Ring Switching and Bootstrapping FHE

Chris Peikert

School of Computer Science
Georgia Tech

Oberwolfach Crypto Workshop
29 July 2014

Agenda

(1) A homomorphic encryption tool: ring switching
(2) An application: (practical!) bootstrapping FHE in $\tilde{O}(\lambda)$ time

Bibliography:
GHPS'12 C. Gentry, S. Halevi, C. Peikert, N. Smart, "Ring Switching in BGV-Style Homomorphic Encryption," SCN'12 / JCS'13.
AP'13 J. Alperin-Sheriff, C. Peikert, "Practical Bootstrapping in Quasilinear Time," CRYPTO'13.

Part 1:
 Ring Switching

Notation

- Let $R^{(\ell)} / \cdots / R^{(2)} / R^{(1)} / \mathbb{Z}$ be a tower of cyclotomic ring extensions.

Notation

- Let $R^{(\ell)} / \cdots / R^{(2)} / R^{(1)} / \mathbb{Z}$ be a tower of cyclotomic ring extensions.
- Let's go slower.

Cyclotomic Rings

- Define $\mathcal{O}_{k}=\mathbb{Z}\left[\zeta_{k}\right]$, where ζ_{k} has order $k\left(\right.$ so $\left.\zeta_{k}^{k}=1\right)$.

Cyclotomic Rings

- Define $\mathcal{O}_{k}=\mathbb{Z}\left[\zeta_{k}\right]$, where ζ_{k} has order $k\left(\right.$ so $\left.\zeta_{k}^{k}=1\right)$.
$\star \mathcal{O}_{1}=\mathbb{Z}[1]=\mathbb{Z}$.
\mathbb{Z}-basis $\{1\}$.

Cyclotomic Rings

- Define $\mathcal{O}_{k}=\mathbb{Z}\left[\zeta_{k}\right]$, where ζ_{k} has order k (so $\zeta_{k}^{k}=1$).
$\star \mathcal{O}_{1}=\mathbb{Z}[1]=\mathbb{Z}$.
\mathbb{Z}-basis $\{1\}$.
$\star \mathcal{O}_{2}=\mathbb{Z}[-1]=\mathbb{Z}$.

Cyclotomic Rings

- Define $\mathcal{O}_{k}=\mathbb{Z}\left[\zeta_{k}\right]$, where ζ_{k} has order k (so $\zeta_{k}^{k}=1$).
$\star \mathcal{O}_{1}=\mathbb{Z}[1]=\mathbb{Z}$. \mathbb{Z}-basis $\{1\}$.
$\star \mathcal{O}_{2}=\mathbb{Z}[-1]=\mathbb{Z}$.
$\star \mathcal{O}_{4} \cong \mathbb{Z}[i] \cong \mathbb{Z}[X] /\left(1+X^{2}\right)$, \mathbb{Z}-basis $\left\{1, \zeta_{4}\right\}$.

Cyclotomic Rings

- Define $\mathcal{O}_{k}=\mathbb{Z}\left[\zeta_{k}\right]$, where ζ_{k} has order k (so $\zeta_{k}^{k}=1$).
$\star \mathcal{O}_{1}=\mathbb{Z}[1]=\mathbb{Z}$. \mathbb{Z}-basis $\{1\}$.
$\star \mathcal{O}_{2}=\mathbb{Z}[-1]=\mathbb{Z}$.
$\star \mathcal{O}_{4} \cong \mathbb{Z}[i] \cong \mathbb{Z}[X] /\left(1+X^{2}\right)$,
$\star \mathcal{O}_{3}=\mathbb{Z}\left[\zeta_{3}\right] \cong \mathbb{Z}[X] /\left(1+X+X^{2}\right)$,
\mathbb{Z}-basis $\left\{1, \zeta_{4}\right\}$.
\mathbb{Z}-basis $\left\{1, \zeta_{3}\right\}$.

Cyclotomic Rings

- Define $\mathcal{O}_{k}=\mathbb{Z}\left[\zeta_{k}\right]$, where ζ_{k} has order k (so $\zeta_{k}^{k}=1$).
$\star \mathcal{O}_{1}=\mathbb{Z}[1]=\mathbb{Z}$. \mathbb{Z}-basis $\{1\}$.
$\star \mathcal{O}_{2}=\mathbb{Z}[-1]=\mathbb{Z}$.
$\star \mathcal{O}_{4} \cong \mathbb{Z}[i] \cong \mathbb{Z}[X] /\left(1+X^{2}\right)$,
$\star \mathcal{O}_{3}=\mathbb{Z}\left[\zeta_{3}\right] \cong \mathbb{Z}[X] /\left(1+X+X^{2}\right)$,
\mathbb{Z}-basis $\left\{1, \zeta_{4}\right\}$.
\mathbb{Z}-basis $\left\{1, \zeta_{3}\right\}$.
$\star \mathcal{O}_{5}=\mathbb{Z}\left[\zeta_{5}\right] \cong \mathbb{Z}[X] /\left(1+X+X^{2}+X^{3}+X^{4}\right), \quad \mathbb{Z}$-basis $\left\{1, \zeta, \zeta^{2}, \zeta^{3}\right\}$.

Cyclotomic Rings

- Define $\mathcal{O}_{k}=\mathbb{Z}\left[\zeta_{k}\right]$, where ζ_{k} has order $k\left(\right.$ so $\left.\zeta_{k}^{k}=1\right)$.

$$
\begin{array}{lr}
\star \mathcal{O}_{1}=\mathbb{Z}[1]=\mathbb{Z} . & \mathbb{Z} \text {-basis }\{1\} . \\
\star \mathcal{O}_{2}=\mathbb{Z}[-1]=\mathbb{Z} . & \mathbb{Z} \text {-basis }\left\{1, \zeta_{4}\right\} . \\
\star \mathcal{O}_{4} \cong \mathbb{Z}[i] \cong \mathbb{Z}[X] /\left(1+X^{2}\right), & \mathbb{Z} \text {-basis }\left\{1, \zeta_{3}\right\} . \\
\star \mathcal{O}_{3}=\mathbb{Z}\left[\zeta_{3}\right] \cong \mathbb{Z}[X] /\left(1+X+X^{2}\right), & \mathbb{Z} \text {-basis }\left\{1, \zeta, \zeta^{2}, \zeta^{3}\right\} .
\end{array}
$$

Facts

(1) For prime $p, \mathcal{O}_{p} \cong \mathbb{Z}[X] /(\underbrace{1+X+\cdots+X^{p-1}}_{\Phi_{p}(X)})$;

$$
\left\{1, \zeta, \ldots, \zeta^{p-2}\right\}
$$

Cyclotomic Rings

- Define $\mathcal{O}_{k}=\mathbb{Z}\left[\zeta_{k}\right]$, where ζ_{k} has order $k\left(\right.$ so $\left.\zeta_{k}^{k}=1\right)$.

$$
\begin{array}{lr}
\star \mathcal{O}_{1}=\mathbb{Z}[1]=\mathbb{Z} . & \mathbb{Z} \text {-basis }\{1\} . \\
\star \mathcal{O}_{2}=\mathbb{Z}[-1]=\mathbb{Z} . & \\
\star \mathcal{O}_{4} \cong \mathbb{Z}[i] \cong \mathbb{Z}[X] /\left(1+X^{2}\right), & \mathbb{Z} \text {-basis }\left\{1, \zeta_{4}\right\} . \\
\star \mathcal{O}_{3}=\mathbb{Z}\left[\zeta_{3}\right] \cong \mathbb{Z}[X] /\left(1+X+X^{2}\right), & \mathbb{Z} \text {-basis }\left\{1, \zeta_{3}\right\} . \\
\star \mathcal{O}_{5}=\mathbb{Z}\left[\zeta_{5}\right] \cong \mathbb{Z}[X] /\left(1+X+X^{2}+X^{3}+X^{4}\right), & \mathbb{Z} \text {-basis }\left\{1, \zeta, \zeta^{2}, \zeta^{3}\right\} .
\end{array}
$$

Facts

(1) For prime $p, \mathcal{O}_{p} \cong \mathbb{Z}[X] /(\underbrace{1+X+\cdots+X^{p-1}}_{\Phi_{p}(X)})$;

$$
\left\{1, \zeta, \ldots, \zeta^{p-2}\right\}
$$

(2) For prime power $p^{e}, \mathcal{O}_{p^{e}} \cong \mathbb{Z}[X] /\left(\Phi_{p}\left(X^{p^{e-1}}\right)\right) ; \quad\left\{1, \zeta, \ldots, \zeta^{\varphi\left(p^{e}\right)-1}\right\}$.

