Faster Bootstrapping with Polynomial Error

Jacob Alperin-Sheriff Chris Peikert

School of Computer Science
Georgia Tech

CRYPTO 2014
19 August 2014

Fully Homomorphic Encryption [RAD'78,Gentry'09]

- FHE lets you do this:

A cryptographic "holy grail" with countless applications.
First solved in [Gentry'09], followed by
[vDGHV'10,BV'11a,BV'11b,BGV'12,B'12,GSW'13,...]

Fully Homomorphic Encryption [RAD'78,Gentry'09]

- FHE lets you do this:

$$
\mu \longrightarrow \operatorname{Eval}(f) \longrightarrow f(\mu)
$$

A cryptographic "holy grail" with countless applications.
First solved in [Gentry'09], followed by
[vDGHV'10,BV'11a,BV'11b,BGV'12,B'12,GSW'13,...]

- "Naturally occurring" schemes are somewhat homomorphic (SHE): can only evaluate functions of an a priori bounded depth.

$$
\mu \rightarrow \operatorname{Eval}(f) \rightarrow f(\mu) \rightarrow \operatorname{Eval}(g) \rightarrow g(f(\mu))
$$

Fully Homomorphic Encryption [RAD'78,Gentry'09]

- FHE lets you do this:

A cryptographic "holy grail" with countless applications.
First solved in [Gentry'09], followed by
[vDGHV'10,BV'11a,BV'11b,BGV'12,B'12,GSW'13,...]

- "Naturally occurring" schemes are somewhat homomorphic (SHE): can only evaluate functions of an a priori bounded depth.

$$
\mu \rightarrow \operatorname{Eval}(f) \rightarrow f(\mu) \rightarrow \operatorname{Eval}(g) \rightarrow g(f(\mu))
$$

- Thus far, "bootstrapping" is required to achieve unbounded FHE.

Bootstrapping: SHE \rightarrow FHE [Gentry'09]

- Homomorphically evaluates the SHE decryption function to "refresh" a ciphertext μ, allowing further homomorphic operations.

$$
s k \longrightarrow \operatorname{Eval}(\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

Bootstrapping: SHE \rightarrow FHE [Gentry'09]

- Homomorphically evaluates the SHE decryption function to "refresh" a ciphertext μ, allowing further homomorphic operations.

$$
\boxed{s k} \longrightarrow \operatorname{Eval}(\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

- Error growth of bootstrapping determines cryptographic assumptions.

Bootstrapping: SHE \rightarrow FHE [Gentry'09]

- Homomorphically evaluates the SHE decryption function to "refresh" a ciphertext μ, allowing further homomorphic operations.

$$
\boxed{s k} \longrightarrow \operatorname{Eval}(\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

- Error growth of bootstrapping determines cryptographic assumptions. State of the art [BGV'12, B'12,GSW'13]:

Bootstrapping: SHE \rightarrow FHE [Gentry'09]

- Homomorphically evaluates the SHE decryption function to "refresh" a ciphertext μ, allowing further homomorphic operations.

$$
\boxed{s k} \longrightarrow \operatorname{Eval}(\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

- Error growth of bootstrapping determines cryptographic assumptions. State of the art [BGV'12, B'12,GSW'13]:
\star Homom Addition: Error grows additively.

Bootstrapping: SHE \rightarrow FHE [Gentry'09]

- Homomorphically evaluates the SHE decryption function to "refresh" a ciphertext μ, allowing further homomorphic operations.

$$
\boxed{s k} \longrightarrow \operatorname{Eval}(\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

- Error growth of bootstrapping determines cryptographic assumptions. State of the art [BGV'12, B'12,GSW'13]:
\star Homom Addition: Error grows additively.
^ Homom Multiplication: Error grows by poly (λ) factor.

Bootstrapping: SHE \rightarrow FHE [Gentry'09]

- Homomorphically evaluates the SHE decryption function to "refresh" a ciphertext μ, allowing further homomorphic operations.

$$
\boxed{s k} \longrightarrow \operatorname{Eval}(\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

- Error growth of bootstrapping determines cryptographic assumptions. State of the art [BGV'12, B'12,GSW'13]:
\star Homom Addition: Error grows additively.
\star Homom Multiplication: Error grows by poly (λ) factor.
- Known decryption circuits have logarithmic $O(\log \lambda)$ depth.

