Unexpected Applications of
 Fully Homomorphic Encryption

Chris Peikert
University of Michigan

Public Key Cryptography
8 May 2023

Fully Homomorphic Encryption [RAD'78,Gentry'09,...]

- FHE lets us do this:

Compact: $f(m) \ll|f|$.

Fully Homomorphic Encryption [RAD'78,Gentry'09,...]

- FHE lets us do this:

Compact: $f(m) \ll|f|$.
First solved by [Gentry'09], followed by [vDGHV'10,BV'11a,BV'11b,BGV'12,B'12,GSW'13,CKKS'17,...]

Fully Homomorphic Encryption [RAD'78,Gentry'09,...]

- FHE lets us do this:

Compact: $f(m) \ll|f|$.
First solved by [Gentry'09], followed by [vDGHV'10,BV'11a,BV'11b,BGV'12,B'12,GSW'13,CKKS'17,...]

A cryptographic "holy grail" with countless applications...

Fully Homomorphic Encryption [RAD'78,Gentry'09,...]

- FHE lets us do this:

Compact: $f(m) \ll|f|$.
First solved by [Gentry'09], followed by [vDGHV'10,BV'11a,BV'11b,BGV'12,B'12,GSW'13,CKKS'17,...]

A cryptographic "holy grail" with countless applications... some more surprising than others!

Applications of FHE

Less Surprising

- Private cloud computation
- Low-communication MPC
- Code obfuscation
- Quantum FHE, etc. etc.

Applications of FHE

Less Surprising

- Private cloud computation
- Low-communication MPC
- Code obfuscation
- Quantum FHE, etc. etc.

Unexpected (to me at least)

(1) Functional commitments for all functions
[PPS'21,dCP'23]
(2) Instantiating Fiat-Shamir \& noninteractive ZK [CCHLRRW'19,PS'19]
(3) Attribute-based encryption \& much more

Applications of FHE

Less Surprising

- Private cloud computation
- Low-communication MPC
- Code obfuscation
- Quantum FHE, etc. etc.

Unexpected (to me at least)

(1) Functional commitments for all functions
[PPS'21,dCP'23]
(2) Instantiating Fiat-Shamir \& noninteractive ZK [CCHLRRW'19,PS'19]
(3) Attribute-based encryption \& much more [BGGHNSVV'14,...] Why? no (computation on) hidden data, and/or no decryption of it.

Applications of FHE

Less Surprising

- Private cloud computation
- Low-communication MPC
- Code obfuscation
- Quantum FHE, etc. etc.

Unexpected (to me at least)

(1) Functional commitments for all functions
(2) Instantiating Fiat-Shamir \& noninteractive ZK
(3) Attribute-based encryption \& much more
[CCHLRRW'19,PS'19] [BGGHNSVV'14,...]

Why? no (computation on) hidden data, and/or no decryption of it.
Instead, compactness and special structure of FHE scheme are essential!

Background and the Central Equation

Homomorphic Computation [GentrySahaiWaters'13,...,deCastroP'23]

Theorem

- For any matrix \mathbf{A} and (Boolean) function f, can compute \mathbf{A}_{f}. Then for any input x, can compute "short" matrix $\mathbf{S}_{f, x}$ satisfying

$$
(\mathbf{A}-\operatorname{Encode}(x)) \cdot \mathbf{S}_{f, x}=\mathbf{A}_{f}-\operatorname{Encode}(f(x))
$$

Homomorphic Computation [GentrySahaiWaters'13,. . ., deCastroP'23]

Theorem

- For any matrix \mathbf{A} and (Boolean) function f, can compute \mathbf{A}_{f}. Then for any input x, can compute "short" matrix $\mathbf{S}_{f, x}$ satisfying

$$
(\mathbf{A}-\operatorname{Encode}(x)) \cdot \mathbf{S}_{f, x}=\mathbf{A}_{f}-\operatorname{Encode}(f(x))
$$

Implies LWE-Based FHE

- Ciphertext $\mathbf{A}=\mathbf{B}+\operatorname{Encode}(x)$ where $\mathrm{sB} \approx 0$. Hides x by LWE.

Homomorphic Computation [GentrySahaiWaters'13,...,deCastroP'23]

Theorem

- For any matrix \mathbf{A} and (Boolean) function f, can compute \mathbf{A}_{f}. Then for any input x, can compute "short" matrix $\mathbf{S}_{f, x}$ satisfying

$$
(\mathbf{A}-\operatorname{Encode}(x)) \cdot \mathbf{S}_{f, x}=\mathbf{A}_{f}-\operatorname{Encode}(f(x))
$$

Implies LWE-Based FHE

- Ciphertext $\mathbf{A}=\mathbf{B}+\operatorname{Encode}(x)$ where $\mathrm{sB} \approx 0$. Hides x by LWE.
- Homomorphic evaluation of f is $\mathbf{A}_{f}=\mathbf{B} \cdot \mathbf{S}_{f, x}+\operatorname{Encode}(f(x))$.

