Ring Switching and Bootstrapping FHE

Chris Peikert

School of Computer Science Georgia Tech

Oberwolfach Crypto Workshop 29 July 2014

Agenda

1 A homomorphic encryption tool: ring switching

2 An application: (practical!) bootstrapping FHE in $\tilde{O}(\lambda)$ time

Bibliography:

- GHPS'12 C. Gentry, S. Halevi, C. Peikert, N. Smart, "Ring Switching in BGV-Style Homomorphic Encryption," SCN'12 / JCS'13.
 - AP'13 J. Alperin-Sheriff, C. Peikert, "Practical Bootstrapping in Quasilinear Time," CRYPTO'13.

Part 1:

Ring Switching

Notation

• Let $R^{(\ell)}/\cdots/R^{(2)}/R^{(1)}/\mathbb{Z}$ be a tower of cyclotomic ring extensions.

Notation

• Let $R^{(\ell)}/\cdots/R^{(2)}/R^{(1)}/\mathbb{Z}$ be a tower of cyclotomic ring extensions.

Let's go slower.

• Define
$$\mathcal{O}_k = \mathbb{Z}[\zeta_k]$$
, where ζ_k has order k (so $\zeta_k^k = 1$).

Define O_k = ℤ[ζ_k], where ζ_k has order k (so ζ^k_k = 1).
 ★ O₁ = ℤ[1] = ℤ. ℤ-basis {1}.

Define O_k = Z[ζ_k], where ζ_k has order k (so ζ^k_k = 1).
★ O₁ = Z[1] = Z. Z-basis {1}.
★ O₂ = Z[-1] = Z.

► Define $\mathcal{O}_k = \mathbb{Z}[\zeta_k]$, where ζ_k has order k (so $\zeta_k^k = 1$). ★ $\mathcal{O}_1 = \mathbb{Z}[1] = \mathbb{Z}$. ★ $\mathcal{O}_2 = \mathbb{Z}[-1] = \mathbb{Z}$. ★ $\mathcal{O}_4 \cong \mathbb{Z}[i] \cong \mathbb{Z}[X]/(1 + X^2)$, \mathbb{Z} -basis $\{1, \zeta_4\}$.

► Define $\mathcal{O}_k = \mathbb{Z}[\zeta_k]$, where ζ_k has order k (so $\zeta_k^k = 1$). ★ $\mathcal{O}_1 = \mathbb{Z}[1] = \mathbb{Z}$. ★ $\mathcal{O}_2 = \mathbb{Z}[-1] = \mathbb{Z}$. ★ $\mathcal{O}_4 \cong \mathbb{Z}[i] \cong \mathbb{Z}[X]/(1 + X^2)$, \mathbb{Z} -basis $\{1, \zeta_4\}$. ★ $\mathcal{O}_3 = \mathbb{Z}[\zeta_3] \cong \mathbb{Z}[X]/(1 + X + X^2)$, \mathbb{Z} -basis $\{1, \zeta_3\}$.

 $\begin{array}{l} \blacktriangleright \mbox{ Define } \mathcal{O}_k = \mathbb{Z}[\zeta_k], \mbox{ where } \zeta_k \mbox{ has order } k \mbox{ (so } \zeta_k^k = 1). \\ \star \ \mathcal{O}_1 = \mathbb{Z}[1] = \mathbb{Z}. & \mathbb{Z}\mbox{-basis } \{1\}. \\ \star \ \mathcal{O}_2 = \mathbb{Z}[-1] = \mathbb{Z}. \\ \star \ \mathcal{O}_4 \cong \mathbb{Z}[i] \cong \mathbb{Z}[X]/(1 + X^2), & \mathbb{Z}\mbox{-basis } \{1, \zeta_4\}. \\ \star \ \mathcal{O}_3 = \mathbb{Z}[\zeta_3] \cong \mathbb{Z}[X]/(1 + X + X^2), & \mathbb{Z}\mbox{-basis } \{1, \zeta_3\}. \end{array}$

 $\star \ \mathcal{O}_5 = \mathbb{Z}[\zeta_5] \cong \mathbb{Z}[X]/(1 + X + X^2 + X^3 + X^4), \quad \mathbb{Z}\text{-basis } \{1, \zeta, \zeta^2, \zeta^3\}.$

► Define $\mathcal{O}_k = \mathbb{Z}[\zeta_k]$, where ζ_k has order k (so $\zeta_k^k = 1$). ★ $\mathcal{O}_1 = \mathbb{Z}[1] = \mathbb{Z}$. ★ $\mathcal{O}_2 = \mathbb{Z}[-1] = \mathbb{Z}$. ★ $\mathcal{O}_4 \cong \mathbb{Z}[i] \cong \mathbb{Z}[X]/(1 + X^2)$, \mathbb{Z} -basis $\{1, \zeta_4\}$. ★ $\mathcal{O}_3 = \mathbb{Z}[\zeta_3] \cong \mathbb{Z}[X]/(1 + X + X^2)$, \mathbb{Z} -basis $\{1, \zeta_3\}$. ★ $\mathcal{O}_5 = \mathbb{Z}[\zeta_5] \cong \mathbb{Z}[X]/(1 + X + X^2 + X^3 + X^4)$, \mathbb{Z} -basis $\{1, \zeta, \zeta^2, \zeta^3\}$.

