Unexpected Applications of
Fully Homomorphic Encryption

Chris Peikert
University of Michigan

Public Key Cryptography
8 May 2023

1/19

Fully Homomorphic Encryption [RAD'78,Gentry'09,..]

» FHE lets us do this:

T T
key f

Compact: | f(m)| < | f].

f(m

~—

;

key

2/19

Fully Homomorphic Encryption [RAD'78,Gentry'09,. .]

» FHE lets us do this:

T T T

key f key

Compact: < Ifl-

First solved by [Gentry'09], followed by
[vDGHV'10,BV'11a,BV’'11b,BGV’'12,B'12,GSW'13,CKKS'17,. . .]

2/19

Fully Homomorphic Encryption [RAD'78,Gentry'09,. .]

» FHE lets us do this:

T T T

key f key

Compact: < Ifl-

First solved by [Gentry'09], followed by
[vDGHV'10,BV'11a,BV’'11b,BGV’'12,B'12,GSW'13,CKKS'17,. . .]

A cryptographic “holy grail” with countless applications. . .

2/19

Fully Homomorphic Encryption [RAD'78,Gentry'09,. .]

» FHE lets us do this:

T T T

key f key

Compact: < Ifl-

First solved by [Gentry'09], followed by
[vDGHV'10,BV'11a,BV’'11b,BGV’'12,B'12,GSW'13,CKKS'17,. . .]

A cryptographic “holy grail” with countless applications. . .
some more surprising than others!

2/19

Applications of FHE

Less Surprising

P Private cloud computation

» |Low-communication MPC

» Code obfuscation

» Quantum FHE, etc. etc.

3/19

Applications of FHE

Less Surprising

P Private cloud computation
» Low-communication MPC
» Code obfuscation

» Quantum FHE, etc. etc.

.

Unexpected (to me at least)
® Functional commitments for all functions

@® Instantiating Fiat-Shamir & noninteractive ZK

© Attribute-based encryption & much more

[PPS'21,dCP'23]
[CCHLRRW'19,PS'19]

[BGGHNSVV'14,.]

A\,

3/19

Applications of FHE

Less Surprising

P Private cloud computation
» Low-communication MPC
» Code obfuscation

» Quantum FHE, etc. etc.

.

Unexpected (to me at least)
@ Functional commitments for all functions [PPS’'21,dCP'23]

@® Instantiating Fiat-Shamir & noninteractive ZK [CCHLRRW'19,PS'19]
© Attribute-based encryption & much more [BGGHNSVV'14,. .]

Why? no (computation on) hidden data, and/or no decryption of it.

A\,

3/19

Applications of FHE

Less Surprising

P Private cloud computation
» Low-communication MPC
» Code obfuscation

» Quantum FHE, etc. etc.

.

Unexpected (to me at least)
@ Functional commitments for all functions [PPS’'21,dCP'23]

@® Instantiating Fiat-Shamir & noninteractive ZK [CCHLRRW'19,PS'19]
© Attribute-based encryption & much more [BGGHNSVV'14,. .]

Why? no (computation on) hidden data, and/or no decryption of it.

Instead, compactness and special structure of FHE scheme are essential!

v

3/19

Background and the
Central Equation

4/19

Homomorphic Computation [GentrySahaiWaters'13,. .. ,deCastroP’23]

» For any matrix A and (Boolean) function f, can compute A y.
Then for any input x, can compute “short” matrix Sy, satisfying

(A — Encode(z)) - St = Ay — Encode(f(x)).

5/19

Homomorphic Computation [GentrySahaiWaters'13,. .. ,deCastroP’23]

» For any matrix A and (Boolean) function f, can compute A y.
Then for any input x, can compute “short” matrix Sy, satisfying

(A — Encode(z)) - St = Ay — Encode(f(x)).

@ Implies LWE-Based FHE

» Ciphertext A = B + Encode(z) where
sB = 0. Hides x by LWE.

5/19

Homomorphic Computation [GentrySahaiWaters'13,. .. ,deCastroP’23]

» For any matrix A and (Boolean) function f, can compute A y.
Then for any input x, can compute “short” matrix Sy, satisfying

(A — Encode(z)) - St = Ay — Encode(f(x)).

@ Implies LWE-Based FHE

» Ciphertext A = B + Encode(z) where
sB = 0. Hides x by LWE.

f— — Ay » Homomorphic evaluation of f is
\ Ay =B- Sy, + Encode(f(x)).