Homomorphic Computation [GentrySahaiWaters'13,..., deCastroP'23]

Theorem

- For any matrix \mathbf{A} and (Boolean) function f, can compute \mathbf{A}_{f}. Then for any input x, can compute "short" matrix $\mathbf{S}_{f, x}$ satisfying

$$
(\mathbf{A}-\operatorname{Encode}(x)) \cdot \mathbf{S}_{f, x}=\mathbf{A}_{f}-\operatorname{Encode}(f(x))
$$

Implies LWE-Based FHE

- Ciphertext $\mathbf{A}=\mathbf{B}+\operatorname{Encode}(x)$ where $\mathrm{sB} \approx 0$. Hides x by LWE.
- Homomorphic evaluation of f is $\mathbf{A}_{f}=\mathbf{B} \cdot \mathbf{S}_{f, x}+\operatorname{Encode}(f(x))$.
- Decryption:

$$
\begin{aligned}
\mathbf{s} \mathbf{A}_{f} & =\mathbf{s B} \cdot \mathbf{S}_{f, x}+\mathbf{s} \cdot \operatorname{Encode}(f(x)) \\
& \approx \mathbf{s} \cdot \operatorname{Encode}(f(x)) .
\end{aligned}
$$

Homomorphic Computation Internals
Goal
$(\mathbf{A}-\operatorname{Encode}(x)) \cdot \mathbf{S}_{f, x}=\mathbf{A}_{f}-\operatorname{Encode}(f(x))$

Homomorphic Computation Internals

Goal

$$
(\mathbf{A}-\operatorname{Encode}(x)) \cdot \mathbf{S}_{f, x}=\mathbf{A}_{f}-\operatorname{Encode}(f(x))
$$

How It's Done

- Encode $(x)=\mathbf{x} \otimes \mathbf{G}$ where $\mathbf{G}^{-1}(\mathbf{Z})$ is short and $\mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{Z})=\mathbf{Z}, \forall \mathbf{Z}$. By composition, suffices to handle negation,,$+ \times$.

Homomorphic Computation Internals

Goal

$$
(\mathbf{A}-\operatorname{Encode}(x)) \cdot \mathbf{S}_{f, x}=\mathbf{A}_{f}-\operatorname{Encode}(f(x))
$$

How It's Done

- Encode $(x)=\mathbf{x} \otimes \mathbf{G}$ where $\mathbf{G}^{-1}(\mathbf{Z})$ is short and $\mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{Z})=\mathbf{Z}, \forall \mathbf{Z}$. By composition, suffices to handle negation,,$+ \times$.
- Negation: define $\mathbf{S}_{\mathrm{neg}}=-\mathbf{I}$ and $\mathbf{A}_{\mathrm{neg}}=\mathbf{A} \cdot \mathbf{S}_{\mathrm{neg}}=-\mathbf{A}$.

Homomorphic Computation Internals

Goal

$$
(\mathbf{A}-\operatorname{Encode}(x)) \cdot \mathbf{S}_{f, x}=\mathbf{A}_{f}-\operatorname{Encode}(f(x))
$$

How It's Done

- Encode $(x)=\mathbf{x} \otimes \mathbf{G}$ where $\mathbf{G}^{-1}(\mathbf{Z})$ is short and $\mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{Z})=\mathbf{Z}, \forall \mathbf{Z}$. By composition, suffices to handle negation,,$+ \times$.
- Negation: define $\mathbf{S}_{\text {neg }}=-\mathbf{I}$ and $\mathbf{A}_{\text {neg }}=\mathbf{A} \cdot \mathbf{S}_{\text {neg }}=-\mathbf{A}$.
- Addition: define $\mathbf{S}_{+}=\left[\begin{array}{l}\mathrm{I} \\ \mathrm{I}\end{array}\right]$ and $\mathbf{A}_{+}=\mathbf{A} \cdot \mathbf{S}_{+}=\mathbf{A}_{1}+\mathbf{A}_{2}$. Then

$$
\left(\left[\mathbf{A}_{1} \mid \mathbf{A}_{2}\right]-\left[x_{1} \mathbf{G} \mid x_{2} \mathbf{G}\right]\right) \cdot \mathbf{S}_{+}=\mathbf{A}_{+}-\left(x_{1}+x_{2}\right) \mathbf{G} .
$$

Homomorphic Computation Internals

Goal

$$
(\mathbf{A}-\operatorname{Encode}(x)) \cdot \mathbf{S}_{f, x}=\mathbf{A}_{f}-\operatorname{Encode}(f(x))
$$

How It's Done

- Encode $(x)=\mathbf{x} \otimes \mathbf{G}$ where $\mathbf{G}^{-1}(\mathbf{Z})$ is short and $\mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{Z})=\mathbf{Z}, \forall \mathbf{Z}$. By composition, suffices to handle negation,,$+ \times$.
- Negation: define $S_{\text {neg }}=-I$ and $A_{\text {neg }}=A \cdot S_{\text {neg }}=-\mathbf{A}$.
- Addition: define $\mathbf{S}_{+}=\left[\begin{array}{l}\mathrm{I} \\ \mathrm{I}\end{array}\right]$ and $\mathbf{A}_{+}=\mathbf{A} \cdot \mathbf{S}_{+}=\mathbf{A}_{1}+\mathbf{A}_{2}$. Then

$$
\left(\left[\mathbf{A}_{1} \mid \mathbf{A}_{2}\right]-\left[x_{1} \mathbf{G} \mid x_{2} \mathbf{G}\right]\right) \cdot \mathbf{S}_{+}=\mathbf{A}_{+}-\left(x_{1}+x_{2}\right) \mathbf{G} .
$$

