
Unexpected Applications of
Fully Homomorphic Encryption

Chris Peikert
University of Michigan

Public Key Cryptography
8 May 2023

1 / 19

Fully Homomorphic Encryption [RAD’78,Gentry’09,. . .]

▶ FHE lets us do this:

m Enc

key

m Eval

f

f(m) Dec

key

f(m)

Compact: f(m) ≪ |f |.

First solved by [Gentry’09], followed by
[vDGHV’10,BV’11a,BV’11b,BGV’12,B’12,GSW’13,CKKS’17,. . .]

A cryptographic “holy grail” with countless applications. . .
some more surprising than others!

2 / 19

Fully Homomorphic Encryption [RAD’78,Gentry’09,. . .]

▶ FHE lets us do this:

m Enc

key

m Eval

f

f(m) Dec

key

f(m)

Compact: f(m) ≪ |f |.

First solved by [Gentry’09], followed by
[vDGHV’10,BV’11a,BV’11b,BGV’12,B’12,GSW’13,CKKS’17,. . .]

A cryptographic “holy grail” with countless applications. . .
some more surprising than others!

2 / 19

Fully Homomorphic Encryption [RAD’78,Gentry’09,. . .]

▶ FHE lets us do this:

m Enc

key

m Eval

f

f(m) Dec

key

f(m)

Compact: f(m) ≪ |f |.

First solved by [Gentry’09], followed by
[vDGHV’10,BV’11a,BV’11b,BGV’12,B’12,GSW’13,CKKS’17,. . .]

A cryptographic “holy grail” with countless applications. . .

some more surprising than others!

2 / 19

Fully Homomorphic Encryption [RAD’78,Gentry’09,. . .]

▶ FHE lets us do this:

m Enc

key

m Eval

f

f(m) Dec

key

f(m)

Compact: f(m) ≪ |f |.

First solved by [Gentry’09], followed by
[vDGHV’10,BV’11a,BV’11b,BGV’12,B’12,GSW’13,CKKS’17,. . .]

A cryptographic “holy grail” with countless applications. . .
some more surprising than others!

2 / 19

Applications of FHE

Less Surprising
▶ Private cloud computation

▶ Low-communication MPC

▶ Code obfuscation

▶ Quantum FHE, etc. etc.

Unexpected (to me at least)

1 Functional commitments for all functions [PPS’21,dCP’23]

2 Instantiating Fiat-Shamir & noninteractive ZK [CCHLRRW’19,PS’19]

3 Attribute-based encryption & much more [BGGHNSVV’14,. . .]

Why? no (computation on) hidden data, and/or no decryption of it.

Instead, compactness and special structure of FHE scheme are essential!

3 / 19

Applications of FHE

Less Surprising
▶ Private cloud computation

▶ Low-communication MPC

▶ Code obfuscation

▶ Quantum FHE, etc. etc.

Unexpected (to me at least)

1 Functional commitments for all functions [PPS’21,dCP’23]

2 Instantiating Fiat-Shamir & noninteractive ZK [CCHLRRW’19,PS’19]

3 Attribute-based encryption & much more [BGGHNSVV’14,. . .]

Why? no (computation on) hidden data, and/or no decryption of it.

Instead, compactness and special structure of FHE scheme are essential!

3 / 19

Applications of FHE

Less Surprising
▶ Private cloud computation

▶ Low-communication MPC

▶ Code obfuscation

▶ Quantum FHE, etc. etc.

Unexpected (to me at least)

1 Functional commitments for all functions [PPS’21,dCP’23]

2 Instantiating Fiat-Shamir & noninteractive ZK [CCHLRRW’19,PS’19]

3 Attribute-based encryption & much more [BGGHNSVV’14,. . .]

Why? no (computation on) hidden data, and/or no decryption of it.

Instead, compactness and special structure of FHE scheme are essential!

3 / 19

Applications of FHE

Less Surprising
▶ Private cloud computation

▶ Low-communication MPC

▶ Code obfuscation

▶ Quantum FHE, etc. etc.

Unexpected (to me at least)

1 Functional commitments for all functions [PPS’21,dCP’23]

2 Instantiating Fiat-Shamir & noninteractive ZK [CCHLRRW’19,PS’19]

3 Attribute-based encryption & much more [BGGHNSVV’14,. . .]

Why? no (computation on) hidden data, and/or no decryption of it.

Instead, compactness and special structure of FHE scheme are essential!

3 / 19

Background and the
Central Equation

4 / 19

Homomorphic Computation [GentrySahaiWaters’13,. . . ,deCastroP’23]

Theorem
▶ For any matrix A and (Boolean) function f , can compute Af .

Then for any input x, can compute “short” matrix Sf,x satisfying

(A− Encode(x)) · Sf,x = Af − Encode(f(x)).

A

Evalf Af

Eval’x Sf,x

Implies LWE-Based FHE

▶ Ciphertext A = B+ Encode(x) where
sB ≈ 0. Hides x by LWE.

▶ Homomorphic evaluation of f is
Af = B · Sf,x + Encode(f(x)).

▶ Decryption:

sAf = sB · Sf,x + s · Encode(f(x))
≈ s · Encode(f(x)).

5 / 19

Homomorphic Computation [GentrySahaiWaters’13,. . . ,deCastroP’23]

Theorem
▶ For any matrix A and (Boolean) function f , can compute Af .

Then for any input x, can compute “short” matrix Sf,x satisfying

(A− Encode(x)) · Sf,x = Af − Encode(f(x)).

A

Evalf Af

Eval’x Sf,x

Implies LWE-Based FHE

▶ Ciphertext A = B+ Encode(x) where
sB ≈ 0. Hides x by LWE.

▶ Homomorphic evaluation of f is
Af = B · Sf,x + Encode(f(x)).

▶ Decryption:

sAf = sB · Sf,x + s · Encode(f(x))
≈ s · Encode(f(x)).

5 / 19

Homomorphic Computation [GentrySahaiWaters’13,. . . ,deCastroP’23]

Theorem
▶ For any matrix A and (Boolean) function f , can compute Af .

Then for any input x, can compute “short” matrix Sf,x satisfying

(A− Encode(x)) · Sf,x = Af − Encode(f(x)).