5/19

Homomorphic Computation [GentrySahaiWaters'13,. .. ,deCastroP’23]

» For any matrix A and (Boolean) function f, can compute A y.
Then for any input x, can compute “short” matrix Sy, satisfying

(A — Encode(z)) - St = Ay — Encode(f(x)).

@ Implies LWE-Based FHE

» Ciphertext A = B + Encode(z) where
sB = 0. Hides x by LWE.

f— — Ay » Homomorphic evaluation of f is
\ Ay =B- Sy, + Encode(f(x)).

» Decryption:
r —> e Sf7x SAf = SB . Sf,x +s- EnCOde(f(.%'))

~ s - Encode(f(z)).

5/19

Homomorphic Computation Internals

(A — Encode(x)) - Sf, = Ay — Encode(f(x))

6/19

Homomorphic Computation Internals

(A — Encode(x)) - Sf, = Ay — Encode(f(x))

How It's Done

» Encode(r) = x ® G where G~1(Z) is short and G- G~Y(Z) = Z,VZ.

By composition, suffices to handle negation, +, X.

6/19

Homomorphic Computation Internals

(A — Encode(x)) - Sf, = Ay — Encode(f(x))

How It's Done

» Encode(r) = x ® G where G~1(Z) is short and G- G~(Z) = Z,VZ.

By composition, suffices to handle negation, +, X.

» Negation: define Speg = —I and Apeg = A - Speg = —A.

6/19

Homomorphic Computation Internals

(A — Encode(x)) - Sf, = Ay — Encode(f(x))

How It's Done

» Encode(r) = x ® G where G~1(Z) is short and G- G~(Z) = Z,VZ.

By composition, suffices to handle negation, +, X.

» Negation: define Speg = —I and Apeg = A - Speg = —A.
> Addition: define S; =[f]and AL =A-S; =A;+ Ay. Then

([A1 | Ag] = [21G | 22G]) - S4 = Ay — (21 + 22)G.

6/19

Homomorphic Computation Internals

(A — Encode(x)) - Sf, = Ay — Encode(f(x))

How It's Done

» Encode(r) = x ® G where G~1(Z) is short and G- G~(Z) = Z,VZ.

By composition, suffices to handle negation, +, X.

» Negation: define Speg = —I and Apeg = A - Speg = —A.
> Addition: define S; = [f]and AL =A-S; = A+ Ay. Then

([A1 | Ag] = [21G | 22G]) - S4 = Ay — (21 + 22)G.
> Multiplication: define Sy ,, = [G‘;fﬁz)] and Ay = A1 - G 1(Ay):

([Al | AQ] — [:L'lG | l‘QG]) . S><7x1 = A>< — ."L‘1:L'2G.

6/19

Functional Commitments

7/19

Functional Commitments [LibertRamannaYung'16]

8/19

Functional Commitments [LibertRamannaYung'16]

8/19

Functional Commitments [LibertRamannaYung'16]

AN : ol gl <11

Li, Yi
Ty — — Tfx;

8/19

Functional Commitments [LibertRamannaYung'16]

\4 T ‘Cf’7’7rf,w¢’<<‘f|

Ly Yi
Applications

» Specializations: vector/key-value/polynomial/linear commitments
[LY'10,KZG'10,LRY"16,BBF'19]

» Verifiable outsourced storage/data structures [BGV'11,PSTY'13]
» Accumulators, updateable ZK sets/databases [BdM'93,MRK'03,Lis'05]
» Outsourced committed programs [GSw'23]
» And much more. .. [CPSZ’18,BFS’20,BDFG’21,...]J

8719

Functional Commitments [LibertRamannaYung'16]

.) 1yl sl <1

Ti, Yi
Ty — — T fx;

Basic Security Properties

» Evaluation binding: infeasible to find C*, 2*, y§ # yi, 75, 77 s.t.
Verify(pp, C*, x*, y;, ;) = acc for b € {0, 1}. (No hiding required!)

8/19

Functional Commitments [LibertRamannaYung'16]

.) 1yl sl <1

Ti, Yi
Ty — — T fx;

Basic Security Properties

» Evaluation binding: infeasible to find C*, x*, y§ # vy, 75, 7] s.t.
Verify(pp, C*, x*, y;, ;) = acc for b € {0, 1}. (No hiding required!)