- Multiplication: define $\mathbf{S}_{\times, x_{1}}=\left[\begin{array}{c}\mathbf{G}^{-1}\left(\mathbf{A}_{2}\right) \\ x_{1} \mathrm{I}\end{array}\right]$ and $\mathbf{A}_{\times}=\mathbf{A}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{A}_{2}\right)$:

$$
\left(\left[\mathbf{A}_{1} \mid \mathbf{A}_{2}\right]-\left[x_{1} \mathbf{G} \mid x_{2} \mathbf{G}\right]\right) \cdot \mathbf{S}_{\times, x_{1}}=\mathbf{A}_{\times}-x_{1} x_{2} \mathbf{G}
$$

Functional Commitments

Functional Commitments [LibertRamannaYung' 16]

Functional Commitments [LibertRamannaYung' 16]

$$
x_{i} \rightarrow \text { Open } \rightarrow \pi_{f, x_{i}}
$$

$$
\left|C_{f}\right|,\left|\pi_{f, x_{i}}\right| \ll|f|
$$

Functional Commitments [LibertRamannaYung'16]

Functional Commitments [LibertRamannaYung'16]

Applications

- Specializations: vector/key-value/polynomial/linear commitments [LY'10,KZG'10,LRY'16,BBF'19]
- Verifiable outsourced storage/data structures [BGV'11,PSTY'13]
- Accumulators, updateable ZK sets/databases
[BdM'93,MRK'03,Lis'05]
- Outsourced committed programs
[GSW'23]
- And much more...

Functional Commitments [LibertRamannaYung'16]

Basic Security Properties

- Evaluation binding: infeasible to find $C^{*}, x^{*}, y_{0}^{*} \neq y_{1}^{*}, \pi_{0}^{*}, \pi_{1}^{*}$ s.t. $\operatorname{Verify}\left(p p, C^{*}, x^{*}, y_{b}^{*}, \pi_{b}^{*}\right)=$ acc for $b \in\{0,1\}$.
(No hiding required!)

Functional Commitments [LibertRamannaYung'16]

Basic Security Properties

- Evaluation binding: infeasible to find $C^{*}, x^{*}, y_{0}^{*} \neq y_{1}^{*}, \pi_{0}^{*}, \pi_{1}^{*}$ s.t. $\operatorname{Verify}\left(p p, C^{*}, x^{*}, y_{b}^{*}, \pi_{b}^{*}\right)=$ acc for $b \in\{0,1\}$.
(No hiding required!)
- Target binding: same, but for honestly generated C_{f}.

Functional Commitments [LibertRamannaYung'16]

Basic Security Properties

- Evaluation binding: infeasible to find $C^{*}, x^{*}, y_{0}^{*} \neq y_{1}^{*}, \pi_{0}^{*}, \pi_{1}^{*}$ s.t. $\operatorname{Verify}\left(p p, C^{*}, x^{*}, y_{b}^{*}, \pi_{b}^{*}\right)=$ acc for $b \in\{0,1\}$. (No hiding required!)
- Target binding: same, but for honestly generated C_{f}.
- Zero knowledge: C_{f} and $\pi_{f, x_{i}}$ reveal nothing except for $x_{i}, f\left(x_{i}\right)$.

Functional Commitments [LibertRamannaYung'16]

Constructions

- Were limited to 'linearizable' functions, or relied on non-falsifiable assumptions (SNARGs for NP)

Functional Commitments [LibertRamannaYung'16]

Constructions

- Were limited to 'linearizable' functions, or relied on non-falsifiable assumptions (SNARGs for NP)
- All functions from SIS, but needs online authority to generate 'opening keys' using trapdoor for $p p$

Functional Commitments [LibertRamannaYung'16]

Constructions

- Were limited to 'linearizable' functions, or relied on non-falsifiable assumptions (SNARGs for NP)
- All functions from SIS, but needs online authority to generate 'opening keys' using trapdoor for $p p$
- All functions from SIS, with transparent setup: public-coin $p p$ [dCP'23]

Functional Commitments from SIS [deCastroPeikert'23]

Functional Commitments from SIS [deCastroPeikert'23]

Functional Commitments from SIS [deCastroPeikert'23]

Verification \equiv Central Equation
$\left(\mathbf{A}-\operatorname{Encode}\left(x^{*}\right)\right) \cdot \mathbf{S}^{*} \stackrel{?}{=} \mathbf{A}^{*}-\operatorname{Encode}\left(y^{*}\right)$

Functional Commitments from SIS [deCastroPeikert'23]