Cyclotomic Rings

- Define $\mathcal{O}_{k}=\mathbb{Z}\left[\zeta_{k}\right]$, where ζ_{k} has order $k\left(\right.$ so $\left.\zeta_{k}^{k}=1\right)$.

$$
\begin{array}{llr}
\star & \mathcal{O}_{1}=\mathbb{Z}[1]=\mathbb{Z} . & \mathbb{Z} \text {-basis }\{1\} . \\
\star \mathcal{O}_{2}=\mathbb{Z}[-1]=\mathbb{Z} . & \mathbb{Z} \text {-basis }\left\{1, \zeta_{4}\right\} . \\
\star \mathcal{O}_{4} \cong \mathbb{Z}[i] \cong \mathbb{Z}[X] /\left(1+X^{2}\right), & \mathbb{Z} \text {-basis }\left\{1, \zeta_{3}\right\} . \\
\star \mathcal{O}_{3}=\mathbb{Z}\left[\zeta_{3}\right] \cong \mathbb{Z}[X] /\left(1+X+X^{2}\right), & \mathbb{Z} \text {-basis }\left\{1, \zeta, \zeta^{2}, \zeta^{3}\right\} .
\end{array}
$$

Facts

(1) For prime $p, \mathcal{O}_{p} \cong \mathbb{Z}[X] /(\underbrace{1+X+\cdots+X^{p-1}}_{\Phi_{p}(X)}) ; \quad\left\{1, \zeta, \ldots, \zeta^{p-2}\right\}$.
(2) For prime power $p^{e}, \mathcal{O}_{p^{e}} \cong \mathbb{Z}[X] /\left(\Phi_{p}\left(X^{p^{e-1}}\right)\right) ; \quad\left\{1, \zeta, \ldots, \zeta^{\varphi\left(p^{e}\right)-1}\right\}$.
(3) For distinct primes p_{1}, p_{2}, \ldots,

$$
\mathcal{O}_{p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots} \cong \mathbb{Z}\left[X_{1}, X_{2}, \ldots\right] /\left(\Phi_{p_{1}}\left(X_{1}^{p_{1}^{e_{1}-1}}\right), \Phi_{p_{2}}\left(X_{2}^{p_{2}^{e_{2}-1}}\right), \ldots\right)
$$

Cyclotomic Extensions

- If $k \mid k^{\prime}$, can view $R=\mathbb{Z}\left[\zeta_{k}\right]$ as a subring of $R^{\prime}=\mathbb{Z}\left[\zeta_{k^{\prime}}\right]$, via

$$
\zeta_{k} \mapsto \zeta_{k^{\prime}}^{\left(k^{\prime} / k\right)}
$$

(still has order k)

Cyclotomic Extensions

- If $k \mid k^{\prime}$, can view $R=\mathbb{Z}\left[\zeta_{k}\right]$ as a subring of $R^{\prime}=\mathbb{Z}\left[\zeta_{k^{\prime}}\right]$, via

$$
\zeta_{k} \mapsto \zeta_{k^{\prime}}^{\left(k^{\prime} / k\right)} . \quad \text { (still has order } k \text {) }
$$

- Example: tower of quadratic extensions $\mathcal{O}_{k} / \mathcal{O}_{k / 2} / \cdots / \mathcal{O}_{4} / \mathbb{Z}$:

Cyclotomic Extensions

- If $k \mid k^{\prime}$, can view $R=\mathbb{Z}\left[\zeta_{k}\right]$ as a subring of $R^{\prime}=\mathbb{Z}\left[\zeta_{k^{\prime}}\right]$, via

$$
\zeta_{k} \mapsto \zeta_{k^{\prime}}^{\left(k^{\prime} / k\right)}
$$

(still has order k)

- Example: tower of quadratic extensions $\mathcal{O}_{k} / \mathcal{O}_{k / 2} / \cdots / \mathcal{O}_{4} / \mathbb{Z}$:

$$
\begin{array}{ccc}
\zeta_{k}^{2}=\zeta_{k / 2} & \mathcal{O}_{k}=\mathcal{O}_{k / 2}\left[\zeta_{k}\right] & \mathcal{O}_{k / 2} \text {-basis } B_{k}^{\prime}=\left\{1, \zeta_{k}\right\} \\
\vdots & \mathcal{O}_{8}=\mathcal{O}_{4}\left[\zeta_{8}\right] & \mathcal{O}_{4} \text {-basis } B_{8}^{\prime}=\left\{1, \zeta_{8}\right\} \\
\zeta_{8}^{2}=\zeta_{4} & \mathcal{O}_{4}=\mathcal{O}_{2}\left[\zeta_{4}\right] & \mathcal{O}_{2} \text {-basis } B_{4}^{\prime}=\left\{1, \zeta_{4}\right\} \\
\zeta_{4}^{2}=\zeta_{2} & \mid & \text { Z-basis } B_{2}^{\prime}=\{1\} \\
\zeta_{2}^{2}=1 & \mathcal{O}_{2}=\mathbb{Z}\left[\zeta_{2}\right]=\mathbb{Z} & \text { Z }
\end{array}
$$

Cyclotomic Extensions

- If $k \mid k^{\prime}$, can view $R=\mathbb{Z}\left[\zeta_{k}\right]$ as a subring of $R^{\prime}=\mathbb{Z}\left[\zeta_{k^{\prime}}\right]$, via

$$
\zeta_{k} \mapsto \zeta_{k^{\prime}}^{\left(k^{\prime} / k\right)}
$$

- Example: tower of quadratic extensions $\mathcal{O}_{k} / \mathcal{O}_{k / 2} / \cdots / \mathcal{O}_{4} / \mathbb{Z}$:

$$
\begin{array}{ccc}
\zeta_{k}^{2}=\zeta_{k / 2} & \mathcal{O}_{k}=\mathcal{O}_{k / 2}\left[\zeta_{k}\right] & \mathcal{O}_{k / 2} \text {-basis } B_{k}^{\prime}=\left\{1, \zeta_{k}\right\} \\
\zeta_{8}^{2}=\zeta_{4} & \mathcal{O}_{8}=\mathcal{O}_{4}\left[\zeta_{8}\right] & \mathcal{O}_{4} \text {-basis } B_{8}^{\prime}=\left\{1, \zeta_{8}\right\} \\
& \mathcal{O}_{4}=\mathcal{O}_{2}\left[\zeta_{4}\right] & \mathcal{O}_{2} \text {-basis } B_{4}^{\prime}=\left\{1, \zeta_{4}\right\} \\
\zeta_{4}^{2}=\zeta_{2} & \mid & \\
\zeta_{2}^{2}=1 & \mathcal{O}_{2}=\mathbb{Z}\left[\zeta_{2}\right]=\mathbb{Z} & \mathbb{Z} \text {-basis } B_{2}^{\prime}=\{1\}
\end{array}
$$

- "Product" \mathbb{Z}-basis of \mathcal{O}_{k} :

$$
B_{k}:=B_{k}^{\prime} \cdot B_{k / 2}=B_{k}^{\prime} \cdot B_{k / 2}^{\prime} \cdots B_{2}^{\prime}
$$

Cyclotomic Extensions

- If $k \mid k^{\prime}$, can view $R=\mathbb{Z}\left[\zeta_{k}\right]$ as a subring of $R^{\prime}=\mathbb{Z}\left[\zeta_{k^{\prime}}\right]$, via

$$
\zeta_{k} \mapsto \zeta_{k^{\prime}}^{\left(k^{\prime} / k\right)}
$$

(still has order k)

- Example: tower of quadratic extensions $\mathcal{O}_{k} / \mathcal{O}_{k / 2} / \cdots / \mathcal{O}_{4} / \mathbb{Z}$:

$$
\begin{array}{ccc}
\zeta_{k}^{2}=\zeta_{k / 2} & \mathcal{O}_{k}=\mathcal{O}_{k / 2}\left[\zeta_{k}\right] & \mathcal{O}_{k / 2} \text {-basis } B_{k}^{\prime}=\left\{1, \zeta_{k}\right\} \\
\vdots & \mathcal{O}_{8}=\mathcal{O}_{4}\left[\zeta_{8}\right] & \mathcal{O}_{4} \text {-basis } B_{8}^{\prime}=\left\{1, \zeta_{8}\right\} \\
\zeta_{8}^{2}=\zeta_{4} & \mathcal{O}_{4}=\mathcal{O}_{2}\left[\zeta_{4}\right] & \mathcal{O}_{2} \text {-basis } B_{4}^{\prime}=\left\{1, \zeta_{4}\right\} \\
\zeta_{4}^{2}=\zeta_{2} & \mid & \text { Z-basis } B_{2}^{\prime}=\{1\} \\
\zeta_{2}^{2}=1 & \mathcal{O}_{2}=\mathbb{Z}\left[\zeta_{2}\right]=\mathbb{Z} & \text { Z }
\end{array}
$$

