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Agenda

1 A homomorphic encryption tool: ring switching

2 An application: (practical!) bootstrapping FHE in Õ(λ) time
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Part 1:

Ring Switching
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Notation

I Let R(`)/ · · · /R(2)/R(1)/Z be a tower of cyclotomic ring extensions.

I Let’s go slower.
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Cyclotomic Rings

I Define Ok = Z[ζk], where ζk has order k (so ζkk = 1).

F O1 = Z[1] = Z. Z-basis {1}.
F O2 = Z[−1] = Z.

F O4
∼= Z[i] ∼= Z[X]/(1 +X2), Z-basis {1, ζ4}.

F O3 = Z[ζ3] ∼= Z[X]/(1 +X +X2), Z-basis {1, ζ3}.
F O5 = Z[ζ5] ∼= Z[X]/(1 +X +X2 +X3 +X4), Z-basis {1, ζ, ζ2, ζ3}.

Facts

1 For prime p, Op
∼= Z[X]/(1 +X + · · ·+Xp−1︸ ︷︷ ︸

Φp(X)

); {1, ζ, . . . , ζp−2}.

2 For prime power pe, Ope
∼= Z[X]/(Φp(X

pe−1
)); {1, ζ, . . . , ζϕ(pe)−1}.

3 For distinct primes p1, p2, . . .,

Op
e1
1 p

e2
2 ···
∼= Z[X1, X2, . . .]/(Φp1(X

p
e1−1
1

1 ),Φp2(X
p
e2−1
2

2 ), . . .).
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Cyclotomic Extensions

I If k | k′, can view R = Z[ζk] as a subring of R′ = Z[ζk′ ], via

ζk 7→ ζ
(k′/k)
k′ . (still has order k)

I Example: tower of quadratic extensions Ok/Ok/2/ · · · /O4/Z:

ζ2
k = ζk/2 Ok = Ok/2[ζk] Ok/2-basis B′k = {1, ζk}

ζ2
8 = ζ4 O8 = O4[ζ8] O4-basis B′8 = {1, ζ8}

ζ2
4 = ζ2 O4 = O2[ζ4] O2-basis B′4 = {1, ζ4}

ζ2
2 = 1 O2 = Z[ζ2] = Z Z-basis B′2 = {1}

I “Product” Z-basis of Ok:

Bk := B′k ·Bk/2 = B′k ·B′k/2 · · ·B
′
2

= {1, ζ, ζ2, . . . , ζk/2−1}.
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Cyclotomic Extensions: Trace

I If k | k′, can view R = Z[ζk] as a subring of R′ = Z[ζk′ ], via

ζk 7→ ζ
(k′/k)
k′ . (still has order k)

I The trace Tr = TrR′/R : R′ → R is a “universal” R-linear function:

1 R-linear: for any rj ∈ R and r′j ∈ R′,

Tr(r1 · r′1 + r2 · r′2) = r1 · Tr(r′1) + r2 · Tr(r′2).

2 Universal: any R-linear function L : R′ → R can be written as

L(x) = Tr(r′L · x)

for some r′L depending only on L.

I Any R-linear function is uniquely defined by its values on an
R-basis {b′j} of R′, and vice versa:

Tr

(∑
j

rj · b′j
)

=
∑
j

rj · Tr(b′j).
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Homomorphic Encryption over Rings [LPR’10,BV’11,BGV’12]

I Let R := Ok, e.g., Z[X]/(1 +Xk/2) for k a power of 2.

Denote Rq := R/qR = Zq[X]/(1 +Xk/2) for any integer q.

I Plaintext ring is R2, ciphertext ring is Rq for some q � 2.

I Encryption of µ ∈ R2 under s ∈ R is some c = (c0, c1) ∈ R2
q satisfying

c0 + c1 · s ≈ q
2µ (mod qR).

F Thanks to this relation we can do + and × homomorphically.

F Semantic security follows from hardness of ring-LWE over R
⇐ (quantum) worst-case hardness of approx-SVP on ideal lattices in R.