Bootstrapping: SHE \rightarrow FHE [Gentry'09]

- Homomorphically evaluates the SHE decryption function to "refresh" a ciphertext μ, allowing further homomorphic operations.

$$
\boxed{s k} \longrightarrow \operatorname{Eval}(\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

- Error growth of bootstrapping determines cryptographic assumptions. State of the art [BGV'12, B'12,GSW'13]:
\star Homom Addition: Error grows additively.
\star Homom Multiplication: Error grows by poly (λ) factor.
- Known decryption circuits have logarithmic $O(\log \lambda)$ depth. \Longrightarrow Quasi-polynomial $\lambda^{O(\log \lambda)}$ error growth and lattice approx factors

Bootstrapping: SHE \rightarrow FHE [Gentry'09]

- Homomorphically evaluates the SHE decryption function to "refresh" a ciphertext μ, allowing further homomorphic operations.

$$
\boxed{s k} \longrightarrow \operatorname{Eval}(\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

- Error growth of bootstrapping determines cryptographic assumptions. State of the art [BGV'12, B'12,GSW'13]:
\star Homom Addition: Error grows additively.
\star Homom Multiplication: Error grows by poly (λ) factor.
- Known decryption circuits have logarithmic $O(\log \lambda)$ depth. \Longrightarrow Quasi-polynomial $\lambda^{O(\log \lambda)}$ error growth and lattice approx factors
- Can we do better?

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]

- Error growth for multiplication in [GSW'13] is asymmetric:

$$
\text { Error in } \mathbf{C}:=\mathbf{C}_{1} \backsim \mathbf{C}_{2} \text { is } \mathbf{e}:=\mathbf{e}_{1} \cdot \operatorname{poly}(\lambda)+\mu_{1} \cdot \mathbf{e}_{2} .
$$

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]

- Error growth for multiplication in [GSW'13] is asymmetric:

$$
\text { Error in } \mathbf{C}:=\mathbf{C}_{1} \boxtimes \mathbf{C}_{2} \text { is } \mathbf{e}:=\mathbf{e}_{1} \cdot \operatorname{poly}(\lambda)+\mu_{1} \cdot \mathbf{e}_{2} .
$$

- Make multiplication right-associative:

$$
\mathbf{C}_{1} \boxtimes\left(\cdots\left(\mathbf{C}_{t-2} \boxtimes\left(\mathbf{C}_{t-1} \boxtimes \mathbf{C}_{t}\right)\right) \cdots\right) \text { has error } \sum_{i} \mathbf{e}_{i} \cdot \operatorname{poly}(\lambda)
$$

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]

- Error growth for multiplication in [GSW'13] is asymmetric:

$$
\text { Error in } \mathbf{C}:=\mathbf{C}_{1} \square \mathbf{C}_{2} \text { is } \mathbf{e}:=\mathbf{e}_{1} \cdot \operatorname{poly}(\lambda)+\mu_{1} \cdot \mathbf{e}_{2} .
$$

- Make multiplication right-associative:

$$
\mathbf{C}_{1} \boxminus\left(\cdots\left(\mathbf{C}_{t-2} \backsim\left(\mathbf{C}_{t-1} \backsim \mathbf{C}_{t}\right)\right) \cdots\right) \text { has error } \sum_{i} \mathbf{e}_{i} \cdot \operatorname{poly}(\lambda)
$$

- Barrington's Theorem

$$
\begin{equation*}
\left(P_{0,1}\right) \tag{15,1}
\end{equation*}
$$

$$
\left(P_{1,1}\right)
$$

$$
\left(P_{14,1}\right)
$$

$$
\left(P_{0,0}\right) \quad\left(P_{1,0}\right)
$$

length 4^{d}

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]

- Error growth for multiplication in [GSW'13] is asymmetric:

Error in $\mathbf{C}:=\mathbf{C}_{1} \boxtimes \mathbf{C}_{2}$ is $\mathbf{e}:=\mathbf{e}_{1} \cdot \operatorname{poly}(\lambda)+\mu_{1} \cdot \mathbf{e}_{2}$.

