An Efficient and Parallel Gaussian Sampler for Lattices

Chris Peikert
Georgia Tech

CRYPTO 2010

Lattice-Based Crypto

Lattice-Based Crypto

Lattice-Based Crypto

Lattice-Based Crypto

\checkmark Asymptotically efficient \& highly parallelizable

Lattice-Based Crypto

\checkmark Asymptotically efficient \& highly parallelizable
\checkmark Worst-case assumptions (\& quantum-resistant?)
[Ajtai'96,...]

Lattice-Based Crypto

\checkmark Asymptotically efficient \& highly parallelizable
\checkmark Worst-case assumptions (\& quantum-resistant?)
\checkmark Many rich applications:

* 'Hash-and-sign’ signatures
* (Hierarchical) IBE
* Fully homomorphic encryption
[GPV'08, CHKP'10, R'10, B'10]
[GPV'08, CHKP'10, ABB'10a, ABB'10b]
[G'09, SV'10, vDGHV'10]

Gaussian Sampling on Lattices

- Given 'good' basis B and center c, sample discrete Gaussian on \mathcal{L}

[${ }^{\prime} 933, R^{\prime} 03, A R \prime 04, M R \prime 04, \ldots$]

Gaussian Sampling on Lattices

- Given 'good' basis B and center c, sample discrete Gaussian on \mathcal{L}
* 'Zero-knowledge' operation: leaks no information about \mathbf{B} [GPV'08]

[B'93,R'03,AR'04,MR'04,...]

Gaussian Sampling on Lattices

- Given 'good' basis B and center c, sample discrete Gaussian on \mathcal{L}
* 'Zero-knowledge' operation: leaks no information about \mathbf{B} [GPV'08]

Crypto Applications

- 'Answering queries:' signing, (H)IBE key extraction, (NI)ZK

Gaussian Sampling on Lattices

- Given 'good' basis B and center c, sample discrete Gaussian on \mathcal{L}
* 'Zero-knowledge' operation: leaks no information about \mathbf{B} [GPV'08]

Crypto Applications

- 'Answering queries:' signing, (H)IBE key extraction, (NI)ZK
- Worst-case / average-case reductions
[GPV'08,P'09,LPR'10,G'10]

Gaussian Sampling on Lattices

- Given 'good' basis B and center c, sample discrete Gaussian on \mathcal{L}
* 'Zero-knowledge' operation: leaks no information about \mathbf{B} [GPV'08]

Crypto Applications

- 'Answering queries:' signing, (H)IBE key extraction, (NI)ZK
- Worst-case / average-case reductions
[GPV'08,P'09,LPR'10,G'10]
- Narrower Gaussian \Rightarrow smaller keys \Rightarrow more efficient schemes

The GPV Sampling Algorithm

- 'Nearest-plane' algorithm w/ randomized rounding [Babai'86,Klein'00]

The GPV Sampling Algorithm

- 'Nearest-plane' algorithm w/ randomized rounding [Babai'86,Klein'00]

The GPV Sampling Algorithm

- 'Nearest-plane' algorithm w/ randomized rounding [Babai'86,Klein'00]

The GPV Sampling Algorithm

- 'Nearest-plane' algorithm w/ randomized rounding [Babai'86,Klein'00]

The GPV Sampling Algorithm

- 'Nearest-plane' algorithm w/ randomized rounding [Babai'86,Klein'00]

Good News, and Bad News...

The GPV Sampling Algorithm

- 'Nearest-plane' algorithm w/ randomized rounding [Babai'86,Klein'00]

Good News, and Bad News...

\checkmark Narrow: width $\approx \max \left\|\widetilde{\mathbf{b}_{i}}\right\|=\max$ dist between adjacent 'planes'

The GPV Sampling Algorithm

- 'Nearest-plane' algorithm w/ randomized rounding [Babai'86,Klein'00]

Good News, and Bad News...