I “Unpacked” plaintext µ ∈ Z2 ⊆ R2 (just a constant polynomial).

“Packed” plaintext uses more of R2, e.g., multiple “slots” [SV’11].
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Homomorphic Encryption over Rings [LPR’10,BV’11,BGV’12]

I Let R := Ok, e.g., Z[X]/(1 +Xk/2) for k a power of 2.

Denote Rq := R/qR = Zq[X]/(1 +Xk/2) for any integer q.
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Ring Switching

Theorem [GHPS’12]

I For any cyclotomic rings R′/R, we can homomorphically evaluate

F any R-linear L : R′
2 → R2 (i.e., map µ′ ∈ R′

2 to µ = L(µ′) ∈ R2)

F by mapping the ciphertext c′ over R′ to some c over R,

F assuming hardness of R-LWE.
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F any R-linear L : R′

2 → R2 (i.e., map µ′ ∈ R′
2 to µ = L(µ′) ∈ R2)

F by mapping the ciphertext c′ over R′ to some c over R,

F assuming hardness of R-LWE.

So What?
I “Fresh” ciphertexts need small noise ⇒ large ring degree for security.

I Noise increases as we do homomorphic operations, so we can securely
switch to smaller ring dimension, yielding smaller ciphertexts and
faster operations.

I Also important for minimizing complexity of decryption for
bootstrapping (cf. “dimension reduction” [BV’11]).

I We’ll see another cool application later...
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Theorem: R′-LWE with secret in R is as hard as R-LWE.
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Part 2:

Bootstrapping
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Fully Homomorphic Encryption [RAD’78,Gen’09]

I FHE lets you do this:

µ Eval
(
f , µ

)
f(µ)

where |f(µ)| and decryption time don’t depend on |f |.

A cryptographic “holy grail.”

I Naturally occurring schemes are “somewhat homomorphic” (SHE):
they can only evaluate functions of an a priori bounded depth.

µ Eval
(
f, µ

)
f(µ) Eval

(
g, f(µ)

)
g(f(µ))
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Bootstrapping: SHE → FHE [Gen’09]

I Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext µ , allowing further homomorphic operations.

sk Eval
(
f(·) = Dec( · , µ )

)
µ

F The only known way of obtaining unbounded FHE.

F Goal: Efficiency! Minimize depth d and size s of decryption “circuit.”

F Most efficient SHEs [BGV’12] can evaluate in time Õ(d · s · λ).

I Intensive study, many techniques
[G’09,GH’11a,GH’11b,GHS’12b,AP’13,BV’14,AP’14], but
still very inefficient – the main bottleneck in FHE, by far.

I Prior asymptotically efficient methods on “packed” ciphertexts
[GHS’12a,GHS’12b] are very complex, and are practically worse than
asymptotically slower methods.

12 / 22



Bootstrapping: SHE → FHE [Gen’09]

I Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext µ , allowing further homomorphic operations.

sk Eval
(
f(·) = Dec( · , µ )

)
µ

F The only known way of obtaining unbounded FHE.

F Goal: Efficiency! Minimize depth d and size s of decryption “circuit.”

F Most efficient SHEs [BGV’12] can evaluate in time Õ(d · s · λ).
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Milestones in Bootstrapping

[Gen’09]: Õ(λ4) runtime

[BGV’12]: Õ(λ2) runtime, or Õ(λ) amortized over λ ciphertexts

Mainly via improved SHE homomorphic capacity.

Amortized method requires “exotic” rings, emulating Z2

arithmetic in Zp.

[GHS’12b]: Õ(λ) runtime, for “packed” plaintexts. Declare victory?

Dec circuit

mod Φm(X)

[GHS’12a]
compiler

Bootstrapping
Procedure

7 Log-depth mod-Φm(X) circuit is complex, w/large hidden constants.

77 [GHS’12a] compiler is very complex, w/large polylog overhead.
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[BGV’12]: Õ(λ2) runtime, or Õ(λ) amortized over λ ciphertexts

Mainly via improved SHE homomorphic capacity.