Facts

1 For prime
$$p$$
, $\mathcal{O}_p \cong \mathbb{Z}[X]/(\underbrace{1+X+\cdots+X^{p-1}}_{\Phi_p(X)}); \qquad \{1, \zeta, \dots, \zeta^{p-2}\}.$

► Define $\mathcal{O}_k = \mathbb{Z}[\zeta_k]$, where ζ_k has order k (so $\zeta_k^k = 1$). ★ $\mathcal{O}_1 = \mathbb{Z}[1] = \mathbb{Z}$. ★ $\mathcal{O}_2 = \mathbb{Z}[-1] = \mathbb{Z}$. ★ $\mathcal{O}_4 \cong \mathbb{Z}[i] \cong \mathbb{Z}[X]/(1 + X^2)$, \mathbb{Z} -basis $\{1, \zeta_4\}$. ★ $\mathcal{O}_3 = \mathbb{Z}[\zeta_3] \cong \mathbb{Z}[X]/(1 + X + X^2)$, \mathbb{Z} -basis $\{1, \zeta_3\}$. ★ $\mathcal{O}_5 = \mathbb{Z}[\zeta_5] \cong \mathbb{Z}[X]/(1 + X + X^2 + X^3 + X^4)$, \mathbb{Z} -basis $\{1, \zeta, \zeta^2, \zeta^3\}$.

Facts

• For prime
$$p$$
, $\mathcal{O}_p \cong \mathbb{Z}[X]/(\underbrace{1+X+\cdots+X^{p-1}}_{\Phi_p(X)}); \qquad \{1, \zeta, \dots, \zeta^{p-2}\}.$

2 For prime power p^e , $\mathcal{O}_{p^e} \cong \mathbb{Z}[X]/(\Phi_p(X^{p^{e-1}})); \{1, \zeta, \dots, \zeta^{\varphi(p^e)-1}\}.$

► Define $\mathcal{O}_k = \mathbb{Z}[\zeta_k]$, where ζ_k has order k (so $\zeta_k^k = 1$). ★ $\mathcal{O}_1 = \mathbb{Z}[1] = \mathbb{Z}$. ★ $\mathcal{O}_2 = \mathbb{Z}[-1] = \mathbb{Z}$. ★ $\mathcal{O}_4 \cong \mathbb{Z}[i] \cong \mathbb{Z}[X]/(1 + X^2)$, \mathbb{Z} -basis $\{1, \zeta_4\}$. ★ $\mathcal{O}_3 = \mathbb{Z}[\zeta_3] \cong \mathbb{Z}[X]/(1 + X + X^2)$, \mathbb{Z} -basis $\{1, \zeta_3\}$. ★ $\mathcal{O}_5 = \mathbb{Z}[\zeta_5] \cong \mathbb{Z}[X]/(1 + X + X^2 + X^3 + X^4)$, \mathbb{Z} -basis $\{1, \zeta, \zeta^2, \zeta^3\}$.

Facts

1 For prime
$$p$$
, $\mathcal{O}_p \cong \mathbb{Z}[X]/(\underbrace{1+X+\cdots+X^{p-1}}_{\Phi_p(X)}); \qquad \{1, \zeta, \dots, \zeta^{p-2}\}.$

2 For prime power p^e , $\mathcal{O}_{p^e} \cong \mathbb{Z}[X]/(\Phi_p(X^{p^{e-1}})); \{1, \zeta, \dots, \zeta^{\varphi(p^e)-1}\}.$

3 For distinct primes
$$p_1, p_2, \ldots$$
,
 $\mathcal{O}_{p_1^{e_1} p_2^{e_2} \ldots} \cong \mathbb{Z}[X_1, X_2, \ldots] / (\Phi_{p_1}(X_1^{p_1^{e_1-1}}), \Phi_{p_2}(X_2^{p_2^{e_2-1}}), \ldots).$

► If $k \mid k'$, can view $R = \mathbb{Z}[\zeta_k]$ as a subring of $R' = \mathbb{Z}[\zeta_{k'}]$, via $\zeta_k \mapsto \zeta_{k'}^{(k'/k)}$. (still has order k)

