q )
⇓

solving GapSVPβ
√
n, SIVPβ

√
n on any n-dim lattice

7 / 24



Cool! (But what does this have to do with lattices?)

I A ∈ Zn×mq defines a ‘q-ary’ lattice:

L⊥(A) = {z ∈ Zm : Az = 0}

I ‘Short’ solutions z lie in

O

(0, q)

(q, 0)

Worst-Case to Average-Case Reduction [Ajtai’96,. . . ]

Finding ‘short’ (‖z‖ ≤ β � q) nonzero z ∈ L⊥(A)
(for uniformly random A ∈ Zn×m

q )
⇓

solving GapSVPβ
√
n, SIVPβ

√
n on any n-dim lattice

7 / 24



Cool! (But what does this have to do with lattices?)

I A ∈ Zn×mq defines a ‘q-ary’ lattice:

L⊥(A) = {z ∈ Zm : Az = 0}

I ‘Short’ solutions z lie in
O

(0, q)

(q, 0)

Worst-Case to Average-Case Reduction [Ajtai’96,. . . ]

Finding ‘short’ (‖z‖ ≤ β � q) nonzero z ∈ L⊥(A)
(for uniformly random A ∈ Zn×m

q )
⇓

solving GapSVPβ
√
n, SIVPβ

√
n on any n-dim lattice

7 / 24



Cool! (But what does this have to do with lattices?)

I A ∈ Zn×mq defines a ‘q-ary’ lattice:

L⊥(A) = {z ∈ Zm : Az = 0}

I ‘Short’ solutions z lie in
O

(0, q)

(q, 0)

Worst-Case to Average-Case Reduction [Ajtai’96,. . . ]

Finding ‘short’ (‖z‖ ≤ β � q) nonzero z ∈ L⊥(A)
(for uniformly random A ∈ Zn×m

q )
⇓

solving GapSVPβ
√
n, SIVPβ

√
n on any n-dim lattice

7 / 24



Application: Digital Signatures [GentryPeikertVaikuntanathan’08]

I Generate uniform vk = A with secret ‘trapdoor’ sk = T.

I Sign(T, µ): use T to sample a short z ∈ Zm s.t. Az = H(µ) ∈ Znq .

Draw z from a distribution that reveals nothing about secret key:

I Verify(A, µ, z): check that Az = H(µ) and z is sufficiently short.

I Security: forging a signature for a new message µ∗ requires finding
short z∗ s.t. Az∗ = H(µ∗). This is SIS: hard!

8 / 24



Application: Digital Signatures [GentryPeikertVaikuntanathan’08]

I Generate uniform vk = A with secret ‘trapdoor’ sk = T.

I Sign(T, µ): use T to sample a short z ∈ Zm s.t. Az = H(µ) ∈ Znq .

Draw z from a distribution that reveals nothing about secret key:

I Verify(A, µ, z): check that Az = H(µ) and z is sufficiently short.

I Security: forging a signature for a new message µ∗ requires finding
short z∗ s.t. Az∗ = H(µ∗). This is SIS: hard!

8 / 24



Application: Digital Signatures [GentryPeikertVaikuntanathan’08]

I Generate uniform vk = A with secret ‘trapdoor’ sk = T.

I Sign(T, µ): use T to sample a short z ∈ Zm s.t. Az = H(µ) ∈ Znq .

Draw z from a distribution that reveals nothing about secret key:

I Verify(A, µ, z): check that Az = H(µ) and z is sufficiently short.

I Security: forging a signature for a new message µ∗ requires finding
short z∗ s.t. Az∗ = H(µ∗). This is SIS: hard!

8 / 24



Application: Digital Signatures [GentryPeikertVaikuntanathan’08]

I Generate uniform vk = A with secret ‘trapdoor’ sk = T.

I Sign(T, µ): use T to sample a short z ∈ Zm s.t. Az = H(µ) ∈ Znq .

Draw z from a distribution that reveals nothing about secret key:

I Verify(A, µ, z): check that Az = H(µ) and z is sufficiently short.

I Security: forging a signature for a new message µ∗ requires finding
short z∗ s.t. Az∗ = H(µ∗). This is SIS: hard!

8 / 24



Application: Digital Signatures [GentryPeikertVaikuntanathan’08]

I Generate uniform vk = A with secret ‘trapdoor’ sk = T.

I Sign(T, µ): use T to sample a short z ∈ Zm s.t. Az = H(µ) ∈ Znq .

Draw z from a distribution that reveals nothing about secret key:

I Verify(A, µ, z): check that Az = H(µ) and z is sufficiently short.

I Security: forging a signature for a new message µ∗ requires finding
short z∗ s.t. Az∗ = H(µ∗). This is SIS: hard!

8 / 24



Another Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q = poly(n), error distribution

I Search: find secret s ∈ Znq given many ‘noisy inner products’

√
n ≤ error� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
lattice problems

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . . ]

decision-LWE ≤ crypto

I Also fully classical reductions, for worse params [Peikert’09,BLPRS’13]

9 / 24



Another Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q = poly(n), error distribution

I Search: find secret s ∈ Znq given many ‘noisy inner products’

a1 ← Znq , b1 ≈ 〈s , a1〉 mod q

a2 ← Znq , b2 ≈ 〈s , a2〉 mod q

...