» Target binding: same, but for honestly generated Cf.

8/19

Functional Commitments [LibertRamannaYung'16]

.) 1yl sl <1

Ti, Yi
Ty — — T fx;

Basic Security Properties

» Evaluation binding: infeasible to find C*, x*, y§ # vy, 75, 7] s.t.
Verify(pp, C*, x*, y;, ;) = acc for b € {0, 1}. (No hiding required!)

> Target binding: same, but for honestly generated C'.

» Zero knowledge: Cy and 7y 5, reveal nothing except for x;, f(x;).

v

8/19

Functional Commitments [LibertRamannaYung'16]

\4 T ‘Cf|7’7rf,w¢’<<‘f|

Ti, Yi
Ty — — T fx;

» Were limited to ‘linearizable’ functions, or relied on non-falsifiable
assumptions (SNARGs for NP)

8/19

Functional Commitments [LibertRamannaYung'16]

.) 1yl sl <1

Ti, Yi
Ty — — T fx;

> Were limited to ‘linearizable’ functions, or relied on non-falsifiable
assumptions (SNARGs for NP)

> All functions from SIS, but needs online authority to generate

‘opening keys' using trapdoor for pp [PPS'21]

8/19

Functional Commitments [LibertRamannaYung'16]

.) 1yl sl <1

Ti, Yi
Ty — — T fx;

> Were limited to ‘linearizable’ functions, or relied on non-falsifiable
assumptions (SNARGs for NP)

> All functions from SIS, but needs online authority to generate

‘opening keys' using trapdoor for pp [PPS'21]

> All functions from SIS, with transparent setup: public-coin pp [dCP'23]

8/19

Functional Commitments from SIS [deCastroPeikert'23]

AN f
Ly Yi

9/19

Functional Commitments from SIS [deCastroPeikert'23]

@

N T N\

Ti, Yi
T — — Tfz xr —| Eval' | — Stz

9/19

Functional Commitments from SIS [deCastroPeikert'23]

o

N T N\

Ti, Yi
T — — Tfz xr —| Eval' | — Stz

Verification = Central Equation

(A — Encode(z™)) - S* LA Encode(y™)

9/19

Functional Commitments from SIS [deCastroPeikert'23]

o

N T N\

Ti, Yi
T — — Tfz xr —| Eval' | — Stz

Verification = Central Equation

(A — Encode(z™)) - S* LA Encode(y™)

Evaluation Binding from SIS

» For commitment A*, valid proofs at 2* for y§ # yj imply:
(A — Encode(z™)) - (S — ST) = Encode(yg — v7)-

9/19

Functional Commitments from SIS [deCastroPeikert'23]

o

AN f AN
Ly Yi

Verification = Central Equation

(A — Encode(z™)) - S* LA Encode(y™)

Evaluation Binding from SIS

» For commitment A*, valid proofs at 2* for y§ # yj imply:
(A — Encode(z™)) - (S — ST) = Encode(yg — v7)-

» RHS has short nonzero column = solves SIS for A — Encode(x g/

-

Functional Commitments from SIS [deCastroPeikert'23]

o

N T N\

Ti, Yi
T — — Tfz xr —| Eval' | — Stz

Bonus Features

> Efficient specializations to vector/key-value/linear/polynomial
commitments via precomputation and linearity:

f(z) = 3 1(@) - Eaz(a).

Functional Commitments from SIS [deCastroPeikert'23]

o

N T N\

Ti, Yi
T — — Tfz xr — | Eval' | — St

Bonus Features

> Efficient specializations to vector/key-value/linear/polynomial
commitments via precomputation and linearity:

f(z) = 3 1(@) - Eaz(a).

> Stateless updates by composition: Ay — Agor, Spp Sy r(z) = Sgofe

9 ES

Functional Commitments from SIS [deCastroPeikert'23]

o

N T N\

Ti, Yi
T — — Tfz xr — | Eval' | — St

Bonus Features

> Efficient specializations to vector/key-value/linear/polynomial
commitments via precomputation and linearity:

f(z) = 3 1(@) - Eaz(a).

> Stateless updates by composition: Ay — Agor, Sy Sy r(z) = Sgofe

» ZK (w/target binding) via Eval privacy and preimage sampling.

