Unexpected Applications of Fully Homomorphic Encryption

Chris Peikert University of Michigan

Public Key Cryptography 8 May 2023

FHE lets us do this:

$$\begin{array}{c} m \rightarrow & \overbrace{\mathsf{Enc}} \rightarrow & \hline{m} \rightarrow & \overbrace{\mathsf{Eval}} \rightarrow & \overbrace{f(m)} \rightarrow & \overbrace{\mathsf{Dec}} \rightarrow & f(m) \\ & \uparrow & & \uparrow & & \uparrow \\ & \mathsf{key} & & f & & \mathsf{key} \end{array}$$

Compact:
$$f(m) \ll |f|$$
.

FHE lets us do this:

$$\begin{array}{c} m \rightarrow & \overbrace{\mathsf{Enc}} \rightarrow & \hline{m} \rightarrow & \overbrace{\mathsf{Eval}} \rightarrow & f(m) \end{array} \rightarrow & \overbrace{\mathsf{Dec}} \rightarrow f(m) \\ & \uparrow & \uparrow & & \uparrow \\ & \mathsf{key} & f & & \mathsf{key} \end{array}$$

Compact:
$$f(m) \ll |f|$$
.

First solved by [Gentry'09], followed by $\label{eq:gentry} [vDGHV'10,BV'11a,BV'11b,BGV'12,B'12,GSW'13,CKKS'17,\dots]$

FHE lets us do this:

$$\begin{array}{c} m \rightarrow & \overbrace{\mathsf{Enc}} \rightarrow & \hline{m} \rightarrow & \overbrace{\mathsf{Eval}} \rightarrow & f(m) \end{array} \rightarrow & \overbrace{\mathsf{Dec}} \rightarrow f(m) \\ & \uparrow & \uparrow & & \uparrow \\ & \mathsf{key} & f & & \mathsf{key} \end{array}$$

Compact:
$$f(m) \ll |f|$$
.

First solved by [Gentry'09], followed by $\label{eq:gentry} [vDGHV'10,BV'11a,BV'11b,BGV'12,B'12,GSW'13,CKKS'17,\dots]$

A cryptographic "holy grail" with countless applications...

FHE lets us do this:

$$\begin{array}{c} m \rightarrow & \overbrace{\mathsf{Enc}} \rightarrow & \hline{m} \rightarrow & \overbrace{\mathsf{Eval}} \rightarrow & f(m) \end{array} \rightarrow & \overbrace{\mathsf{Dec}} \rightarrow f(m) \\ & \uparrow & \uparrow & & \uparrow \\ & \mathsf{key} & f & & \mathsf{key} \end{array}$$

Compact:
$$f(m) \ll |f|$$
.

First solved by [Gentry'09], followed by $\label{eq:gentry} [vDGHV'10,BV'11a,BV'11b,BGV'12,B'12,GSW'13,CKKS'17,\dots]$

A cryptographic "holy grail" with countless applications. . . some more surprising than others!

Less Surprising

- Private cloud computation
- Low-communication MPC
- Code obfuscation
- Quantum FHE, etc. etc.

Less Surprising

- Private cloud computation
- Low-communication MPC
- Code obfuscation
- Quantum FHE, etc. etc.

Unexpected (to me at least)

- Functional commitments for all functions
- Instantiating Fiat-Shamir & noninteractive ZK
- **3** Attribute-based encryption & much more

[PPS'21,dCP'23]

[CCHLRRW'19, PS'19]

[BGGHNSVV'14,...]

Less Surprising

- Private cloud computation
- Low-communication MPC
- Code obfuscation
- Quantum FHE, etc. etc.

Unexpected (to me at least)

Functional commitments for all functions

[PPS'21,dCP'23]

- Instantiating Fiat-Shamir & noninteractive ZK [CCHLRRW'19, PS'19]
- S Attribute-based encryption & much more [BGGHNSVV'14,...]

Why? no (computation on) hidden data, and/or no decryption of it.

Less Surprising

- Private cloud computation
- Low-communication MPC
- Code obfuscation
- Quantum FHE, etc. etc.

Unexpected (to me at least)

- Functional commitments for all functions
- 2 Instantiating Fiat-Shamir & noninteractive ZK [CCHLRRW'19, PS'19]
- Attribute-based encryption & much more
 [BGGHNSVV'14,...]
- Why? no (computation on) *hidden* data, and/or no *decryption* of it.