√
n ≤ error� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
lattice problems

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . . ]

decision-LWE ≤ crypto

I Also fully classical reductions, for worse params [Peikert’09,BLPRS’13]

9 / 24



Another Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q = poly(n), error distribution

I Search: find secret s ∈ Znq given many ‘noisy inner products’

a1 ← Znq , b1 = 〈s , a1〉+ e1 ∈ Zq
a2 ← Znq , b2 = 〈s , a2〉+ e2 ∈ Zq

... √
n ≤ error� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
lattice problems

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . . ]

decision-LWE ≤ crypto

I Also fully classical reductions, for worse params [Peikert’09,BLPRS’13]

9 / 24



Another Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q = poly(n), error distribution

I Search: find secret s ∈ Znq given many ‘noisy inner products’· · · A · · ·

 ,
(
· · · bt · · ·

)
= stA + et

√
n ≤ error� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
lattice problems

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . . ]

decision-LWE ≤ crypto

I Also fully classical reductions, for worse params [Peikert’09,BLPRS’13]

9 / 24



Another Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q = poly(n), error distribution

I Search: find secret s ∈ Znq given many ‘noisy inner products’· · · A · · ·

 ,
(
· · · bt · · ·

)
= stA + et

√
n ≤ error� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
lattice problems

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . . ]

decision-LWE ≤ crypto

I Also fully classical reductions, for worse params [Peikert’09,BLPRS’13]

9 / 24



Another Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q = poly(n), error distribution

I Search: find secret s ∈ Znq given many ‘noisy inner products’· · · A · · ·

 ,
(
· · · bt · · ·

)
= stA + et

√
n ≤ error� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
lattice problems

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . . ]

decision-LWE ≤ crypto

I Also fully classical reductions, for worse params [Peikert’09,BLPRS’13]

9 / 24



Another Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q = poly(n), error distribution

I Search: find secret s ∈ Znq given many ‘noisy inner products’· · · A · · ·

 ,
(
· · · bt · · ·

)
= stA + et

√
n ≤ error� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
lattice problems

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . . ]

decision-LWE ≤ crypto

I Also fully classical reductions, for worse params [Peikert’09,BLPRS’13]

9 / 24



LWE is Versatile

What kinds of crypto can we do with LWE?

4 Key Exchange, Public Key Encryption

4 Oblivious Transfer

4 Actively Secure Encryption (w/o random oracles)

4 Block Ciphers, PRFs

44 Identity-Based Encryption (w/ RO)

44 Hierarchical ID-Based Encryption (w/o RO)

!!! Fully Homomorphic Encryption

!!! Attribute-Based Encryption for arbitrary policies

and much, much more. . .

10 / 24



LWE is Versatile

What kinds of crypto can we do with LWE?

4 Key Exchange, Public Key Encryption

4 Oblivious Transfer

4 Actively Secure Encryption (w/o random oracles)

4 Block Ciphers, PRFs

44 Identity-Based Encryption (w/ RO)

44 Hierarchical ID-Based Encryption (w/o RO)

!!! Fully Homomorphic Encryption

!!! Attribute-Based Encryption for arbitrary policies

and much, much more. . .

10 / 24



LWE is Versatile

What kinds of crypto can we do with LWE?

4 Key Exchange, Public Key Encryption

4 Oblivious Transfer

4 Actively Secure Encryption (w/o random oracles)

4 Block Ciphers, PRFs

44 Identity-Based Encryption (w/ RO)

44 Hierarchical ID-Based Encryption (w/o RO)

!!! Fully Homomorphic Encryption

!!! Attribute-Based Encryption for arbitrary policies

and much, much more. . .

10 / 24



LWE is Versatile

What kinds of crypto can we do with LWE?

4 Key Exchange, Public Key Encryption

4 Oblivious Transfer

4 Actively Secure Encryption (w/o random oracles)

4 Block Ciphers, PRFs

44 Identity-Based Encryption (w/ RO)

44 Hierarchical ID-Based Encryption (w/o RO)

!!! Fully Homomorphic Encryption

!!! Attribute-Based Encryption for arbitrary policies

and much, much more. . .

10 / 24



Key Exchange from LWE [Regev’05,LP’11]

r← Zn (error) A← Zn×nq s← Zn (error)

ut ≈ rt ·A ∈ Znq

v ≈ A · s ∈ Znq

(A,u,v, k)

by decision-LWE

11 / 24



Key Exchange from LWE [Regev’05,LP’11]

r← Zn (error) A← Zn×nq s← Zn (error)

ut ≈ rt ·A ∈ Znq

v ≈ A · s ∈ Znq

(A,u,v, k)

by decision-LWE

11 / 24



Key Exchange from LWE [Regev’05,LP’11]

r← Zn (error) A← Zn×nq s← Zn (error)

ut ≈ rt ·A ∈ Znq

v ≈ A · s ∈ Znq

(A,u,v, k)

by decision-LWE

11 / 24



Key Exchange from LWE [Regev’05,LP’11]

r← Zn (error) A← Zn×nq s← Zn (error)

ut ≈ rt ·A ∈ Znq

v ≈ A · s ∈ Znq

rt · v ≈ rtAs k ≈ ut · s ≈ rtAs

(A,u,v, k)

by decision-LWE

11 / 24



Key Exchange from LWE [Regev’05,LP’11]

r← Zn (error) A← Zn×nq s← Zn (error)

ut ≈ rt ·A ∈ Znq

v ≈ A · s ∈ Znq

rt · v ≈ rtAs k ≈ ut · s ≈ rtAs

(A,u,v, k)

by decision-LWE

11 / 24



Key Exchange from LWE [Regev’05,LP’11]

r← Zn (error) A← Zn×nq s← Zn (error)

ut ≈ rt ·A ∈ Znq

v ≈ A · s ∈ Znq

rt · v ≈ rtAs k ≈ ut · s ≈ rtAs

(A,u,v, k)
by decision-LWE

11 / 24



Key Exchange from LWE [Regev’05,LP’11]

r← Zn (error) A← Zn×nq s← Zn (error)

ut ≈ rt ·A ∈ Znq

v ≈ A · s ∈ Znq

rt · v ≈ rtAs k ≈ ut · s ≈ rtAs

(A,u,v, k)
by decision-LWE

11 / 24



Efficiency from Rings

12 / 24



SIS/LWE are (Sort Of) Efficient

(
· · · ai · · ·

)
...
s
...