- ► If $k \mid k'$, can view $R = \mathbb{Z}[\zeta_k]$ as a subring of $R' = \mathbb{Z}[\zeta_{k'}]$, via $\zeta_k \mapsto \zeta_{k'}^{(k'/k)}$. (still has order k)
- Example: tower of quadratic extensions $\mathcal{O}_k/\mathcal{O}_{k/2}/\cdots/\mathcal{O}_4/\mathbb{Z}$:

- ► If $k \mid k'$, can view $R = \mathbb{Z}[\zeta_k]$ as a subring of $R' = \mathbb{Z}[\zeta_{k'}]$, via $\zeta_k \mapsto \zeta_{k'}^{(k'/k)}$. (still has order k)
- Example: tower of quadratic extensions $\mathcal{O}_k/\mathcal{O}_{k/2}/\cdots/\mathcal{O}_4/\mathbb{Z}$:

$$\begin{split} \zeta_k^2 &= \zeta_{k/2} & \mathcal{O}_k = \mathcal{O}_{k/2}[\zeta_k] & \mathcal{O}_{k/2}\text{-basis } B'_k = \{1, \zeta_k\} \\ & \vdots \\ \zeta_8^2 &= \zeta_4 & \mathcal{O}_8 = \mathcal{O}_4[\zeta_8] & \mathcal{O}_4\text{-basis } B'_8 = \{1, \zeta_8\} \\ & & | \\ \zeta_4^2 &= \zeta_2 & \mathcal{O}_4 = \mathcal{O}_2[\zeta_4] & \mathcal{O}_2\text{-basis } B'_4 = \{1, \zeta_4\} \\ & & | \\ \zeta_2^2 &= 1 & \mathcal{O}_2 = \mathbb{Z}[\zeta_2] = \mathbb{Z} & \mathbb{Z}\text{-basis } B'_2 = \{1\} \end{split}$$

- ► If $k \mid k'$, can view $R = \mathbb{Z}[\zeta_k]$ as a subring of $R' = \mathbb{Z}[\zeta_{k'}]$, via $\zeta_k \mapsto \zeta_{k'}^{(k'/k)}$. (still has order k)
- ► Example: tower of quadratic extensions O_k/O_{k/2}/···/O₄/ℤ:

$$\begin{split} \zeta_k^2 &= \zeta_{k/2} & \mathcal{O}_k = \mathcal{O}_{k/2}[\zeta_k] & \mathcal{O}_{k/2}\text{-basis } B'_k = \{1,\zeta_k\} \\ & \vdots \\ \zeta_8^2 &= \zeta_4 & \mathcal{O}_8 = \mathcal{O}_4[\zeta_8] & \mathcal{O}_4\text{-basis } B'_8 = \{1,\zeta_8\} \\ & & | \\ \zeta_4^2 &= \zeta_2 & \mathcal{O}_4 = \mathcal{O}_2[\zeta_4] & \mathcal{O}_2\text{-basis } B'_4 = \{1,\zeta_4\} \\ & & | \\ \zeta_2^2 &= 1 & \mathcal{O}_2 = \mathbb{Z}[\zeta_2] = \mathbb{Z} & \mathbb{Z}\text{-basis } B'_2 = \{1\} \end{split}$$

• "Product" \mathbb{Z} -basis of \mathcal{O}_k :

$$B_k := B'_k \cdot B_{k/2} = B'_k \cdot B'_{k/2} \cdots B'_2$$

► If $k \mid k'$, can view $R = \mathbb{Z}[\zeta_k]$ as a subring of $R' = \mathbb{Z}[\zeta_{k'}]$, via $\zeta_k \mapsto \zeta_{k'}^{(k'/k)}$. (still has order k)

► Example: tower of quadratic extensions O_k/O_{k/2}/···/O₄/ℤ:

$$\begin{split} \zeta_k^2 &= \zeta_{k/2} & \mathcal{O}_k = \mathcal{O}_{k/2}[\zeta_k] & \mathcal{O}_{k/2}\text{-basis } B'_k = \{1,\zeta_k\} \\ & \vdots \\ \zeta_8^2 &= \zeta_4 & \mathcal{O}_8 = \mathcal{O}_4[\zeta_8] & \mathcal{O}_4\text{-basis } B'_8 = \{1,\zeta_8\} \\ & & | \\ \zeta_4^2 &= \zeta_2 & \mathcal{O}_4 = \mathcal{O}_2[\zeta_4] & \mathcal{O}_2\text{-basis } B'_4 = \{1,\zeta_4\} \\ & & | \\ \zeta_2^2 &= 1 & \mathcal{O}_2 = \mathbb{Z}[\zeta_2] = \mathbb{Z} & \mathbb{Z}\text{-basis } B'_2 = \{1\} \end{split}$$