Amortized method requires “exotic” rings, emulating Z2

arithmetic in Zp.
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Our Results

Practical bootstrapping algorithms with quasi-linear Õ(λ) runtimes:

1 For “unpacked” (single-bit) plaintexts:

4 Extremely simple!

4 Uses only power-of-2 cyclotomic rings (fast, easy to implement).

F Cf. [BGV’12]: Õ(λ) amortized across λ ciphertexts, exotic rings.

2 For “packed” (many-bit) plaintexts:

F Based on an enhancement of ring-switching to non-subrings.

4 Seems quite practical, avoids both main inefficiencies of [GHS’12b]:
no homomorphic reduction modulo Φm(X), no generic compilation.

4 Special purpose, completely algebraic description – no “circuits.”

4 Decouples the algebraic structure of SHE plaintext ring from the ring
structure needed for bootstrapping.
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F Cf. [BGV’12]: Õ(λ) amortized across λ ciphertexts, exotic rings.

2 For “packed” (many-bit) plaintexts:

F Based on an enhancement of ring-switching to non-subrings.

4 Seems quite practical, avoids both main inefficiencies of [GHS’12b]:
no homomorphic reduction modulo Φm(X), no generic compilation.

4 Special purpose, completely algebraic description – no “circuits.”

4 Decouples the algebraic structure of SHE plaintext ring from the ring
structure needed for bootstrapping.

14 / 22



Our Results

Practical bootstrapping algorithms with quasi-linear Õ(λ) runtimes:
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Bootstrapping Packed Ciphertexts: Overview

1 Prepare: view c as a “noiseless” encryption of plaintext

v = c0 + c1 · s =
∑
j

vj · bj ∈ Rq. (Z-basis {bj} of R)

Recall: v ≈ q
2 · µ, so µ = bve :=

∑
jbvje · bj ∈ R2.

2 Homomorphically map Zq-coeffs vj to “Zq-slots” of certain ring Sq:∑
vj · bj ∈ Rq 7−→

∑
vj · cj ∈ Sq.

(Change of basis, analogous to homomorphic DFT.)

3 Batch-round: homom’ly apply b·e on all Zq-slots at once [SV’11]:∑
vj · cj ∈ Sq 7−→

∑
bvje · cj ∈ S2.

4 Homomorphically reverse-map Z2-slots back to B-coeffs:∑
bvje · cj ∈ S2 7−→

∑
bvje · bj = µ ∈ R2.

(Akin to homomorphic DFT−1.)
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Algebra: Slots and CRT Sets

I Let 1 = `0|`1|`2| · · · (all odd), and S(i) = O`i = Z[ζ`i ].

So we have a cyclotomic tower S(i)/S(i−1)/ · · · /Z.

I In S = S(i), 2 factors into distinct prime ideals, like so:

2

p1

p1,1 p1,2 p1,3

p2

p2,1 p2,2 p2,3

Z = O1

S(1) = O7

S(2) = O91

I By Chinese Rem Thm, S2
∼=
⊕

j (S/pj) via natural homomorphism.
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Mapping Coeffs to Slots: Overview

I Choose S so that Sq has ≥ n = deg(R/Z) Zq-slots, via:

(vj) ∈ Zn
q 7−→

∑
vj · cj mod q

for an appropriate CRT set C = {cj} ⊂ S of size n.

I Our goal: homomorphically map
∑
vj · bj ∈ Rq 7−→

∑
vj · cj ∈ Sq.

Equivalently, evaluate the Z-linear map L : R→ S defined by

L(bj) = cj .

I Ring-switching lets us evaluate any R′-linear map L : R→ R′

. . . but only for a subring R′ ⊆ R.

Goal for Remainder of Talk
I Extend ring-switching to (efficiently) handle Z-linear maps L : R→ S.
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Algebra: Combining Cyclotomic Rings

I Let R = Ok, S = O`. Let d = gcd(k, `) and m = lcm(k, `).