- "Product" \mathbb{Z}-basis of \mathcal{O}_{k} :

$$
B_{k}:=B_{k}^{\prime} \cdot B_{k / 2}=B_{k}^{\prime} \cdot B_{k / 2}^{\prime} \cdots B_{2}^{\prime}=\left\{1, \zeta, \zeta^{2}, \ldots, \zeta^{k / 2-1}\right\}
$$

Cyclotomic Extensions: Trace

- If $k \mid k^{\prime}$, can view $R=\mathbb{Z}\left[\zeta_{k}\right]$ as a subring of $R^{\prime}=\mathbb{Z}\left[\zeta_{k^{\prime}}\right]$, via

$$
\zeta_{k} \mapsto \zeta_{k^{\prime}}^{\left(k^{\prime} / k\right)}
$$

(still has order k)

Cyclotomic Extensions: Trace

- If $k \mid k^{\prime}$, can view $R=\mathbb{Z}\left[\zeta_{k}\right]$ as a subring of $R^{\prime}=\mathbb{Z}\left[\zeta_{k^{\prime}}\right]$, via

$$
\zeta_{k} \mapsto \zeta_{k^{\prime}}^{\left(k^{\prime} / k\right)}
$$

(still has order k)

- The trace $\operatorname{Tr}=\operatorname{Tr}_{R^{\prime} / R}: R^{\prime} \rightarrow R$ is a "universal" R-linear function:

Cyclotomic Extensions: Trace

- If $k \mid k^{\prime}$, can view $R=\mathbb{Z}\left[\zeta_{k}\right]$ as a subring of $R^{\prime}=\mathbb{Z}\left[\zeta_{k^{\prime}}\right]$, via

$$
\zeta_{k} \mapsto \zeta_{k^{\prime}}^{\left(k^{\prime} / k\right)}
$$

(still has order k)

- The trace $\operatorname{Tr}=\operatorname{Tr}_{R^{\prime} / R}: R^{\prime} \rightarrow R$ is a "universal" R-linear function:
(1) R-linear: for any $r_{j} \in R$ and $r_{j}^{\prime} \in R^{\prime}$,

$$
\operatorname{Tr}\left(r_{1} \cdot r_{1}^{\prime}+r_{2} \cdot r_{2}^{\prime}\right)=r_{1} \cdot \operatorname{Tr}\left(r_{1}^{\prime}\right)+r_{2} \cdot \operatorname{Tr}\left(r_{2}^{\prime}\right) .
$$

Cyclotomic Extensions: Trace

- If $k \mid k^{\prime}$, can view $R=\mathbb{Z}\left[\zeta_{k}\right]$ as a subring of $R^{\prime}=\mathbb{Z}\left[\zeta_{k^{\prime}}\right]$, via

$$
\zeta_{k} \mapsto \zeta_{k^{\prime}}^{\left(k^{\prime} / k\right)}
$$

(still has order k)

- The trace $\operatorname{Tr}=\operatorname{Tr}_{R^{\prime} / R}: R^{\prime} \rightarrow R$ is a "universal" R-linear function:
(1) R-linear: for any $r_{j} \in R$ and $r_{j}^{\prime} \in R^{\prime}$,

$$
\operatorname{Tr}\left(r_{1} \cdot r_{1}^{\prime}+r_{2} \cdot r_{2}^{\prime}\right)=r_{1} \cdot \operatorname{Tr}\left(r_{1}^{\prime}\right)+r_{2} \cdot \operatorname{Tr}\left(r_{2}^{\prime}\right) .
$$

(2) Universal: any R-linear function $L: R^{\prime} \rightarrow R$ can be written as

$$
L(x)=\operatorname{Tr}\left(r_{L}^{\prime} \cdot x\right)
$$

for some r_{L}^{\prime} depending only on L.

Cyclotomic Extensions: Trace

- If $k \mid k^{\prime}$, can view $R=\mathbb{Z}\left[\zeta_{k}\right]$ as a subring of $R^{\prime}=\mathbb{Z}\left[\zeta_{k^{\prime}}\right]$, via

$$
\zeta_{k} \mapsto \zeta_{k^{\prime}}^{\left(k^{\prime} / k\right)}
$$

(still has order k)

- The trace $\operatorname{Tr}=\operatorname{Tr}_{R^{\prime} / R}: R^{\prime} \rightarrow R$ is a "universal" R-linear function:
(1) R-linear: for any $r_{j} \in R$ and $r_{j}^{\prime} \in R^{\prime}$,

$$
\operatorname{Tr}\left(r_{1} \cdot r_{1}^{\prime}+r_{2} \cdot r_{2}^{\prime}\right)=r_{1} \cdot \operatorname{Tr}\left(r_{1}^{\prime}\right)+r_{2} \cdot \operatorname{Tr}\left(r_{2}^{\prime}\right) .
$$

(2) Universal: any R-linear function $L: R^{\prime} \rightarrow R$ can be written as

$$
L(x)=\operatorname{Tr}\left(r_{L}^{\prime} \cdot x\right)
$$

for some r_{L}^{\prime} depending only on L.

- Any R-linear function is uniquely defined by its values on an R-basis $\left\{b_{j}^{\prime}\right\}$ of R^{\prime}, and vice versa:

$$
\operatorname{Tr}\left(\sum_{j} r_{j} \cdot b_{j}^{\prime}\right)=\sum_{j} r_{j} \cdot \operatorname{Tr}\left(b_{j}^{\prime}\right) .
$$

Homomorphic Encryption over Rings [LPR'10,BV'11,BGV'12]

- Let $R:=\mathcal{O}_{k}$, e.g., $\mathbb{Z}[X] /\left(1+X^{k / 2}\right)$ for k a power of 2 .

Homomorphic Encryption over Rings [LPR'10,BV'11,BGV'12]

- Let $R:=\mathcal{O}_{k}$, e.g., $\mathbb{Z}[X] /\left(1+X^{k / 2}\right)$ for k a power of 2 .

Denote $R_{q}:=R / q R=\mathbb{Z}_{q}[X] /\left(1+X^{k / 2}\right)$ for any integer q.

Homomorphic Encryption over Rings [LPR'10,BV'11,BGV'12]

- Let $R:=\mathcal{O}_{k}$, e.g., $\mathbb{Z}[X] /\left(1+X^{k / 2}\right)$ for k a power of 2 .

Denote $R_{q}:=R / q R=\mathbb{Z}_{q}[X] /\left(1+X^{k / 2}\right)$ for any integer q.

- Plaintext ring is R_{2}, ciphertext ring is R_{q} for some $q \gg 2$.

Homomorphic Encryption over Rings [LPR'10,BV'11,BGV'12]

- Let $R:=\mathcal{O}_{k}$, e.g., $\mathbb{Z}[X] /\left(1+X^{k / 2}\right)$ for k a power of 2 .

Denote $R_{q}:=R / q R=\mathbb{Z}_{q}[X] /\left(1+X^{k / 2}\right)$ for any integer q.

- Plaintext ring is R_{2}, ciphertext ring is R_{q} for some $q \gg 2$.
- Encryption of $\mu \in R_{2}$ under $s \in R$ is some $c=\left(c_{0}, c_{1}\right) \in R_{q}^{2}$ satisfying

$$
c_{0}+c_{1} \cdot s \approx \frac{q}{2} \mu \quad(\bmod q R)
$$

* Thanks to this relation we can do + and \times homomorphically.
\star Semantic security follows from hardness of ring-LWE over R \Leftarrow (quantum) worst-case hardness of approx-SVP on ideal lattices in R.

Homomorphic Encryption over Rings [LPR'10,BV'11,BGV'12]

- Let $R:=\mathcal{O}_{k}$, e.g., $\mathbb{Z}[X] /\left(1+X^{k / 2}\right)$ for k a power of 2 .

Denote $R_{q}:=R / q R=\mathbb{Z}_{q}[X] /\left(1+X^{k / 2}\right)$ for any integer q.

- Plaintext ring is R_{2}, ciphertext ring is R_{q} for some $q \gg 2$.
- Encryption of $\mu \in R_{2}$ under $s \in R$ is some $c=\left(c_{0}, c_{1}\right) \in R_{q}^{2}$ satisfying

$$
c_{0}+c_{1} \cdot s \approx \frac{q}{2} \mu \quad(\bmod q R) .
$$

\star Thanks to this relation we can do + and \times homomorphically.
\star Semantic security follows from hardness of ring-LWE over R \Leftarrow (quantum) worst-case hardness of approx-SVP on ideal lattices in R.