• "Product" \mathbb{Z} -basis of \mathcal{O}_k :

$$B_k := B'_k \cdot B_{k/2} = B'_k \cdot B'_{k/2} \cdots B'_2 = \{1, \zeta, \zeta^2, \dots, \zeta^{k/2-1}\}.$$

► If $k \mid k'$, can view $R = \mathbb{Z}[\zeta_k]$ as a subring of $R' = \mathbb{Z}[\zeta_{k'}]$, via $\zeta_k \mapsto \zeta_{k'}^{(k'/k)}$. (still has order k)

▶ If $k \mid k'$, can view $R = \mathbb{Z}[\zeta_k]$ as a subring of $R' = \mathbb{Z}[\zeta_{k'}]$, via

 $\zeta_k \mapsto \zeta_{k'}^{(k'/k)}. \qquad (\text{still has order } k)$

▶ The trace $Tr = Tr_{R'/R} : R' \to R$ is a "universal" *R*-linear function:

- ► If $k \mid k'$, can view $R = \mathbb{Z}[\zeta_k]$ as a subring of $R' = \mathbb{Z}[\zeta_{k'}]$, via $\zeta_k \mapsto \zeta_{k'}^{(k'/k)}$. (still has order k)
- ▶ The trace $Tr = Tr_{R'/R} : R' \to R$ is a "universal" *R*-linear function:

1 *R*-linear: for any $r_j \in R$ and $r'_j \in R'$,

 $Tr(r_1 \cdot r'_1 + r_2 \cdot r'_2) = r_1 \cdot Tr(r'_1) + r_2 \cdot Tr(r'_2).$

- ► If $k \mid k'$, can view $R = \mathbb{Z}[\zeta_k]$ as a subring of $R' = \mathbb{Z}[\zeta_{k'}]$, via $\zeta_k \mapsto \zeta_{k'}^{(k'/k)}$. (still has order k)
- ▶ The trace $Tr = Tr_{R'/R} \colon R' \to R$ is a "universal" *R*-linear function:

1 *R*-linear: for any
$$r_j \in R$$
 and $r'_j \in R'$,

$$\operatorname{Tr}(r_1 \cdot r'_1 + r_2 \cdot r'_2) = r_1 \cdot \operatorname{Tr}(r'_1) + r_2 \cdot \operatorname{Tr}(r'_2).$$

2 Universal: any R-linear function $L\colon R'\to R$ can be written as $L(x)=\mathrm{Tr}(r'_L\cdot x)$

for some r'_L depending only on L.

- ► If $k \mid k'$, can view $R = \mathbb{Z}[\zeta_k]$ as a subring of $R' = \mathbb{Z}[\zeta_{k'}]$, via $\zeta_k \mapsto \zeta_{k'}^{(k'/k)}$. (still has order k)
- ▶ The trace $Tr = Tr_{R'/R} \colon R' \to R$ is a "universal" *R*-linear function:

1 R-linear: for any
$$r_j \in R$$
 and $r'_j \in R'$,

$$\operatorname{Tr}(r_1 \cdot r'_1 + r_2 \cdot r'_2) = r_1 \cdot \operatorname{Tr}(r'_1) + r_2 \cdot \operatorname{Tr}(r'_2).$$

2 Universal: any R-linear function $L\colon R'\to R$ can be written as $L(x)=\mathrm{Tr}(r'_L\cdot x)$

for some r'_L depending only on L.

Any *R*-linear function is uniquely defined by its values on an *R*-basis {b'_i} of *R*', and vice versa:

$$\operatorname{Tr}\left(\sum_{j} r_{j} \cdot b_{j}'\right) = \sum_{j} r_{j} \cdot \operatorname{Tr}(b_{j}').$$

• Let
$$R := \mathcal{O}_k$$
, e.g., $\mathbb{Z}[X]/(1 + X^{k/2})$ for k a power of 2.

• Let $R := \mathcal{O}_k$, e.g., $\mathbb{Z}[X]/(1 + X^{k/2})$ for k a power of 2.

Denote $R_q := R/qR = \mathbb{Z}_q[X]/(1 + X^{k/2})$ for any integer q.

• Let $R := \mathcal{O}_k$, e.g., $\mathbb{Z}[X]/(1 + X^{k/2})$ for k a power of 2.

Denote $R_q := R/qR = \mathbb{Z}_q[X]/(1 + X^{k/2})$ for any integer q.