R

T = R+ S = Om

E = R ∩ S = Od

S

(“compositum”)

Easy Lemma

I For any E-linear L : R→ S, there is an S-linear L̄ : T → S that
agrees with L on R.

I Proof: define L̄ by L̄(r · s) = L(r) · s ∈ S.

18 / 22



Algebra: Combining Cyclotomic Rings

I Let R = Ok, S = O`. Let d = gcd(k, `) and m = lcm(k, `).

R

T = R+ S = Om

E = R ∩ S = Od

S

(“compositum”)

Easy Lemma

I For any E-linear L : R→ S, there is an S-linear L̄ : T → S that
agrees with L on R.

I Proof: define L̄ by L̄(r · s) = L(r) · s ∈ S.

18 / 22



Algebra: Combining Cyclotomic Rings

I Let R = Ok, S = O`. Let d = gcd(k, `) and m = lcm(k, `).

R

T = R+ S = Om

E = R ∩ S = Od

S

(“compositum”)

Easy Lemma

I For any E-linear L : R→ S, there is an S-linear L̄ : T → S that
agrees with L on R.

I Proof: define L̄ by L̄(r · s) = L(r) · s ∈ S.

18 / 22



Algebra: Combining Cyclotomic Rings

I Let R = Ok, S = O`. Let d = gcd(k, `) and m = lcm(k, `).

R

T = R+ S = Om

E = R ∩ S = Od

S

(“compositum”)

Easy Lemma

I For any E-linear L : R→ S, there is an S-linear L̄ : T → S that
agrees with L on R.

I Proof: define L̄ by L̄(r · s) = L(r) · s ∈ S.

18 / 22



Enhanced Ring-Switching: First Attempt

I Let R = Ok, S = O` be s.t. gcd(k, `) = 1, lcm(k, `) = k`.

R

T = Ok`

E = Z

S

em
bed L̄

L

(induced)

I To homom’ly eval. Z-linear L : R→ S on an encryption of v ∈ Rq,

1 Trivially embed ciphertext R→ T (still encrypts v).

2 Homomorphically apply S-linear L̄ : T → S using ring-switching.

4 We now have an encryption of L̄(v) = L(v) !

77 Problem: degree of T is quadratic, therefore so is runtime & space.
This is inherent if we treat L as a generic Z-linear map!
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Enhanced Ring-Switching, Efficiently

Key Ideas

I The Z-linear L : R→ S given by L(bj) = cj is “highly structured,”
because B,C are product sets.

I Gradually map B to C through a sequence of “hybrid rings” H(i),
via E(i)-linear functions that each send a factor of B to one of C.

I Ensure small compositums T (i) = H(i−1) +H(i) via large gcd’s:
replace prime factors of k with those of `, one at a time.

B ⊂ R = H(0)

T (1)

E(1)

H(1)

T (2)

E(2)

H(2) = S ⊃ C

em
bed

E(1)-linear

(induced)

em
bed

E(2)-linear

(induced)
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Toy Example

I R = O8, basis B = B′8 ·B′4 = {1, ζ8} · {1, ζ4}.

I S = O7·13, CRT set C = C ′7 · C ′91 = {c1, c2} · {c′1, c′2, c′3}.

B′8 ·B′4
⊂ O8

O4

B′4 · C ′7
⊂ O4·7

O7

C ′7 · C ′91

⊂ O7·13fix B′4

B′8 → C ′7

fix C ′7

B′4 → C ′91

I In general, switch through ≤ log(deg(R/Z)) = log(λ) hybrid rings,
one for each prime factor of k.
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Final Thoughts

I Gradually converting B to C via hybrid rings is roughly analogous to
a log-depth FFT butterfly network.

I Technique should also be useful for homomorphically evaluating other
signal-processing transforms having “sparse decompositions.”

I Practical implementation and evaluation are underway.

Thanks!
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