Verification \equiv Central Equation
$\left(\mathbf{A}-\operatorname{Encode}\left(x^{*}\right)\right) \cdot \mathbf{S}^{*} \stackrel{?}{=} \mathbf{A}^{*}-\operatorname{Encode}\left(y^{*}\right)$

Evaluation Binding from SIS

- For commitment \mathbf{A}^{*}, valid proofs at x^{*} for $y_{0}^{*} \neq y_{1}^{*}$ imply:

$$
\left(\mathbf{A}-\operatorname{Encode}\left(x^{*}\right)\right) \cdot\left(\mathbf{S}_{0}^{*}-\mathbf{S}_{1}^{*}\right)=\operatorname{Encode}\left(y_{0}^{*}-y_{1}^{*}\right) .
$$

Functional Commitments from SIS [deCastroPeikert'23]

Verification \equiv Central Equation

$$
\left(\mathbf{A}-\operatorname{Encode}\left(x^{*}\right)\right) \cdot \mathbf{S}^{*} \stackrel{?}{=} \mathbf{A}^{*}-\operatorname{Encode}\left(y^{*}\right)
$$

Evaluation Binding from SIS

- For commitment \mathbf{A}^{*}, valid proofs at x^{*} for $y_{0}^{*} \neq y_{1}^{*}$ imply:

$$
\left(\mathbf{A}-\operatorname{Encode}\left(x^{*}\right)\right) \cdot\left(\mathbf{S}_{0}^{*}-\mathbf{S}_{1}^{*}\right)=\operatorname{Encode}\left(y_{0}^{*}-y_{1}^{*}\right) .
$$

- RHS has short nonzero column \Longrightarrow solves SIS for $\mathbf{A}-\operatorname{Encode}\left(x^{*}\right)_{ز / 19}$

Functional Commitments from SIS [deCastroPeikert'23]

Bonus Features

- Efficient specializations to vector/key-value/linear/polynomial commitments via precomputation and linearity:

$$
f(x)=\sum_{\bar{x}} f(\bar{x}) \cdot \mathrm{Eq}_{\bar{x}}(x) .
$$

Functional Commitments from SIS [deCastroPeikert'23]

Bonus Features

- Efficient specializations to vector/key-value/linear/polynomial commitments via precomputation and linearity:

$$
f(x)=\sum_{\bar{x}} f(\bar{x}) \cdot \mathrm{Eq}_{\bar{x}}(x) .
$$

- Stateless updates by composition: $\mathbf{A}_{f} \rightarrow \mathbf{A}_{g \circ f}, \mathbf{S}_{f, x} \cdot \mathbf{S}_{g, f(x)}=\mathbf{S}_{g \circ f, x}$

Functional Commitments from SIS [deCastroPeikert' 23]

Bonus Features

- Efficient specializations to vector/key-value/linear/polynomial commitments via precomputation and linearity:

$$
f(x)=\sum_{\bar{x}} f(\bar{x}) \cdot \mathrm{Eq}_{\bar{x}}(x) .
$$

- Stateless updates by composition: $\mathbf{A}_{f} \rightarrow \mathbf{A}_{g \circ f}, \mathbf{S}_{f, x} \cdot \mathbf{S}_{g, f(x)}=\mathbf{S}_{g \circ f, x}$
- ZK (w/target binding) via Eval privacy and preimage sampling.

Functional Commitments: Final Thoughts

- Unlike FHE, no hiding or 'structure' needed: public f and x, no $s k$, unstructured $p p=\mathbf{A}$.

Functional Commitments: Final Thoughts

- Unlike FHE, no hiding or 'structure' needed: public f and x, no $s k$, unstructured $p p=\mathbf{A}$.
- Compactness is key: single small $\mathbf{A}_{f}=\operatorname{Eval}(\mathbf{A}, f)$ supports many solutions $\mathbf{S}_{f, x}=\mathrm{Eval}{ }^{\prime}(\mathbf{A}, f, x)$ to

$$
(\mathbf{A}-\operatorname{Encode}(x)) \cdot \mathbf{S}_{f, x}=\mathbf{A}_{f}-\operatorname{Encode}(f(x))
$$

Functional Commitments: Final Thoughts

- Unlike FHE, no hiding or 'structure' needed: public f and x, no $s k$, unstructured $p p=\mathbf{A}$.
- Compactness is key: single small $\mathbf{A}_{f}=\operatorname{Eval}(\mathbf{A}, f)$ supports many solutions $\mathbf{S}_{f, x}=\mathrm{Eval}{ }^{\prime}(\mathbf{A}, f, x)$ to

$$
(\mathbf{A}-\operatorname{Encode}(x)) \cdot \mathbf{S}_{f, x}=\mathbf{A}_{f}-\operatorname{Encode}(f(x))
$$

- Similar ideas in [WeeWu'23] FCs, but:
* structured CRS (private-key setup);
* swapped Prove/Verify burden;
* smaller proofs;
\star based on new, ad-hoc BASIS assumption.