- "Unpacked" plaintext $\mu \in \mathbb{Z}_{2} \subseteq R_{2}$ (just a constant polynomial).

Homomorphic Encryption over Rings [LPR'10,BV'11,BGV'12]

- Let $R:=\mathcal{O}_{k}$, e.g., $\mathbb{Z}[X] /\left(1+X^{k / 2}\right)$ for k a power of 2 .

Denote $R_{q}:=R / q R=\mathbb{Z}_{q}[X] /\left(1+X^{k / 2}\right)$ for any integer q.

- Plaintext ring is R_{2}, ciphertext ring is R_{q} for some $q \gg 2$.
- Encryption of $\mu \in R_{2}$ under $s \in R$ is some $c=\left(c_{0}, c_{1}\right) \in R_{q}^{2}$ satisfying

$$
c_{0}+c_{1} \cdot s \approx \frac{q}{2} \mu \quad(\bmod q R) .
$$

* Thanks to this relation we can do + and \times homomorphically.
\star Semantic security follows from hardness of ring-LWE over R \Leftarrow (quantum) worst-case hardness of approx-SVP on ideal lattices in R.
- "Unpacked" plaintext $\mu \in \mathbb{Z}_{2} \subseteq R_{2}$ (just a constant polynomial). "Packed" plaintext uses more of R_{2}, e.g., multiple "slots" [SV'11].

Ring Switching

Theorem [GHPS'12]

- For any cyclotomic rings R^{\prime} / R, we can homomorphically evaluate

Ring Switching

Theorem [GHPS'12]

- For any cyclotomic rings R^{\prime} / R, we can homomorphically evaluate

$$
\left.\star \text { any } R \text {-linear } L: R_{2}^{\prime} \rightarrow R_{2} \quad \text { (i.e., map } \mu^{\prime} \in R_{2}^{\prime} \text { to } \mu=L\left(\mu^{\prime}\right) \in R_{2}\right)
$$

Ring Switching

Theorem [GHPS'12]

- For any cyclotomic rings R^{\prime} / R, we can homomorphically evaluate
\star any R-linear $L: R_{2}^{\prime} \rightarrow R_{2} \quad$ (i.e., map $\mu^{\prime} \in R_{2}^{\prime}$ to $\mu=L\left(\mu^{\prime}\right) \in R_{2}$)
* by mapping the ciphertext c^{\prime} over R^{\prime} to some c over R,

Ring Switching

Theorem [GHPS'12]

- For any cyclotomic rings R^{\prime} / R, we can homomorphically evaluate \star any R-linear $L: R_{2}^{\prime} \rightarrow R_{2} \quad$ (i.e., map $\mu^{\prime} \in R_{2}^{\prime}$ to $\mu=L\left(\mu^{\prime}\right) \in R_{2}$)
* by mapping the ciphertext c^{\prime} over R^{\prime} to some c over R,
\star assuming hardness of R-LWE.

Ring Switching

Theorem [GHPS'12]

- For any cyclotomic rings R^{\prime} / R, we can homomorphically evaluate
\star any R-linear $L: R_{2}^{\prime} \rightarrow R_{2} \quad$ (i.e., map $\mu^{\prime} \in R_{2}^{\prime}$ to $\mu=L\left(\mu^{\prime}\right) \in R_{2}$)
* by mapping the ciphertext c^{\prime} over R^{\prime} to some c over R,
* assuming hardness of R-LWE.

So What?

- "Fresh" ciphertexts need small noise \Rightarrow large ring degree for security.
- Noise increases as we do homomorphic operations, so we can securely switch to smaller ring dimension, yielding smaller ciphertexts and faster operations.
- Also important for minimizing complexity of decryption for bootstrapping (cf. "dimension reduction" [BV'11]).
- We'll see another cool application later...

Ring Switching

Theorem [GHPS'12]

- For any cyclotomic rings R^{\prime} / R, we can homomorphically evaluate
\star any R-linear $L: R_{2}^{\prime} \rightarrow R_{2} \quad$ (i.e., map $\mu^{\prime} \in R_{2}^{\prime}$ to $\mu=L\left(\mu^{\prime}\right) \in R_{2}$)
* by mapping the ciphertext c^{\prime} over R^{\prime} to some c over R,
\star assuming hardness of R-LWE.
- Proof: Given $c^{\prime}=\left(c_{0}^{\prime}, c_{1}^{\prime}\right)$, let $c_{i}=\operatorname{Tr}\left(r_{L}^{\prime} \cdot c_{i}^{\prime}\right)$.

Ring Switching

Theorem [GHPS'12]

- For any cyclotomic rings R^{\prime} / R, we can homomorphically evaluate
\star any R-linear $L: R_{2}^{\prime} \rightarrow R_{2} \quad$ (i.e., map $\mu^{\prime} \in R_{2}^{\prime}$ to $\mu=L\left(\mu^{\prime}\right) \in R_{2}$)
* by mapping the ciphertext c^{\prime} over R^{\prime} to some c over R,
\star assuming hardness of R-LWE.
- Proof: Given $c^{\prime}=\left(c_{0}^{\prime}, c_{1}^{\prime}\right)$, let $c_{i}=\operatorname{Tr}\left(r_{L}^{\prime} \cdot c_{i}^{\prime}\right)$.

$$
\begin{aligned}
c_{0}^{\prime}+s^{\prime} \cdot c_{1}^{\prime} & \approx \frac{q}{2} \cdot \mu^{\prime}\left(\bmod q R^{\prime}\right) \\
\Longrightarrow \operatorname{Tr}\left(r_{L}^{\prime} \cdot c_{0}^{\prime}\right)+\operatorname{Tr}\left(s^{\prime} \cdot r_{L}^{\prime} \cdot c_{1}^{\prime}\right) & \approx \frac{q}{2} \cdot \operatorname{Tr}\left(r_{L}^{\prime} \cdot \mu^{\prime}\right)(\bmod q R) \\
? ? \Longrightarrow c_{0}+s^{\prime} \cdot c_{1} & \approx \frac{q}{2} \cdot \mu(\bmod q R)
\end{aligned}
$$

Ring Switching

Theorem [GHPS'12]

- For any cyclotomic rings R^{\prime} / R, we can homomorphically evaluate \star any R-linear $L: R_{2}^{\prime} \rightarrow R_{2} \quad$ (i.e., map $\mu^{\prime} \in R_{2}^{\prime}$ to $\mu=L\left(\mu^{\prime}\right) \in R_{2}$)
* by mapping the ciphertext c^{\prime} over R^{\prime} to some c over R,
\star assuming hardness of R-LWE.
- Proof: Given $c^{\prime}=\left(c_{0}^{\prime}, c_{1}^{\prime}\right)$, let $c_{i}=\operatorname{Tr}\left(r_{L}^{\prime} \cdot c_{i}^{\prime}\right)$.

$$
\begin{aligned}
c_{0}^{\prime}+s \cdot c_{1}^{\prime} & \approx \frac{q}{2} \cdot \mu^{\prime}\left(\bmod q R^{\prime}\right) \\
\Longrightarrow \operatorname{Tr}\left(r_{L}^{\prime} \cdot c_{0}^{\prime}\right)+\operatorname{Tr}\left(s \cdot r_{L}^{\prime} \cdot c_{1}^{\prime}\right) & \approx \frac{q}{2} \cdot \operatorname{Tr}\left(r_{L}^{\prime} \cdot \mu^{\prime}\right)(\bmod q R) \\
\Longrightarrow c_{0}+s \cdot c_{1} & \approx \frac{q}{2} \cdot \mu(\bmod q R) .
\end{aligned}
$$

- First "key-switch" from $s^{\prime} \in R^{\prime}$ to $s \in R$.

Ring Switching

Theorem [GHPS'12]

- For any cyclotomic rings R^{\prime} / R, we can homomorphically evaluate \star any R-linear $L: R_{2}^{\prime} \rightarrow R_{2} \quad$ (i.e., map $\mu^{\prime} \in R_{2}^{\prime}$ to $\mu=L\left(\mu^{\prime}\right) \in R_{2}$)
* by mapping the ciphertext c^{\prime} over R^{\prime} to some c over R,
\star assuming hardness of R-LWE.
- Proof: Given $c^{\prime}=\left(c_{0}^{\prime}, c_{1}^{\prime}\right)$, let $c_{i}=\operatorname{Tr}\left(r_{L}^{\prime} \cdot c_{i}^{\prime}\right)$.

$$
\begin{aligned}
c_{0}^{\prime}+s \cdot c_{1}^{\prime} & \approx \frac{q}{2} \cdot \mu^{\prime}\left(\bmod q R^{\prime}\right) \\
\Longrightarrow \operatorname{Tr}\left(r_{L}^{\prime} \cdot c_{0}^{\prime}\right)+\operatorname{Tr}\left(s \cdot r_{L}^{\prime} \cdot c_{1}^{\prime}\right) & \approx \frac{q}{2} \cdot \operatorname{Tr}\left(r_{L}^{\prime} \cdot \mu^{\prime}\right)(\bmod q R) \\
\Longrightarrow c_{0}+s \cdot c_{1} & \approx \frac{q}{2} \cdot \mu(\bmod q R) .
\end{aligned}
$$

- First "key-switch" from $s^{\prime} \in R^{\prime}$ to $s \in R$.