O/t

Functional Commitments: Final Thoughts

» Unlike FHE, no hiding or ‘structure’ needed: public f and x, no sk,
unstructured pp = A.

10/19

Functional Commitments: Final Thoughts

» Unlike FHE, no hiding or ‘structure’ needed: public f and z, no sk,
unstructured pp = A.

» Compactness is key: single small Ay = Eval(A, f) supports many
solutions S¢, = Eval'(A, f,) to

(A — Encode(z)) - St = Ay — Encode(f(x)).

10/19

Functional Commitments: Final Thoughts

» Unlike FHE, no hiding or ‘structure’ needed: public f and z, no sk,
unstructured pp = A.

» Compactness is key: single small A = Eval(A, f) supports many
solutions Sy, = Eval'(A, f,) to

(A — Encode(z)) - St = Ay — Encode(f(x)).

» Similar ideas in [Weewu'23] FCs, but:
structured CRS (private-key setup);

* swapped Prove/Verify burden;

* smaller proofs;

* based on new, ad-hoc BASIS assumption.

*

10/19

Instantiating Fiat-Shamir and
Noninteractive Zero Knowledge

11/19

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano’88]

» Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

12/19

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano’88]

» Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

» Interaction is undesirable. What if...?

Pz, w) Vix)
U acc/rej

12/19

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano’88]

» Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

» Interaction is undesirable. What if...?

Pz, w) Vix)
U acc/rej

» In ‘plain’ model, NIZK = BPP (trivial).

12/19

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano’88]

» Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

» Interaction is undesirable. What if...?

Pz, w) @p Vix)
T

acc/rej
> With random /reference string, NP C NIZK assuming:

12/19

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano’88]

» Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

» Interaction is undesirable. What if...?

P, w) @ Vi)

acc/rej

» With random /reference string, NP C NIZK assuming:
* quadratic residuosity /trapdoor permutations [BDMP’'88,FLS'90]
* hard pairing-friendly groups [GrothOstrovskySahai'06]
* indistinguishability obfuscation [SahaiWaters'14]

12/19

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano’88]
» Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson'86,NguyenOngVadhan'06]
P Interaction is undesirable. What if...?

P, w) @ Vi)

acc/rej

» With random /reference string, NP C NIZK assuming:
* quadratic residuosity /trapdoor permutations [BDMP’'88,FLS'90]
* hard pairing-friendly groups [GrothOstrovskySahai'06]
* indistinguishability obfuscation [SahaiWaters'14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, ...

12/19

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano’88]
» Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson'86,NguyenOngVadhan'06]
P Interaction is undesirable. What if...?

P, w) @ Vi)

acc/rej

» With random /reference string, NP C NIZK assuming:
* quadratic residuosity /trapdoor permutations [BDMP’'88,FLS'90]
* hard pairing-friendly groups [GrothOstrovskySahai'06]
* indistinguishability obfuscation [SahaiWaters'14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, ...

» Open [PW'08,PV'08]: ‘post-quantum’ foundation like lattices/LWE

12/19

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano’88]
» Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson'86,NguyenOngVadhan'06]
P Interaction is undesirable. What if...?

Pz, w) @p Vix)
T

acc/rej

» With random /reference string, NP C NIZK assuming:
* quadratic residuosity /trapdoor permutations [BDMP’'88,FLS'90]
* hard pairing-friendly groups [GrothOstrovskySahai'06]
* indistinguishability obfuscation [SahaiWaters'14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, ...

» Open [PW'08,PV'08]: ‘post-quantum’ foundation like lattices/LWE

Theorem [CCHLRRW'19,PS’19]
> NP C NIZK assuming LWE.

12/19

Fiat-Shamir Transform [FiatShamir'ss]

> A way to remove interaction from a public-coin protocol, via hashing:

13/19

Fiat-Shamir Transform [FiatShamir'ss]

> A way to remove interaction from a public-coin protocol, via hashing:

P |4

13/19

Fiat-Shamir Transform [FiatShamir'ss]

> A way to remove interaction from a public-coin protocol, via hashing:

P Vv pFS @ VES
«

B« {0, 13" a[f=H(a)]y

13/19

Fiat-Shamir Transform [FiatShamir'ss]

> A way to remove interaction from a public-coin protocol, via hashing:

P Vv pFS @ VFS
. £ v

B« {0,1}™ a[f=H(a)]y

Y
—_—

» Completeness and ZK (for honest V') are easy to preserve.
For ZK, simulate «, 3, ; then ‘program’ H so that H(«a) = f.