Instead, compactness and special structure of FHE scheme are essential!

[PPS'21,dCP'23]

Background and the Central Equation

Theorem

For any matrix A and (Boolean) function f, can compute A_f. Then for any input x, can compute "short" matrix S_{f,x} satisfying

$$(\mathbf{A} - \mathsf{Encode}(x)) \cdot \mathbf{S}_{f,x} = \mathbf{A}_f - \mathsf{Encode}(f(x)).$$

Theorem

For any matrix A and (Boolean) function f, can compute A_f. Then for any input x, can compute "short" matrix S_{f,x} satisfying

$$(\mathbf{A} - \mathsf{Encode}(x)) \cdot \mathbf{S}_{f,x} = \mathbf{A}_f - \mathsf{Encode}(f(x)).$$

Implies LWE-Based FHE

Ciphertext A = B + Encode(x) where sB ≈ 0. Hides x by LWE.

Theorem

For any matrix A and (Boolean) function f, can compute A_f. Then for any input x, can compute "short" matrix S_{f,x} satisfying

$$(\mathbf{A} - \text{Encode}(x)) \cdot \mathbf{S}_{f,x} = \mathbf{A}_f - \text{Encode}(f(x)).$$

Implies LWE-Based FHE

- Ciphertext A = B + Encode(x) where sB ≈ 0. Hides x by LWE.
- ► Homomorphic evaluation of f is $A_f = B \cdot S_{f,x} + Encode(f(x)).$

Theorem

For any matrix A and (Boolean) function f, can compute A_f. Then for any input x, can compute "short" matrix S_{f,x} satisfying

$$(\mathbf{A} - \text{Encode}(x)) \cdot \mathbf{S}_{f,x} = \mathbf{A}_f - \text{Encode}(f(x)).$$

$$f \xrightarrow[]{\mathsf{Eval}} \to \mathbf{A}_f$$
$$x \xrightarrow[]{\mathsf{Eval}'} \to \mathbf{S}_{f,x}$$

Implies LWE-Based FHE

- Ciphertext A = B + Encode(x) where sB ≈ 0. Hides x by LWE.
- ► Homomorphic evaluation of f is $A_f = B \cdot S_{f,x} + Encode(f(x)).$
- Decryption:

$$\begin{split} \mathbf{sA}_f &= \mathbf{sB} \cdot \mathbf{S}_{f,x} + \mathbf{s} \cdot \mathsf{Encode}(f(x)) \\ &\approx \mathbf{s} \cdot \mathsf{Encode}(f(x)). \end{split}$$

Goal

$$(\mathbf{A} - \mathsf{Encode}(x)) \cdot \mathbf{S}_{f,x} = \mathbf{A}_f - \mathsf{Encode}(f(x))$$

Goal

$$(\mathbf{A} - \mathsf{Encode}(x)) \cdot \mathbf{S}_{f,x} = \mathbf{A}_f - \mathsf{Encode}(f(x))$$

How It's Done

• Encode $(x) = \mathbf{x} \otimes \mathbf{G}$ where $\mathbf{G}^{-1}(\mathbf{Z})$ is short and $\mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{Z}) = \mathbf{Z}, \forall \mathbf{Z}$.

By composition, suffices to handle negation, +, $\times.$

Goal

$$(\mathbf{A} - \mathsf{Encode}(x)) \cdot \mathbf{S}_{f,x} = \mathbf{A}_f - \mathsf{Encode}(f(x))$$

How It's Done

- ► Encode(x) = x ⊗ G where G⁻¹(Z) is short and G ⋅ G⁻¹(Z) = Z, ∀Z. By composition, suffices to handle negation, +, ×.
- ▶ Negation: define $\mathbf{S}_{neg} = -\mathbf{I}$ and $\mathbf{A}_{neg} = \mathbf{A} \cdot \mathbf{S}_{neg} = -\mathbf{A}$.

Goal

$$(\mathbf{A} - \mathsf{Encode}(x)) \cdot \mathbf{S}_{f,x} = \mathbf{A}_f - \mathsf{Encode}(f(x))$$

How It's Done

- ► Encode(x) = x ⊗ G where G⁻¹(Z) is short and G ⋅ G⁻¹(Z) = Z, ∀Z. By composition, suffices to handle negation, +, ×.
- ▶ Negation: define $\mathbf{S}_{neg} = -\mathbf{I}$ and $\mathbf{A}_{neg} = \mathbf{A} \cdot \mathbf{S}_{neg} = -\mathbf{A}$.