A

Evalf Af

Eval’x Sf,x

Implies LWE-Based FHE

▶ Ciphertext A = B+ Encode(x) where
sB ≈ 0. Hides x by LWE.

▶ Homomorphic evaluation of f is
Af = B · Sf,x + Encode(f(x)).

▶ Decryption:

sAf = sB · Sf,x + s · Encode(f(x))
≈ s · Encode(f(x)).

5 / 19

Homomorphic Computation [GentrySahaiWaters’13,. . . ,deCastroP’23]

Theorem
▶ For any matrix A and (Boolean) function f , can compute Af .

Then for any input x, can compute “short” matrix Sf,x satisfying

(A− Encode(x)) · Sf,x = Af − Encode(f(x)).

A

Evalf Af

Eval’x Sf,x

Implies LWE-Based FHE

▶ Ciphertext A = B+ Encode(x) where
sB ≈ 0. Hides x by LWE.

▶ Homomorphic evaluation of f is
Af = B · Sf,x + Encode(f(x)).

▶ Decryption:

sAf = sB · Sf,x + s · Encode(f(x))
≈ s · Encode(f(x)).

5 / 19

Homomorphic Computation Internals
Goal

(A− Encode(x)) · Sf,x = Af − Encode(f(x))

How It’s Done

▶ Encode(x) = x⊗G where G−1(Z) is short and G ·G−1(Z) = Z,∀Z.
By composition, suffices to handle negation, +, ×.

▶ Negation: define Sneg = −I and Aneg = A · Sneg = −A.

▶ Addition: define S+ = [II] and A+ = A · S+ = A1 +A2. Then

([A1 | A2]− [x1G | x2G]) · S+ = A+ − (x1 + x2)G.

▶ Multiplication: define S×,x1 = [G
−1(A2)
x1I

] and A× = A1 ·G−1(A2):

([A1 | A2]− [x1G | x2G]) · S×,x1 = A× − x1x2G.

6 / 19

Homomorphic Computation Internals
Goal

(A− Encode(x)) · Sf,x = Af − Encode(f(x))

How It’s Done

▶ Encode(x) = x⊗G where G−1(Z) is short and G ·G−1(Z) = Z,∀Z.
By composition, suffices to handle negation, +, ×.

▶ Negation: define Sneg = −I and Aneg = A · Sneg = −A.

▶ Addition: define S+ = [II] and A+ = A · S+ = A1 +A2. Then

([A1 | A2]− [x1G | x2G]) · S+ = A+ − (x1 + x2)G.

▶ Multiplication: define S×,x1 = [G
−1(A2)
x1I

] and A× = A1 ·G−1(A2):

([A1 | A2]− [x1G | x2G]) · S×,x1 = A× − x1x2G.

6 / 19

Homomorphic Computation Internals
Goal

(A− Encode(x)) · Sf,x = Af − Encode(f(x))

How It’s Done

▶ Encode(x) = x⊗G where G−1(Z) is short and G ·G−1(Z) = Z,∀Z.
By composition, suffices to handle negation, +, ×.

▶ Negation: define Sneg = −I and Aneg = A · Sneg = −A.

▶ Addition: define S+ = [II] and A+ = A · S+ = A1 +A2. Then

([A1 | A2]− [x1G | x2G]) · S+ = A+ − (x1 + x2)G.

▶ Multiplication: define S×,x1 = [G
−1(A2)
x1I

] and A× = A1 ·G−1(A2):

([A1 | A2]− [x1G | x2G]) · S×,x1 = A× − x1x2G.

6 / 19

Homomorphic Computation Internals
Goal

(A− Encode(x)) · Sf,x = Af − Encode(f(x))

How It’s Done

▶ Encode(x) = x⊗G where G−1(Z) is short and G ·G−1(Z) = Z,∀Z.
By composition, suffices to handle negation, +, ×.

▶ Negation: define Sneg = −I and Aneg = A · Sneg = −A.

▶ Addition: define S+ = [II] and A+ = A · S+ = A1 +A2. Then

([A1 | A2]− [x1G | x2G]) · S+ = A+ − (x1 + x2)G.

▶ Multiplication: define S×,x1 = [G
−1(A2)
x1I

] and A× = A1 ·G−1(A2):

([A1 | A2]− [x1G | x2G]) · S×,x1 = A× − x1x2G.

6 / 19

Homomorphic Computation Internals
Goal

(A− Encode(x)) · Sf,x = Af − Encode(f(x))

How It’s Done

▶ Encode(x) = x⊗G where G−1(Z) is short and G ·G−1(Z) = Z,∀Z.
By composition, suffices to handle negation, +, ×.

▶ Negation: define Sneg = −I and Aneg = A · Sneg = −A.

▶ Addition: define S+ = [II] and A+ = A · S+ = A1 +A2. Then

([A1 | A2]− [x1G | x2G]) · S+ = A+ − (x1 + x2)G.

▶ Multiplication: define S×,x1 = [G
−1(A2)
x1I

] and A× = A1 ·G−1(A2):

([A1 | A2]− [x1G | x2G]) · S×,x1 = A× − x1x2G.

6 / 19

Functional Commitments

7 / 19

Functional Commitments [LibertRamannaYung’16]

Comf Cf

pp

Openxi πf,xi

Verify

xi, yi

acc/rej

|Cf |, |πf,xi
| ≪ |f |

8 / 19

Functional Commitments [LibertRamannaYung’16]

Comf Cf

pp

Openxi πf,xi

Verify

xi, yi

acc/rej

|Cf |, |πf,xi
| ≪ |f |

8 / 19

Functional Commitments [LibertRamannaYung’16]

Comf Cf

pp

Openxi πf,xi

Verify

xi, yi

acc/rej

|Cf |, |πf,xi
| ≪ |f |

8 / 19

Functional Commitments [LibertRamannaYung’16]

Comf Cf

pp

Openxi πf,xi

Verify

xi, yi

acc/rej

|Cf |, |πf,xi
| ≪ |f |

Applications

▶ Specializations: vector/key-value/polynomial/linear commitments
[LY’10,KZG’10,LRY’16,BBF’19]

▶ Verifiable outsourced storage/data structures [BGV’11,PSTY’13]

▶ Accumulators, updateable ZK sets/databases [BdM’93,MRK’03,Lis’05]

▶ Outsourced committed programs [GSW’23]

▶ And much more. . . [CPSZ’18,BFS’20,BDFG’21,. . .]
8 / 19

Functional Commitments [LibertRamannaYung’16]

Comf Cf

pp

Openxi πf,xi

Verify

xi, yi

acc/rej

|Cf |, |πf,xi
| ≪ |f |

Basic Security Properties
▶ Evaluation binding: infeasible to find C∗, x∗, y∗0 ̸= y∗1, π

∗
0, π

∗
1 s.t.