- Make multiplication right-associative:

$$
\mathbf{C}_{1} \bullet\left(\cdots\left(\mathbf{C}_{t-2} \boxtimes\left(\mathbf{C}_{t-1} \bullet \mathbf{C}_{t}\right)\right) \cdots\right) \text { has error } \sum_{i} \mathbf{e}_{i} \cdot \operatorname{poly}(\lambda)
$$

- Barrington's Theorem

depth d
length 4^{d}

Bootstrapping with Polynomial Error [BrakerskiVaikuntanathan'14]

- Error growth for multiplication in [GSW'13] is asymmetric:

Error in $\mathbf{C}:=\mathbf{C}_{1} \square \mathbf{C}_{2}$ is $\mathbf{e}:=\mathbf{e}_{1} \cdot \operatorname{poly}(\lambda)+\mu_{1} \cdot \mathbf{e}_{2}$.

- Make multiplication right-associative:

$$
\mathbf{C}_{1} \boxminus\left(\cdots\left(\mathbf{C}_{t-2} \backsim\left(\mathbf{C}_{t-1} \backsim \mathbf{C}_{t}\right)\right) \cdots\right) \text { has error } \sum_{i} \mathbf{e}_{i} \cdot \operatorname{poly}(\lambda)
$$

- Barrington's Theorem

depth $d \approx 3 \log \lambda$ length $4^{d} \approx \lambda^{6}$
x Problem: Barrington's transformation is very inefficient.

Our Results

(1) Faster bootstrapping with small polynomial error growth

Our Results

(1) Faster bootstrapping with small polynomial error growth
\star Treats decryption as an arithmetic function over \mathbb{Z}_{q}, not a circuit.

Our Results

(1) Faster bootstrapping with small polynomial error growth
\star Treats decryption as an arithmetic function over \mathbb{Z}_{q}, not a circuit. Avoids Barrington's Theorem - but still uses permutation matrices!

Our Results

(1) Faster bootstrapping with small polynomial error growth
\star Treats decryption as an arithmetic function over \mathbb{Z}_{q}, not a circuit. Avoids Barrington's Theorem - but still uses permutation matrices!

* Key Idea: Embed additive group $\left(\mathbb{Z}_{q},+\right)$ into small symmetric group

Our Results

(1) Faster bootstrapping with small polynomial error growth

* Treats decryption as an arithmetic function over \mathbb{Z}_{q}, not a circuit. Avoids Barrington's Theorem - but still uses permutation matrices!
\star Key Idea: Embed additive group $\left(\mathbb{Z}_{q},+\right)$ into small symmetric group

Reference	\# Homom Ops	Noise Growth
$\left[\mathrm{GHS}^{\prime} 12, \mathrm{AP}^{\prime} 13\right]$ (packing)	$\tilde{O}(1) \boldsymbol{\imath}$	$\lambda^{O(\log \lambda)}$
$\left[\mathrm{BV}^{\prime} 14\right]$	$\tilde{O}\left(\lambda^{6}\right)$	$\operatorname{large} \operatorname{poly}(\lambda)$
This work	$\tilde{O}(\lambda) \boldsymbol{\imath}$	$\tilde{O}\left(\lambda^{2}\right)$

Our Results

(1) Faster bootstrapping with small polynomial error growth

* Treats decryption as an arithmetic function over \mathbb{Z}_{q}, not a circuit. Avoids Barrington's Theorem - but still uses permutation matrices!
* Key Idea: Embed additive group $\left(\mathbb{Z}_{q},+\right)$ into small symmetric group

Reference	\# Homom Ops	Noise Growth
[GHS'12,AP'13] (packing)	$\tilde{O}(1) \boldsymbol{\imath}$	$\lambda^{O(\log \lambda)}$
$\left[\mathrm{BV}^{\prime} 14\right]$	$\tilde{O}\left(\lambda^{6}\right)$	$\operatorname{large} \operatorname{poly}(\lambda)$
This work	$\tilde{O}(\lambda) \boldsymbol{\imath}$	$\tilde{O}\left(\lambda^{2}\right)$

(2) Variant of [GSW'13] encryption scheme

Our Results

(1) Faster bootstrapping with small polynomial error growth
\star Treats decryption as an arithmetic function over \mathbb{Z}_{q}, not a circuit. Avoids Barrington's Theorem - but still uses permutation matrices!