▶ Addition: define $\mathbf{S}_+ = \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix}$ and $\mathbf{A}_+ = \mathbf{A} \cdot \mathbf{S}_+ = \mathbf{A}_1 + \mathbf{A}_2$. Then

 $([\mathbf{A}_1 \mid \mathbf{A}_2] - [x_1\mathbf{G} \mid x_2\mathbf{G}]) \cdot \mathbf{S}_+ = \mathbf{A}_+ - (x_1 + x_2)\mathbf{G}.$

Goal

$$(\mathbf{A} - \mathsf{Encode}(x)) \cdot \mathbf{S}_{f,x} = \mathbf{A}_f - \mathsf{Encode}(f(x))$$

How It's Done

- ► Encode(x) = x ⊗ G where G⁻¹(Z) is short and G ⋅ G⁻¹(Z) = Z, ∀Z. By composition, suffices to handle negation, +, ×.
- ▶ Negation: define $\mathbf{S}_{neg} = -\mathbf{I}$ and $\mathbf{A}_{neg} = \mathbf{A} \cdot \mathbf{S}_{neg} = -\mathbf{A}$.

▶ Addition: define $\mathbf{S}_+ = \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix}$ and $\mathbf{A}_+ = \mathbf{A} \cdot \mathbf{S}_+ = \mathbf{A}_1 + \mathbf{A}_2$. Then

 $([\mathbf{A}_1 \mid \mathbf{A}_2] - [x_1\mathbf{G} \mid x_2\mathbf{G}]) \cdot \mathbf{S}_+ = \mathbf{A}_+ - (x_1 + x_2)\mathbf{G}.$

• Multiplication: define $\mathbf{S}_{\times,x_1} = \begin{bmatrix} \mathbf{G}^{-1}(\mathbf{A}_2) \\ x_1 \mathbf{I} \end{bmatrix}$ and $\mathbf{A}_{\times} = \mathbf{A}_1 \cdot \mathbf{G}^{-1}(\mathbf{A}_2)$:

$$\left(\left[\mathbf{A}_1 \mid \mathbf{A}_2 \right] - \left[x_1 \mathbf{G} \mid x_2 \mathbf{G} \right] \right) \cdot \mathbf{S}_{\times, x_1} = \mathbf{A}_{\times} - x_1 x_2 \mathbf{G}.$$

Functional Commitments

$$f \to \text{Com} \to C_f$$

 \sim

Applications

- Specializations: vector/key-value/polynomial/linear commitments [LY'10,KZG'10,LRY'16,BBF'19]
- Verifiable outsourced storage/data structures [BGV'11,PSTY'13]
- Accumulators, updateable ZK sets/databases [BdM'93,MRK'03,Lis'05]
- Outsourced committed programs
- And much more...

[CPSZ'18,BFS'20,BDFG'21,...]

[GSW'23]

Basic Security Properties

► Evaluation binding: infeasible to find $C^*, x^*, y_0^* \neq y_1^*, \pi_0^*, \pi_1^*$ s.t. Verify $(pp, C^*, x^*, y_b^*, \pi_b^*) = \text{acc for } b \in \{0, 1\}.$ (No hiding required!)

Basic Security Properties

- ► Evaluation binding: infeasible to find $C^*, x^*, y_0^* \neq y_1^*, \pi_0^*, \pi_1^*$ s.t. Verify $(pp, C^*, x^*, y_b^*, \pi_b^*) = \text{acc for } b \in \{0, 1\}.$ (No hiding required!)
- **Target binding:** same, but for honestly generated C_f .

Basic Security Properties

- ► Evaluation binding: infeasible to find $C^*, x^*, y_0^* \neq y_1^*, \pi_0^*, \pi_1^*$ s.t. Verify $(pp, C^*, x^*, y_b^*, \pi_b^*) = \text{acc for } b \in \{0, 1\}.$ (No hiding required!)
- **Target binding:** same, but for honestly generated C_f .
- **Zero knowledge:** C_f and π_{f,x_i} reveal nothing except for $x_i, f(x_i)$.