+ ei = bi ∈ Zq

I Getting one pseudorandom
scalar bi ∈ Zq requires an n-dim
mod-q inner product

I Can amortize each ai over many
secrets sj , but still Õ(n) work
per scalar output.

I Cryptosystems have rather large keys:

pk =


...
A
...


︸ ︷︷ ︸

n

,


...
b
...


Ω(n)

I Inherently ≥ n2 time to encrypt & decrypt an n-bit message.

13 / 24



SIS/LWE are (Sort Of) Efficient

(
· · · ai · · ·

)
...
s
...

+ ei = bi ∈ Zq

I Getting one pseudorandom
scalar bi ∈ Zq requires an n-dim
mod-q inner product

I Can amortize each ai over many
secrets sj , but still Õ(n) work
per scalar output.

I Cryptosystems have rather large keys:

pk =


...
A
...


︸ ︷︷ ︸

n

,


...
b
...


Ω(n)

I Inherently ≥ n2 time to encrypt & decrypt an n-bit message.

13 / 24



SIS/LWE are (Sort Of) Efficient

(
· · · ai · · ·

)
...
s
...

+ ei = bi ∈ Zq

I Getting one pseudorandom
scalar bi ∈ Zq requires an n-dim
mod-q inner product

I Can amortize each ai over many
secrets sj , but still Õ(n) work
per scalar output.

I Cryptosystems have rather large keys:

pk =


...
A
...


︸ ︷︷ ︸

n

,


...
b
...


Ω(n)

I Inherently ≥ n2 time to encrypt & decrypt an n-bit message.

13 / 24



SIS/LWE are (Sort Of) Efficient

(
· · · ai · · ·

)
...
s
...

+ ei = bi ∈ Zq

I Getting one pseudorandom
scalar bi ∈ Zq requires an n-dim
mod-q inner product

I Can amortize each ai over many
secrets sj , but still Õ(n) work
per scalar output.

I Cryptosystems have rather large keys:

pk =


...
A
...


︸ ︷︷ ︸

n

,


...
b
...


Ω(n)

I Inherently ≥ n2 time to encrypt & decrypt an n-bit message.

13 / 24



Wishful Thinking. . .


...
ai
...

?


...
s
...

+


...
ei
...

 =


...
bi
...

 ∈ Znq

I Get n pseudorandom scalars
from just one (cheap)
product operation?

I Replace Zn×nq -chunks by Znq .

Question
I How to define the product ‘?’ so that (ai,bi) is pseudorandom?

I Careful! With small error, coordinate-wise multiplication is insecure!

Answer
I ‘?’ = multiplication in a polynomial ring: e.g., Zq[X]/(Xn + 1).

Fast and practical with FFT: n log n operations mod q.

I Same ring structures used in NTRU cryptosystem [HPS’98],

compact one-way / CR hash functions [Mic’02,PR’06,LM’06,. . . ]

14 / 24



Wishful Thinking. . .


...
ai
...

?


...
s
...

+


...
ei
...

 =


...
bi
...

 ∈ Znq

I Get n pseudorandom scalars
from just one (cheap)
product operation?

I Replace Zn×nq -chunks by Znq .

Question
I How to define the product ‘?’ so that (ai,bi) is pseudorandom?

I Careful! With small error, coordinate-wise multiplication is insecure!

Answer
I ‘?’ = multiplication in a polynomial ring: e.g., Zq[X]/(Xn + 1).

Fast and practical with FFT: n log n operations mod q.

I Same ring structures used in NTRU cryptosystem [HPS’98],

compact one-way / CR hash functions [Mic’02,PR’06,LM’06,. . . ]

14 / 24



Wishful Thinking. . .


...
ai
...

?


...
s
...

+


...
ei
...

 =


...
bi
...

 ∈ Znq

I Get n pseudorandom scalars
from just one (cheap)
product operation?

I Replace Zn×nq -chunks by Znq .

Question
I How to define the product ‘?’ so that (ai,bi) is pseudorandom?

I Careful! With small error, coordinate-wise multiplication is insecure!

Answer
I ‘?’ = multiplication in a polynomial ring: e.g., Zq[X]/(Xn + 1).

Fast and practical with FFT: n log n operations mod q.

I Same ring structures used in NTRU cryptosystem [HPS’98],

compact one-way / CR hash functions [Mic’02,PR’06,LM’06,. . . ]

14 / 24



Wishful Thinking. . .


...
ai
...

?


...
s
...

+


...
ei
...

 =


...
bi
...

 ∈ Znq

I Get n pseudorandom scalars
from just one (cheap)
product operation?

I Replace Zn×nq -chunks by Znq .