\checkmark Narrow: width $\approx \max \left\|\widetilde{\mathbf{b}}_{i}\right\|=\max$ dist between adjacent 'planes'
x Not efficient: time $=\Omega\left(n^{3}\right)$, high-precision real arithmetic

The GPV Sampling Algorithm

- 'Nearest-plane' algorithm w/ randomized rounding [Babai'86,Klein'00]

Good News, and Bad News...

\checkmark Narrow: width $\approx \max \left\|\widetilde{\mathbf{b}}_{i}\right\|=\max$ dist between adjacent 'planes'
x Not efficient: time $=\Omega\left(n^{3}\right)$, high-precision real arithmetic
x Inherently sequential: n adaptive iterations

The GPV Sampling Algorithm

- 'Nearest-plane' algorithm w/ randomized rounding [Babai'86,Klein'00]

Good News, and Bad News...

\checkmark Narrow: width $\approx \max \left\|\widetilde{\mathbf{b}}_{i}\right\|=\max$ dist between adjacent 'planes'
x Not efficient: time $=\Omega\left(n^{3}\right)$, high-precision real arithmetic
x Inherently sequential: n adaptive iterations
x No efficiency improvement for ring-based crypto [NTRU'98,M'02,...]

Our Contributions

(1) A new Gaussian sampling algorithm for lattices.

Our Contributions

(1) A new Gaussian sampling algorithm for lattices.

Key Features

* Simple \& efficient: $\approx 4 n^{2}$ online adds and mults, modulo a small integer

Our Contributions

(1) A new Gaussian sampling algorithm for lattices.

Key Features

* Simple \& efficient: $\approx 4 n^{2}$ online adds and mults, modulo a small integer Even better: $\tilde{O}(n)$ time for ring-based schemes!

Our Contributions

(1) A new Gaussian sampling algorithm for lattices.

Key Features

* Simple \& efficient: $\approx 4 n^{2}$ online adds and mults, modulo a small integer Even better: $\tilde{O}(n)$ time for ring-based schemes!
* Fully parallelizable: n^{2} / P operations on each of $P \leq n^{2}$ processors

Our Contributions

(1) A new Gaussian sampling algorithm for lattices.

Key Features

* Simple \& efficient: $\approx 4 n^{2}$ online adds and mults, modulo a small integer Even better: $\tilde{O}(n)$ time for ring-based schemes!
* Fully parallelizable: n^{2} / P operations on each of $P \leq n^{2}$ processors
* High quality: for crypto lattices, same* Gaussian width as GPV

Our Contributions

(1) A new Gaussian sampling algorithm for lattices.

Key Features

* Simple \& efficient: $\approx 4 n^{2}$ online adds and mults, modulo a small integer Even better: $\tilde{O}(n)$ time for ring-based schemes!
* Fully parallelizable: n^{2} / P operations on each of $P \leq n^{2}$ processors
* High quality: for crypto lattices, same* Gaussian width as GPV
(2) A general 'convolution theorem' for discrete Gaussians.

Other applications: LWE error distribution, bi-deniable encryption [OP'10], ...

A First Attempt

- [Babai'86] 'simple rounding:' $\quad \mathbf{c} \mapsto \mathbf{B} \cdot\left\lfloor\mathbf{B}^{-1} \cdot \mathbf{c}\right\rceil . \quad$ (Fast \& Parallel!)

A First Attempt

- [Babai'86] 'simple rounding:' $\mathbf{c} \mapsto \mathbf{B} \cdot\left\lfloor\mathbf{B}^{-1} \cdot \mathbf{c}\right\rceil$. (Fast \& Paralle!!)

A First Attempt

- [Babai'86] ‘simple rounding:' $\quad \mathbf{c} \mapsto \mathbf{B} \cdot\left\lfloor\mathbf{B}^{-1} \cdot \mathbf{c}\right\rceil$. (Fast \& Parallel!)
- Deterministic rounding is insecure [NguyenRegev'06] ...