Theorem: R^{\prime}-LWE with secret in R is as hard as R-LWE.

Part 2:

Bootstrapping

Fully Homomorphic Encryption [RAD'78,Gen'00]

- FHE lets you do this:

$$
\mu \longrightarrow \operatorname{Eval}(f, \mu) \longrightarrow \quad f(\mu)
$$

where $|f(\mu)|$ and decryption time don't depend on $|f|$.
A cryptographic "holy grail."

Fully Homomorphic Encryption [RAD'78,Gen'00]

- FHE lets you do this:

$$
\mu \longrightarrow \operatorname{Eval}(f, \mu) \longrightarrow \not f(\mu)
$$

where $|f(\mu)|$ and decryption time don't depend on $|f|$.
A cryptographic "holy grail."

- Naturally occurring schemes are "somewhat homomorphic" (SHE): they can only evaluate functions of an a priori bounded depth.

$$
\mu \rightarrow \operatorname{Eval}(f, \mu) \rightarrow f(\mu) \rightarrow \operatorname{Eval}(g, f(\mu)) \rightarrow g(f(\mu))
$$

Bootstrapping: $\mathrm{SHE} \rightarrow \mathrm{FHE}$ [Gen'09]

- Homomorphically evaluates the SHE decryption function to "refresh" a ciphertext μ, allowing further homomorphic operations.

$$
s k \longrightarrow \operatorname{Eval}(f(\cdot)=\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

Bootstrapping: SHE \rightarrow FHE [Gen'09]

- Homomorphically evaluates the SHE decryption function to "refresh" a ciphertext μ, allowing further homomorphic operations.

$$
s k \longrightarrow \operatorname{Eval}(f(\cdot)=\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

* The only known way of obtaining unbounded FHE.
\star Goal: Efficiency! Minimize depth d and size s of decryption "circuit."
\star Most efficient SHEs [BGV'12] can evaluate in time $\tilde{O}(d \cdot s \cdot \lambda)$.

Bootstrapping: SHE \rightarrow FHE [Gen'09]

- Homomorphically evaluates the SHE decryption function to "refresh" a ciphertext μ, allowing further homomorphic operations.

$$
s k \longrightarrow \operatorname{Eval}(f(\cdot)=\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

« The only known way of obtaining unbounded FHE.
\star Goal: Efficiency! Minimize depth d and size s of decryption "circuit."
\star Most efficient SHEs [BGV'12] can evaluate in time $\tilde{O}(d \cdot s \cdot \lambda)$.

- Intensive study, many techniques
[G'09,GH'11a,GH'11b,GHS'12b,AP'13,BV'14,AP'14], but still very inefficient - the main bottleneck in FHE, by far.

Bootstrapping: SHE \rightarrow FHE [Gen'09]

- Homomorphically evaluates the SHE decryption function to "refresh" a ciphertext μ, allowing further homomorphic operations.

$$
s k \longrightarrow \operatorname{Eval}(f(\cdot)=\operatorname{Dec}(\cdot, \mu)) \longrightarrow \mu
$$

* The only known way of obtaining unbounded FHE.
* Goal: Efficiency! Minimize depth d and size s of decryption "circuit."
\star Most efficient SHEs [BGV'12] can evaluate in time $\tilde{O}(d \cdot s \cdot \lambda)$.
- Intensive study, many techniques
[G'09,GH'11a,GH'11b,GHS'12b,AP'13,BV'14,AP'14], but still very inefficient - the main bottleneck in FHE, by far.
- Prior asymptotically efficient methods on "packed" ciphertexts [GHS'12a,GHS'12b] are very complex, and are practically worse than asymptotically slower methods.

Milestones in Bootstrapping

[Gen'09]: $\tilde{O}\left(\lambda^{4}\right)$ runtime

Milestones in Bootstrapping

[Gen'09]: $\tilde{O}\left(\lambda^{4}\right)$ runtime
[BGV'12]: $\tilde{O}\left(\lambda^{2}\right)$ runtime, or $\tilde{O}(\lambda)$ amortized over λ ciphertexts

Milestones in Bootstrapping

[Gen'09]: $\tilde{O}\left(\lambda^{4}\right)$ runtime
[BGV'12]: $\tilde{O}\left(\lambda^{2}\right)$ runtime, or $\tilde{O}(\lambda)$ amortized over λ ciphertexts Mainly via improved SHE homomorphic capacity.
Amortized method requires "exotic" rings, emulating \mathbb{Z}_{2} arithmetic in \mathbb{Z}_{p}.

Milestones in Bootstrapping

[Gen'09]: $\tilde{O}\left(\lambda^{4}\right)$ runtime
[BGV'12]: $\tilde{O}\left(\lambda^{2}\right)$ runtime, or $\tilde{O}(\lambda)$ amortized over λ ciphertexts Mainly via improved SHE homomorphic capacity.
Amortized method requires "exotic" rings, emulating \mathbb{Z}_{2} arithmetic in \mathbb{Z}_{p}.
[GHS'12b]: $\tilde{O}(\lambda)$ runtime, for "packed" plaintexts. Declare victory?

Milestones in Bootstrapping

[Gen'09]: $\tilde{O}\left(\lambda^{4}\right)$ runtime
[BGV'12]: $\tilde{O}\left(\lambda^{2}\right)$ runtime, or $\tilde{O}(\lambda)$ amortized over λ ciphertexts Mainly via improved SHE homomorphic capacity.

Amortized method requires "exotic" rings, emulating \mathbb{Z}_{2} arithmetic in \mathbb{Z}_{p}.
[GHS'12b]: $\tilde{O}(\lambda)$ runtime, for "packed" plaintexts. Declare victory?

Milestones in Bootstrapping

[Gen'09]: $\tilde{O}\left(\lambda^{4}\right)$ runtime
[BGV'12]: $\tilde{O}\left(\lambda^{2}\right)$ runtime, or $\tilde{O}(\lambda)$ amortized over λ ciphertexts Mainly via improved SHE homomorphic capacity.
Amortized method requires "exotic" rings, emulating \mathbb{Z}_{2} arithmetic in \mathbb{Z}_{p}.
[GHS'12b]: $\tilde{O}(\lambda)$ runtime, for "packed" plaintexts. Declare victory?

x Log-depth $\bmod -\Phi_{m}(X)$ circuit is complex, w/large hidden constants.

Milestones in Bootstrapping

[Gen'09]: $\tilde{O}\left(\lambda^{4}\right)$ runtime
[BGV'12]: $\tilde{O}\left(\lambda^{2}\right)$ runtime, or $\tilde{O}(\lambda)$ amortized over λ ciphertexts Mainly via improved SHE homomorphic capacity.
Amortized method requires "exotic" rings, emulating \mathbb{Z}_{2} arithmetic in \mathbb{Z}_{p}.
[GHS'12b]: $\tilde{O}(\lambda)$ runtime, for "packed" plaintexts. Declare victory?

X Log-depth $\bmod -\Phi_{m}(X)$ circuit is complex, w/large hidden constants.
$X X$ [GHS'12a] compiler is very complex, w/large polylog overhead.

Our Results

Practical bootstrapping algorithms with quasi-linear $\tilde{O}(\lambda)$ runtimes:

Our Results

Practical bootstrapping algorithms with quasi-linear $\tilde{O}(\lambda)$ runtimes:
(1) For "unpacked" (single-bit) plaintexts:
\checkmark Extremely simple!
\checkmark Uses only power-of-2 cyclotomic rings (fast, easy to implement).

Our Results

Practical bootstrapping algorithms with quasi-linear $\tilde{O}(\lambda)$ runtimes:
(1) For "unpacked" (single-bit) plaintexts:
\checkmark Extremely simple!
\checkmark Uses only power-of-2 cyclotomic rings (fast, easy to implement).
\star Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.