Question
I How to define the product ‘?’ so that (ai,bi) is pseudorandom?

I Careful! With small error, coordinate-wise multiplication is insecure!

Answer
I ‘?’ = multiplication in a polynomial ring: e.g., Zq[X]/(Xn + 1).

Fast and practical with FFT: n log n operations mod q.

I Same ring structures used in NTRU cryptosystem [HPS’98],

compact one-way / CR hash functions [Mic’02,PR’06,LM’06,. . . ]

14 / 24



Wishful Thinking. . .


...
ai
...

?


...
s
...

+


...
ei
...

 =


...
bi
...

 ∈ Znq

I Get n pseudorandom scalars
from just one (cheap)
product operation?

I Replace Zn×nq -chunks by Znq .

Question
I How to define the product ‘?’ so that (ai,bi) is pseudorandom?

I Careful! With small error, coordinate-wise multiplication is insecure!

Answer
I ‘?’ = multiplication in a polynomial ring: e.g., Zq[X]/(Xn + 1).

Fast and practical with FFT: n log n operations mod q.

I Same ring structures used in NTRU cryptosystem [HPS’98],

compact one-way / CR hash functions [Mic’02,PR’06,LM’06,. . . ]

14 / 24



LWE Over Rings, Over Simplified

I Let R = Z[X]/(Xn + 1) for n a power of two, and Rq = R/qR

F Elements of Rq are deg < n polynomials with mod-q coefficients

F Operations in Rq are very efficient using FFT-like algorithms

I Search: find secret ring element s(X) ∈ Rq, given:

a1 ← Rq , b1 = s · a1 + e1 ∈ Rq
a2 ← Rq , b2 = s · a2 + e2 ∈ Rq
a3 ← Rq , b3 = s · a3 + e3 ∈ Rq

...

(ei ∈ R are ‘small’)

I Decision: distinguish (ai , bi) from uniform (ai , bi) ∈ Rq ×Rq
(with noticeable advantage)

15 / 24



LWE Over Rings, Over Simplified

I Let R = Z[X]/(Xn + 1) for n a power of two, and Rq = R/qR

F Elements of Rq are deg < n polynomials with mod-q coefficients

F Operations in Rq are very efficient using FFT-like algorithms

I Search: find secret ring element s(X) ∈ Rq, given:

a1 ← Rq , b1 = s · a1 + e1 ∈ Rq
a2 ← Rq , b2 = s · a2 + e2 ∈ Rq
a3 ← Rq , b3 = s · a3 + e3 ∈ Rq

...

(ei ∈ R are ‘small’)

I Decision: distinguish (ai , bi) from uniform (ai , bi) ∈ Rq ×Rq
(with noticeable advantage)

15 / 24



LWE Over Rings, Over Simplified

I Let R = Z[X]/(Xn + 1) for n a power of two, and Rq = R/qR

F Elements of Rq are deg < n polynomials with mod-q coefficients

F Operations in Rq are very efficient using FFT-like algorithms

I Search: find secret ring element s(X) ∈ Rq, given:

a1 ← Rq , b1 = s · a1 + e1 ∈ Rq
a2 ← Rq , b2 = s · a2 + e2 ∈ Rq
a3 ← Rq , b3 = s · a3 + e3 ∈ Rq

...

(ei ∈ R are ‘small’)

I Decision: distinguish (ai , bi) from uniform (ai , bi) ∈ Rq ×Rq
(with noticeable advantage)

15 / 24



LWE Over Rings, Over Simplified

I Let R = Z[X]/(Xn + 1) for n a power of two, and Rq = R/qR

F Elements of Rq are deg < n polynomials with mod-q coefficients

F Operations in Rq are very efficient using FFT-like algorithms

I Search: find secret ring element s(X) ∈ Rq, given:

a1 ← Rq , b1 = s · a1 + e1 ∈ Rq
a2 ← Rq , b2 = s · a2 + e2 ∈ Rq
a3 ← Rq , b3 = s · a3 + e3 ∈ Rq

...

(ei ∈ R are ‘small’)

I Decision: distinguish (ai , bi) from uniform (ai , bi) ∈ Rq ×Rq
(with noticeable advantage)

15 / 24



Hardness of Ring-LWE [LyubashevskyPeikertRegev’10]

I Two main theorems (reductions):

worst-case approx-SVP
on ideal lattices in R

≤

(quantum,
any R = OK)

search R-LWE ≤

(classical,
any cyclotomic R)

decision R-LWE

1 If you can find s given (ai , bi), then you can find approximately
shortest vectors in any ideal lattice in R (using a quantum algorithm).

2 If you can distinguish (ai , bi) from (ai , bi), then you can find s.

I Then:

decision R-LWE ≤ lots of crypto

F If you can break the crypto, then you can distinguish (ai , bi) from
(ai , bi). . .

16 / 24



Hardness of Ring-LWE [LyubashevskyPeikertRegev’10]

I Two main theorems (reductions):

worst-case approx-SVP
on ideal lattices in R

≤

(quantum,
any R = OK)

search R-LWE ≤

(classical,
any cyclotomic R)

decision R-LWE

1 If you can find s given (ai , bi), then you can find approximately
shortest vectors in any ideal lattice in R (using a quantum algorithm).

2 If you can distinguish (ai , bi) from (ai , bi), then you can find s.

I Then:

decision R-LWE ≤ lots of crypto

F If you can break the crypto, then you can distinguish (ai , bi) from
(ai , bi). . .