Constructions

 Were limited to 'linearizable' functions, or relied on non-falsifiable assumptions (SNARGs for NP)

Constructions

- Were limited to 'linearizable' functions, or relied on non-falsifiable assumptions (SNARGs for NP)
- All functions from SIS, but needs online authority to generate 'opening keys' using trapdoor for pp
 [PPS'21]

Constructions

- Were limited to 'linearizable' functions, or relied on non-falsifiable assumptions (SNARGs for NP)
- All functions from SIS, but needs online authority to generate 'opening keys' using trapdoor for pp [PPS'21]
- ▶ All functions from SIS, with *transparent* setup: public-coin *pp* [dCP'23]

Evaluation Binding from SIS

For commitment \mathbf{A}^* , valid proofs at x^* for $y_0^* \neq y_1^*$ imply:

 $(\mathbf{A} - \mathsf{Encode}(x^*)) \cdot (\mathbf{S}_0^* - \mathbf{S}_1^*) = \mathsf{Encode}(y_0^* - y_1^*).$

Evaluation Binding from SIS

For commitment \mathbf{A}^* , valid proofs at x^* for $y_0^* \neq y_1^*$ imply:

 $(\mathbf{A} - \mathsf{Encode}(x^*)) \cdot (\mathbf{S}_0^* - \mathbf{S}_1^*) = \mathsf{Encode}(y_0^* - y_1^*).$

▶ RHS has short nonzero column \implies solves SIS for A – Encode $(x^*)_{i/19}$

Bonus Features

Efficient specializations to vector/key-value/linear/polynomial commitments via precomputation and linearity:

$$f(x) = \sum_{\bar{x}} f(\bar{x}) \cdot \mathsf{Eq}_{\bar{x}}(x).$$

9/19
Functional Commitments from SIS [deCastroPeikert'23]

Bonus Features

Efficient specializations to vector/key-value/linear/polynomial commitments via precomputation and linearity:

$$f(x) = \sum_{\bar{x}} f(\bar{x}) \cdot \mathsf{Eq}_{\bar{x}}(x).$$

Stateless updates by composition: $A_f \rightarrow A_{g \circ f}$, $S_{f,x} \cdot S_{g,f(x)} = S_{g \circ f,x}$

Functional Commitments from SIS [deCastroPeikert'23]

Bonus Features

Efficient specializations to vector/key-value/linear/polynomial commitments via precomputation and linearity:

$$f(x) = \sum_{\bar{x}} f(\bar{x}) \cdot \mathsf{Eq}_{\bar{x}}(x).$$

Stateless updates by composition: $A_f \rightarrow A_{g \circ f}$, $S_{f,x} \cdot S_{g,f(x)} = S_{g \circ f,x}$

ZK (w/target binding) via Eval privacy and preimage sampling.

9/19

Functional Commitments: Final Thoughts

Unlike FHE, no hiding or 'structure' needed: public f and x, no sk, unstructured pp = A.

Functional Commitments: Final Thoughts

- Unlike FHE, no hiding or 'structure' needed: public f and x, no sk, unstructured pp = A.
- Compactness is key: single small A_f = Eval(A, f) supports many solutions S_{f,x} = Eval'(A, f, x) to

$$(\mathbf{A} - \mathsf{Encode}(x)) \cdot \mathbf{S}_{f,x} = \mathbf{A}_f - \mathsf{Encode}(f(x)).$$

Functional Commitments: Final Thoughts

- Unlike FHE, no hiding or 'structure' needed: public f and x, no sk, unstructured pp = A.
- Compactness is key: single small A_f = Eval(A, f) supports many solutions S_{f,x} = Eval'(A, f, x) to

 $(\mathbf{A} - \mathsf{Encode}(x)) \cdot \mathbf{S}_{f,x} = \mathbf{A}_f - \mathsf{Encode}(f(x)).$

- Similar ideas in [WeeWu'23] FCs, but:
 - structured CRS (private-key setup);
 - swapped Prove/Verify burden;
 - smaller proofs;
 - ★ based on new, ad-hoc BASIS assumption.

Instantiating Fiat-Shamir and Noninteractive Zero Knowledge

 Assuming OWFs, every NP language has a ZK proof/argument. [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

- Assuming OWFs, every NP language has a ZK proof/argument. [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]
- Interaction is undesirable. What if...?