Our Results

Practical bootstrapping algorithms with quasi-linear $\tilde{O}(\lambda)$ runtimes:
(1) For "unpacked" (single-bit) plaintexts:
\checkmark Extremely simple!
\checkmark Uses only power-of-2 cyclotomic rings (fast, easy to implement).
\star Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.
(2) For "packed" (many-bit) plaintexts:

Our Results

Practical bootstrapping algorithms with quasi-linear $\tilde{O}(\lambda)$ runtimes:
(1) For "unpacked" (single-bit) plaintexts:
\checkmark Extremely simple!
\checkmark Uses only power-of-2 cyclotomic rings (fast, easy to implement).
\star Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.
(2) For "packed" (many-bit) plaintexts:
\star Based on an enhancement of ring-switching to non-subrings.

Our Results

Practical bootstrapping algorithms with quasi-linear $\tilde{O}(\lambda)$ runtimes:
(1) For "unpacked" (single-bit) plaintexts:
\checkmark Extremely simple!
\checkmark Uses only power-of-2 cyclotomic rings (fast, easy to implement).
\star Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.
(2) For "packed" (many-bit) plaintexts:

* Based on an enhancement of ring-switching to non-subrings.
\checkmark Seems quite practical, avoids both main inefficiencies of [GHS'12b]: no homomorphic reduction modulo $\Phi_{m}(X)$, no generic compilation.

Our Results

Practical bootstrapping algorithms with quasi-linear $\tilde{O}(\lambda)$ runtimes:
(1) For "unpacked" (single-bit) plaintexts:
\checkmark Extremely simple!
\checkmark Uses only power-of-2 cyclotomic rings (fast, easy to implement).
\star Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.
(2) For "packed" (many-bit) plaintexts:
\star Based on an enhancement of ring-switching to non-subrings.
\checkmark Seems quite practical, avoids both main inefficiencies of [GHS'12b]: no homomorphic reduction modulo $\Phi_{m}(X)$, no generic compilation.
\checkmark Special purpose, completely algebraic description - no "circuits."

Our Results

Practical bootstrapping algorithms with quasi-linear $\tilde{O}(\lambda)$ runtimes:
(1) For "unpacked" (single-bit) plaintexts:
\checkmark Extremely simple!
\checkmark Uses only power-of-2 cyclotomic rings (fast, easy to implement).
\star Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.
(2) For "packed" (many-bit) plaintexts:
\star Based on an enhancement of ring-switching to non-subrings.
\checkmark Seems quite practical, avoids both main inefficiencies of [GHS'12b]: no homomorphic reduction modulo $\Phi_{m}(X)$, no generic compilation.
\checkmark Special purpose, completely algebraic description - no "circuits."
\checkmark Decouples the algebraic structure of SHE plaintext ring from the ring structure needed for bootstrapping.

Bootstrapping Packed Ciphertexts: Overview

(1) Prepare: view c as a "noiseless" encryption of plaintext

$$
v=c_{0}+c_{1} \cdot s=\sum_{j} v_{j} \cdot b_{j} \in R_{q} . \quad\left(\mathbb{Z} \text {-basis }\left\{b_{j}\right\} \text { of } R\right)
$$

Recall: $v \approx \frac{q}{2} \cdot \mu$, so $\mu=\lfloor v\rceil:=\sum_{j}\left\lfloor v_{j}\right\rceil \cdot b_{j} \in R_{2}$.

Bootstrapping Packed Ciphertexts: Overview

(1) Prepare: view c as a "noiseless" encryption of plaintext

$$
v=c_{0}+c_{1} \cdot s=\sum_{j} v_{j} \cdot b_{j} \in R_{q} . \quad\left(\mathbb{Z} \text {-basis }\left\{b_{j}\right\} \text { of } R\right)
$$

Recall: $v \approx \frac{q}{2} \cdot \mu$, so $\mu=\lfloor v\rceil:=\sum_{j}\left\lfloor v_{j}\right\rceil \cdot b_{j} \in R_{2}$.
(2) Homomorphically map \mathbb{Z}_{q}-coeffs v_{j} to " \mathbb{Z}_{q}-slots" of certain ring S_{q} :

$$
\sum v_{j} \cdot b_{j} \in R_{q} \quad \longmapsto \quad \sum v_{j} \cdot c_{j} \in S_{q}
$$

(Change of basis, analogous to homomorphic DFT.)

Bootstrapping Packed Ciphertexts: Overview

(1) Prepare: view c as a "noiseless" encryption of plaintext

$$
v=c_{0}+c_{1} \cdot s=\sum_{j} v_{j} \cdot b_{j} \in R_{q} . \quad\left(\mathbb{Z} \text {-basis }\left\{b_{j}\right\} \text { of } R\right)
$$

Recall: $v \approx \frac{q}{2} \cdot \mu$, so $\mu=\lfloor v\rceil:=\sum_{j}\left\lfloor v_{j}\right\rceil \cdot b_{j} \in R_{2}$.
(2) Homomorphically map \mathbb{Z}_{q}-coeffs v_{j} to " \mathbb{Z}_{q}-slots" of certain ring S_{q} :

$$
\sum v_{j} \cdot b_{j} \in R_{q} \quad \longmapsto \quad \sum v_{j} \cdot c_{j} \in S_{q} .
$$

(Change of basis, analogous to homomorphic DFT.)
(3) Batch-round: homom'ly apply $\lfloor\cdot\rceil$ on all \mathbb{Z}_{q}-slots at once [SV'11]:

$$
\sum v_{j} \cdot c_{j} \in S_{q} \quad \longmapsto \quad \sum\left\lfloor v_{j}\right\rceil \cdot c_{j} \in S_{2}
$$

Bootstrapping Packed Ciphertexts: Overview

(1) Prepare: view c as a "noiseless" encryption of plaintext

$$
v=c_{0}+c_{1} \cdot s=\sum_{j} v_{j} \cdot b_{j} \in R_{q} . \quad\left(\mathbb{Z} \text {-basis }\left\{b_{j}\right\} \text { of } R\right)
$$

Recall: $v \approx \frac{q}{2} \cdot \mu$, so $\mu=\lfloor v\rceil:=\sum_{j}\left\lfloor v_{j}\right\rceil \cdot b_{j} \in R_{2}$.
(2) Homomorphically map \mathbb{Z}_{q}-coeffs v_{j} to " \mathbb{Z}_{q}-slots" of certain ring S_{q} :

$$
\sum v_{j} \cdot b_{j} \in R_{q} \quad \longmapsto \quad \sum v_{j} \cdot c_{j} \in S_{q} .
$$

(Change of basis, analogous to homomorphic DFT.)
(3) Batch-round: homom'ly apply $\lfloor\cdot\rceil$ on all \mathbb{Z}_{q}-slots at once [SV'11]:

$$
\sum v_{j} \cdot c_{j} \in S_{q} \quad \longmapsto \quad \sum\left\lfloor v_{j}\right\rceil \cdot c_{j} \in S_{2}
$$

(4) Homomorphically reverse-map \mathbb{Z}_{2}-slots back to B-coeffs:

$$
\sum\left\lfloor v_{j}\right\rceil \cdot c_{j} \in S_{2} \quad \longmapsto \quad \sum\left\lfloor v_{j}\right\rceil \cdot b_{j}=\mu \in R_{2}
$$

(Akin to homomorphic DFT ${ }^{-1}$.)

Algebra: Slots and CRT Sets

- Let $1=\ell_{0}\left|\ell_{1}\right| \ell_{2} \mid \cdots$ (all odd), and $S^{(i)}=\mathcal{O}_{\ell_{i}}=\mathbb{Z}\left[\zeta_{\ell_{i}}\right]$.

So we have a cyclotomic tower $S^{(i)} / S^{(i-1)} / \cdots / \mathbb{Z}$.

Algebra: Slots and CRT Sets

- Let $1=\ell_{0}\left|\ell_{1}\right| \ell_{2} \mid \cdots$ (all odd), and $S^{(i)}=\mathcal{O}_{\ell_{i}}=\mathbb{Z}\left[\zeta_{\ell_{i}}\right]$.

So we have a cyclotomic tower $S^{(i)} / S^{(i-1)} / \cdots / \mathbb{Z}$.

- $\ln S=S^{(i)}, 2$ factors into distinct prime ideals, like so:

$$
\begin{gathered}
S^{(2)}=\mathcal{O}_{91} \\
\text { | } \\
S^{(1)}=\mathcal{O}_{7} \\
\quad \mid \\
\mathbb{Z}=\mathcal{O}_{1}
\end{gathered}
$$

$\mathfrak{p}_{2,1}$

Algebra: Slots and CRT Sets

- Let $1=\ell_{0}\left|\ell_{1}\right| \ell_{2} \mid \cdots$ (all odd), and $S^{(i)}=\mathcal{O}_{\ell_{i}}=\mathbb{Z}\left[\zeta_{\ell_{i}}\right]$.