A First Attempt

- [Babai'86] ‘simple rounding:' $\quad \mathbf{c} \mapsto \mathbf{B} \cdot\left\lfloor\mathbf{B}^{-1} \cdot \mathbf{c}\right\rceil_{\$} . \quad$ (Fast \& Parallel!)
- Deterministic rounding is insecure [NguyenRegev'06] ...
... but what about randomized rounding?

A First Attempt

- [Babai'86] 'simple rounding:' $\quad \mathbf{c} \mapsto \mathbf{B} \cdot\left\lfloor\mathbf{B}^{-1} \cdot \mathbf{c}\right\rceil_{\$} \quad$ (Fast \& Parallel!)
- Deterministic rounding is insecure [NguyenRegev'06] ...
... but what about randomized rounding?

A First Attempt

- [Babai'86] 'simple rounding:' $\quad \mathbf{c} \mapsto \mathbf{B} \cdot\left\lfloor\mathbf{B}^{-1} \cdot \mathbf{c}\right\rceil_{\$} . \quad$ (Fast \& Parallel!)
- Deterministic rounding is insecure [NguyenRegev'06] ...
... but what about randomized rounding?

- Non-spherical distribution: has covariance

$$
\Sigma:=\operatorname{Exp}_{\mathbf{x}}\left[\mathbf{x} \cdot \mathbf{x}^{t}\right] \approx \mathbf{B} \cdot \mathbf{B}^{t} .
$$

A First Attempt

- [Babai'86] 'simple rounding:' $\quad \mathbf{c} \mapsto \mathbf{B} \cdot\left\lfloor\mathbf{B}^{-1} \cdot \mathbf{c}\right\rceil_{\$} . \quad$ (Fast \& Parallel!)
- Deterministic rounding is insecure [NguyenRegev'06] ...
... but what about randomized rounding?

- Non-spherical distribution: has covariance

$$
\Sigma:=\operatorname{Exp}_{\mathbf{x}}\left[\mathbf{x} \cdot \mathbf{x}^{t}\right] \approx \mathbf{B} \cdot \mathbf{B}^{t} .
$$

Covariance can be measured - and it leaks B! (up to rotation)

Inspiration: Some Facts About Gaussians

(1) Continuous Gaussian \Longleftrightarrow positive definite covariance matrix Σ. (pos def: $\mathbf{u}^{t} \Sigma \mathbf{u}>0$ for all unit \mathbf{u}.)

Inspiration: Some Facts About Gaussians

(1) Continuous Gaussian \Longleftrightarrow positive definite covariance matrix Σ. (pos def: $\mathbf{u}^{t} \Sigma \mathbf{u}>0$ for all unit \mathbf{u}.)
Spherical Gaussian \Longleftrightarrow covariance $s^{2} \mathbf{I}$.

Inspiration: Some Facts About Gaussians

(1) Continuous Gaussian \Longleftrightarrow positive definite covariance matrix Σ.
(pos def: $\mathbf{u}^{t} \Sigma \mathbf{u}>0$ for all unit \mathbf{u}.)
Spherical Gaussian \Longleftrightarrow covariance $s^{2} \mathbf{I}$.
(2) Convolution of Gaussians:

Inspiration: Some Facts About Gaussians

(1) Continuous Gaussian \Longleftrightarrow positive definite covariance matrix Σ.
(pos def: $\mathbf{u}^{t} \Sigma \mathbf{u}>0$ for all unit \mathbf{u}.)
Spherical Gaussian \Longleftrightarrow covariance $s^{2} \mathbf{I}$.
(2) Convolution of Gaussians:

$$
\Sigma_{1} \quad+\quad \Sigma_{2} \quad=\quad \Sigma=s^{2} \mathbf{I}
$$

(3) Given Σ_{1}, how small can s be? For $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}$,