- Assuming OWFs, every NP language has a ZK proof/argument. [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]
- Interaction is undesirable. What if...?

 Assuming OWFs, every NP language has a ZK proof/argument. [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

Interaction is undesirable. What if...?

► With random/reference string, NP ⊆ NIZK assuming:

 Assuming OWFs, every NP language has a ZK proof/argument. [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

Interaction is undesirable. What if...?

- With random/reference string, NP \subseteq NIZK assuming:
 - quadratic residuosity/trapdoor permutations
 - hard pairing-friendly groups
 - indistinguishability obfuscation

[BDMP'88,FLS'90] [GrothOstrovskySahai'06] [SahaiWaters'14]

Assuming OWFs, every NP language has a ZK proof/argument. [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

Interaction is undesirable. What if...?

- With random/reference string, NP \subseteq NIZK assuming:
 - quadratic residuosity/trapdoor permutations
 - hard pairing-friendly groups

[BDMP'88,FLS'90] [GrothOstrovskySahai'06]

indistinguishability obfuscation

[SahaiWaters'14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, ...

 Assuming OWFs, every NP language has a ZK proof/argument. [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

Interaction is undesirable. What if...?

- With random/reference string, NP \subseteq NIZK assuming:
 - quadratic residuosity/trapdoor permutations
 - hard pairing-friendly groups
 - indistinguishability obfuscation

[BDMP'88,FLS'90] [GrothOstrovskySahai'06]

- bility obfuscation
- [SahaiWaters'14]
- Apps: signatures, CCA-secure encryption, cryptocurrencies, ...

Open [PW'08,PV'08]: 'post-quantum' foundation like lattices/LWE

 Assuming OWFs, every NP language has a ZK proof/argument. [GoldreichMicaliWigderson'86,NguyenOngVadhan'06]

Interaction is undesirable. What if...?

- With random/reference string, NP \subseteq NIZK assuming:
 - quadratic residuosity/trapdoor permutations
 - hard pairing-friendly groups
 - indistinguishability obfuscation

[BDMP'88,FLS'90] [GrothOstrovskySahai'06] [SahaiWaters'14]

- Apps: signatures, CCA-secure encryption, cryptocurrencies, ...
- Open [PW'08,PV'08]: 'post-quantum' foundation like lattices/LWE

Theorem [CCHLRRW'19,PS'19]

• NP \subseteq NIZK assuming LWE.

A way to remove interaction from a public-coin protocol, via hashing:

A way to remove interaction from a public-coin protocol, via hashing:

A way to remove interaction from a public-coin protocol, via hashing:

A way to remove interaction from a public-coin protocol, via hashing:

Completeness and ZK (for honest V) are easy to preserve. For ZK, simulate α, β, γ; then 'program' H so that H(α) = β.

A way to remove interaction from a public-coin protocol, via hashing:

Completeness and ZK (for honest V) are easy to preserve. For ZK, simulate α, β, γ; then 'program' H so that H(α) = β.

Key Challenge: Soundness

1 Are there α, γ with $\beta = H(\alpha)$ that fool V?

A way to remove interaction from a public-coin protocol, via hashing:

Completeness and ZK (for honest V) are easy to preserve. For ZK, simulate α, β, γ; then 'program' H so that H(α) = β.

Key Challenge: Soundness

- **1** Are there α, γ with $\beta = H(\alpha)$ that fool V?
- **2** Can a cheating P^* find such values, given H? (Proof vs. argument.)

► A correlation-intractable [CGH'98] hash family *H* suffices:

Given $H \leftarrow \mathcal{H}$, hard/impossible to find α s.t. $(\alpha, H(\alpha)) \in R$. Relation $R = \{(\alpha, \beta) : \exists \gamma \text{ that fools } V\}.$

► A correlation-intractable [CGH'98] hash family *H* suffices:

Given $H \leftarrow \mathcal{H}$, hard/impossible to find α s.t. $(\alpha, H(\alpha)) \in R$. Relation $R = \{(\alpha, \beta) : \exists \gamma \text{ that fools } V\}.$

Theorem [HL'18,CCHLRRW'19]

NP ⊆ NIZK assuming a hash family that is CI for all bounded circuits: can't find α s.t. H(α) = C(α), |C| ≤ S := poly.