So we have a cyclotomic tower $S^{(i)} / S^{(i-1)} / \cdots / \mathbb{Z}$.

- $\ln S=S^{(i)}, 2$ factors into distinct prime ideals, like so:

$$
\begin{gathered}
S^{(2)}=\mathcal{O}_{91} \\
\text { । } \\
S^{(1)}=\mathcal{O}_{7} \\
\text { । } \\
\mathbb{Z}=\mathcal{O}_{1}
\end{gathered}
$$

- By Chinese Rem Thm, $S_{2} \cong \bigoplus_{j}\left(S / \mathfrak{p}_{j}\right)$ via natural homomorphism.

Algebra: Slots and CRT Sets

- Let $1=\ell_{0}\left|\ell_{1}\right| \ell_{2} \mid \cdots$ (all odd), and $S^{(i)}=\mathcal{O}_{\ell_{i}}=\mathbb{Z}\left[\zeta_{\ell_{i}}\right]$.

So we have a cyclotomic tower $S^{(i)} / S^{(i-1)} / \cdots / \mathbb{Z}$.

- $\ln S=S^{(i)}, 2$ factors into distinct prime ideals, like so:

- By Chinese Rem Thm, $S_{2} \cong \bigoplus_{j}\left(S / \mathfrak{p}_{j}\right)$ via natural homomorphism.
"CRT set:" $C=\left\{c_{j}\right\} \subset S$ s.t. $c_{j}=1\left(\bmod \mathfrak{p}_{j}\right),=0\left(\bmod \mathfrak{p}_{\neq j}\right)$.
Map $v_{j} \in \mathbb{Z}_{2} \mapsto v_{j} \cdot c_{j} \in S_{2}$ embeds \mathbb{Z}_{2} into j th "slot" of S_{2}.

Algebra: Slots and CRT Sets

- Let $1=\ell_{0}\left|\ell_{1}\right| \ell_{2} \mid \cdots$ (all odd), and $S^{(i)}=\mathcal{O}_{\ell_{i}}=\mathbb{Z}\left[\zeta_{\ell_{i}}\right]$.

So we have a cyclotomic tower $S^{(i)} / S^{(i-1)} / \cdots / \mathbb{Z}$.

- $\ln S=S^{(i)}, 2$ factors into distinct prime ideals, like so:

- By Chinese Rem Thm, $S_{2} \cong \bigoplus_{j}\left(S / \mathfrak{p}_{j}\right)$ via natural homomorphism.
"CRT set:" $C=\left\{c_{j}\right\} \subset S$ s.t. $c_{j}=1\left(\bmod \mathfrak{p}_{j}\right),=0\left(\bmod \mathfrak{p}_{\neq j}\right)$.
Map $v_{j} \in \mathbb{Z}_{2} \mapsto v_{j} \cdot c_{j} \in S_{2}$ embeds \mathbb{Z}_{2} into j th "slot" of S_{2}.
- Can factor $C_{i}=C_{i}^{\prime} \cdot C_{i-1}$: let $c_{k}^{\prime}=1\left(\bmod \mathfrak{p}_{\star, k}\right),=0\left(\bmod \mathfrak{p}_{\star, \neq k}\right)$.

Algebra: Slots and CRT Sets

- Let $1=\ell_{0}\left|\ell_{1}\right| \ell_{2} \mid \cdots$ (all odd), and $S^{(i)}=\mathcal{O}_{\ell_{i}}=\mathbb{Z}\left[\zeta_{\ell_{i}}\right]$.

So we have a cyclotomic tower $S^{(i)} / S^{(i-1)} / \cdots / \mathbb{Z}$.

- $\ln S=S^{(i)}, 2$ factors into distinct prime ideals, like so:

- By Chinese Rem Thm, $S_{2} \cong \bigoplus_{j}\left(S / \mathfrak{p}_{j}\right)$ via natural homomorphism.
"CRT set:" $C=\left\{c_{j}\right\} \subset S$ s.t. $c_{j}=1\left(\bmod \mathfrak{p}_{j}\right),=0\left(\bmod \mathfrak{p}_{\neq j}\right)$.
Map $v_{j} \in \mathbb{Z}_{2} \mapsto v_{j} \cdot c_{j} \in S_{2}$ embeds \mathbb{Z}_{2} into j th "slot" of S_{2}.
- Can factor $C_{i}=C_{i}^{\prime} \cdot C_{i-1}$: let $c_{k}^{\prime}=1\left(\bmod \mathfrak{p}_{\star, k}\right),=0\left(\bmod \mathfrak{p}_{\star, \neq k}\right)$.
- Similarly for $S_{q} \cong \bigoplus_{j}\left(S / \mathfrak{p}_{j}^{\lg q}\right)$.

Mapping Coeffs to Slots: Overview

- Choose S so that S_{q} has $\geq n=\operatorname{deg}(R / \mathbb{Z}) \quad \mathbb{Z}_{q}$-slots, via:

$$
\left(v_{j}\right) \in \mathbb{Z}_{q}^{n} \longmapsto \sum v_{j} \cdot c_{j} \bmod q
$$

for an appropriate CRT set $C=\left\{c_{j}\right\} \subset S$ of size n.

Mapping Coeffs to Slots: Overview

- Choose S so that S_{q} has $\geq n=\operatorname{deg}(R / \mathbb{Z}) \quad \mathbb{Z}_{q}$-slots, via:

$$
\left(v_{j}\right) \in \mathbb{Z}_{q}^{n} \longmapsto \sum v_{j} \cdot c_{j} \bmod q
$$

for an appropriate CRT set $C=\left\{c_{j}\right\} \subset S$ of size n.

- Our goal: homomorphically map $\sum v_{j} \cdot b_{j} \in R_{q} \longmapsto \sum v_{j} \cdot c_{j} \in S_{q}$.

Mapping Coeffs to Slots: Overview

- Choose S so that S_{q} has $\geq n=\operatorname{deg}(R / \mathbb{Z}) \quad \mathbb{Z}_{q}$-slots, via:

$$
\left(v_{j}\right) \in \mathbb{Z}_{q}^{n} \longmapsto \sum v_{j} \cdot c_{j} \bmod q
$$

for an appropriate CRT set $C=\left\{c_{j}\right\} \subset S$ of size n.

- Our goal: homomorphically map $\sum v_{j} \cdot b_{j} \in R_{q} \longmapsto \sum v_{j} \cdot c_{j} \in S_{q}$.

Equivalently, evaluate the \mathbb{Z}-linear map $L: R \rightarrow S$ defined by

$$
L\left(b_{j}\right)=c_{j} .
$$

Mapping Coeffs to Slots: Overview

- Choose S so that S_{q} has $\geq n=\operatorname{deg}(R / \mathbb{Z}) \quad \mathbb{Z}_{q}$-slots, via:

$$
\left(v_{j}\right) \in \mathbb{Z}_{q}^{n} \longmapsto \sum v_{j} \cdot c_{j} \bmod q
$$

for an appropriate CRT set $C=\left\{c_{j}\right\} \subset S$ of size n.

- Our goal: homomorphically map $\sum v_{j} \cdot b_{j} \in R_{q} \longmapsto \sum v_{j} \cdot c_{j} \in S_{q}$.

Equivalently, evaluate the \mathbb{Z}-linear map $L: R \rightarrow S$ defined by

$$
L\left(b_{j}\right)=c_{j} .
$$

- Ring-switching lets us evaluate any R^{\prime}-linear map $L: R \rightarrow R^{\prime}$

Mapping Coeffs to Slots: Overview

- Choose S so that S_{q} has $\geq n=\operatorname{deg}(R / \mathbb{Z}) \quad \mathbb{Z}_{q}$-slots, via:

$$
\left(v_{j}\right) \in \mathbb{Z}_{q}^{n} \longmapsto \sum v_{j} \cdot c_{j} \bmod q
$$

for an appropriate CRT set $C=\left\{c_{j}\right\} \subset S$ of size n.

- Our goal: homomorphically map $\sum v_{j} \cdot b_{j} \in R_{q} \longmapsto \sum v_{j} \cdot c_{j} \in S_{q}$.

Equivalently, evaluate the \mathbb{Z}-linear map $L: R \rightarrow S$ defined by

$$
L\left(b_{j}\right)=c_{j} .
$$

- Ring-switching lets us evaluate any R^{\prime}-linear map $L: R \rightarrow R^{\prime}$
\ldots but only for a subring $R^{\prime} \subseteq R$.