Instantiating Fiat-Shamir and Noninteractive Zero Knowledge

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano'88]

- Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson'86,NguyenOngVadhan'06]
(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano'88]
- Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson'86,NguyenOngVadhan'06]
- Interaction is undesirable. What if. . . ?

$$
\begin{aligned}
& \frac{P(x, w)}{} \underline{V(x)} \\
& \pi \\
& \mathrm{acc} / \mathrm{rej}
\end{aligned}
$$

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano'88]

- Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson'86,NguyenOngVadhan'06]
- Interaction is undesirable. What if. . . ?

$$
\begin{aligned}
\frac{P(x, w)}{} & \underline{V(x)} \\
\longrightarrow & \text { acc } / \text { rej }
\end{aligned}
$$

- In 'plain' model, NIZK = BPP (trivial).
(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano'88]
- Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson'86,NguyenOngVadhan'06]
- Interaction is undesirable. What if. . . ?

- With random/reference string, NP \subseteq NIZK assuming:

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano'88]

- Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson'86,NguyenOngVadhan'06]
- Interaction is undesirable. What if. . . ?

π
- With random/reference string, NP \subseteq NIZK assuming:
\star quadratic residuosity/trapdoor permutations
* hard pairing-friendly groups
* indistinguishability obfuscation
[BDMP'88,FLS'90]
[GrothOstrovskySahai'06]
[SahaiWaters'14]

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano'88]

- Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson'86,NguyenOngVadhan'06]
- Interaction is undesirable. What if. . . ?

- With random/reference string, NP \subseteq NIZK assuming:
* quadratic residuosity/trapdoor permutations
[BDMP'88,FLS'90]
* hard pairing-friendly groups
[GrothOstrovskySahai'06]
* indistinguishability obfuscation
[SahaiWaters'14]
Apps: signatures, CCA-secure encryption, cryptocurrencies, ...

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano'88]

- Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson'86,NguyenOngVadhan'06]
- Interaction is undesirable. What if. . . ?

$$
\underline{P(x, w)}
$$

- With random/reference string, NP \subseteq NIZK assuming:
* quadratic residuosity/trapdoor permutations
[BDMP'88,FLS'90]
* hard pairing-friendly groups
[GrothOstrovskySahai'06]
* indistinguishability obfuscation [SahaiWaters'14]
Apps: signatures, CCA-secure encryption, cryptocurrencies, ...
- Open [PW'08,PV'08]: 'post-quantum' foundation like lattices/LWE

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano'88]

- Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson'86,NguyenOngVadhan'06]
- Interaction is undesirable. What if. . . ?

$$
\underline{P(x, w)}
$$

- With random/reference string, NP \subseteq NIZK assuming:
\star quadratic residuosity/trapdoor permutations
[BDMP'88,FLS'90]
* hard pairing-friendly groups
[GrothOstrovskySahai'06]
* indistinguishability obfuscation [SahaiWaters'14]
Apps: signatures, CCA-secure encryption, cryptocurrencies, ...
- Open [PW'08,PV'08]: 'post-quantum' foundation like lattices/LWE

Theorem [CCHLRRW'19,PS'19]

- NP \subseteq NIZK assuming LWE.

Fiat-Shamir Transform [FiatShamir'86]

- A way to remove interaction from a public-coin protocol, via hashing:

Fiat-Shamir Transform [FiatShamir'86]

- A way to remove interaction from a public-coin protocol, via hashing:

Fiat-Shamir Transform [FiatShamir'86]

- A way to remove interaction from a public-coin protocol, via hashing:

Fiat-Shamir Transform [FiatShamir'86]

- A way to remove interaction from a public-coin protocol, via hashing:

- Completeness and ZK (for honest V) are easy to preserve. For ZK, simulate α, β, γ; then 'program' H so that $H(\alpha)=\beta$.

Fiat-Shamir Transform [FiatShamir'86]

- A way to remove interaction from a public-coin protocol, via hashing:

- Completeness and ZK (for honest V) are easy to preserve.

For ZK, simulate α, β, γ; then 'program' H so that $H(\alpha)=\beta$.

Key Challenge: Soundness

(1) Are there α, γ with $\beta=H(\alpha)$ that fool V ?

Fiat-Shamir Transform [FiatShamir'86]

- A way to remove interaction from a public-coin protocol, via hashing:

- Completeness and ZK (for honest V) are easy to preserve.

For ZK, simulate α, β, γ; then 'program' H so that $H(\alpha)=\beta$.

Key Challenge: Soundness

(1) Are there α, γ with $\beta=H(\alpha)$ that fool V ?
(2) Can a cheating P^{*} find such values, given H ? (Proof vs. argument.)

Fiat-Shamir, Soundly [KRR'17,CCRR'18,HL'18,CCHLRRW' 19]

Fiat-Shamir, Soundly [KRR'17,CCRR'18,HL'18,CCHLRRW'19]

- A correlation-intractable [CGH'98] hash family \mathcal{H} suffices:

Given $H \leftarrow \mathcal{H}$, hard/impossible to find α s.t. $(\alpha, H(\alpha)) \in R$. Relation $R=\{(\alpha, \beta): \exists \gamma$ that fools $V\}$.