► A correlation-intractable [CGH'98] hash family *H* suffices:

Given $H \leftarrow \mathcal{H}$, hard/impossible to find α s.t. $(\alpha, H(\alpha)) \in R$. Relation $R = \{(\alpha, \beta) : \exists \gamma \text{ that fools } V\}.$

Theorem [HL'18,CCHLRRW'19]

- NP ⊆ NIZK assuming a hash family that is CI for all bounded circuits: can't find α s.t. H(α) = C(α), |C| ≤ S := poly.
- Proof idea: for HamCycle^m protocol [FLS'90], each potential α has ≤ 1 'fooling challenge' $\beta \in \{0, 1\}^m$ for which V can be fooled.

► A correlation-intractable [CGH'98] hash family *H* suffices:

Given $H \leftarrow \mathcal{H}$, hard/impossible to find α s.t. $(\alpha, H(\alpha)) \in R$. Relation $R = \{(\alpha, \beta) : \exists \gamma \text{ that fools } V\}.$

Theorem [HL'18,CCHLRRW'19]

- NP ⊆ NIZK assuming a hash family that is CI for all bounded circuits: can't find α s.t. H(α) = C(α), |C| ≤ S := poly.
- Proof idea: for HamCycle^m protocol [FLS'90], each potential α has
 - ≤ 1 'fooling challenge' $\beta \in \{0,1\}^m$ for which V can be fooled.

Such $\beta = C_{sk}(\alpha)$ using a trapdoor sk for decrypting α .

Obtaining Correlation Intractability [CCRR'18,HL'18,CCH+'19,PS'19]

CI Hash Family Construction [PS'19]

CI for all bounded circuits C via homomorphic computation, assuming SIS/LWE Obtaining Correlation Intractability [CCRR'18,HL'18,CCH+'19,PS'19]

CI Hash Family Construction [PS'19]

- CI for all bounded circuits C via homomorphic computation, assuming SIS/LWE
- As in [CCH+'19], two 'intractability modes':
 - **1** Computational (SIS): given $H \leftarrow H$, hard to find α s.t. $H(\alpha) = C(\alpha)$. Yields statistically ZK argument in uniform random string model.

Obtaining Correlation Intractability [CCRR'18,HL'18,CCH+'19,PS'19]

CI Hash Family Construction [PS'19]

- CI for all bounded circuits C via homomorphic computation, assuming SIS/LWE
- As in [CCH+'19], two 'intractability modes':
 - **1** Computational (SIS): given $H \leftarrow H$, hard to find α s.t. $H(\alpha) = C(\alpha)$. Yields statistically ZK argument in uniform random string model.
 - **2** Statistical (LWE): over $H \leftarrow \mathcal{H}_C \stackrel{c}{\approx} \mathcal{H}$, such α do not exist w.h.p. Yields computationally ZK proof in structured reference string model.

▶ Goal: CI for size-S circuits with vector outputs

▶ Goal: CI for size-S circuits with vector outputs

Hash Key: uniformly random matrix A (that can 'hide' a circuit C)

▶ Goal: CI for size-S circuits with vector outputs

Hash Key: uniformly random matrix A (that can 'hide' a circuit C)

Evaluation: on input α ,

1 Compute $\mathbf{A}_{\alpha} = \mathsf{Eval}(\mathbf{A}, U_{\alpha})$ where $U_{\alpha}(C) := C(\alpha)$.

▶ Goal: CI for size-S circuits with vector outputs

Hash Key: uniformly random matrix A (that can 'hide' a circuit C)

Evaluation: on input α ,

1 Compute $\mathbf{A}_{\alpha} = \mathsf{Eval}(\mathbf{A}, U_{\alpha})$ where $U_{\alpha}(C) := C(\alpha)$.

2 'Inertify': let $\mathbf{a}_{\alpha} = \mathbf{A}_{\alpha} \cdot \mathbf{s}^*$, where $\text{Encode}(\mathbf{y}) \cdot \mathbf{s}^* = \mathbf{y}$ for all \mathbf{y} .

▶ Goal: CI for size-S circuits with vector outputs

Hash Key: uniformly random matrix A (that can 'hide' a circuit C)

Evaluation: on input α ,

1 Compute $\mathbf{A}_{\alpha} = \mathsf{Eval}(\mathbf{A}, U_{\alpha})$ where $U_{\alpha}(C) := C(\alpha)$.

2 'Inertify': let $\mathbf{a}_{\alpha} = \mathbf{A}_{\alpha} \cdot \mathbf{s}^*$, where $\mathsf{Encode}(\mathbf{y}) \cdot \mathbf{s}^* = \mathbf{y}$ for all \mathbf{y} .