Inspiration: Some Facts About Gaussians

(1) Continuous Gaussian \Longleftrightarrow positive definite covariance matrix Σ.
(pos def: $\mathbf{u}^{t} \Sigma \mathbf{u}>0$ for all unit \mathbf{u}.)
Spherical Gaussian \Longleftrightarrow covariance $s^{2} \mathbf{I}$.
(2) Convolution of Gaussians:

$$
\Sigma_{1} \quad+\quad \Sigma_{2} \quad=\quad \Sigma=s^{2} \mathbf{I}
$$

(3) Given Σ_{1}, how small can s be? For $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}$,

$$
\mathbf{u}^{t} \Sigma_{2} \mathbf{u}=s^{2}-\mathbf{u}^{t} \Sigma_{1} \mathbf{u}>0 \Longleftrightarrow s^{2}>\max \lambda_{i}\left(\Sigma_{1}\right)
$$

Inspiration: Some Facts About Gaussians

(1) Continuous Gaussian \Longleftrightarrow positive definite covariance matrix Σ.
(pos def: $\mathbf{u}^{t} \Sigma \mathbf{u}>0$ for all unit \mathbf{u}.)
Spherical Gaussian \Longleftrightarrow covariance $s^{2} \mathbf{I}$.
(2) Convolution of Gaussians:

$$
\Sigma_{1} \quad+\quad \Sigma_{2} \quad=\quad \Sigma=s^{2} \mathbf{I}
$$

(3) Given Σ_{1}, how small can s be? For $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}$,

$$
\mathbf{u}^{t} \Sigma_{2} \mathbf{u}=s^{2}-\mathbf{u}^{t} \Sigma_{1} \mathbf{u}>0 \Longleftrightarrow s^{2}>\max \lambda_{i}\left(\Sigma_{1}\right)
$$

When $\Sigma_{1}=\mathbf{B} \mathbf{B}^{t}$, any $s>s_{1}(\mathbf{B}):=$ max singular val of \mathbf{B}.

Our New Sampling Algorithm

- Given basis B, center \mathbf{c}, and $s>s_{1}(\mathbf{B})$,

$$
\Sigma_{1}=\mathbf{B} \mathbf{B}^{t}
$$

Our New Sampling Algorithm

- Given basis B, center \mathbf{c}, and $s>s_{1}(\mathbf{B})$,
(1) Perturb \mathbf{c} with covariance $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}$

$$
\Sigma_{1}=\mathbf{B} \mathbf{B}^{t} \quad \Sigma_{2}
$$

Our New Sampling Algorithm

- Given basis B, center \mathbf{c}, and $s>s_{1}(\mathbf{B})$,
(1) Perturb \mathbf{c} with covariance $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}$
(2) Randomly round: return $\mathbf{B} \cdot\left\lfloor\mathbf{B}^{-1} \cdot \mathbf{c}^{\prime}\right\rceil_{\$}$

$\Sigma_{1}=\mathbf{B B}^{t} \quad \Sigma_{2}$

Our New Sampling Algorithm

- Given basis B, center \mathbf{c}, and $s>s_{1}(\mathbf{B})$,
(1) Perturb \mathbf{c} with covariance $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}$
(2) Randomly round: return $\mathbf{B} \cdot\left\lfloor\mathbf{B}^{-1} \cdot \mathbf{c}^{\prime}\right\rceil_{\$}$

$\Sigma_{1}=\mathbf{B} \mathbf{B}^{t}$
Σ_{2}
-
-

'Convolution' Theorem

Algorithm generates the discrete, spherical Gaussian over \mathcal{L}.

Our New Sampling Algorithm

- Given basis B, center \mathbf{c}, and $s>s_{1}(\mathbf{B})$,
(1) Perturb \mathbf{c} with covariance $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}$
(2) Randomly round: return $\mathbf{B} \cdot\left\lfloor\mathbf{B}^{-1} \cdot \mathbf{c}^{\prime}\right\rceil_{\$}$

$\Sigma_{1}=\mathbf{B} \mathbf{B}^{t}$
Σ_{2}

'Convolution' Theorem

Algorithm generates the discrete, spherical Gaussian over \mathcal{L}. (NB: not really a convolution, since step 2 depends on step 1.
Proof uses 'smoothing parameter' [MR'04] to reduce to an actual convolution.)