Mapping Coeffs to Slots: Overview

- Choose S so that S_{q} has $\geq n=\operatorname{deg}(R / \mathbb{Z}) \quad \mathbb{Z}_{q}$-slots, via:

$$
\left(v_{j}\right) \in \mathbb{Z}_{q}^{n} \longmapsto \sum v_{j} \cdot c_{j} \bmod q
$$

for an appropriate CRT set $C=\left\{c_{j}\right\} \subset S$ of size n.

- Our goal: homomorphically map $\sum v_{j} \cdot b_{j} \in R_{q} \longmapsto \sum v_{j} \cdot c_{j} \in S_{q}$.

Equivalently, evaluate the \mathbb{Z}-linear map $L: R \rightarrow S$ defined by

$$
L\left(b_{j}\right)=c_{j} .
$$

- Ring-switching lets us evaluate any R^{\prime}-linear map $L: R \rightarrow R^{\prime}$
\ldots but only for a subring $R^{\prime} \subseteq R$.

Goal for Remainder of Talk

- Extend ring-switching to (efficiently) handle \mathbb{Z}-linear maps $L: R \rightarrow S$.

Algebra: Combining Cyclotomic Rings

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$. Let $d=\operatorname{gcd}(k, \ell)$ and $m=\operatorname{lcm}(k, \ell)$.

Algebra: Combining Cyclotomic Rings

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$. Let $d=\operatorname{gcd}(k, \ell)$ and $m=\operatorname{lcm}(k, \ell)$.

Algebra: Combining Cyclotomic Rings

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$. Let $d=\operatorname{gcd}(k, \ell)$ and $m=\operatorname{lcm}(k, \ell)$.

Easy Lemma

- For any E-linear $L: R \rightarrow S$, there is an S-linear $\bar{L}: T \rightarrow S$ that agrees with L on R.

Algebra: Combining Cyclotomic Rings

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$. Let $d=\operatorname{gcd}(k, \ell)$ and $m=\operatorname{lcm}(k, \ell)$.

Easy Lemma

- For any E-linear $L: R \rightarrow S$, there is an S-linear $\bar{L}: T \rightarrow S$ that agrees with L on R.
- Proof: define \bar{L} by $\bar{L}(r \cdot s)=L(r) \cdot s \in S$.

Enhanced Ring-Switching: First Attempt

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$ be s.t. $\operatorname{gcd}(k, \ell)=1, \operatorname{lcm}(k, \ell)=k \ell$.

Enhanced Ring-Switching: First Attempt

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$ be s.t. $\operatorname{gcd}(k, \ell)=1, \operatorname{lcm}(k, \ell)=k \ell$.

Enhanced Ring-Switching: First Attempt

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$ be s.t. $\operatorname{gcd}(k, \ell)=1, \operatorname{lcm}(k, \ell)=k \ell$.

- To homom'ly eval. \mathbb{Z}-linear $L: R \rightarrow S$ on an encryption of $v \in R_{q}$,

Enhanced Ring-Switching: First Attempt

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$ be s.t. $\operatorname{gcd}(k, \ell)=1, \operatorname{lcm}(k, \ell)=k \ell$.

- To homom'ly eval. Z-linear $L: R \rightarrow S$ on an encryption of $v \in R_{q}$,
(1) Trivially embed ciphertext $R \rightarrow T$ (still encrypts v).
(2) Homomorphically apply S-linear $\bar{L}: T \rightarrow S$ using ring-switching.
\checkmark We now have an encryption of $\bar{L}(v)=L(v)$!

Enhanced Ring-Switching: First Attempt

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$ be s.t. $\operatorname{gcd}(k, \ell)=1, \operatorname{lcm}(k, \ell)=k \ell$.

- To homom'ly eval. Z-linear $L: R \rightarrow S$ on an encryption of $v \in R_{q}$,
(1) Trivially embed ciphertext $R \rightarrow T$ (still encrypts v).
(2) Homomorphically apply S-linear $\bar{L}: T \rightarrow S$ using ring-switching.
\checkmark We now have an encryption of $\bar{L}(v)=L(v)$!
XX Problem: degree of T is quadratic, therefore so is runtime \& space.

Enhanced Ring-Switching: First Attempt

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$ be s.t. $\operatorname{gcd}(k, \ell)=1, \operatorname{lcm}(k, \ell)=k \ell$.

- To homom'ly eval. \mathbb{Z}-linear $L: R \rightarrow S$ on an encryption of $v \in R_{q}$,
(1) Trivially embed ciphertext $R \rightarrow T$ (still encrypts v).
(2) Homomorphically apply S-linear $\bar{L}: T \rightarrow S$ using ring-switching.
\checkmark We now have an encryption of $\bar{L}(v)=L(v)$!
XX Problem: degree of T is quadratic, therefore so is runtime \& space. This is inherent if we treat L as a generic \mathbb{Z}-linear map!

Enhanced Ring-Switching, Efficiently

Key Ideas

- The \mathbb{Z}-linear $L: R \rightarrow S$ given by $L\left(b_{j}\right)=c_{j}$ is "highly structured," because B, C are product sets.

Enhanced Ring-Switching, Efficiently

Key Ideas

- The \mathbb{Z}-linear $L: R \rightarrow S$ given by $L\left(b_{j}\right)=c_{j}$ is "highly structured," because B, C are product sets.
- Gradually map B to C through a sequence of "hybrid rings" $H^{(i)}$, via $E^{(i)}$-linear functions that each send a factor of B to one of C.

Enhanced Ring-Switching, Efficiently

Key Ideas

- The \mathbb{Z}-linear $L: R \rightarrow S$ given by $L\left(b_{j}\right)=c_{j}$ is "highly structured," because B, C are product sets.
- Gradually map B to C through a sequence of "hybrid rings" $H^{(i)}$, via $E^{(i)}$-linear functions that each send a factor of B to one of C.
- Ensure small compositums $T^{(i)}=H^{(i-1)}+H^{(i)}$ via large gcd's: replace prime factors of k with those of ℓ, one at a time.

Toy Example

- $R=\mathcal{O}_{8}$, basis $B=B_{8}^{\prime} \cdot B_{4}^{\prime}=\left\{1, \zeta_{8}\right\} \cdot\left\{1, \zeta_{4}\right\}$.

Toy Example

- $R=\mathcal{O}_{8}$, basis $B=B_{8}^{\prime} \cdot B_{4}^{\prime}=\left\{1, \zeta_{8}\right\} \cdot\left\{1, \zeta_{4}\right\}$.
- $S=\mathcal{O}_{7 \cdot 13}$, CRT set $C=C_{7}^{\prime} \cdot C_{91}^{\prime}=\left\{c_{1}, c_{2}\right\} \cdot\left\{c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}\right\}$.

Toy Example

- $R=\mathcal{O}_{8}$, basis $B=B_{8}^{\prime} \cdot B_{4}^{\prime}=\left\{1, \zeta_{8}\right\} \cdot\left\{1, \zeta_{4}\right\}$.
- $S=\mathcal{O}_{7 \cdot 13}$, CRT set $C=C_{7}^{\prime} \cdot C_{91}^{\prime}=\left\{c_{1}, c_{2}\right\} \cdot\left\{c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}\right\}$.

Toy Example

- $R=\mathcal{O}_{8}$, basis $B=B_{8}^{\prime} \cdot B_{4}^{\prime}=\left\{1, \zeta_{8}\right\} \cdot\left\{1, \zeta_{4}\right\}$.
- $S=\mathcal{O}_{7 \cdot 13}$, CRT set $C=C_{7}^{\prime} \cdot C_{91}^{\prime}=\left\{c_{1}, c_{2}\right\} \cdot\left\{c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}\right\}$.

- In general, switch through $\leq \log (\operatorname{deg}(R / \mathbb{Z}))=\log (\lambda)$ hybrid rings, one for each prime factor of k.

Final Thoughts

- Gradually converting B to C via hybrid rings is roughly analogous to a log-depth FFT butterfly network.

Final Thoughts

- Gradually converting B to C via hybrid rings is roughly analogous to a log-depth FFT butterfly network.
- Technique should also be useful for homomorphically evaluating other signal-processing transforms having "sparse decompositions."

Final Thoughts

- Gradually converting B to C via hybrid rings is roughly analogous to a log-depth FFT butterfly network.
- Technique should also be useful for homomorphically evaluating other signal-processing transforms having "sparse decompositions."
- Practical implementation and evaluation are underway.

Final Thoughts

- Gradually converting B to C via hybrid rings is roughly analogous to a log-depth FFT butterfly network.
- Technique should also be useful for homomorphically evaluating other signal-processing transforms having "sparse decompositions."
- Practical implementation and evaluation are underway.

Thanks!