13/19

Fiat-Shamir Transform [FiatShamir'ss]

> A way to remove interaction from a public-coin protocol, via hashing:

P Vv pFS @ VES
«

B« {0,1;™ a[f=H(a)]y

Y
—_—

» Completeness and ZK (for honest V') are easy to preserve.
For ZK, simulate «, 3, ; then ‘program’ H so that H(«a) = f.

Key Challenge: Soundness
@ Are there o,y with § = H(«) that fool V7

13/19

Fiat-Shamir Transform [FiatShamir'ss]

> A way to remove interaction from a public-coin protocol, via hashing:

P Vv pFS @ VES
«

B« {0,1;™ a[f=H(a)]y

Y
—_—

» Completeness and ZK (for honest V') are easy to preserve.
For ZK, simulate «, 3, ; then ‘program’ H so that H(«a) = f.

Key Challenge: Soundness
@ Are there o,y with § = H(«) that fool V7

® Can a cheating P* find such values, given H? (Proof vs. argument.)

13/19

Fiat-Shamir, Soundly [KRR'17,CCRR'18 HL'18,CCHLRRW'19]

PFS @ VFS

a8 =H(a)]y

14/19

Fiat-Shamir, Soundly [KRR'17,CCRR'18 HL'18,CCHLRRW'19]

PFS @ VFS

a8 =H(a)]y

P> A correlation-intractable [CGH'98] hash family H suffices:
Given H < H, hard/impossible to find « s.t. (a, H(a)) € R.
Relation R = {(«,) : 3 v that fools V'}.

14/19

Fiat-Shamir, Soundly [KRR'17,CCRR'18 HL'18,CCHLRRW'19]

PFS @ VFS

a8 =H(a)]y

» A correlation-intractable [CGH'98] hash family H suffices:
Given H < H, hard/impossible to find « s.t. (a, H(a)) € R.
Relation R = {(«,) : 3 v that fools V'}.

Theorem [HL'18,CCHLRRW'19]
> NP C NIZK assuming a hash family that is Cl for all bounded circuits:
can't find a s.t. H(a) = C(a), |C] < S := poly.

14/19

Fiat-Shamir, Soundly [KRR'17,CCRR'18 HL'18,CCHLRRW'19]

PFS @ VFS

a8 =H(a)]y

» A correlation-intractable [CGH'98] hash family H suffices:
Given H < H, hard/impossible to find « s.t. (a, H(a)) € R.
Relation R = {(«,) : 3 v that fools V'}.

Theorem [HL'18,CCHLRRW'19]
> NP C NIZK assuming a hash family that is Cl for all bounded circuits:
can't find a s.t. H(a) = C(a), |C] < S := poly.

P Proof idea: for HamCycle™ protocol [FLS'90], each potential o has
< 1 *fooling challenge’ 8 € {0,1}™ for which V' can be fooled.

14/19

Fiat-Shamir, Soundly [KRR'17,CCRR'18 HL'18,CCHLRRW'19]

pFS @ VFS

a8 =H(a)]y

» A correlation-intractable [CGH'98] hash family H suffices:
Given H < H, hard/impossible to find « s.t. (a, H(a)) € R.
Relation R = {(«,) : 3 v that fools V'}.

Theorem [HL'18,CCHLRRW'19]
> NP C NIZK assuming a hash family that is Cl for all bounded circuits:
can't find a s.t. H(a) = C(a), |C] < S := poly.

P Proof idea: for HamCycle™ protocol [FLS'90], each potential o has
< 1 *fooling challenge’ 8 € {0,1}™ for which V' can be fooled.

Such 8 = Csi(a) using a trapdoor sk for decrypting .

14/19

Obtaining Correlation Intractability [ccrr'18HL'18,CCH+'19,PS'19]

Cl Hash Family Construction [PS'19]

» Cl for all bounded circuits C' via homomorphic computation,
assuming SIS/LWE

15/19

Obtaining Correlation Intractability [ccrr'18HL'18,CCH+'19,PS'19]

Cl Hash Family Construction [PS'19]

» Cl for all bounded circuits C' via homomorphic computation,
assuming SIS/LWE

> As in [CCH+'19], two ‘intractability modes':
@ Computational (SIS): given H < H, hard to find a s.t. H(a) = C(a).