Our New Sampling Algorithm

- Given basis B, center \mathbf{c}, and $s>s_{1}(\mathbf{B})$,
(1) Perturb \mathbf{c} with covariance $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}$
(2) Randomly round: return $\mathbf{B} \cdot\left\lfloor\mathbf{B}^{-1} \cdot \mathbf{c}^{\prime}\right\rceil_{\$}$

$$
\Sigma_{1}=\mathbf{B} \mathbf{B}^{t} \quad \Sigma_{2}
$$

Optimizing for Crypto Applications

(1) Precompute offline: $\Sigma_{2}, \mathbf{B}^{-1}$, perturbation(s)

Our New Sampling Algorithm

- Given basis B, center \mathbf{c}, and $s>s_{1}(\mathbf{B})$,
(1) Perturb \mathbf{c} with covariance $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}$
(2) Randomly round: return $\mathbf{B} \cdot\left\lfloor\mathbf{B}^{-1} \cdot \mathbf{c}^{\prime}\right\rceil_{\$}$

$$
\Sigma_{1}=\mathbf{B B}^{t} \quad \Sigma_{2}
$$

Optimizing for Crypto Applications

(1) Precompute offline: $\Sigma_{2}, \mathbf{B}^{-1}$, perturbation(s)
(2) Use integer perturbations and arithmetic

Our New Sampling Algorithm

- Given basis B, center \mathbf{c}, and $s>s_{1}(\mathbf{B})$,
(1) Perturb \mathbf{c} with covariance $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}$
(2) Randomly round: return $\mathbf{B} \cdot\left\lfloor\mathbf{B}^{-1} \cdot \mathbf{c}^{\prime}\right\rceil_{\$}$

$$
\Sigma_{1}=\mathbf{B} \mathbf{B}^{t}
$$

$$
\Sigma_{2}
$$

Optimizing for Crypto Applications

(1) Precompute offline: $\Sigma_{2}, \mathbf{B}^{-1}$, perturbation(s)
(2) Use integer perturbations and arithmetic
(3) Exploit ' q-ary' lattices: mod q operations, offline rounding

Our New Sampling Algorithm

- Given basis B, center \mathbf{c}, and $s>s_{1}(\mathbf{B})$,
(1) Perturb \mathbf{c} with covariance $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}$
(2) Randomly round: return $\mathbf{B} \cdot\left\lfloor\mathbf{B}^{-1} \cdot \mathbf{c}^{\prime}\right\rceil_{\$}$

$$
\Sigma_{1}=\mathbf{B} \mathbf{B}^{t}
$$

$$
\Sigma_{2}
$$

Optimizing for Crypto Applications

(1) Precompute offline: $\Sigma_{2}, \mathbf{B}^{-1}$, perturbation(s)
(2) Use integer perturbations and arithmetic
(3) Exploit ' q-ary' lattices: mod q operations, offline rounding
(4) Batch multi-sample using fast matrix mult

Our New Sampling Algorithm

- Given basis B, center \mathbf{c}, and $s>s_{1}(\mathbf{B})$,
(1) Perturb \mathbf{c} with covariance $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}$
(2) Randomly round: return $\mathbf{B} \cdot\left\lfloor\mathbf{B}^{-1} \cdot \mathbf{c}^{\prime}\right\rceil_{\$}$

$$
\Sigma_{1}=\mathbf{B} \mathbf{B}^{t}
$$

$$
\Sigma_{2}
$$

Some Perspective

- Resembles 'perturbation' heuristic of NTRUSign [HHG+'03]. But. . .