Verify(pp, C∗, x∗, y∗b , π
∗
b) = acc for b ∈ {0, 1}. (No hiding required!)

▶ Target binding: same, but for honestly generated Cf .

▶ Zero knowledge: Cf and πf,xi
reveal nothing except for xi, f(xi).

8 / 19

Functional Commitments [LibertRamannaYung’16]

Comf Cf

pp

Openxi πf,xi

Verify

xi, yi

acc/rej

|Cf |, |πf,xi
| ≪ |f |

Basic Security Properties
▶ Evaluation binding: infeasible to find C∗, x∗, y∗0 ̸= y∗1, π

∗
0, π

∗
1 s.t.

Verify(pp, C∗, x∗, y∗b , π
∗
b) = acc for b ∈ {0, 1}. (No hiding required!)

▶ Target binding: same, but for honestly generated Cf .

▶ Zero knowledge: Cf and πf,xi
reveal nothing except for xi, f(xi).

8 / 19

Functional Commitments [LibertRamannaYung’16]

Comf Cf

pp

Openxi πf,xi

Verify

xi, yi

acc/rej

|Cf |, |πf,xi
| ≪ |f |

Basic Security Properties
▶ Evaluation binding: infeasible to find C∗, x∗, y∗0 ̸= y∗1, π

∗
0, π

∗
1 s.t.

Verify(pp, C∗, x∗, y∗b , π
∗
b) = acc for b ∈ {0, 1}. (No hiding required!)

▶ Target binding: same, but for honestly generated Cf .

▶ Zero knowledge: Cf and πf,xi
reveal nothing except for xi, f(xi).

8 / 19

Functional Commitments [LibertRamannaYung’16]

Comf Cf

pp

Openxi πf,xi

Verify

xi, yi

acc/rej

|Cf |, |πf,xi
| ≪ |f |

Constructions
▶ Were limited to ‘linearizable’ functions, or relied on non-falsifiable

assumptions (SNARGs for NP)

▶ All functions from SIS, but needs online authority to generate
‘opening keys’ using trapdoor for pp [PPS’21]

▶ All functions from SIS, with transparent setup: public-coin pp [dCP’23]

8 / 19

Functional Commitments [LibertRamannaYung’16]

Comf Cf

pp

Openxi πf,xi

Verify

xi, yi

acc/rej

|Cf |, |πf,xi
| ≪ |f |

Constructions
▶ Were limited to ‘linearizable’ functions, or relied on non-falsifiable

assumptions (SNARGs for NP)

▶ All functions from SIS, but needs online authority to generate
‘opening keys’ using trapdoor for pp [PPS’21]

▶ All functions from SIS, with transparent setup: public-coin pp [dCP’23]

8 / 19

Functional Commitments [LibertRamannaYung’16]

Comf Cf

pp

Openxi πf,xi

Verify

xi, yi

acc/rej

|Cf |, |πf,xi
| ≪ |f |

Constructions
▶ Were limited to ‘linearizable’ functions, or relied on non-falsifiable

assumptions (SNARGs for NP)

▶ All functions from SIS, but needs online authority to generate
‘opening keys’ using trapdoor for pp [PPS’21]

▶ All functions from SIS, with transparent setup: public-coin pp [dCP’23]

8 / 19

Functional Commitments from SIS [deCastroPeikert’23]

Comf Cf

pp

Openxi πf,xi

Verify

xi, yi

A

Evalf Af

Eval’x Sf,x

9 / 19

Functional Commitments from SIS [deCastroPeikert’23]

Comf Cf

pp

Openxi πf,xi

Verify

xi, yi

A

Evalf Af

Eval’x Sf,x

9 / 19

Functional Commitments from SIS [deCastroPeikert’23]

Comf Cf

pp

Openxi πf,xi

Verify

xi, yi

A

Evalf Af

Eval’x Sf,x

Verification ≡ Central Equation

(A− Encode(x∗)) · S∗ ?
= A∗ − Encode(y∗)

Evaluation Binding from SIS
▶ For commitment A∗, valid proofs at x∗ for y∗0 ̸= y∗1 imply:

(A− Encode(x∗)) · (S∗
0 − S∗

1) = Encode(y∗0 − y∗1).

▶ RHS has short nonzero column =⇒ solves SIS for A− Encode(x∗).

9 / 19

Functional Commitments from SIS [deCastroPeikert’23]

Comf Cf

pp

Openxi πf,xi

Verify

xi, yi

A

Evalf Af

Eval’x Sf,x

Verification ≡ Central Equation

(A− Encode(x∗)) · S∗ ?
= A∗ − Encode(y∗)

Evaluation Binding from SIS
▶ For commitment A∗, valid proofs at x∗ for y∗0 ̸= y∗1 imply:

(A− Encode(x∗)) · (S∗
0 − S∗

1) = Encode(y∗0 − y∗1).

▶ RHS has short nonzero column =⇒ solves SIS for A− Encode(x∗).

9 / 19

Functional Commitments from SIS [deCastroPeikert’23]

Comf Cf

pp

Openxi πf,xi

Verify

xi, yi

A

Evalf Af

Eval’x Sf,x

Verification ≡ Central Equation

(A− Encode(x∗)) · S∗ ?
= A∗ − Encode(y∗)

Evaluation Binding from SIS
▶ For commitment A∗, valid proofs at x∗ for y∗0 ̸= y∗1 imply:

(A− Encode(x∗)) · (S∗
0 − S∗

1) = Encode(y∗0 − y∗1).

▶ RHS has short nonzero column =⇒ solves SIS for A− Encode(x∗).
9 / 19

Functional Commitments from SIS [deCastroPeikert’23]

Comf Cf

pp

Openxi πf,xi

Verify

xi, yi

A

Evalf Af

Eval’x Sf,x

Bonus Features
▶ Efficient specializations to vector/key-value/linear/polynomial

commitments via precomputation and linearity:

f(x) =
∑
x̄

f(x̄) · Eqx̄(x).