Yields statistically ZK argument in uniform random string model.

15/19

Obtaining Correlation Intractability [ccrr'18HL'18,CCH+'19,PS'19]

Cl Hash Family Construction [PS'19]

» Cl for all bounded circuits C' via homomorphic computation,
assuming SIS/LWE

P> As in [CCH+'19], two ‘intractability modes':
@ Computational (SIS): given H < H, hard to find « s.t. H(a) = C(«).

Yields statistically ZK argument in uniform random string model.

@ Statistical (LWE): over H < H¢ ~ H, such a do not exist w.h.p.
Yields computationally ZK proof in structured reference string model.

v

15/19

Cl Hashing from Homomorphic Computation

» Goal: Cl for size-S circuits with vector outputs

16/19

Cl Hashing from Homomorphic Computation

» Goal: Cl for size-S circuits with vector outputs

Hash Key: uniformly random matrix A (that can ‘hide’ a circuit C)

16/19

Cl Hashing from Homomorphic Computation

» Goal: Cl for size-S circuits with vector outputs

Hash Key: uniformly random matrix A (that can ‘hide’ a circuit C)

Evaluation: on input «,
@ Compute A, = Eval(A,U,) where U, (C) := C(a).

16/19

Cl Hashing from Homomorphic Computation

» Goal: Cl for size-S circuits with vector outputs

Hash Key: uniformly random matrix A (that can ‘hide’ a circuit C)

Evaluation: on input «,

@ Compute A, = Eval(A,U,) where U, (C) := C(a).

*

@ 'Inertify’: let a, = A, - s*, where Encode(y) - s* =
for all y.

16/19

Cl Hashing from Homomorphic Computation

» Goal: Cl for size-S circuits with vector outputs

Hash Key: uniformly random matrix A (that can ‘hide’ a circuit C)

Evaluation: on input «,

@ Compute A, = Eval(A,U,) where U, (C) := C(a).

*

@ ‘Inertify’: let a, = A, - s*, where Encode(y) - s* =
for all y.

© Output a,.

16/19

Cl Hashing from Homomorphic Computation

» Goal: Cl for size-S circuits with vector outputs
Hash Key: uniformly random matrix A (that can ‘hide’ a circuit C)
Evaluation: on input «,
@ Compute A, = Eval(A,U,) where U, (C) := C(a).
@ ‘Inertify’: let a, = A, - s*, where Encode(y) -s* =y
for all y.

© Output a,.

Key Point: a, can ‘hide’ a circuit output y from the same domain,
letting the two values ‘mix’/cancel out.
Can reason about more than the hidden y alone.

16/19

Proof of Correlation Intractability from SIS/LWE

Hash Key: uniformly random matrix A.
Evaluation: H(a) := A, -s* = a,

@ Consider any size-S circuit C' with vector output.

17/19

Proof of Correlation Intractability from SIS/LWE

Hash Key: uniformly random matrix A.
Evaluation: H(a) := A, -s* =a, = C(a).
@ Consider any size-S circuit C' with vector output.

@® Suppose that A, given hash key A, finds a s.t. H(a) = C(«).

17/19

Proof of Correlation Intractability from SIS/LWE

Hash Key: uniformly random matrix A = B 4 Encode(C).
Evaluation: H(a) := A, -s* =a, = C(a).
@ Consider any size-S circuit C' with vector output.
@® Suppose that A, given hash key A, finds a s.t. H(a) = C(«).
© Same holds for hash key A = B + Encode(C), for uniform B.

17/19

Proof of Correlation Intractability from SIS/LWE

Hash Key: uniformly random matrix A = B 4 Encode(C).
Evaluation: H(a) := A, -s* =a, = C(a).
@ Consider any size-S circuit C' with vector output.
@® Suppose that A, given hash key A, finds a s.t. H(a) = C(«).
© Same holds for hash key A = B + Encode(C), for uniform B.
Let So,c = Eval'(A,U,,C). By the Central Equation,
B-S.c-s* = (A —Encode(C)) - Soc - 8™
= (A, — Encode(C(a))) - s*
=a, — C(a) =0.

This solves SIS for instance B!