* Key Idea: Embed additive group $\left(\mathbb{Z}_{q},+\right)$ into small symmetric group

Reference	\# Homom Ops	Noise Growth
[GHS'12,AP'13] (packing)	$\tilde{O}(1) \boldsymbol{\imath}$	$\lambda^{O(\log \lambda)}$
$\left[\mathrm{BV}^{\prime} 14\right]$	$\tilde{O}\left(\lambda^{6}\right)$	$\operatorname{large} \operatorname{poly}(\lambda)$
This work	$\tilde{O}(\lambda) \boldsymbol{\imath}$	$\tilde{O}\left(\lambda^{2}\right)$

(2) Variant of [GSW'13] encryption scheme
\star Very simple description and error analysis

Our Results

(1) Faster bootstrapping with small polynomial error growth
\star Treats decryption as an arithmetic function over \mathbb{Z}_{q}, not a circuit. Avoids Barrington's Theorem - but still uses permutation matrices!

* Key Idea: Embed additive group $\left(\mathbb{Z}_{q},+\right)$ into small symmetric group

Reference	\# Homom Ops	Noise Growth
$\left[\mathrm{GHS}^{\prime} 12, \mathrm{AP}^{\prime} 13\right]$ (packing)	$\tilde{O}(1) \boldsymbol{\imath}$	$\lambda^{O(\log \lambda)}$
$\left[\mathrm{BV}^{\prime} 14\right]$	$\tilde{O}\left(\lambda^{6}\right)$	large poly (λ)
This work	$\tilde{O}(\lambda) \boldsymbol{\imath}$	$\tilde{O}\left(\lambda^{2}\right)$

(2) Variant of [GSW'13] encryption scheme
\star Very simple description and error analysis

* Enjoys full re-randomization of error as a natural side effect Cf. [BV'14]: partial re-randomization, using extra key material

Simpler GSW Variant

- "Gadget" \mathbb{Z}_{q}-matrix \mathbf{G} [MP'12]: for any \mathbb{Z}_{q}-matrix \mathbf{A},

$$
\mathbf{G}^{-1}(\mathbf{A}) \text { is short } \quad \text { and } \quad \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{A})=\mathbf{A}(\bmod q) .
$$

Simpler GSW Variant

- "Gadget" \mathbb{Z}_{q}-matrix \mathbf{G} [MP'12]: for any \mathbb{Z}_{q}-matrix \mathbf{A},

$$
\mathbf{G}^{-1}(\mathbf{A}) \text { is short } \quad \text { and } \quad \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{A})=\mathbf{A}(\bmod q)
$$

- Ciphertext encrypting $\mu \in\{0,1\}$ under \mathbf{s} is a \mathbb{Z}_{q}-matrix \mathbf{C} satisfying

$$
\mathbf{s} \mathbf{C}=\mu \cdot \mathbf{s} \mathbf{G}+\mathbf{e} \quad(\bmod q)
$$

Simpler GSW Variant

- "Gadget" \mathbb{Z}_{q}-matrix \mathbf{G} [MP'12]: for any \mathbb{Z}_{q}-matrix \mathbf{A},

$$
\mathbf{G}^{-1}(\mathbf{A}) \text { is short } \quad \text { and } \quad \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{A})=\mathbf{A}(\bmod q)
$$

- Ciphertext encrypting $\mu \in\{0,1\}$ under s is a \mathbb{Z}_{q}-matrix \mathbf{C} satisfying

$$
\mathbf{s} \mathbf{C}=\mu \cdot \mathbf{s} \mathbf{G}+\mathbf{e} \quad(\bmod q)
$$