▶ Stateless updates by composition: Af → Ag◦f , Sf,x ·Sg,f(x) = Sg◦f,x
▶ ZK (w/target binding) via Eval privacy and preimage sampling.

9 / 19

Functional Commitments from SIS [deCastroPeikert’23]

Comf Cf

pp

Openxi πf,xi

Verify

xi, yi

A

Evalf Af

Eval’x Sf,x

Bonus Features
▶ Efficient specializations to vector/key-value/linear/polynomial

commitments via precomputation and linearity:

f(x) =
∑
x̄

f(x̄) · Eqx̄(x).

▶ Stateless updates by composition: Af → Ag◦f , Sf,x ·Sg,f(x) = Sg◦f,x

▶ ZK (w/target binding) via Eval privacy and preimage sampling.

9 / 19

Functional Commitments from SIS [deCastroPeikert’23]

Comf Cf

pp

Openxi πf,xi

Verify

xi, yi

A

Evalf Af

Eval’x Sf,x

Bonus Features
▶ Efficient specializations to vector/key-value/linear/polynomial

commitments via precomputation and linearity:

f(x) =
∑
x̄

f(x̄) · Eqx̄(x).

▶ Stateless updates by composition: Af → Ag◦f , Sf,x ·Sg,f(x) = Sg◦f,x
▶ ZK (w/target binding) via Eval privacy and preimage sampling.

9 / 19

Functional Commitments: Final Thoughts

▶ Unlike FHE, no hiding or ‘structure’ needed: public f and x, no sk,
unstructured pp = A.

▶ Compactness is key: single small Af = Eval(A, f) supports many
solutions Sf,x = Eval’(A, f, x) to

(A− Encode(x)) · Sf,x = Af − Encode(f(x)).

▶ Similar ideas in [WeeWu’23] FCs, but:
⋆ structured CRS (private-key setup);
⋆ swapped Prove/Verify burden;
⋆ smaller proofs;
⋆ based on new, ad-hoc BASIS assumption.

10 / 19

Functional Commitments: Final Thoughts

▶ Unlike FHE, no hiding or ‘structure’ needed: public f and x, no sk,
unstructured pp = A.

▶ Compactness is key: single small Af = Eval(A, f) supports many
solutions Sf,x = Eval’(A, f, x) to

(A− Encode(x)) · Sf,x = Af − Encode(f(x)).

▶ Similar ideas in [WeeWu’23] FCs, but:
⋆ structured CRS (private-key setup);
⋆ swapped Prove/Verify burden;
⋆ smaller proofs;
⋆ based on new, ad-hoc BASIS assumption.

10 / 19

Functional Commitments: Final Thoughts

▶ Unlike FHE, no hiding or ‘structure’ needed: public f and x, no sk,
unstructured pp = A.

▶ Compactness is key: single small Af = Eval(A, f) supports many
solutions Sf,x = Eval’(A, f, x) to

(A− Encode(x)) · Sf,x = Af − Encode(f(x)).

▶ Similar ideas in [WeeWu’23] FCs, but:
⋆ structured CRS (private-key setup);
⋆ swapped Prove/Verify burden;
⋆ smaller proofs;
⋆ based on new, ad-hoc BASIS assumption.

10 / 19

Instantiating Fiat-Shamir and
Noninteractive Zero Knowledge

11 / 19

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano’88]

▶ Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson’86,NguyenOngVadhan’06]

▶ Interaction is undesirable. What if. . . ?

P (x,w)

crs

V (x)

π
acc/rej

▶ With random/reference string, NP ⊆ NIZK assuming:

⋆ quadratic residuosity/trapdoor permutations [BDMP’88,FLS’90]
⋆ hard pairing-friendly groups [GrothOstrovskySahai’06]
⋆ indistinguishability obfuscation [SahaiWaters’14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, . . .

▶ Open [PW’08,PV’08]: ‘post-quantum’ foundation like lattices/LWE

Theorem [CCHLRRW’19,PS’19]

▶ NP ⊆ NIZK assuming LWE.

12 / 19

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano’88]

▶ Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson’86,NguyenOngVadhan’06]

▶ Interaction is undesirable. What if. . . ?

P (x,w)

crs

V (x)

π
acc/rej

▶ With random/reference string, NP ⊆ NIZK assuming:

⋆ quadratic residuosity/trapdoor permutations [BDMP’88,FLS’90]
⋆ hard pairing-friendly groups [GrothOstrovskySahai’06]
⋆ indistinguishability obfuscation [SahaiWaters’14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, . . .

▶ Open [PW’08,PV’08]: ‘post-quantum’ foundation like lattices/LWE

Theorem [CCHLRRW’19,PS’19]

▶ NP ⊆ NIZK assuming LWE.

12 / 19

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano’88]

▶ Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson’86,NguyenOngVadhan’06]

▶ Interaction is undesirable. What if. . . ?

P (x,w)

crs

V (x)

π
acc/rej

▶ In ‘plain’ model, NIZK = BPP (trivial).

⋆ quadratic residuosity/trapdoor permutations [BDMP’88,FLS’90]
⋆ hard pairing-friendly groups [GrothOstrovskySahai’06]
⋆ indistinguishability obfuscation [SahaiWaters’14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, . . .

▶ Open [PW’08,PV’08]: ‘post-quantum’ foundation like lattices/LWE

Theorem [CCHLRRW’19,PS’19]

▶ NP ⊆ NIZK assuming LWE.

12 / 19

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano’88]

▶ Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson’86,NguyenOngVadhan’06]

▶ Interaction is undesirable. What if. . . ?

P (x,w) crs V (x)

π
acc/rej

▶ With random/reference string, NP ⊆ NIZK assuming:

⋆ quadratic residuosity/trapdoor permutations [BDMP’88,FLS’90]
⋆ hard pairing-friendly groups [GrothOstrovskySahai’06]
⋆ indistinguishability obfuscation [SahaiWaters’14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, . . .

▶ Open [PW’08,PV’08]: ‘post-quantum’ foundation like lattices/LWE

Theorem [CCHLRRW’19,PS’19]

▶ NP ⊆ NIZK assuming LWE.

12 / 19

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano’88]

▶ Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson’86,NguyenOngVadhan’06]

▶ Interaction is undesirable. What if. . . ?