16 / 24



Hardness of Ring-LWE [LyubashevskyPeikertRegev’10]

I Two main theorems (reductions):

worst-case approx-SVP
on ideal lattices in R

≤

(quantum,
any R = OK)

search R-LWE ≤

(classical,
any cyclotomic R)

decision R-LWE

1 If you can find s given (ai , bi), then you can find approximately
shortest vectors in any ideal lattice in R (using a quantum algorithm).

2 If you can distinguish (ai , bi) from (ai , bi), then you can find s.

I Then:

decision R-LWE ≤ lots of crypto

F If you can break the crypto, then you can distinguish (ai , bi) from
(ai , bi). . .

16 / 24



Hardness of Ring-LWE [LyubashevskyPeikertRegev’10]

I Two main theorems (reductions):

worst-case approx-SVP
on ideal lattices in R

≤

(quantum,
any R = OK)

search R-LWE ≤

(classical,
any cyclotomic R)

decision R-LWE

1 If you can find s given (ai , bi), then you can find approximately
shortest vectors in any ideal lattice in R (using a quantum algorithm).

2 If you can distinguish (ai , bi) from (ai , bi), then you can find s.

I Then:

decision R-LWE ≤ lots of crypto

F If you can break the crypto, then you can distinguish (ai , bi) from
(ai , bi). . .

16 / 24



Hardness of Ring-LWE [LyubashevskyPeikertRegev’10]

I Two main theorems (reductions):

worst-case approx-SVP
on ideal lattices in R

≤

(quantum,
any R = OK)

search R-LWE ≤

(classical,
any cyclotomic R)

decision R-LWE

1 If you can find s given (ai , bi), then you can find approximately
shortest vectors in any ideal lattice in R (using a quantum algorithm).

2 If you can distinguish (ai , bi) from (ai , bi), then you can find s.

I Then:

decision R-LWE ≤ lots of crypto

F If you can break the crypto, then you can distinguish (ai , bi) from
(ai , bi). . .

16 / 24



Ideal Lattices

I Say R = Z[X]/(Xn + 1) for power-of-two n. (Or R = OK .)

I An ideal I ⊆ R is closed under + and −, and under · with R.

To get ideal lattices, embed R and its ideals into Rn. How?

1 Obvious answer: ‘coefficient embedding’

a0 + a1X + · · ·+ an−1X
n−1 ∈ R 7→ (a0, . . . , an−1) ∈ Zn

+ is coordinate-wise, but analyzing · is cumbersome.

2 Minkowski: ‘canonical embedding.’ Let ω = exp(πi/n) ∈ C, so roots
of Xn + 1 are ω1, ω3, . . . , ω2n−1. Embed:

a(X) ∈ R 7→ (a(ω1) , a(ω3) , . . . , a(ω2n−1)) ∈ Cn

Both + and · are coordinate-wise.

Error distribution is Gaussian in canonical embedding.

17 / 24



Ideal Lattices

I Say R = Z[X]/(Xn + 1) for power-of-two n. (Or R = OK .)

I An ideal I ⊆ R is closed under + and −, and under · with R.

To get ideal lattices, embed R and its ideals into Rn. How?

1 Obvious answer: ‘coefficient embedding’

a0 + a1X + · · ·+ an−1X
n−1 ∈ R 7→ (a0, . . . , an−1) ∈ Zn

+ is coordinate-wise, but analyzing · is cumbersome.

2 Minkowski: ‘canonical embedding.’ Let ω = exp(πi/n) ∈ C, so roots
of Xn + 1 are ω1, ω3, . . . , ω2n−1. Embed:

a(X) ∈ R 7→ (a(ω1) , a(ω3) , . . . , a(ω2n−1)) ∈ Cn

Both + and · are coordinate-wise.

Error distribution is Gaussian in canonical embedding.

17 / 24



Ideal Lattices

I Say R = Z[X]/(Xn + 1) for power-of-two n. (Or R = OK .)

I An ideal I ⊆ R is closed under + and −, and under · with R.

To get ideal lattices, embed R and its ideals into Rn. How?

1 Obvious answer: ‘coefficient embedding’

a0 + a1X + · · ·+ an−1X
n−1 ∈ R 7→ (a0, . . . , an−1) ∈ Zn

+ is coordinate-wise, but analyzing · is cumbersome.

2 Minkowski: ‘canonical embedding.’ Let ω = exp(πi/n) ∈ C, so roots
of Xn + 1 are ω1, ω3, . . . , ω2n−1. Embed:

a(X) ∈ R 7→ (a(ω1) , a(ω3) , . . . , a(ω2n−1)) ∈ Cn

Both + and · are coordinate-wise.

Error distribution is Gaussian in canonical embedding.

17 / 24



Ideal Lattices

I Say R = Z[X]/(Xn + 1) for power-of-two n. (Or R = OK .)

I An ideal I ⊆ R is closed under + and −, and under · with R.

To get ideal lattices, embed R and its ideals into Rn. How?

1 Obvious answer: ‘coefficient embedding’

a0 + a1X + · · ·+ an−1X
n−1 ∈ R 7→ (a0, . . . , an−1) ∈ Zn

+ is coordinate-wise, but analyzing · is cumbersome.

2 Minkowski: ‘canonical embedding.’ Let ω = exp(πi/n) ∈ C, so roots
of Xn + 1 are ω1, ω3, . . . , ω2n−1. Embed:

a(X) ∈ R 7→ (a(ω1) , a(ω3) , . . . , a(ω2n−1)) ∈ Cn

Both + and · are coordinate-wise.