- Homomorphic multiplication: $\mathbf{C}_{1} \boxtimes \mathbf{C}_{2}:=\mathbf{C}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right)$.

$$
\begin{aligned}
\mathbf{s} \mathbf{C}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) & =\left(\mu_{1} \cdot \mathbf{s} \mathbf{G}+\mathbf{e}_{1}\right) \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) \\
& =\mu_{1} \cdot \mathbf{s} \mathbf{C}_{2}+\mathbf{e}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) \\
& =\mu_{1} \mu_{2} \cdot \mathbf{s} \mathbf{G}+\underbrace{\mu_{1} \cdot \mathbf{e}_{2}+\mathbf{e}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right)}_{\text {new error }} .
\end{aligned}
$$

Simpler GSW Variant

- "Gadget" \mathbb{Z}_{q}-matrix \mathbf{G} [MP'12]: for any \mathbb{Z}_{q}-matrix \mathbf{A},

$$
\mathbf{G}^{-1}(\mathbf{A}) \text { is short } \quad \text { and } \quad \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{A})=\mathbf{A}(\bmod q)
$$

- Ciphertext encrypting $\mu \in\{0,1\}$ under s is a \mathbb{Z}_{q}-matrix \mathbf{C} satisfying

$$
\mathbf{s} \mathbf{C}=\mu \cdot \mathbf{s} \mathbf{G}+\mathbf{e} \quad(\bmod q)
$$

- Homomorphic multiplication: $\mathbf{C}_{1} \boxtimes \mathbf{C}_{2}:=\mathbf{C}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right)$.

$$
\begin{aligned}
\mathbf{s} \mathbf{C}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) & =\left(\mu_{1} \cdot \mathbf{s} \mathbf{G}+\mathbf{e}_{1}\right) \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) \\
& =\mu_{1} \cdot \mathbf{s} \mathbf{C}_{2}+\mathbf{e}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) \\
& =\mu_{1} \mu_{2} \cdot \mathbf{s} \mathbf{G}+\underbrace{\mu_{1} \cdot \mathbf{e}_{2}+\mathbf{e}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right)}_{\text {new error }} .
\end{aligned}
$$

- Old method [GSW'13]: \mathbf{G}^{-1} is deterministic bit decomposition.

Simpler GSW Variant

- "Gadget" \mathbb{Z}_{q}-matrix \mathbf{G} [MP'12]: for any \mathbb{Z}_{q}-matrix \mathbf{A},

$$
\mathbf{G}^{-1}(\mathbf{A}) \text { is short } \quad \text { and } \quad \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{A})=\mathbf{A}(\bmod q)
$$

- Ciphertext encrypting $\mu \in\{0,1\}$ under s is a \mathbb{Z}_{q}-matrix \mathbf{C} satisfying

$$
\mathbf{s} \mathbf{C}=\mu \cdot \mathbf{s} \mathbf{G}+\mathbf{e} \quad(\bmod q)
$$

- Homomorphic multiplication: $\mathbf{C}_{1} \boxtimes \mathbf{C}_{2}:=\mathbf{C}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right)$.

$$
\begin{aligned}
\mathbf{s} \mathbf{C}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) & =\left(\mu_{1} \cdot \mathbf{s} \mathbf{G}+\mathbf{e}_{1}\right) \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) \\
& =\mu_{1} \cdot \mathbf{s} \mathbf{C}_{2}+\mathbf{e}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right) \\
& =\mu_{1} \mu_{2} \cdot \mathbf{s} \mathbf{G}+\underbrace{\mu_{1} \cdot \mathbf{e}_{2}+\mathbf{e}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{C}_{2}\right)}_{\text {new error }}
\end{aligned}
$$

- Old method [GSW'13]: \mathbf{G}^{-1} is deterministic bit decomposition.
- New: \mathbf{G}^{-1} samples a (random) subgaussian preimage.
\Rightarrow Tight $O(\sqrt{n})$ error growth, full rerandomization of error

Overview of Our Bootstrapping Algorithm

- Decryption in LWE-based schemes can be expressed as

$$
\operatorname{Dec}_{\mathbf{s}}(\mathbf{c}):=\lfloor\langle\mathbf{s}, \mathbf{c}\rangle]_{2} \in\{0,1\} \text { with } \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{c} \in\{0,1\}^{n}
$$