P (x,w) crs V (x)

π
acc/rej

▶ With random/reference string, NP ⊆ NIZK assuming:
⋆ quadratic residuosity/trapdoor permutations [BDMP’88,FLS’90]
⋆ hard pairing-friendly groups [GrothOstrovskySahai’06]
⋆ indistinguishability obfuscation [SahaiWaters’14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, . . .

▶ Open [PW’08,PV’08]: ‘post-quantum’ foundation like lattices/LWE

Theorem [CCHLRRW’19,PS’19]

▶ NP ⊆ NIZK assuming LWE.

12 / 19

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano’88]

▶ Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson’86,NguyenOngVadhan’06]

▶ Interaction is undesirable. What if. . . ?

P (x,w) crs V (x)

π
acc/rej

▶ With random/reference string, NP ⊆ NIZK assuming:
⋆ quadratic residuosity/trapdoor permutations [BDMP’88,FLS’90]
⋆ hard pairing-friendly groups [GrothOstrovskySahai’06]
⋆ indistinguishability obfuscation [SahaiWaters’14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, . . .

▶ Open [PW’08,PV’08]: ‘post-quantum’ foundation like lattices/LWE

Theorem [CCHLRRW’19,PS’19]

▶ NP ⊆ NIZK assuming LWE.

12 / 19

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano’88]

▶ Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson’86,NguyenOngVadhan’06]

▶ Interaction is undesirable. What if. . . ?

P (x,w) crs V (x)

π
acc/rej

▶ With random/reference string, NP ⊆ NIZK assuming:
⋆ quadratic residuosity/trapdoor permutations [BDMP’88,FLS’90]
⋆ hard pairing-friendly groups [GrothOstrovskySahai’06]
⋆ indistinguishability obfuscation [SahaiWaters’14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, . . .

▶ Open [PW’08,PV’08]: ‘post-quantum’ foundation like lattices/LWE

Theorem [CCHLRRW’19,PS’19]

▶ NP ⊆ NIZK assuming LWE.

12 / 19

(Noninteractive) Zero Knowledge [BlumDeSantisMicaliPersiano’88]

▶ Assuming OWFs, every NP language has a ZK proof/argument.
[GoldreichMicaliWigderson’86,NguyenOngVadhan’06]

▶ Interaction is undesirable. What if. . . ?

P (x,w) crs V (x)

π
acc/rej

▶ With random/reference string, NP ⊆ NIZK assuming:
⋆ quadratic residuosity/trapdoor permutations [BDMP’88,FLS’90]
⋆ hard pairing-friendly groups [GrothOstrovskySahai’06]
⋆ indistinguishability obfuscation [SahaiWaters’14]

Apps: signatures, CCA-secure encryption, cryptocurrencies, . . .

▶ Open [PW’08,PV’08]: ‘post-quantum’ foundation like lattices/LWE

Theorem [CCHLRRW’19,PS’19]

▶ NP ⊆ NIZK assuming LWE.

12 / 19

Fiat-Shamir Transform [FiatShamir’86]

▶ A way to remove interaction from a public-coin protocol, via hashing:

P V

α

β ← {0, 1}m

γ

PFS
H V FS

α [β = H(α)] γ

▶ Completeness and ZK (for honest V) are easy to preserve.

For ZK, simulate α, β, γ; then ‘program’ H so that H(α) = β.

Key Challenge: Soundness

1 Are there α, γ with β = H(α) that fool V ?

2 Can a cheating P ∗ find such values, given H? (Proof vs. argument.)

13 / 19

Fiat-Shamir Transform [FiatShamir’86]

▶ A way to remove interaction from a public-coin protocol, via hashing:

P V

α

β ← {0, 1}m

γ

PFS
H V FS

α [β = H(α)] γ

▶ Completeness and ZK (for honest V) are easy to preserve.

For ZK, simulate α, β, γ; then ‘program’ H so that H(α) = β.

Key Challenge: Soundness

1 Are there α, γ with β = H(α) that fool V ?

2 Can a cheating P ∗ find such values, given H? (Proof vs. argument.)

13 / 19

Fiat-Shamir Transform [FiatShamir’86]

▶ A way to remove interaction from a public-coin protocol, via hashing:

P V

α

β ← {0, 1}m

γ

PFS
H V FS

α [β = H(α)] γ

▶ Completeness and ZK (for honest V) are easy to preserve.

For ZK, simulate α, β, γ; then ‘program’ H so that H(α) = β.

Key Challenge: Soundness

1 Are there α, γ with β = H(α) that fool V ?

2 Can a cheating P ∗ find such values, given H? (Proof vs. argument.)

13 / 19

Fiat-Shamir Transform [FiatShamir’86]

▶ A way to remove interaction from a public-coin protocol, via hashing:

P V

α

β ← {0, 1}m

γ

PFS
H V FS

α [β = H(α)] γ

▶ Completeness and ZK (for honest V) are easy to preserve.

For ZK, simulate α, β, γ; then ‘program’ H so that H(α) = β.

Key Challenge: Soundness

1 Are there α, γ with β = H(α) that fool V ?

2 Can a cheating P ∗ find such values, given H? (Proof vs. argument.)

13 / 19

Fiat-Shamir Transform [FiatShamir’86]

▶ A way to remove interaction from a public-coin protocol, via hashing:

P V

α

β ← {0, 1}m

γ

PFS
H V FS

α [β = H(α)] γ

▶ Completeness and ZK (for honest V) are easy to preserve.

For ZK, simulate α, β, γ; then ‘program’ H so that H(α) = β.

Key Challenge: Soundness

1 Are there α, γ with β = H(α) that fool V ?

2 Can a cheating P ∗ find such values, given H? (Proof vs. argument.)

13 / 19

Fiat-Shamir Transform [FiatShamir’86]

▶ A way to remove interaction from a public-coin protocol, via hashing:

P V

α

β ← {0, 1}m

γ

PFS
H V FS

α [β = H(α)] γ

▶ Completeness and ZK (for honest V) are easy to preserve.

For ZK, simulate α, β, γ; then ‘program’ H so that H(α) = β.