3 Output \mathbf{a}_{α} .

► Goal: CI for size-S circuits with vector outputs

Hash Key: uniformly random matrix A (that can 'hide' a circuit C)

Evaluation: on input α ,

1 Compute $\mathbf{A}_{\alpha} = \mathsf{Eval}(\mathbf{A}, U_{\alpha})$ where $U_{\alpha}(C) := C(\alpha)$.

2 'Inertify': let $\mathbf{a}_{\alpha} = \mathbf{A}_{\alpha} \cdot \mathbf{s}^*$, where $\mathsf{Encode}(\mathbf{y}) \cdot \mathbf{s}^* = \mathbf{y}$ for all \mathbf{y} .

3 Output \mathbf{a}_{α} .

Key Point: a_{α} can 'hide' a circuit output y from the same domain, letting the two values 'mix'/cancel out. Can reason about more than the hidden y alone.

Proof of Correlation Intractability from SIS/LWE

Hash Key: uniformly random matrix A.

Evaluation: $H(\alpha) := \mathbf{A}_{\alpha} \cdot \mathbf{s}^* = \mathbf{a}_{\alpha}$

1 Consider any size-S circuit C with vector output.

Proof of Correlation Intractability from SIS/LWE

Hash Key: uniformly random matrix A.

Evaluation: $H(\alpha) := \mathbf{A}_{\alpha} \cdot \mathbf{s}^* = \mathbf{a}_{\alpha} = C(\alpha).$

- **1** Consider any size-S circuit C with vector output.
- **2** Suppose that \mathcal{A} , given hash key **A**, finds α s.t. $H(\alpha) = C(\alpha)$.
Proof of Correlation Intractability from SIS/LWE

Hash Key: uniformly random matrix $\mathbf{A} = \mathbf{B} + \text{Encode}(C)$. Evaluation: $H(\alpha) := \mathbf{A}_{\alpha} \cdot \mathbf{s}^* = \mathbf{a}_{\alpha} = C(\alpha)$.

- **1** Consider any size-S circuit C with vector output.
- **2** Suppose that \mathcal{A} , given hash key **A**, finds α s.t. $H(\alpha) = C(\alpha)$.
- **3** Same holds for hash key $\mathbf{A} = \mathbf{B} + \text{Encode}(C)$, for uniform \mathbf{B} .

Proof of Correlation Intractability from SIS/LWE

Hash Key: uniformly random matrix $\mathbf{A} = \mathbf{B} + \text{Encode}(C)$. Evaluation: $H(\alpha) := \mathbf{A}_{\alpha} \cdot \mathbf{s}^* = \mathbf{a}_{\alpha} = C(\alpha)$.

- **1** Consider any size-S circuit C with vector output.
- **2** Suppose that \mathcal{A} , given hash key **A**, finds α s.t. $H(\alpha) = C(\alpha)$.
- Same holds for hash key A = B + Encode(C), for uniform B.
 Let S_{α,C} = Eval'(A, U_α, C). By the Central Equation,

$$\mathbf{B} \cdot \mathbf{S}_{\alpha,C} \cdot \mathbf{s}^* = (\mathbf{A} - \mathsf{Encode}(C)) \cdot \mathbf{S}_{\alpha,C} \cdot \mathbf{s}^*$$
$$= (\mathbf{A}_{\alpha} - \mathsf{Encode}(C(\alpha))) \cdot \mathbf{s}^*$$
$$= \mathbf{a}_{\alpha} - C(\alpha) = \mathbf{0}.$$

This solves SIS for instance B!

Proof of Correlation Intractability from SIS/LWE

Hash Key: uniformly random matrix $\mathbf{A} = \mathbf{B} + \text{Encode}(C)$. Evaluation: $H(\alpha) := \mathbf{A}_{\alpha} \cdot \mathbf{s}^* = \mathbf{a}_{\alpha} = C(\alpha)$.