Fiat-Shamir, Soundly [KRR'17,CCRR'18,HL'18,CCHLRRW' 19]

- A correlation-intractable [CGH'98] hash family \mathcal{H} suffices:

Given $H \leftarrow \mathcal{H}$, hard/impossible to find α s.t. $(\alpha, H(\alpha)) \in R$. Relation $R=\{(\alpha, \beta): \exists \gamma$ that fools $V\}$.

Theorem [HL'18,CCHLRRW'19]

- NP \subseteq NIZK assuming a hash family that is Cl for all bounded circuits: can't find α s.t. $H(\alpha)=C(\alpha),|C| \leq S:=$ poly.

Fiat-Shamir, Soundly [KRR'17,CCRR'18,HL'18,CCHLRRW' 19$]$

- A correlation-intractable [CGH'98] hash family \mathcal{H} suffices:

Given $H \leftarrow \mathcal{H}$, hard/impossible to find α s.t. $(\alpha, H(\alpha)) \in R$. Relation $R=\{(\alpha, \beta): \exists \gamma$ that fools $V\}$.

Theorem [HL'18,CCHLRRW'19]

- NP \subseteq NIZK assuming a hash family that is Cl for all bounded circuits: can't find α s.t. $H(\alpha)=C(\alpha),|C| \leq S:=$ poly.
- Proof idea: for HamCycle ${ }^{m}$ protocol [FLS'90], each potential α has ≤ 1 'fooling challenge' $\beta \in\{0,1\}^{m}$ for which V can be fooled.

Fiat-Shamir, Soundly [KRR'17,CCRR'18,HL'18,CCHLRRW' 19$]$

- A correlation-intractable [CGH'98] hash family \mathcal{H} suffices:

Given $H \leftarrow \mathcal{H}$, hard/impossible to find α s.t. $(\alpha, H(\alpha)) \in R$. Relation $R=\{(\alpha, \beta): \exists \gamma$ that fools $V\}$.

Theorem [HL'18,CCHLRRW'19]

- NP \subseteq NIZK assuming a hash family that is Cl for all bounded circuits: can't find α s.t. $H(\alpha)=C(\alpha),|C| \leq S:=$ poly.
- Proof idea: for HamCycle ${ }^{m}$ protocol [FLS'90], each potential α has ≤ 1 'fooling challenge' $\beta \in\{0,1\}^{m}$ for which V can be fooled.

Such $\beta=C_{s k}(\alpha)$ using a trapdoor sk for decrypting α.

Obtaining Correlation Intractability [CCRR'18,HL'18,CCH+'19,PS'19]

CI Hash Family Construction [PS'19]

- Cl for all bounded circuits C via homomorphic computation, assuming SIS/LWE

Obtaining Correlation Intractability [CCRR'18,HL'18,CCH+'19,PS'19]

CI Hash Family Construction [PS'19]

- Cl for all bounded circuits C via homomorphic computation, assuming SIS/LWE
- As in [CCH+'19], two 'intractability modes':
(1) Computational (SIS): given $H \leftarrow \mathcal{H}$, hard to find α s.t. $H(\alpha)=C(\alpha)$. Yields statistically ZK argument in uniform random string model.

Obtaining Correlation Intractability [CCRR'18,HL'18,CCH+'19,PS'19]

Cl Hash Family Construction [PS'19]

- Cl for all bounded circuits C via homomorphic computation, assuming SIS/LWE
- As in [CCH+'19], two 'intractability modes':
(1) Computational (SIS): given $H \leftarrow \mathcal{H}$, hard to find α s.t. $H(\alpha)=C(\alpha)$. Yields statistically ZK argument in uniform random string model.
(2) Statistical (LWE): over $H \leftarrow \mathcal{H}_{C} \stackrel{c}{\approx} \mathcal{H}$, such α do not exist w.h.p. Yields computationally ZK proof in structured reference string model.

CI Hashing from Homomorphic Computation

- Goal: CI for size- S circuits with vector outputs

Cl Hashing from Homomorphic Computation

- Goal: CI for size- S circuits with vector outputs

Hash Key: uniformly random matrix \mathbf{A} (that can 'hide' a circuit C)

Cl Hashing from Homomorphic Computation

- Goal: Cl for size- S circuits with vector outputs

Hash Key: uniformly random matrix \mathbf{A} (that can 'hide' a circuit C)
Evaluation: on input α,
(1) Compute $\mathbf{A}_{\alpha}=\operatorname{Eval}\left(\mathbf{A}, U_{\alpha}\right)$ where $U_{\alpha}(C):=C(\alpha)$.

Cl Hashing from Homomorphic Computation

- Goal: Cl for size- S circuits with vector outputs

Hash Key: uniformly random matrix \mathbf{A} (that can 'hide' a circuit C)
Evaluation: on input α,
(1) Compute $\mathbf{A}_{\alpha}=\operatorname{Eval}\left(\mathbf{A}, U_{\alpha}\right)$ where $U_{\alpha}(C):=C(\alpha)$.
(2) 'Inertify': let $\mathbf{a}_{\alpha}=\mathbf{A}_{\alpha} \cdot s^{*}$, where Encode $(\mathbf{y}) \cdot s^{*}=\mathbf{y}$ for all \mathbf{y}.