Key Challenge: Soundness

1 Are there α, γ with β = H(α) that fool V ?

2 Can a cheating P ∗ find such values, given H? (Proof vs. argument.)

13 / 19

Fiat-Shamir, Soundly [KRR’17,CCRR’18,HL’18,CCHLRRW’19]

PFS
H V FS

α [β = H(α)] γ

▶ A correlation-intractable [CGH’98] hash family H suffices:

Given H ← H, hard/impossible to find α s.t. (α,H(α)) ∈ R.

Relation R = {(α, β) : ∃ γ that fools V }.

Theorem [HL’18,CCHLRRW’19]

▶ NP ⊆ NIZK assuming a hash family that is CI for all bounded circuits:

can’t find α s.t. H(α) = C(α), |C| ≤ S := poly.

▶ Proof idea: for HamCyclem protocol [FLS’90], each potential α has

≤ 1 ‘fooling challenge’ β ∈ {0, 1}m for which V can be fooled.

Such β = Csk(α) using a trapdoor sk for decrypting α.

14 / 19

Fiat-Shamir, Soundly [KRR’17,CCRR’18,HL’18,CCHLRRW’19]

PFS
H V FS

α [β = H(α)] γ

▶ A correlation-intractable [CGH’98] hash family H suffices:

Given H ← H, hard/impossible to find α s.t. (α,H(α)) ∈ R.

Relation R = {(α, β) : ∃ γ that fools V }.

Theorem [HL’18,CCHLRRW’19]

▶ NP ⊆ NIZK assuming a hash family that is CI for all bounded circuits:

can’t find α s.t. H(α) = C(α), |C| ≤ S := poly.

▶ Proof idea: for HamCyclem protocol [FLS’90], each potential α has

≤ 1 ‘fooling challenge’ β ∈ {0, 1}m for which V can be fooled.

Such β = Csk(α) using a trapdoor sk for decrypting α.

14 / 19

Fiat-Shamir, Soundly [KRR’17,CCRR’18,HL’18,CCHLRRW’19]

PFS
H V FS

α [β = H(α)] γ

▶ A correlation-intractable [CGH’98] hash family H suffices:

Given H ← H, hard/impossible to find α s.t. (α,H(α)) ∈ R.

Relation R = {(α, β) : ∃ γ that fools V }.

Theorem [HL’18,CCHLRRW’19]

▶ NP ⊆ NIZK assuming a hash family that is CI for all bounded circuits:

can’t find α s.t. H(α) = C(α), |C| ≤ S := poly.

▶ Proof idea: for HamCyclem protocol [FLS’90], each potential α has

≤ 1 ‘fooling challenge’ β ∈ {0, 1}m for which V can be fooled.

Such β = Csk(α) using a trapdoor sk for decrypting α.

14 / 19

Fiat-Shamir, Soundly [KRR’17,CCRR’18,HL’18,CCHLRRW’19]

PFS
H V FS

α [β = H(α)] γ

▶ A correlation-intractable [CGH’98] hash family H suffices:

Given H ← H, hard/impossible to find α s.t. (α,H(α)) ∈ R.

Relation R = {(α, β) : ∃ γ that fools V }.

Theorem [HL’18,CCHLRRW’19]

▶ NP ⊆ NIZK assuming a hash family that is CI for all bounded circuits:

can’t find α s.t. H(α) = C(α), |C| ≤ S := poly.

▶ Proof idea: for HamCyclem protocol [FLS’90], each potential α has

≤ 1 ‘fooling challenge’ β ∈ {0, 1}m for which V can be fooled.

Such β = Csk(α) using a trapdoor sk for decrypting α.

14 / 19

Fiat-Shamir, Soundly [KRR’17,CCRR’18,HL’18,CCHLRRW’19]

PFS
H V FS

α [β = H(α)] γ

▶ A correlation-intractable [CGH’98] hash family H suffices:

Given H ← H, hard/impossible to find α s.t. (α,H(α)) ∈ R.

Relation R = {(α, β) : ∃ γ that fools V }.

Theorem [HL’18,CCHLRRW’19]

▶ NP ⊆ NIZK assuming a hash family that is CI for all bounded circuits:

can’t find α s.t. H(α) = C(α), |C| ≤ S := poly.

▶ Proof idea: for HamCyclem protocol [FLS’90], each potential α has

≤ 1 ‘fooling challenge’ β ∈ {0, 1}m for which V can be fooled.

Such β = Csk(α) using a trapdoor sk for decrypting α.

14 / 19

Obtaining Correlation Intractability [CCRR’18,HL’18,CCH+’19,PS’19]

CI Hash Family Construction [PS’19]

▶ CI for all bounded circuits C via homomorphic computation,
assuming SIS/LWE

▶ As in [CCH+’19], two ‘intractability modes’:

1 Computational (SIS): given H ← H, hard to find α s.t. H(α) = C(α).

Yields statistically ZK argument in uniform random string model.

2 Statistical (LWE): over H ← HC
c
≈ H, such α do not exist w.h.p.

Yields computationally ZK proof in structured reference string model.

15 / 19

Obtaining Correlation Intractability [CCRR’18,HL’18,CCH+’19,PS’19]

CI Hash Family Construction [PS’19]

▶ CI for all bounded circuits C via homomorphic computation,
assuming SIS/LWE

▶ As in [CCH+’19], two ‘intractability modes’:

1 Computational (SIS): given H ← H, hard to find α s.t. H(α) = C(α).

Yields statistically ZK argument in uniform random string model.

2 Statistical (LWE): over H ← HC
c
≈ H, such α do not exist w.h.p.

Yields computationally ZK proof in structured reference string model.

15 / 19

Obtaining Correlation Intractability [CCRR’18,HL’18,CCH+’19,PS’19]

CI Hash Family Construction [PS’19]

▶ CI for all bounded circuits C via homomorphic computation,
assuming SIS/LWE

▶ As in [CCH+’19], two ‘intractability modes’:

1 Computational (SIS): given H ← H, hard to find α s.t. H(α) = C(α).

Yields statistically ZK argument in uniform random string model.

2 Statistical (LWE): over H ← HC
c
≈ H, such α do not exist w.h.p.

Yields computationally ZK proof in structured reference string model.

15 / 19

CI Hashing from Homomorphic Computation

▶ Goal: CI for size-S circuits with vector outputs

Hash Key: uniformly random matrix A (that can ‘hide’ a circuit C)

Evaluation: on input α,

1 Compute Aα = Eval(A, Uα) where Uα(C) := C(α).

2 ‘Inertify’: let aα = Aα · s∗, where Encode(y) · s∗ = y
for all y.