Overview of Our Bootstrapping Algorithm

- Decryption in LWE-based schemes can be expressed as

$$
\operatorname{Dec}_{\mathbf{s}}(\mathbf{c}):=\lfloor\langle\mathbf{s}, \mathbf{c}\rangle]_{2} \in\{0,1\} \text { with } \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{c} \in\{0,1\}^{n}
$$

(1) Prepare: Encrypt each $s_{j} \in \mathbb{Z}_{q}$ under a certain group embedding.

Overview of Our Bootstrapping Algorithm

- Decryption in LWE-based schemes can be expressed as

$$
\operatorname{Dec}_{\mathbf{s}}(\mathbf{c}):=\lfloor\langle\mathbf{s}, \mathbf{c}\rangle]_{2} \in\{0,1\} \text { with } \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{c} \in\{0,1\}^{n}
$$

(1) Prepare: Encrypt each $s_{j} \in \mathbb{Z}_{q}$ under a certain group embedding. Bootstrapping procedure uses two homomorphic algorithms:

$$
a \boxplus \boxed{b}=\square \quad a+b \quad \text { and } \quad \text { Equals }(\boxed{v}, z)= \begin{cases}\boxed{1} & \text { if } v=z \\ \boxed{0} & \text { otherwise }\end{cases}
$$

Overview of Our Bootstrapping Algorithm

- Decryption in LWE-based schemes can be expressed as

$$
\operatorname{Dec}_{\mathbf{s}}(\mathbf{c}):=\lfloor\langle\mathbf{s}, \mathbf{c}\rangle]_{2} \in\{0,1\} \text { with } \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{c} \in\{0,1\}^{n}
$$

(1) Prepare: Encrypt each $s_{j} \in \mathbb{Z}_{q}$ under a certain group embedding. Bootstrapping procedure uses two homomorphic algorithms:

$$
\boxed{a} \boxplus \boxed{b}=\square \quad a+b \quad \text { and } \quad \text { Equals }(\boxed{v}, z)= \begin{cases}\boxed{1} & \text { if } v=z \\ \boxed{0} & \text { otherwise }\end{cases}
$$

Given ciphertext $\mathbf{c} \in\{0,1\}^{n}$ and encryptions s_{j}, evaluate:
(2) Inner Product: compute $\sqrt[v]{v}:=\langle\widehat{\mathbf{s}}, \mathbf{c}\rangle=\square_{j: c_{j}=1} s_{j}$

Overview of Our Bootstrapping Algorithm

- Decryption in LWE-based schemes can be expressed as

$$
\operatorname{Dec}_{\mathbf{s}}(\mathbf{c}):=\lfloor\langle\mathbf{s}, \mathbf{c}\rangle]_{2} \in\{0,1\} \text { with } \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{c} \in\{0,1\}^{n}
$$

(1) Prepare: Encrypt each $s_{j} \in \mathbb{Z}_{q}$ under a certain group embedding. Bootstrapping procedure uses two homomorphic algorithms:

$$
a \boxplus \boxed{b}=\boxed{a+b} \quad \text { and } \quad \text { Equals }(\boxed{v}, z)= \begin{cases}\boxed{1} & \text { if } v=z \\ \boxed{0} & \text { otherwise }\end{cases}
$$

Given ciphertext $\mathbf{c} \in\{0,1\}^{n}$ and encryptions s_{j}, evaluate:
(2) Inner Product: compute $\sqrt[v]{v}:=\langle\widehat{\mathbf{s}}, \mathbf{c}\rangle=\square_{j: c_{j}=1} s_{j}$
(3) Round: compute $\left\lfloor\langle v\rceil_{2}:=\bigoplus_{z:\lfloor z\rceil_{2}=1} \operatorname{Equals}(\boxed{v}, z)\right.$