Cl Hashing from Homomorphic Computation

- Goal: Cl for size- S circuits with vector outputs

Hash Key: uniformly random matrix \mathbf{A} (that can 'hide' a circuit C)
Evaluation: on input α,
(1) Compute $\mathbf{A}_{\alpha}=\operatorname{Eval}\left(\mathbf{A}, U_{\alpha}\right)$ where $U_{\alpha}(C):=C(\alpha)$.
(2) 'Inertify': let $\mathbf{a}_{\alpha}=\mathbf{A}_{\alpha} \cdot s^{*}$, where Encode $(\mathbf{y}) \cdot \mathrm{s}^{*}=\mathbf{y}$ for all \mathbf{y}.
(3) Output a_{α}.

Cl Hashing from Homomorphic Computation

- Goal: Cl for size- S circuits with vector outputs

Hash Key: uniformly random matrix \mathbf{A} (that can 'hide' a circuit C)
Evaluation: on input α,
(1) Compute $\mathbf{A}_{\alpha}=\operatorname{Eval}\left(\mathbf{A}, U_{\alpha}\right)$ where $U_{\alpha}(C):=C(\alpha)$.
(2) 'Inertify': let $\mathbf{a}_{\alpha}=\mathbf{A}_{\alpha} \cdot \mathbf{s}^{*}$, where Encode $(\mathbf{y}) \cdot \mathrm{s}^{*}=\mathbf{y}$ for all \mathbf{y}.
(3) Output a_{α}.

Key Point: a_{α} can 'hide' a circuit output y from the same domain, letting the two values 'mix'/cancel out.
Can reason about more than the hidden y alone.

Proof of Correlation Intractability from SIS/LWE

Hash Key: uniformly random matrix A.
Evaluation: $H(\alpha):=\mathbf{A}_{\alpha} \cdot \mathrm{s}^{*}=\mathbf{a}_{\alpha}$
(1) Consider any size- S circuit C with vector output.

Proof of Correlation Intractability from SIS/LWE

Hash Key: uniformly random matrix A.
Evaluation: $H(\alpha):=\mathbf{A}_{\alpha} \cdot \mathrm{s}^{*}=\mathrm{a}_{\alpha}=C(\alpha)$.
(1) Consider any size- S circuit C with vector output.
(2) Suppose that \mathcal{A}, given hash key \mathbf{A}, finds α s.t. $H(\alpha)=C(\alpha)$.

Proof of Correlation Intractability from SIS/LWE

Hash Key: uniformly random matrix $\mathbf{A}=\mathbf{B}+\operatorname{Encode}(C)$.
Evaluation: $H(\alpha):=\mathbf{A}_{\alpha} \cdot \mathrm{s}^{*}=\mathrm{a}_{\alpha}=C(\alpha)$.
(1) Consider any size- S circuit C with vector output.
(2) Suppose that \mathcal{A}, given hash key \mathbf{A}, finds α s.t. $H(\alpha)=C(\alpha)$.
(3) Same holds for hash key $\mathbf{A}=\mathbf{B}+\operatorname{Encode}(C)$, for uniform \mathbf{B}.

Proof of Correlation Intractability from SIS/LWE

Hash Key: uniformly random matrix $\mathbf{A}=\mathbf{B}+\operatorname{Encode}(C)$.
Evaluation: $H(\alpha):=\mathbf{A}_{\alpha} \cdot \mathbf{s}^{*}=\mathbf{a}_{\alpha}=C(\alpha)$.
(1) Consider any size- S circuit C with vector output.
(2) Suppose that \mathcal{A}, given hash key \mathbf{A}, finds α s.t. $H(\alpha)=C(\alpha)$.
(3) Same holds for hash key $\mathbf{A}=\mathbf{B}+\operatorname{Encode}(C)$, for uniform \mathbf{B}. Let $\mathbf{S}_{\alpha, C}=$ Eval' $\left(\mathbf{A}, U_{\alpha}, C\right)$. By the Central Equation,

$$
\begin{aligned}
\mathbf{B} \cdot \mathbf{S}_{\alpha, C} \cdot \mathrm{~s}^{*} & =(\mathbf{A}-\operatorname{Encode}(C)) \cdot \mathbf{S}_{\alpha, C} \cdot \mathrm{~s}^{*} \\
& =\left(\mathbf{A}_{\alpha}-\operatorname{Encode}(C(\alpha))\right) \cdot \mathrm{s}^{*} \\
& =\mathbf{a}_{\alpha}-C(\alpha)=\mathbf{0} .
\end{aligned}
$$

This solves SIS for instance B!