3 Output aα.

Key Point: aα can ‘hide’ a circuit output y from the same domain,
letting the two values ‘mix’/cancel out.
Can reason about more than the hidden y alone.

16 / 19

CI Hashing from Homomorphic Computation

▶ Goal: CI for size-S circuits with vector outputs

Hash Key: uniformly random matrix A (that can ‘hide’ a circuit C)

Evaluation: on input α,

1 Compute Aα = Eval(A, Uα) where Uα(C) := C(α).

2 ‘Inertify’: let aα = Aα · s∗, where Encode(y) · s∗ = y
for all y.

3 Output aα.

Key Point: aα can ‘hide’ a circuit output y from the same domain,
letting the two values ‘mix’/cancel out.
Can reason about more than the hidden y alone.

16 / 19

CI Hashing from Homomorphic Computation

▶ Goal: CI for size-S circuits with vector outputs

Hash Key: uniformly random matrix A (that can ‘hide’ a circuit C)

Evaluation: on input α,

1 Compute Aα = Eval(A, Uα) where Uα(C) := C(α).

2 ‘Inertify’: let aα = Aα · s∗, where Encode(y) · s∗ = y
for all y.

3 Output aα.

Key Point: aα can ‘hide’ a circuit output y from the same domain,
letting the two values ‘mix’/cancel out.
Can reason about more than the hidden y alone.

16 / 19

CI Hashing from Homomorphic Computation

▶ Goal: CI for size-S circuits with vector outputs

Hash Key: uniformly random matrix A (that can ‘hide’ a circuit C)

Evaluation: on input α,

1 Compute Aα = Eval(A, Uα) where Uα(C) := C(α).

2 ‘Inertify’: let aα = Aα · s∗, where Encode(y) · s∗ = y
for all y.

3 Output aα.

Key Point: aα can ‘hide’ a circuit output y from the same domain,
letting the two values ‘mix’/cancel out.
Can reason about more than the hidden y alone.

16 / 19

CI Hashing from Homomorphic Computation

▶ Goal: CI for size-S circuits with vector outputs

Hash Key: uniformly random matrix A (that can ‘hide’ a circuit C)

Evaluation: on input α,

1 Compute Aα = Eval(A, Uα) where Uα(C) := C(α).

2 ‘Inertify’: let aα = Aα · s∗, where Encode(y) · s∗ = y
for all y.

3 Output aα.

Key Point: aα can ‘hide’ a circuit output y from the same domain,
letting the two values ‘mix’/cancel out.
Can reason about more than the hidden y alone.

16 / 19

CI Hashing from Homomorphic Computation

▶ Goal: CI for size-S circuits with vector outputs

Hash Key: uniformly random matrix A (that can ‘hide’ a circuit C)

Evaluation: on input α,

1 Compute Aα = Eval(A, Uα) where Uα(C) := C(α).

2 ‘Inertify’: let aα = Aα · s∗, where Encode(y) · s∗ = y
for all y.

3 Output aα.

Key Point: aα can ‘hide’ a circuit output y from the same domain,
letting the two values ‘mix’/cancel out.
Can reason about more than the hidden y alone.

16 / 19

Proof of Correlation Intractability from SIS/LWE

Hash Key: uniformly random matrix A.

Evaluation: H(α) := Aα · s∗ = aα

= C(α).

1 Consider any size-S circuit C with vector output.

2 Suppose that A, given hash key A, finds α s.t. H(α) = C(α).

3 Same holds for hash key A = B+ Encode(C), for uniform B.

Let Sα,C = Eval’(A, Uα, C). By the Central Equation,

B · Sα,C · s∗ = (A− Encode(C)) · Sα,C · s∗

= (Aα − Encode(C(α))) · s∗

= aα − C(α) = 0.

This solves SIS for instance B!

(Tweak: can make H(α) = C(α) impossible using LWE matrix B.)

17 / 19

Proof of Correlation Intractability from SIS/LWE

Hash Key: uniformly random matrix A.

Evaluation: H(α) := Aα · s∗ = aα = C(α).

1 Consider any size-S circuit C with vector output.

2 Suppose that A, given hash key A, finds α s.t. H(α) = C(α).

3 Same holds for hash key A = B+ Encode(C), for uniform B.

Let Sα,C = Eval’(A, Uα, C). By the Central Equation,

B · Sα,C · s∗ = (A− Encode(C)) · Sα,C · s∗

= (Aα − Encode(C(α))) · s∗

= aα − C(α) = 0.

This solves SIS for instance B!

(Tweak: can make H(α) = C(α) impossible using LWE matrix B.)

17 / 19

Proof of Correlation Intractability from SIS/LWE

Hash Key: uniformly random matrix A = B+ Encode(C).

Evaluation: H(α) := Aα · s∗ = aα = C(α).

1 Consider any size-S circuit C with vector output.

2 Suppose that A, given hash key A, finds α s.t. H(α) = C(α).

3 Same holds for hash key A = B+ Encode(C), for uniform B.

Let Sα,C = Eval’(A, Uα, C). By the Central Equation,

B · Sα,C · s∗ = (A− Encode(C)) · Sα,C · s∗

= (Aα − Encode(C(α))) · s∗

= aα − C(α) = 0.

This solves SIS for instance B!

(Tweak: can make H(α) = C(α) impossible using LWE matrix B.)

17 / 19

Proof of Correlation Intractability from SIS/LWE

Hash Key: uniformly random matrix A = B+ Encode(C).

Evaluation: H(α) := Aα · s∗ = aα = C(α).

1 Consider any size-S circuit C with vector output.

2 Suppose that A, given hash key A, finds α s.t. H(α) = C(α).

3 Same holds for hash key A = B+ Encode(C), for uniform B.

Let Sα,C = Eval’(A, Uα, C). By the Central Equation,

B · Sα,C · s∗ = (A− Encode(C)) · Sα,C · s∗

= (Aα − Encode(C(α))) · s∗

= aα − C(α) = 0.

This solves SIS for instance B!

(Tweak: can make H(α) = C(α) impossible using LWE matrix B.)