Overview of Our Bootstrapping Algorithm

- Decryption in LWE-based schemes can be expressed as

$$
\operatorname{Dec}_{\mathbf{s}}(\mathbf{c}):=\lfloor\langle\mathbf{s}, \mathbf{c}\rangle]_{2} \in\{0,1\} \text { with } \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{c} \in\{0,1\}^{n}
$$

(1) Prepare: Encrypt each $s_{j} \in \mathbb{Z}_{q}$ under a certain group embedding. Bootstrapping procedure uses two homomorphic algorithms:

$$
a \boxplus \boxed{b}=\boxed{a+b} \quad \text { and } \quad \text { Equals }(\boxed{v}, z)= \begin{cases}\boxed{1} & \text { if } v=z \\ \boxed{0} & \text { otherwise }\end{cases}
$$

Given ciphertext $\mathbf{c} \in\{0,1\}^{n}$ and encryptions s_{j}, evaluate:
(2) Inner Product: compute $\sqrt[v]{ }:=\langle\widehat{\mathbf{s}}, \mathbf{c}\rangle=\square_{j: c_{j}=1} s_{j}$
(3 Round: compute $\lfloor v\rceil_{2}:=\bigoplus_{z:\lfloor z\rceil_{2}=1}^{\dagger} \operatorname{Equals}(\boxed{v}, z)$

- Remains to implement \square and Equals for plaintext space \mathbb{Z}_{q}.

Warmup: Embedding $\left(\mathbb{Z}_{q},+\right)$ into $\left(S_{q}, \cdot\right)$

Warmup: Embedding $\left(\mathbb{Z}_{q},+\right)$ into $\left(S_{q}, \cdot\right)$

Warmup: Embedding $\left(\mathbb{Z}_{q},+\right)$ into $\left(S_{q}, \cdot\right)$

- Addition: $a \rightarrow \square$ implemented as $P_{a} \bullet P_{b}=P_{a} \cdot P_{b}$
\star Recall: Right-associative multiplication yields polynomial error growth.

Warmup: Embedding $\left(\mathbb{Z}_{q},+\right)$ into $\left(S_{q}, \cdot\right)$

- Addition: $a \rightarrow b$ implemented as $P_{a} \bullet P_{b}=P_{a} \cdot P_{b}$
\star Recall: Right-associative multiplication yields polynomial error growth.
- Equality test: Equals $(\square a, b)$: take b th entry from first column of P_{a}.

Warmup: Embedding $\left(\mathbb{Z}_{q},+\right)$ into $\left(S_{q}, \cdot\right)$

- Addition: $a \rightarrow \square$ implemented as $P_{a} \bullet P_{b}=P_{a} \cdot P_{b}$
* Recall: Right-associative multiplication yields polynomial error growth.
- Equality test: Equals $(\square a, b)$: take b th entry from first column of P_{a}.
- Bottom line: $\tilde{O}\left(\lambda^{3}\right)$ homomorphic operations to bootstrap.

Embedding $\left(\mathbb{Z}_{q},+\right)$ into Smaller Symmetric Groups

- Let $q=p_{1} \cdots p_{t}=\tilde{O}(\lambda)$ for distinct prime p_{i}.
\star Prime Number Theorem allows $p_{i}, t=O(\log \lambda)$.

Embedding $\left(\mathbb{Z}_{q},+\right)$ into Smaller Symmetric Groups

- Let $q=p_{1} \cdots p_{t}=\tilde{O}(\lambda)$ for distinct prime p_{i}.
\star Prime Number Theorem allows $p_{i}, t=O(\log \lambda)$.
Chinese Remainder Theorem: $\mathbb{Z}_{q} \cong \mathbb{Z}_{p_{1}} \times \cdots \times \mathbb{Z}_{p_{t}}$

Embedding $\left(\mathbb{Z}_{q},+\right)$ into Smaller Symmetric Groups

- Let $q=p_{1} \cdots p_{t}=\tilde{O}(\lambda)$ for distinct prime p_{i}.
\star Prime Number Theorem allows $p_{i}, t=O(\log \lambda)$.
Chinese Remainder Theorem: $\mathbb{Z}_{q} \cong \mathbb{Z}_{p_{1}} \times \cdots \times \mathbb{Z}_{p_{t}}$
- New embedding:

$$
\begin{aligned}
\mathbb{Z}_{q} & \rightarrow S_{p_{1}} \times \cdots \times S_{p_{t}} \\
x & \mapsto\left(P_{x \bmod p_{1}}, \ldots, P_{x \bmod p_{t}}\right)
\end{aligned}
$$