Proof of Correlation Intractability from SIS/LWE

Hash Key: uniformly random matrix $\mathbf{A}=\mathbf{B}+\operatorname{Encode}(C)$.
Evaluation: $H(\alpha):=\mathbf{A}_{\alpha} \cdot \mathbf{s}^{*}=\mathbf{a}_{\alpha}=C(\alpha)$.
(1) Consider any size- S circuit C with vector output.
(2) Suppose that \mathcal{A}, given hash key \mathbf{A}, finds α s.t. $H(\alpha)=C(\alpha)$.
(3) Same holds for hash key $\mathbf{A}=\mathbf{B}+\operatorname{Encode}(C)$, for uniform \mathbf{B}. Let $\mathbf{S}_{\alpha, C}=$ Eval' $\left(\mathbf{A}, U_{\alpha}, C\right)$. By the Central Equation,

$$
\begin{aligned}
\mathbf{B} \cdot \mathbf{S}_{\alpha, C} \cdot \mathrm{~s}^{*} & =(\mathbf{A}-\operatorname{Encode}(C)) \cdot \mathbf{S}_{\alpha, C} \cdot \mathrm{~s}^{*} \\
& =\left(\mathbf{A}_{\alpha}-\operatorname{Encode}(C(\alpha))\right) \cdot \mathrm{s}^{*} \\
& =\mathbf{a}_{\alpha}-C(\alpha)=\mathbf{0} .
\end{aligned}
$$

This solves SIS for instance B!
(Tweak: can make $H(\alpha)=C(\alpha)$ impossible using LWE matrix B.)

Cl Hashing: Final Thoughts

- In security proof, hash key hides a trapdoor $s k$ for homomorphically computing the 'fooling challenge' $\beta=C_{s k}(\alpha)$ in the ZK protocol.

Cl Hashing: Final Thoughts

- In security proof, hash key hides a trapdoor $s k$ for homomorphically computing the 'fooling challenge' $\beta=C_{s k}(\alpha)$ in the ZK protocol.

Yet more power of homomorphic decryption! (Cf. 'bootstrapping')

Cl Hashing: Final Thoughts

- In security proof, hash key hides a trapdoor $s k$ for homomorphically computing the 'fooling challenge' $\beta=C_{s k}(\alpha)$ in the ZK protocol.

Yet more power of homomorphic decryption! (Cf. 'bootstrapping')

- Hidden/computed data is never 'opened' in the construction!

Cl Hashing: Final Thoughts

- In security proof, hash key hides a trapdoor $s k$ for homomorphically computing the 'fooling challenge' $\beta=C_{s k}(\alpha)$ in the ZK protocol.

Yet more power of homomorphic decryption! (Cf. 'bootstrapping')

- Hidden/computed data is never 'opened' in the construction!

Breaking Cl
\Rightarrow equating (public) hash value and (hidden) computed value \Rightarrow cancellation solves SIS via Eval'.

More Applications of Homomorphic Computation

- Attribute-based encryption [BGGHNSVV'14]
» Homomorphic computation on the public attributes

More Applications of Homomorphic Computation

- Attribute-based encryption [BGGHNSVV'14]
* Homomorphic computation on the public attributes
- Predicate encryption ('hidden-attribute ABE') [GVW'15] * Two layers: HC on (public) FHE-encrypted attributes

More Applications of Homomorphic Computation

- Attribute-based encryption [BGGHNSVV'14]
* Homomorphic computation on the public attributes
- Predicate encryption ('hidden-attribute ABE') [GVW'15]
* Two layers: HC on (public) FHE-encrypted attributes
- Fully homomorphic signatures [GVW'15]
\star Homomorphic computation on the public signed data

More Applications of Homomorphic Computation

- Attribute-based encryption [BGGHNSVV'14]
* Homomorphic computation on the public attributes
- Predicate encryption ('hidden-attribute ABE') [GVW'15]
* Two layers: HC on (public) FHE-encrypted attributes
- Fully homomorphic signatures [GVW'15]
* Homomorphic computation on the public signed data
- Privately constrained PRFs [BKM'17,CC'17,BTVW'17,PS'18]
\star Homomorphic computation on the public PRF input

More Applications of Homomorphic Computation

- Attribute-based encryption [BGGHNSVV'14]
* Homomorphic computation on the public attributes
- Predicate encryption ('hidden-attribute ABE') [GVW'15]
* Two layers: HC on (public) FHE-encrypted attributes
- Fully homomorphic signatures [GVW'15]
\star Homomorphic computation on the public signed data
- Privately constrained PRFs [BKM'17,CC'17,BTVW'17,PS'18]
\star Homomorphic computation on the public PRF input
- ...your next great idea!

More Applications of Homomorphic Computation

- Attribute-based encryption [BGGHNSVV'14]
* Homomorphic computation on the public attributes
- Predicate encryption ('hidden-attribute ABE') [GVW'15]
* Two layers: HC on (public) FHE-encrypted attributes
- Fully homomorphic signatures [GVW'15]
\star Homomorphic computation on the public signed data
- Privately constrained PRFs [BKM'17,CC'17,BTVW'17,PS'18]
\star Homomorphic computation on the public PRF input
- ...your next great idea!

Thanks! Questions?

