An Efficient and Parallel
Gaussian Sampler for Lattices
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v Asymptotically efficient & highly parallelizable
v Worst-case assumptions (& quantum-resistant?) [Ajtai’96,. . .]

v Many rich applications:

* ‘Hash-and-sign’ signatures [GPV’08, CHKP’10, R’10, B'10]
* (Hierarchical) IBE [GPV’08, CHKP’10, ABB’10a, ABB’10b]
* Fully homomorphic encryption [G’09, SV’10, vDGHV’10]
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Gaussian Sampling on Lattices
» Given ‘good’ basis B and center ¢, sample discrete Gaussian on £
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Gaussian Sampling on Lattices

> Given ‘good’ basis B and center ¢, sample discrete Gaussian on £
* ‘Zero-knowledge’ operation: leaks no information about B [GPV'08]
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Crypto Applications
> ‘Answering queries:’ signing, (H)IBE key extraction, (NI)ZK

> Worst-case / average-case reductions [GPV’08,P’09,LPR’10,G’10]

» Narrower Gaussian = smaller keys = more efficient schemes
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The GPV Sampling Algorithm
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The GPV Sampling Algorithm
> ‘Nearest-plane’ algorithm w/ randomized rounding [Babai'86,Klein’00]
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The GPV Sampling Algorithm
> ‘Nearest-plane’ algorithm w/ randomized rounding [Babai'86,Klein’00]
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The GPV Sampling Algorithm
> ‘Nearest-plane’ algorithm w/ randomized rounding [Babai'86,Klein’00]
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The GPV Sampling Algorithm

> ‘Nearest-plane’ algorithm w/ randomized rounding [Babai'86,Klein’00]
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The GPV Sampling Algorithm
> ‘Nearest-plane’ algorithm w/ randomized rounding [Babai'86,Klein’00]
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Good News, and Bad News...

v Narrow: width ~ max||b;|| = max dist between adjacent ‘planes’

X Not efficient: |time = Q(n?) |, high-precision real arithmetic

X Inherently sequential: n adaptive iterations

X No efficiency improvement for ring-based crypto [NTRU98,M02,...]

v
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Our Contributions

© A new Gaussian sampling algorithm for lattices.

Key Features

* Simple & efficient: ~ 4n? online adds and mults, modulo a small integer

Even better: O(n) time for ring-based schemes!
* Fully parallelizable: n*/P operations on each of P < n? processors

* High quality: for crypto lattices, same* Gaussian width as GPV

@ A general ‘convolution theorem’ for discrete Gaussians.

Other applications: LWE error distribution,
bi-deniable encryption [OP’10], ...
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A First Attempt

(Fast & Parallel!)

> [Babai'g6] ‘simple rounding:’ ¢ +— B - |[B~! . ¢]s.
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.but what about randomized rounding?

» Non-spherical distribution: has covariance

Y :=Exp[x-x'| B B

Covariance can be measured — and it leaks B! (up to rotation)
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Inspiration: Some Facts About Gaussians

© Continuous Gaussian <= positive definite covariance matrix 3.

Spherical Gaussian <= covariance s’ 1.

(pos def: u’ X u > 0 for all unit u.)

@ Convolution of Gaussians:

-~

b}

N

+ 3

= Y =51

® Given X, how small can s be? For ¥, := s*1— %,

uou =

S —uSiu>0 —

5 > max )\,(El)

When £, = BB/, any‘s > 51(B) := max singular val of B.‘
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Our New Sampling Algorithm

» Given basis B, center ¢, and s > 5;(B),
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‘Convolution’ Theorem
Algorithm generates the discrete, spherical Gaussian over L.

(NB: not really a convolution, since step 2 depends on step 1.
Proof uses ‘smoothing parameter’ [MR’04] to reduce to an actual convolution.)
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Optimizing for Crypto Applications

© Precompute offline: £,, B~!, perturbation(s)

@ Use integer perturbations and arithmetic

©® Exploit ‘g-ary’ lattices: mod g operations, offline rounding

@ Batch multi-sample using fast matrix mult
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Some Perspective
> Resembles ‘perturbation’ heuristic of NTRUSign [HHG+03]. But. ..

» NTRU perturbations are deterministic & inherently online. And...

» They may be insecure anyway [MPSW’10].
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How Does the Quality Compare?

Narrower is Better!
» GPV: width ~ ||B|| := max Gram-Schmidt length of B < max||b;]|

» New: width ~ s;(B) := max singular value of B

Bad News, and Good News...

X In general,

Bl < si(B) < n-[B|
(Both inequalities are tight.)

v/ We show: for random cryptographic bases [AP’09,CHKP’10],

IBI| ~ si(B)

because bases are ‘well-rounded.
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> In an upcoming work [MP’10], we tackle basis generation and
Gaussian sampling jointly.

= Simple constructions, optimal constants, practical algorithms

> Implementation: | 1000s of samples/sec\at moderate security.
(Without batching or parallelism!)

= Essentially as fast as the public-key operation.
= Bottleneck: n* cost inherent to general lattices.
Ring-based schemes will be much faster!

> Stay tuned ...
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