▶ Plaintext ring is R_2 , ciphertext ring is R_q for some $q \gg 2$.

• Let $R := \mathcal{O}_k$, e.g., $\mathbb{Z}[X]/(1 + X^{k/2})$ for k a power of 2.

Denote $R_q := R/qR = \mathbb{Z}_q[X]/(1 + X^{k/2})$ for any integer q.

▶ Plaintext ring is R_2 , ciphertext ring is R_q for some $q \gg 2$.

• Encryption of $\mu \in R_2$ under $s \in R$ is some $c = (c_0, c_1) \in R_q^2$ satisfying

$$c_0 + c_1 \cdot s \approx \frac{q}{2}\mu \pmod{qR}.$$

- \star Thanks to this relation we can do + and imes homomorphically.
- ★ Semantic security follows from hardness of ring-LWE over R
 ⇐ (quantum) worst-case hardness of approx-SVP on ideal lattices in R.

• Let $R := \mathcal{O}_k$, e.g., $\mathbb{Z}[X]/(1 + X^{k/2})$ for k a power of 2.

Denote $R_q := R/qR = \mathbb{Z}_q[X]/(1 + X^{k/2})$ for any integer q.

- ▶ Plaintext ring is R_2 , ciphertext ring is R_q for some $q \gg 2$.
- Encryption of $\mu \in R_2$ under $s \in R$ is some $c = (c_0, c_1) \in R_q^2$ satisfying

$$c_0 + c_1 \cdot s \approx \frac{q}{2}\mu \pmod{qR}.$$

- Thanks to this relation we can do + and imes homomorphically.
- ★ Semantic security follows from hardness of ring-LWE over R
 ⇐ (quantum) worst-case hardness of approx-SVP on ideal lattices in R.
- "Unpacked" plaintext $\mu \in \mathbb{Z}_2 \subseteq R_2$ (just a constant polynomial).

• Let $R := \mathcal{O}_k$, e.g., $\mathbb{Z}[X]/(1 + X^{k/2})$ for k a power of 2.

Denote $R_q := R/qR = \mathbb{Z}_q[X]/(1 + X^{k/2})$ for any integer q.

- ▶ Plaintext ring is R_2 , ciphertext ring is R_q for some $q \gg 2$.
- Encryption of $\mu \in R_2$ under $s \in R$ is some $c = (c_0, c_1) \in R_q^2$ satisfying

$$c_0 + c_1 \cdot s \approx \frac{q}{2}\mu \pmod{qR}.$$

- ★ Semantic security follows from hardness of ring-LWE over R
 ⇐ (quantum) worst-case hardness of approx-SVP on ideal lattices in R.
- "Unpacked" plaintext $\mu \in \mathbb{Z}_2 \subseteq R_2$ (just a constant polynomial). "Packed" plaintext uses more of R_2 , e.g., multiple "slots" [SV'11].

Theorem [GHPS'12]

For any cyclotomic rings R'/R, we can homomorphically evaluate

Theorem [GHPS'12]

For any cyclotomic rings R'/R, we can homomorphically evaluate
 ★ any R-linear L: R'₂ → R₂ (i.e., map µ' ∈ R'₂ to µ = L(µ') ∈ R₂)

Theorem [GHPS'12]

- For any cyclotomic rings R'/R, we can homomorphically evaluate
 - \star any R-linear $L\colon R_2' o R_2$ (i.e., map $\mu'\in R_2'$ to $\mu=L(\mu')\in R_2$)
 - $\star\,$ by mapping the ciphertext c' over R' to some c over R,

Theorem [GHPS'12]

- For any cyclotomic rings R'/R, we can homomorphically evaluate
 - \star any R-linear $L\colon R_2' o R_2$ (i.e., map $\mu'\in R_2'$ to $\mu=L(\mu')\in R_2$)
 - $\star\,$ by mapping the ciphertext c' over R' to some c over R,
 - \star assuming hardness of *R*-LWE.

Theorem [GHPS'12]

- For any cyclotomic rings R'/R, we can homomorphically evaluate
 - \star any R-linear $L\colon R_2' o R_2$ (i.e., map $\mu'\in R_2'$ to $\mu=L(\mu')\in R_2$)
 - \star by mapping the ciphertext c' over R' to some c over R,
 - ★ assuming hardness of *R*-LWE.

So What?

- "Fresh" ciphertexts need small noise \Rightarrow large ring degree for security.
- Noise increases as we do homomorphic operations, so we can securely switch to smaller ring dimension, yielding smaller ciphertexts and faster operations.
- Also important for minimizing complexity of decryption for bootstrapping (cf. "dimension reduction" [BV'11]).
- We'll see another cool application later...