Our New Sampling Algorithm

- Given basis B, center \mathbf{c}, and $s>s_{1}(\mathbf{B})$,
(1) Perturb \mathbf{c} with covariance $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}$
(2) Randomly round: return $\mathbf{B} \cdot\left\lfloor\mathbf{B}^{-1} \cdot \mathbf{c}^{\prime}\right\rceil_{\$}$

Our New Sampling Algorithm

- Given basis B, center \mathbf{c}, and $s>s_{1}(\mathbf{B})$,
(1) Perturb \mathbf{c} with covariance $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}$
(2) Randomly round: return $\mathbf{B} \cdot\left\lfloor\mathbf{B}^{-1} \cdot \mathbf{c}^{\prime}\right\rceil_{\$}$

How Does the Quality Compare?

Narrower is Better!

- GPV: width $\approx\|\widetilde{\mathbf{B}}\|:=$ max Gram-Schmidt length of $\mathbf{B} \leq \max \left\|\mathbf{b}_{i}\right\|$
- New: width $\approx s_{1}(\mathbf{B}):=$ max singular value of \mathbf{B}

How Does the Quality Compare?

Narrower is Better!

- GPV: width $\approx\|\widetilde{\mathbf{B}}\|:=$ max Gram-Schmidt length of $\mathbf{B} \leq \max \left\|\mathbf{b}_{i}\right\|$
- New: width $\approx s_{1}(\mathbf{B}):=$ max singular value of \mathbf{B}

Bad News, and Good News...

How Does the Quality Compare?

Narrower is Better!

- GPV: width $\approx\|\widetilde{\mathbf{B}}\|:=$ max Gram-Schmidt length of $\mathbf{B} \leq \max \left\|\mathbf{b}_{i}\right\|$
- New: width $\approx s_{1}(\mathbf{B}):=$ max singular value of \mathbf{B}

Bad News, and Good News...

x In general,

$$
\|\widetilde{\mathbf{B}}\| \leq s_{1}(\mathbf{B}) \leq n \cdot\|\widetilde{\mathbf{B}}\|
$$

(Both inequalities are tight.)

How Does the Quality Compare?

Narrower is Better!

- GPV: width $\approx\|\widetilde{\mathbf{B}}\|:=$ max Gram-Schmidt length of $\mathbf{B} \leq \max \left\|\mathbf{b}_{i}\right\|$
- New: width $\approx s_{1}(\mathbf{B}):=$ max singular value of \mathbf{B}

Bad News, and Good News...

x In general,

$$
\|\widetilde{\mathbf{B}}\| \leq s_{1}(\mathbf{B}) \leq n \cdot\|\widetilde{\mathbf{B}}\|
$$

(Both inequalities are tight.)
\checkmark We show: for random cryptographic bases [AP'09,CHKP'10],

$$
\|\widetilde{\mathbf{B}}\| \approx s_{1}(\mathbf{B})
$$

because bases are 'well-rounded.'

Epilogue

- In an upcoming work [MP'10], we tackle basis generation and Gaussian sampling jointly.
\Rightarrow Simple constructions, optimal constants, practical algorithms

Epilogue

- In an upcoming work [MP'10], we tackle basis generation and Gaussian sampling jointly.
\Rightarrow Simple constructions, optimal constants, practical algorithms
- Implementation: 1000s of samples / sec at moderate security.
(Without batching or parallelism!)

Epilogue

- In an upcoming work [MP'10], we tackle basis generation and Gaussian sampling jointly.
\Rightarrow Simple constructions, optimal constants, practical algorithms
- Implementation: 1000s of samples / sec at moderate security.
(Without batching or parallelism!)
\Rightarrow Essentially as fast as the public-key operation.
\Rightarrow Bottleneck: n^{2} cost inherent to general lattices.
Ring-based schemes will be much faster!

Epilogue

- In an upcoming work [MP'10], we tackle basis generation and Gaussian sampling jointly.
\Rightarrow Simple constructions, optimal constants, practical algorithms
- Implementation: 1000s of samples / sec at moderate security. (Without batching or parallelism!)
\Rightarrow Essentially as fast as the public-key operation.
\Rightarrow Bottleneck: n^{2} cost inherent to general lattices.
Ring-based schemes will be much faster!
- Stay tuned...

Thanks!