Error distribution is Gaussian in canonical embedding.

17 / 24



Ideal Lattices

I Say R = Z[X]/(Xn + 1) for power-of-two n. (Or R = OK .)

I An ideal I ⊆ R is closed under + and −, and under · with R.

To get ideal lattices, embed R and its ideals into Cn. How?

1 Obvious answer: ‘coefficient embedding’

a0 + a1X + · · ·+ an−1X
n−1 ∈ R 7→ (a0, . . . , an−1) ∈ Zn

+ is coordinate-wise, but analyzing · is cumbersome.

2 Minkowski: ‘canonical embedding.’ Let ω = exp(πi/n) ∈ C, so roots
of Xn + 1 are ω1, ω3, . . . , ω2n−1. Embed:

a(X) ∈ R 7→ (a(ω1) , a(ω3) , . . . , a(ω2n−1)) ∈ Cn

Both + and · are coordinate-wise.

Error distribution is Gaussian in canonical embedding.

17 / 24



Ideal Lattices

I Say R = Z[X]/(Xn + 1) for power-of-two n. (Or R = OK .)

I An ideal I ⊆ R is closed under + and −, and under · with R.

To get ideal lattices, embed R and its ideals into Cn. How?

1 Obvious answer: ‘coefficient embedding’

a0 + a1X + · · ·+ an−1X
n−1 ∈ R 7→ (a0, . . . , an−1) ∈ Zn

+ is coordinate-wise, but analyzing · is cumbersome.

2 Minkowski: ‘canonical embedding.’ Let ω = exp(πi/n) ∈ C, so roots
of Xn + 1 are ω1, ω3, . . . , ω2n−1. Embed:

a(X) ∈ R 7→ (a(ω1) , a(ω3) , . . . , a(ω2n−1)) ∈ Cn

Both + and · are coordinate-wise.

Error distribution is Gaussian in canonical embedding.

17 / 24



Ideal Lattices

I Say R = Z[X]/(Xn + 1) for power-of-two n. (Or R = OK .)

I An ideal I ⊆ R is closed under + and −, and under · with R.

To get ideal lattices, embed R and its ideals into Rn. How?

1 Obvious answer: ‘coefficient embedding’

a0 + a1X + · · ·+ an−1X
n−1 ∈ R 7→ (a0, . . . , an−1) ∈ Zn

+ is coordinate-wise, but analyzing · is cumbersome.

2 Minkowski: ‘canonical embedding.’ Let ω = exp(πi/n) ∈ C, so roots
of Xn + 1 are ω1, ω3, . . . , ω2n−1. Embed:

a(X) ∈ R 7→ (a(ω1) , a(ω3) , . . . , a(ω2n−1)) ∈ Cn

Both + and · are coordinate-wise.

Error distribution is Gaussian in canonical embedding.
17 / 24



Ideal Lattices

I Say R = Z[X]/(X2 + 1). Embeddings map X 7→ ±i.

I I = 〈X − 2,−3X + 1〉 is an ideal in R.

σ(1) = (1, 1)σ(X) = (i,−i)

σ(X − 2)

σ(−3X + 1)

(Approximate) Shortest Vector Problem

I Given (an arbitrary basis of) an arbitrary ideal I ⊆ R,
find a nearly shortest nonzero a ∈ I.

18 / 24



Ideal Lattices

I Say R = Z[X]/(X2 + 1). Embeddings map X 7→ ±i.
I I = 〈X − 2,−3X + 1〉 is an ideal in R.

σ(1) = (1, 1)σ(X) = (i,−i)

σ(X − 2)

σ(−3X + 1)

(Approximate) Shortest Vector Problem

I Given (an arbitrary basis of) an arbitrary ideal I ⊆ R,
find a nearly shortest nonzero a ∈ I.

18 / 24



Ideal Lattices

I Say R = Z[X]/(X2 + 1). Embeddings map X 7→ ±i.
I I = 〈X − 2,−3X + 1〉 is an ideal in R.

σ(1) = (1, 1)σ(X) = (i,−i)

σ(X − 2)

σ(−3X + 1)

(Approximate) Shortest Vector Problem

I Given (an arbitrary basis of) an arbitrary ideal I ⊆ R,
find a nearly shortest nonzero a ∈ I.

18 / 24



Complexity of Ideal Lattices

1 We know approx-R-SVP ≤ R-LWE (quantumly). Other direction?

Can we solve R-LWE using an oracle for approx-R-SVP?

R-LWE samples (ai, bi) don’t readily translate to ideals in R.

2 How hard/easy is poly(n)-R-SVP? (In cyclotomics etc.)

F Despite much ring structure (e.g., subfields, Galois), no significant
improvement versus general n-dim lattices is known.

F But 2O(
√
n log n)-SVP is quantum poly-time solvable in prime-power

cyclotomics, and maybe other rings [CDPR’16,BS’16,K’16,CDW’16]

F There is a 2Ω(
√
n/ log n) barrier for the main technique. Can it be

circumvented?

19 / 24



Complexity of Ideal Lattices

1 We know approx-R-SVP ≤ R-LWE (quantumly). Other direction?

Can we solve R-LWE using an oracle for approx-R-SVP?

R-LWE samples (ai, bi) don’t readily translate to ideals in R.