17 / 19

Proof of Correlation Intractability from SIS/LWE

Hash Key: uniformly random matrix A = B+ Encode(C).

Evaluation: H(α) := Aα · s∗ = aα = C(α).

1 Consider any size-S circuit C with vector output.

2 Suppose that A, given hash key A, finds α s.t. H(α) = C(α).

3 Same holds for hash key A = B+ Encode(C), for uniform B.

Let Sα,C = Eval’(A, Uα, C). By the Central Equation,

B · Sα,C · s∗ = (A− Encode(C)) · Sα,C · s∗

= (Aα − Encode(C(α))) · s∗

= aα − C(α) = 0.

This solves SIS for instance B!

(Tweak: can make H(α) = C(α) impossible using LWE matrix B.)

17 / 19

CI Hashing: Final Thoughts

▶ In security proof, hash key hides a trapdoor sk for homomorphically
computing the ‘fooling challenge’ β = Csk(α) in the ZK protocol.

Yet more power of homomorphic decryption! (Cf. ‘bootstrapping’)

▶ Hidden/computed data is never ‘opened’ in the construction!

Breaking CI
⇒ equating (public) hash value and (hidden) computed value
⇒ cancellation solves SIS via Eval’.

18 / 19

CI Hashing: Final Thoughts

▶ In security proof, hash key hides a trapdoor sk for homomorphically
computing the ‘fooling challenge’ β = Csk(α) in the ZK protocol.

Yet more power of homomorphic decryption! (Cf. ‘bootstrapping’)

▶ Hidden/computed data is never ‘opened’ in the construction!

Breaking CI
⇒ equating (public) hash value and (hidden) computed value
⇒ cancellation solves SIS via Eval’.

18 / 19

CI Hashing: Final Thoughts

▶ In security proof, hash key hides a trapdoor sk for homomorphically
computing the ‘fooling challenge’ β = Csk(α) in the ZK protocol.

Yet more power of homomorphic decryption! (Cf. ‘bootstrapping’)

▶ Hidden/computed data is never ‘opened’ in the construction!

Breaking CI
⇒ equating (public) hash value and (hidden) computed value
⇒ cancellation solves SIS via Eval’.

18 / 19

CI Hashing: Final Thoughts

▶ In security proof, hash key hides a trapdoor sk for homomorphically
computing the ‘fooling challenge’ β = Csk(α) in the ZK protocol.

Yet more power of homomorphic decryption! (Cf. ‘bootstrapping’)

▶ Hidden/computed data is never ‘opened’ in the construction!

Breaking CI
⇒ equating (public) hash value and (hidden) computed value
⇒ cancellation solves SIS via Eval’.

18 / 19

More Applications of Homomorphic Computation

▶ Attribute-based encryption [BGGHNSVV’14]

⋆ Homomorphic computation on the public attributes

▶ Predicate encryption (‘hidden-attribute ABE’) [GVW’15]

⋆ Two layers: HC on (public) FHE-encrypted attributes

▶ Fully homomorphic signatures [GVW’15]

⋆ Homomorphic computation on the public signed data

▶ Privately constrained PRFs [BKM’17,CC’17,BTVW’17,PS’18]

⋆ Homomorphic computation on the public PRF input

▶ . . . your next great idea!

Thanks! Questions?

19 / 19

More Applications of Homomorphic Computation

▶ Attribute-based encryption [BGGHNSVV’14]

⋆ Homomorphic computation on the public attributes

▶ Predicate encryption (‘hidden-attribute ABE’) [GVW’15]

⋆ Two layers: HC on (public) FHE-encrypted attributes

▶ Fully homomorphic signatures [GVW’15]

⋆ Homomorphic computation on the public signed data

▶ Privately constrained PRFs [BKM’17,CC’17,BTVW’17,PS’18]

⋆ Homomorphic computation on the public PRF input

▶ . . . your next great idea!

Thanks! Questions?

19 / 19

More Applications of Homomorphic Computation

▶ Attribute-based encryption [BGGHNSVV’14]

⋆ Homomorphic computation on the public attributes

▶ Predicate encryption (‘hidden-attribute ABE’) [GVW’15]

⋆ Two layers: HC on (public) FHE-encrypted attributes

▶ Fully homomorphic signatures [GVW’15]

⋆ Homomorphic computation on the public signed data

▶ Privately constrained PRFs [BKM’17,CC’17,BTVW’17,PS’18]

⋆ Homomorphic computation on the public PRF input

▶ . . . your next great idea!

Thanks! Questions?

19 / 19

More Applications of Homomorphic Computation

▶ Attribute-based encryption [BGGHNSVV’14]

⋆ Homomorphic computation on the public attributes

▶ Predicate encryption (‘hidden-attribute ABE’) [GVW’15]

⋆ Two layers: HC on (public) FHE-encrypted attributes

▶ Fully homomorphic signatures [GVW’15]

⋆ Homomorphic computation on the public signed data

▶ Privately constrained PRFs [BKM’17,CC’17,BTVW’17,PS’18]

⋆ Homomorphic computation on the public PRF input

▶ . . . your next great idea!

Thanks! Questions?

19 / 19

More Applications of Homomorphic Computation

▶ Attribute-based encryption [BGGHNSVV’14]

⋆ Homomorphic computation on the public attributes

▶ Predicate encryption (‘hidden-attribute ABE’) [GVW’15]

⋆ Two layers: HC on (public) FHE-encrypted attributes

▶ Fully homomorphic signatures [GVW’15]

⋆ Homomorphic computation on the public signed data

▶ Privately constrained PRFs [BKM’17,CC’17,BTVW’17,PS’18]

⋆ Homomorphic computation on the public PRF input

▶ . . . your next great idea!

Thanks! Questions?

19 / 19

More Applications of Homomorphic Computation

▶ Attribute-based encryption [BGGHNSVV’14]

⋆ Homomorphic computation on the public attributes

▶ Predicate encryption (‘hidden-attribute ABE’) [GVW’15]

⋆ Two layers: HC on (public) FHE-encrypted attributes

▶ Fully homomorphic signatures [GVW’15]

⋆ Homomorphic computation on the public signed data

▶ Privately constrained PRFs [BKM’17,CC’17,BTVW’17,PS’18]

⋆ Homomorphic computation on the public PRF input

▶ . . . your next great idea!

Thanks! Questions?

19 / 19