17/19

Proof of Correlation Intractability from SIS/LWE

Hash Key: uniformly random matrix A = B 4 Encode(C).
Evaluation: H(a) := A, -s* =a, = C(a).

@ Consider any size-S circuit C' with vector output.

@® Suppose that A, given hash key A, finds a s.t. H(a) = C(«).

© Same holds for hash key A = B + Encode(C), for uniform B.
Let So,c = Eval'(A,U,,C). By the Central Equation,

B-S.c-s* = (A —Encode(C)) - Soc - 8™
= (A, — Encode(C(a))) - s*
=a, — C(a) =0.

This solves SIS for instance B!
(Tweak: can make H(a) = C(«) impossible using LWE matrix B.)

17/19

Cl Hashing: Final Thoughts

P In security proof, hash key hides a trapdoor sk for homomorphically
computing the ‘fooling challenge’ 5 = C;(«) in the ZK protocol.

18/19

Cl Hashing: Final Thoughts

P In security proof, hash key hides a trapdoor sk for homomorphically
computing the ‘fooling challenge’ 5 = C;(«) in the ZK protocol.

Yet more power of homomorphic decryption! (Cf. ‘bootstrapping’)

18/19

Cl Hashing: Final Thoughts

P In security proof, hash key hides a trapdoor sk for homomorphically
computing the ‘fooling challenge’ 5 = Cyi(«) in the ZK protocol.

Yet more power of homomorphic decryption! (Cf. ‘bootstrapping’)

» Hidden/computed data is never ‘opened’ in the construction!

18/19

Cl Hashing: Final Thoughts

P In security proof, hash key hides a trapdoor sk for homomorphically
computing the ‘fooling challenge’ 5 = Cyi(«) in the ZK protocol.

Yet more power of homomorphic decryption! (Cf. ‘bootstrapping’)

» Hidden/computed data is never ‘opened’ in the construction!

Breaking ClI
= equating (public) hash value and (hidden) computed value
= cancellation solves SIS via Eval'.

18/19

More Applications of Homomorphic Computation

P Attribute-based encryption [BGGHNSVV'14]
* Homomorphic computation on the public attributes

19/19

More Applications of Homomorphic Computation

P Attribute-based encryption [BGGHNSVV'14]
* Homomorphic computation on the public attributes

» Predicate encryption (‘hidden-attribute ABE") [GVW'15]
* Two layers: HC on (public) FHE-encrypted attributes

19/19

More Applications of Homomorphic Computation

P Attribute-based encryption [BGGHNSVV'14]
* Homomorphic computation on the public attributes

» Predicate encryption (‘hidden-attribute ABE") [GVW'15]
* Two layers: HC on (public) FHE-encrypted attributes

» Fully homomorphic signatures [GVW'15]
* Homomorphic computation on the public signed data

19/19

More Applications of Homomorphic Computation

P Attribute-based encryption [BGGHNSVV'14]
* Homomorphic computation on the public attributes

» Predicate encryption (‘hidden-attribute ABE") [GVW'15]
* Two layers: HC on (public) FHE-encrypted attributes

» Fully homomorphic signatures [GVW'15]
* Homomorphic computation on the public signed data

» Privately constrained PRFs [BKM'17,CC'17,BTVW’17,PS'18]
* Homomorphic computation on the public PRF input

19/19

More Applications of Homomorphic Computation

P Attribute-based encryption [BGGHNSVV'14]
* Homomorphic computation on the public attributes

» Predicate encryption (‘hidden-attribute ABE") [GVW'15]
* Two layers: HC on (public) FHE-encrypted attributes

» Fully homomorphic signatures [GVW'15]
* Homomorphic computation on the public signed data

» Privately constrained PRFs [BKM'17,CC'17,BTVW'17,PS'18]
* Homomorphic computation on the public PRF input

> .. .your next great idea!

19/19

More Applications of Homomorphic Computation

P Attribute-based encryption [BGGHNSVV'14]
* Homomorphic computation on the public attributes

» Predicate encryption (‘hidden-attribute ABE") [GVW'15]
* Two layers: HC on (public) FHE-encrypted attributes

» Fully homomorphic signatures [GVW'15]
* Homomorphic computation on the public signed data

» Privately constrained PRFs [BKM'17,CC'17,BTVW'17,PS'18]
* Homomorphic computation on the public PRF input

> .. .your next great idea!

Thanks! Questions?

19/19