Theorem [GHPS'12]

For any cyclotomic rings R'/R, we can homomorphically evaluate

- \star any R-linear $L\colon R_2' o R_2$ (i.e., map $\mu'\in R_2'$ to $\mu=L(\mu')\in R_2$)
- \star by mapping the ciphertext c' over R' to some c over R,
- \star assuming hardness of *R*-LWE.

Proof: Given $c' = (c'_0, c'_1)$, let $c_i = \operatorname{Tr}(r'_L \cdot c'_i)$.

Ring Switching

Theorem [GHPS'12]

For any cyclotomic rings R'/R, we can homomorphically evaluate

- \star any R-linear $L\colon R_2' o R_2$ (i.e., map $\mu'\in R_2'$ to $\mu=L(\mu')\in R_2$)
- \star by mapping the ciphertext c' over R' to some c over R,
- \star assuming hardness of *R*-LWE.

▶ Proof: Given $c' = (c'_0, c'_1)$, let $c_i = \text{Tr}(r'_L \cdot c'_i)$.

$$c'_{0} + s' \cdot c'_{1} \approx \frac{q}{2} \cdot \mu' \pmod{qR'}$$
$$\implies \operatorname{Tr}(r'_{L} \cdot c'_{0}) + \operatorname{Tr}(s' \cdot r'_{L} \cdot c'_{1}) \approx \frac{q}{2} \cdot \operatorname{Tr}(r'_{L} \cdot \mu') \pmod{qR}$$
$$?? \Longrightarrow c_{0} + s' \cdot c_{1} \approx \frac{q}{2} \cdot \mu \pmod{qR}.$$

Ring Switching

Theorem [GHPS'12]

For any cyclotomic rings R'/R, we can homomorphically evaluate

- \star any R-linear $L\colon R_2' o R_2$ (i.e., map $\mu'\in R_2'$ to $\mu=L(\mu')\in R_2$)
- \star by mapping the ciphertext c' over R' to some c over R,
- ★ assuming hardness of *R*-LWE.

Proof: Given $c' = (c'_0, c'_1)$, let $c_i = \operatorname{Tr}(r'_L \cdot c'_i)$.

$$\begin{aligned} c'_0 + \mathbf{s} \cdot c'_1 &\approx \frac{q}{2} \cdot \mu' \pmod{qR'} \\ \Longrightarrow \operatorname{Tr}(r'_L \cdot c'_0) + \operatorname{Tr}(\mathbf{s} \cdot r'_L \cdot c'_1) &\approx \frac{q}{2} \cdot \operatorname{Tr}(r'_L \cdot \mu') \pmod{qR} \\ &\implies c_0 + \mathbf{s} \cdot c_1 \approx \frac{q}{2} \cdot \mu \pmod{qR}. \end{aligned}$$

First "key-switch" from $s' \in R'$ to $s \in R$.

Ring Switching

Theorem [GHPS'12]

For any cyclotomic rings R'/R, we can homomorphically evaluate

- \star any R-linear $L\colon R_2' o R_2$ (i.e., map $\mu'\in R_2'$ to $\mu=L(\mu')\in R_2$)
- \star by mapping the ciphertext c' over R' to some c over R,
- ★ assuming hardness of *R*-LWE.

▶ Proof: Given $c' = (c'_0, c'_1)$, let $c_i = \text{Tr}(r'_L \cdot c'_i)$.

$$\begin{aligned} c_0' + \mathbf{s} \cdot c_1' &\approx \frac{q}{2} \cdot \mu' \pmod{qR'} \\ \Longrightarrow \operatorname{Tr}(r_L' \cdot c_0') + \operatorname{Tr}(\mathbf{s} \cdot r_L' \cdot c_1') &\approx \frac{q}{2} \cdot \operatorname{Tr}(r_L' \cdot \mu') \pmod{qR} \\ &\implies c_0 + \mathbf{s} \cdot c_1 \approx \frac{q}{2} \cdot \mu \pmod{qR}. \end{aligned}$$

► First "key-switch" from s' ∈ R' to s ∈ R.
<u>Theorem</u>: R'-LWE with secret in R is as hard as R-LWE.

Part 2:

Bootstrapping

Fully Homomorphic Encryption [RAD'78,Gen'09]

FHE lets you do this:

$$\mu \longrightarrow \boxed{\mathsf{Eval}(f, \mu)} \longrightarrow f(\mu)$$

where $|f(\boldsymbol{\mu})|$ and decryption time don't depend on |f|.

A cryptographic "holy grail."

Fully Homomorphic Encryption [RAD'78,Gen'09]

FHE lets you do this:

$$\mu \longrightarrow \boxed{\mathsf{Eval}(f, \mu)} \longrightarrow f(\mu)$$

where $|f(\mu)|$ and decryption time don't depend on |f|.