- **1** Consider any size-S circuit C with vector output.
- **2** Suppose that \mathcal{A} , given hash key **A**, finds α s.t. $H(\alpha) = C(\alpha)$.
- Same holds for hash key A = B + Encode(C), for uniform B.
 Let S_{α,C} = Eval'(A, U_α, C). By the Central Equation,

$$\begin{aligned} \mathbf{B} \cdot \mathbf{S}_{\alpha,C} \cdot \mathbf{s}^* &= (\mathbf{A} - \mathsf{Encode}(C)) \cdot \mathbf{S}_{\alpha,C} \cdot \mathbf{s}^* \\ &= (\mathbf{A}_{\alpha} - \mathsf{Encode}(C(\alpha))) \cdot \mathbf{s}^* \\ &= \mathbf{a}_{\alpha} - C(\alpha) = \mathbf{0}. \end{aligned}$$

This solves SIS for instance B!

(Tweak: can make $H(\alpha) = C(\alpha)$ impossible using LWE matrix **B**.)

CI Hashing: Final Thoughts

► In security proof, hash key hides a trapdoor sk for homomorphically computing the 'fooling challenge' $\beta = C_{sk}(\alpha)$ in the ZK protocol.

CI Hashing: Final Thoughts

ln security proof, hash key hides a trapdoor sk for homomorphically computing the 'fooling challenge' $\beta = C_{sk}(\alpha)$ in the ZK protocol.

Yet more power of homomorphic decryption! (Cf. 'bootstrapping')

Cl Hashing: Final Thoughts

In security proof, hash key hides a trapdoor sk for homomorphically computing the 'fooling challenge' $\beta = C_{sk}(\alpha)$ in the ZK protocol.

Yet more power of homomorphic decryption! (Cf. 'bootstrapping')

Hidden/computed data is never 'opened' in the construction!

CI Hashing: Final Thoughts

- In security proof, hash key hides a trapdoor sk for homomorphically computing the 'fooling challenge' β = C_{sk}(α) in the ZK protocol.
 Yet more power of homomorphic decryption! (Cf. 'bootstrapping')
- Hidden/computed data is never 'opened' in the construction!

Breaking CI

- \Rightarrow equating (public) hash value and (hidden) computed value
- \Rightarrow cancellation solves SIS via Eval'.

- Attribute-based encryption [BGGHNSVV'14]
 - * Homomorphic computation on the public attributes

- Attribute-based encryption [BGGHNSVV'14]
 - Homomorphic computation on the public attributes
- Predicate encryption ('hidden-attribute ABE') [GVW'15]
 - Two layers: HC on (public) FHE-encrypted attributes

- Attribute-based encryption [BGGHNSVV'14]
 - ★ Homomorphic computation on the public attributes
- Predicate encryption ('hidden-attribute ABE') [GVW'15]
 - ★ Two layers: HC on (public) FHE-encrypted attributes
- Fully homomorphic signatures [GVW'15]
 - * Homomorphic computation on the public signed data

- Attribute-based encryption [BGGHNSVV'14]
 - ★ Homomorphic computation on the public attributes
- Predicate encryption ('hidden-attribute ABE') [GVW'15]
 * Two layers: HC on (public) FHE-encrypted attributes
- Fully homomorphic signatures [GVW'15]
 - * Homomorphic computation on the public signed data
- Privately constrained PRFs [BKM'17,CC'17,BTVW'17,PS'18]
 - Homomorphic computation on the public PRF input

- Attribute-based encryption [BGGHNSVV'14]
 - ★ Homomorphic computation on the public attributes
- Predicate encryption ('hidden-attribute ABE') [GVW'15]
 * Two layers: HC on (public) FHE-encrypted attributes
- Fully homomorphic signatures [GVW'15]
 - * Homomorphic computation on the public signed data
- Privately constrained PRFs [BKM'17,CC'17,BTVW'17,PS'18]
 * Homomorphic computation on the public PRF input
- ... your next great idea!

- Attribute-based encryption [BGGHNSVV'14]
 - ★ Homomorphic computation on the public attributes
- Predicate encryption ('hidden-attribute ABE') [GVW'15]
 * Two layers: HC on (public) FHE-encrypted attributes
- Fully homomorphic signatures [GVW'15]
 - * Homomorphic computation on the public signed data
- Privately constrained PRFs [BKM'17,CC'17,BTVW'17,PS'18]
 - \star Homomorphic computation on the public PRF input
- ... your next great idea!

Thanks! Questions?