Embedding $\left(\mathbb{Z}_{q},+\right)$ into Smaller Symmetric Groups

- Let $q=p_{1} \cdots p_{t}=\tilde{O}(\lambda)$ for distinct prime p_{i}.
\star Prime Number Theorem allows $p_{i}, t=O(\log \lambda)$.
Chinese Remainder Theorem: $\mathbb{Z}_{q} \cong \mathbb{Z}_{p_{1}} \times \cdots \times \mathbb{Z}_{p_{t}}$
- New embedding:

$$
\begin{aligned}
\mathbb{Z}_{q} & \rightarrow S_{p_{1}} \times \cdots \times S_{p_{t}} \\
x & \mapsto\left(P_{x \bmod p_{1}}, \ldots, P_{x \bmod p_{t}}\right)
\end{aligned}
$$

- Addition: same as in warmup, but component-wise

Embedding $\left(\mathbb{Z}_{q},+\right)$ into Smaller Symmetric Groups

- Let $q=p_{1} \cdots p_{t}=\tilde{O}(\lambda)$ for distinct prime p_{i}.
\star Prime Number Theorem allows $p_{i}, t=O(\log \lambda)$.
Chinese Remainder Theorem: $\mathbb{Z}_{q} \cong \mathbb{Z}_{p_{1}} \times \cdots \times \mathbb{Z}_{p_{t}}$
- New embedding:

$$
\begin{aligned}
\mathbb{Z}_{q} & \rightarrow S_{p_{1}} \times \cdots \times S_{p_{t}} \\
x & \mapsto\left(P_{x \bmod p_{1}}, \ldots, P_{x \bmod p_{t}}\right)
\end{aligned}
$$

- Addition: same as in warmup, but component-wise
- Equality test:

$$
\text { Equals }_{q}(\boxed{a}, b)=\underset{i}{\square} \text { Equals }_{p_{i}}\left(\boxed{a_{i}}, b \bmod p_{i}\right)
$$

Embedding $\left(\mathbb{Z}_{q},+\right)$ into Smaller Symmetric Groups

- Let $q=p_{1} \cdots p_{t}=\tilde{O}(\lambda)$ for distinct prime p_{i}.
\star Prime Number Theorem allows $p_{i}, t=O(\log \lambda)$.
Chinese Remainder Theorem: $\mathbb{Z}_{q} \cong \mathbb{Z}_{p_{1}} \times \cdots \times \mathbb{Z}_{p_{t}}$
- New embedding:

$$
\begin{aligned}
\mathbb{Z}_{q} & \rightarrow S_{p_{1}} \times \cdots \times S_{p_{t}} \\
x & \mapsto\left(P_{x \bmod p_{1}}, \ldots, P_{x \bmod p_{t}}\right)
\end{aligned}
$$

- Addition: same as in warmup, but component-wise
- Equality test:

$$
\text { Equals }_{q}(\boxed{a}, b)=\underset{i}{\square} \text { Equals }_{p_{i}}\left(\boxed{a_{i}}, b \bmod p_{i}\right)
$$

- Bottom line: $\tilde{O}(\lambda)$ homomorphic operations to bootstrap.

Open Problems

- Can we bootstrap in sublinear homom ops with polynomial error?
* Barrier in [GSW'13]: single-bit encryption (no "packing")

Open Problems

- Can we bootstrap in sublinear homom ops with polynomial error?
* Barrier in [GSW'13]: single-bit encryption (no "packing")
- Circular security for unbounded FHE?

ฝ Does our representation help or hurt security?

Open Problems

- Can we bootstrap in sublinear homom ops with polynomial error?
* Barrier in [GSW'13]: single-bit encryption (no "packing")
- Circular security for unbounded FHE?
* Does our representation help or hurt security?

Thanks!