A cryptographic "holy grail."

Naturally occurring schemes are "somewhat homomorphic" (SHE): they can only evaluate functions of an *a priori* bounded depth.

$$\mu \to \boxed{\mathsf{Eval}(f,\mu)} \to \boxed{f(\mu)} \to \boxed{\mathsf{Eval}(g,f(\mu))} \to \boxed{g(f(\mu))}$$

$$sk \longrightarrow Final \left(f(\cdot) = Dec(\cdot, \mu) \right) \longrightarrow \mu$$

$$sk \longrightarrow Final \left(f(\cdot) = Dec(\cdot, \mu) \right) \longrightarrow \mu$$

- * The only known way of obtaining unbounded FHE.
- **\star** Goal: Efficiency! Minimize depth d and size s of decryption "circuit."
- * Most efficient SHEs [BGV'12] can evaluate in time $\tilde{O}(d \cdot s \cdot \lambda)$.

$$sk \longrightarrow Final \left(f(\cdot) = Dec(\cdot, \mu) \right) \longrightarrow \mu$$

- * The only known way of obtaining unbounded FHE.
- ***** Goal: Efficiency! Minimize depth d and size s of decryption "circuit."
- * Most efficient SHEs [BGV'12] can evaluate in time $\tilde{O}(d \cdot s \cdot \lambda)$.
- Intensive study, many techniques
 [G'09,GH'11a,GH'11b,GHS'12b,AP'13,BV'14,AP'14], but
 still very inefficient the main bottleneck in FHE, by far.

$$sk \longrightarrow Final \left(f(\cdot) = Dec(\cdot, \mu) \right) \longrightarrow \mu$$

- * The only known way of obtaining unbounded FHE.
- ***** Goal: Efficiency! Minimize depth d and size s of decryption "circuit."
- * Most efficient SHEs [BGV'12] can evaluate in time $\tilde{O}(d \cdot s \cdot \lambda)$.
- Intensive study, many techniques [G'09,GH'11a,GH'11b,GHS'12b,AP'13,BV'14,AP'14], but still very inefficient – the main bottleneck in FHE, by far.
- Prior asymptotically efficient methods on "packed" ciphertexts [GHS'12a,GHS'12b] are very complex, and are practically worse than asymptotically slower methods.

Milestones in Bootstrapping [Gen'09]: $\tilde{O}(\lambda^4)$ runtime

[Gen'09]: $\tilde{O}(\lambda^4)$ runtime

[BGV'12]: $\tilde{O}(\lambda^2)$ runtime, or $\tilde{O}(\lambda)$ amortized over λ ciphertexts

[Gen'09]: $\tilde{O}(\lambda^4)$ runtime

[BGV'12]: $\tilde{O}(\lambda^2)$ runtime, or $\tilde{O}(\lambda)$ amortized over λ ciphertexts

Mainly via improved SHE homomorphic capacity.

Amortized method requires "exotic" rings, emulating \mathbb{Z}_2 arithmetic in $\mathbb{Z}_p.$

[Gen'09]: $\tilde{O}(\lambda^4)$ runtime

[BGV'12]: $\tilde{O}(\lambda^2)$ runtime, or $\tilde{O}(\lambda)$ amortized over λ ciphertexts Mainly via improved SHE homomorphic capacity. Amortized method requires "exotic" rings, emulating \mathbb{Z}_2 arithmetic in \mathbb{Z}_p .

[GHS'12b]: $\tilde{O}(\lambda)$ runtime, for "packed" plaintexts. Declare victory?

[Gen'09]: $\tilde{O}(\lambda^4)$ runtime

 $[\mathsf{BGV'12}]:\ \tilde{O}(\lambda^2) \text{ runtime, or } \tilde{O}(\lambda) \text{ amortized over } \lambda \text{ ciphertexts} \\ \text{Mainly via improved SHE homomorphic capacity.} \\ \text{Amortized method requires "exotic" rings, emulating } \mathbb{Z}_2$

arithmetic in \mathbb{Z}_p . [GHS'12b]: $\tilde{O}(\lambda)$ runtime, for "packed" plaintexts. Declare victory?

[Gen'09]: $\tilde{O}(\lambda^4)$ runtime

[BGV'12]: $\tilde{O}(\lambda^2)$ runtime, or $\tilde{O}(\lambda)$ amortized over λ ciphertexts Mainly via improved SHE homomorphic capacity. Amortized method requires "exotic" rings, emulating \mathbb{Z}_2 arithmetic in \mathbb{Z}_n .

[GHS'12b]: $\tilde{O}(\lambda)$ runtime, for "packed" plaintexts. Declare victory?