2 How hard/easy is poly(n)-R-SVP? (In cyclotomics etc.)

F Despite much ring structure (e.g., subfields, Galois), no significant
improvement versus general n-dim lattices is known.

F But 2O(
√
n log n)-SVP is quantum poly-time solvable in prime-power

cyclotomics, and maybe other rings [CDPR’16,BS’16,K’16,CDW’16]

F There is a 2Ω(
√
n/ log n) barrier for the main technique. Can it be

circumvented?

19 / 24



Complexity of Ideal Lattices

1 We know approx-R-SVP ≤ R-LWE (quantumly). Other direction?

Can we solve R-LWE using an oracle for approx-R-SVP?

R-LWE samples (ai, bi) don’t readily translate to ideals in R.

2 How hard/easy is poly(n)-R-SVP? (In cyclotomics etc.)

F Despite much ring structure (e.g., subfields, Galois), no significant
improvement versus general n-dim lattices is known.

F But 2O(
√
n log n)-SVP is quantum poly-time solvable in prime-power

cyclotomics, and maybe other rings [CDPR’16,BS’16,K’16,CDW’16]

F There is a 2Ω(
√
n/ log n) barrier for the main technique. Can it be

circumvented?

19 / 24



Complexity of Ideal Lattices

1 We know approx-R-SVP ≤ R-LWE (quantumly). Other direction?

Can we solve R-LWE using an oracle for approx-R-SVP?

R-LWE samples (ai, bi) don’t readily translate to ideals in R.

2 How hard/easy is poly(n)-R-SVP? (In cyclotomics etc.)

F Despite much ring structure (e.g., subfields, Galois), no significant
improvement versus general n-dim lattices is known.

F But 2O(
√
n log n)-SVP is quantum poly-time solvable in prime-power

cyclotomics, and maybe other rings [CDPR’16,BS’16,K’16,CDW’16]

F There is a 2Ω(
√
n/ log n) barrier for the main technique. Can it be

circumvented?

19 / 24



Complexity of Ideal Lattices

1 We know approx-R-SVP ≤ R-LWE (quantumly). Other direction?

Can we solve R-LWE using an oracle for approx-R-SVP?

R-LWE samples (ai, bi) don’t readily translate to ideals in R.

2 How hard/easy is poly(n)-R-SVP? (In cyclotomics etc.)

F Despite much ring structure (e.g., subfields, Galois), no significant
improvement versus general n-dim lattices is known.

F But 2O(
√
n log n)-SVP is quantum poly-time solvable in prime-power

cyclotomics, and maybe other rings [CDPR’16,BS’16,K’16,CDW’16]

F There is a 2Ω(
√
n/ log n) barrier for the main technique. Can it be

circumvented?

19 / 24



Complexity of Ideal Lattices

1 We know approx-R-SVP ≤ R-LWE (quantumly). Other direction?

Can we solve R-LWE using an oracle for approx-R-SVP?

R-LWE samples (ai, bi) don’t readily translate to ideals in R.

2 How hard/easy is poly(n)-R-SVP? (In cyclotomics etc.)

F Despite much ring structure (e.g., subfields, Galois), no significant
improvement versus general n-dim lattices is known.

F But 2O(
√
n log n)-SVP is quantum poly-time solvable in prime-power

cyclotomics, and maybe other rings [CDPR’16,BS’16,K’16,CDW’16]

F There is a 2Ω(
√
n/ log n) barrier for the main technique. Can it be

circumvented?

19 / 24



Implementations

20 / 24



Key Exchange

I NewHope [ADPS’15]: Ring-LWE key exchange a la [LPR’10,P’14],
with many optimizations and conjectured ≥ 200-bit quantum security.

Comparable to or even faster than state-of-the-art ECDH w/ 128-bit
(non-quantum) security.

Google has experimentally deployed NewHope+ECDH in Chrome
canary and its own web servers.

I Frodo [BCDMNNRS’16]: removes the ring! Plain-LWE key exchange,
with many tricks and optimizations. Conjectured ≥ 128-bit quantum
security.

About 10x slower than NewHope, but only ≈2x slower than ECDH.

21 / 24



Key Exchange

I NewHope [ADPS’15]: Ring-LWE key exchange a la [LPR’10,P’14],
with many optimizations and conjectured ≥ 200-bit quantum security.

Comparable to or even faster than state-of-the-art ECDH w/ 128-bit
(non-quantum) security.

Google has experimentally deployed NewHope+ECDH in Chrome
canary and its own web servers.

I Frodo [BCDMNNRS’16]: removes the ring! Plain-LWE key exchange,
with many tricks and optimizations. Conjectured ≥ 128-bit quantum
security.

About 10x slower than NewHope, but only ≈2x slower than ECDH.

21 / 24



Key Exchange

I NewHope [ADPS’15]: Ring-LWE key exchange a la [LPR’10,P’14],
with many optimizations and conjectured ≥ 200-bit quantum security.

Comparable to or even faster than state-of-the-art ECDH w/ 128-bit
(non-quantum) security.

Google has experimentally deployed NewHope+ECDH in Chrome
canary and its own web servers.

I Frodo [BCDMNNRS’16]: removes the ring! Plain-LWE key exchange,
with many tricks and optimizations. Conjectured ≥ 128-bit quantum
security.

About 10x slower than NewHope, but only ≈2x slower than ECDH.

21 / 24



Key Exchange

I NewHope [ADPS’15]: Ring-LWE key exchange a la [LPR’10,P’14],
with many optimizations and conjectured ≥ 200-bit quantum security.

