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Lattice-Based Crypto

L ⊂ Rn

b1

b2

=⇒

(Images courtesy xkcd.org)

4 Asymptotically efficient & highly parallelizable

4 Worst-case assumptions (& quantum-resistant?) [Ajtai’96,. . . ]

4 Many rich applications:
F ‘Hash-and-sign’ signatures [GPV’08, CHKP’10, R’10, B’10]
F (Hierarchical) IBE [GPV’08, CHKP’10, ABB’10a, ABB’10b]
F Fully homomorphic encryption [G’09, SV’10, vDGHV’10]
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Gaussian Sampling on Lattices
I Given ‘good’ basis B and center c, sample discrete Gaussian on L

F ‘Zero-knowledge’ operation: leaks no information about B [GPV’08]

cb1

b2

[B’93,R’03,AR’04,MR’04,. . . ]

Crypto Applications
I ‘Answering queries:’ signing, (H)IBE key extraction, (NI)ZK

I Worst-case / average-case reductions [GPV’08,P’09,LPR’10,G’10]

I Narrower Gaussian⇒ smaller keys⇒ more efficient schemes
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The GPV Sampling Algorithm
I ‘Nearest-plane’ algorithm w/ randomized rounding [Babai’86,Klein’00]

cb1

b2

Good News, and Bad News. . .

4 Narrow: width ≈ max‖b̃i‖ = max dist between adjacent ‘planes’

7 Not efficient: time = Ω(n3) , high-precision real arithmetic

7 Inherently sequential: n adaptive iterations

7 No efficiency improvement for ring-based crypto [NTRU’98,M’02,. . . ]
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Our Contributions

1 A new Gaussian sampling algorithm for lattices.

Key Features

F Simple & efficient: ≈ 4n2 online adds and mults, modulo a small integer

Even better: Õ(n) time for ring-based schemes!

F Fully parallelizable: n2/P operations on each of P ≤ n2 processors

F High quality: for crypto lattices, same∗ Gaussian width as GPV

2 A general ‘convolution theorem’ for discrete Gaussians.

Other applications: LWE error distribution,
bi-deniable encryption [OP’10], . . .
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A First Attempt
I [Babai’86] ‘simple rounding:’ c 7→ B · bB−1 · ce

$

. (Fast & Parallel!)

I Deterministic rounding is insecure [NguyenRegev’06] . . .

. . . but what about randomized rounding?

c
b1

b2

I Non-spherical distribution: has covariance

Σ := Exp
x

[
x · xt] ≈ B · Bt.

Covariance can be measured — and it leaks B! (up to rotation)
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Inspiration: Some Facts About Gaussians
1 Continuous Gaussian⇐⇒ positive definite covariance matrix Σ.

(pos def: ut Σ u > 0 for all unit u.)

Spherical Gaussian⇐⇒ covariance s2 I.

2 Convolution of Gaussians:

+ =

Σ1 + Σ2 = Σ = s2 I

3 Given Σ1, how small can s be? For Σ2 := s2 I− Σ1,

ut Σ2 u = s2 − ut Σ1 u > 0 ⇐⇒ s2 > maxλi(Σ1)

When Σ1 = B Bt, any s > s1(B) := max singular val of B.
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Our New Sampling Algorithm
I Given basis B, center c, and s > s1(B),

1 Perturb c with covariance Σ2 := s2 I− Σ1

2 Randomly round: return B · bB−1 · c′e$

Σ1 = B Bt

Σ2

cb1

b2
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Optimizing for Crypto Applications

1 Precompute offline: Σ2, B−1, perturbation(s)

2 Use integer perturbations and arithmetic

3 Exploit ‘q-ary’ lattices: mod q operations, offline rounding

4 Batch multi-sample using fast matrix mult
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Some Perspective
I Resembles ‘perturbation’ heuristic of NTRUSign [HHG+’03]. But. . .

I NTRU perturbations are deterministic & inherently online. And. . .

I They may be insecure anyway [MPSW’10].
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How Does the Quality Compare?

Narrower is Better!
I GPV: width ≈ ‖B̃‖ := max Gram-Schmidt length of B ≤ max‖bi‖

I New: width ≈ s1(B) := max singular value of B

Bad News, and Good News. . .

7 In general,
‖B̃‖ ≤ s1(B) ≤ n · ‖B̃‖

(Both inequalities are tight.)

4 We show: for random cryptographic bases [AP’09,CHKP’10],

‖B̃‖ ≈ s1(B)

because bases are ‘well-rounded.’
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Epilogue
I In an upcoming work [MP’10], we tackle basis generation and

Gaussian sampling jointly.

⇒ Simple constructions, optimal constants, practical algorithms

I Implementation: 1000s of samples / sec at moderate security.
(Without batching or parallelism!)

⇒ Essentially as fast as the public-key operation.

⇒ Bottleneck: n2 cost inherent to general lattices.

Ring-based schemes will be much faster!

I Stay tuned . . .

Thanks!
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