Comparable to or even faster than state-of-the-art ECDH w/ 128-bit
(non-quantum) security.

Google has experimentally deployed NewHope+ECDH in Chrome
canary and its own web servers.

I Frodo [BCDMNNRS’16]: removes the ring! Plain-LWE key exchange,
with many tricks and optimizations. Conjectured ≥ 128-bit quantum
security.

About 10x slower than NewHope, but only ≈2x slower than ECDH.

21 / 24



Key Exchange

I NewHope [ADPS’15]: Ring-LWE key exchange a la [LPR’10,P’14],
with many optimizations and conjectured ≥ 200-bit quantum security.

Comparable to or even faster than state-of-the-art ECDH w/ 128-bit
(non-quantum) security.

Google has experimentally deployed NewHope+ECDH in Chrome
canary and its own web servers.

I Frodo [BCDMNNRS’16]: removes the ring! Plain-LWE key exchange,
with many tricks and optimizations. Conjectured ≥ 128-bit quantum
security.

About 10x slower than NewHope, but only ≈2x slower than ECDH.

21 / 24



Digital Signatures

I Most implementations follow design from [Lyubashevsky’09/’12,. . . ].

I BLISS [DDLL’13]: optimized implementation in this framework.

I Compelling efficiency:

System Sig (Kb) PK (Kb) KSign/sec KVer/sec

RSA-4096 4.0 4.0 0.1 7.5
ECDSA-256 0.5 0.25 9.5 2.5

BLISS 5.6 7.0 8.0 33

(Conjectured ≥ 128 bits of security, openssl implementations.)

22 / 24



Digital Signatures

I Most implementations follow design from [Lyubashevsky’09/’12,. . . ].

I BLISS [DDLL’13]: optimized implementation in this framework.

I Compelling efficiency:

System Sig (Kb) PK (Kb) KSign/sec KVer/sec

RSA-4096 4.0 4.0 0.1 7.5
ECDSA-256 0.5 0.25 9.5 2.5

BLISS 5.6 7.0 8.0 33

(Conjectured ≥ 128 bits of security, openssl implementations.)

22 / 24



Digital Signatures

I Most implementations follow design from [Lyubashevsky’09/’12,. . . ].

I BLISS [DDLL’13]: optimized implementation in this framework.

I Compelling efficiency:

System Sig (Kb) PK (Kb) KSign/sec KVer/sec

RSA-4096 4.0 4.0 0.1 7.5
ECDSA-256 0.5 0.25 9.5 2.5

BLISS 5.6 7.0 8.0 33

(Conjectured ≥ 128 bits of security, openssl implementations.)

22 / 24



Other Implementations

I HElib [HaleviShoup]: an ‘assembly language’ for fully homomorphic
encryption (FHE).

Implements many advanced FHE features, holds most speed records

I Λ◦λ (L O L) [CrockettPeikert’16]: a general-purpose, high-level
framework aimed at advanced lattice cryptosystems.

Focuses on modularity, safety, and consistency with best theory.

23 / 24



Other Implementations

I HElib [HaleviShoup]: an ‘assembly language’ for fully homomorphic
encryption (FHE).

Implements many advanced FHE features, holds most speed records

I Λ◦λ (L O L) [CrockettPeikert’16]: a general-purpose, high-level
framework aimed at advanced lattice cryptosystems.

Focuses on modularity, safety, and consistency with best theory.

23 / 24



Other Implementations

I HElib [HaleviShoup]: an ‘assembly language’ for fully homomorphic
encryption (FHE).

Implements many advanced FHE features, holds most speed records

I Λ◦λ (L O L) [CrockettPeikert’16]: a general-purpose, high-level
framework aimed at advanced lattice cryptosystems.

Focuses on modularity, safety, and consistency with best theory.

23 / 24



Other Implementations

I HElib [HaleviShoup]: an ‘assembly language’ for fully homomorphic
encryption (FHE).

Implements many advanced FHE features, holds most speed records

I Λ◦λ (L O L) [CrockettPeikert’16]: a general-purpose, high-level
framework aimed at advanced lattice cryptosystems.

Focuses on modularity, safety, and consistency with best theory.

23 / 24



Conclusions

I Lattices are a very attractive foundation for ‘post-quantum’ crypto,
both ‘basic’ and ‘advanced.’

I Cryptanalysis/security estimates for concrete parameters is subtle and
ongoing, but maturing.

I A big success story for rigorous theory and practical engineering alike!

Thanks!

24 / 24



Conclusions

I Lattices are a very attractive foundation for ‘post-quantum’ crypto,
both ‘basic’ and ‘advanced.’

I Cryptanalysis/security estimates for concrete parameters is subtle and
ongoing, but maturing.

I A big success story for rigorous theory and practical engineering alike!

Thanks!

24 / 24



Conclusions

I Lattices are a very attractive foundation for ‘post-quantum’ crypto,
both ‘basic’ and ‘advanced.’

I Cryptanalysis/security estimates for concrete parameters is subtle and
ongoing, but maturing.

I A big success story for rigorous theory and practical engineering alike!

Thanks!

24 / 24



Conclusions

I Lattices are a very attractive foundation for ‘post-quantum’ crypto,
both ‘basic’ and ‘advanced.’

I Cryptanalysis/security estimates for concrete parameters is subtle and
ongoing, but maturing.

I A big success story for rigorous theory and practical engineering alike!

Thanks!

24 / 24