X Log-depth mod- $\Phi_m(X)$ circuit is complex, w/large hidden constants.

[Gen'09]: $\tilde{O}(\lambda^4)$ runtime

[BGV'12]: $\tilde{O}(\lambda^2)$ runtime, or $\tilde{O}(\lambda)$ amortized over λ ciphertexts Mainly via improved SHE homomorphic capacity. Amortized method requires "exotic" rings, emulating \mathbb{Z}_2 arithmetic in \mathbb{Z}_n .

[GHS'12b]: $\tilde{O}(\lambda)$ runtime, for "packed" plaintexts. Declare victory?

X Log-depth mod- $\Phi_m(X)$ circuit is complex, w/large hidden constants. XX [GHS'12a] compiler is very complex, w/large polylog overhead.

- **1** For "unpacked" (single-bit) plaintexts:
 - ✓ Extremely simple!
 - ✔ Uses only power-of-2 cyclotomic rings (fast, easy to implement).

- **1** For "unpacked" (single-bit) plaintexts:
 - ✓ Extremely simple!
 - ✔ Uses only power-of-2 cyclotomic rings (fast, easy to implement).
 - * Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.

- **1** For "unpacked" (single-bit) plaintexts:
 - ✓ Extremely simple!
 - ✔ Uses only power-of-2 cyclotomic rings (fast, easy to implement).
 - * Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.
- 2 For "packed" (many-bit) plaintexts:

- **1** For "unpacked" (single-bit) plaintexts:
 - ✓ Extremely simple!
 - ✔ Uses only power-of-2 cyclotomic rings (fast, easy to implement).
 - * Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.
- 2 For "packed" (many-bit) plaintexts:
 - * Based on an enhancement of ring-switching to non-subrings.

- **1** For "unpacked" (single-bit) plaintexts:
 - ✓ Extremely simple!
 - ✔ Uses only power-of-2 cyclotomic rings (fast, easy to implement).
 - * Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.
- Por "packed" (many-bit) plaintexts:
 - * Based on an enhancement of ring-switching to non-subrings.
 - ✓ Seems quite practical, avoids both main inefficiencies of [GHS'12b]: no homomorphic reduction modulo $Φ_m(X)$, no generic compilation.

- **1** For "unpacked" (single-bit) plaintexts:
 - ✓ Extremely simple!
 - ✔ Uses only power-of-2 cyclotomic rings (fast, easy to implement).
 - * Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.
- 2 For "packed" (many-bit) plaintexts:
 - * Based on an enhancement of ring-switching to non-subrings.
 - ✓ Seems quite practical, avoids both main inefficiencies of [GHS'12b]: no homomorphic reduction modulo $\Phi_m(X)$, no generic compilation.
 - ✓ Special purpose, completely algebraic description no "circuits."

- **1** For "unpacked" (single-bit) plaintexts:
 - ✓ Extremely simple!
 - ✔ Uses only power-of-2 cyclotomic rings (fast, easy to implement).
 - * Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.
- 2 For "packed" (many-bit) plaintexts:
 - * Based on an enhancement of ring-switching to non-subrings.
 - ✓ Seems quite practical, avoids both main inefficiencies of [GHS'12b]: no homomorphic reduction modulo $\Phi_m(X)$, no generic compilation.
 - ✔ Special purpose, completely algebraic description no "circuits."
 - Decouples the algebraic structure of SHE plaintext ring from the ring structure needed for bootstrapping.

() Prepare: view c as a "noiseless" encryption of plaintext

$$v = c_0 + c_1 \cdot s = \sum_j v_j \cdot b_j \in R_q.$$
 (Z-basis $\{b_j\}$ of R)

Recall: $v \approx \frac{q}{2} \cdot \mu$, so $\mu = \lfloor v \rceil := \sum_j \lfloor v_j \rceil \cdot \frac{b_j}{b_j} \in R_2$.

1 Prepare: view c as a "noiseless" encryption of plaintext

$$v = c_0 + c_1 \cdot s = \sum_j v_j \cdot b_j \in \mathbb{R}_q.$$
 (Z-basis $\{b_j\}$ of R)

Recall: $v \approx \frac{q}{2} \cdot \mu$, so $\mu = \lfloor v \rceil := \sum_j \lfloor v_j \rceil \cdot b_j \in R_2$.

2 Homomorphically map \mathbb{Z}_q -coeffs v_j to " \mathbb{Z}_q -slots" of certain ring S_q : $\sum v_j \cdot b_j \in R_q \quad \longmapsto \quad \sum v_j \cdot c_j \in S_q.$

(Change of basis, analogous to homomorphic DFT.)

1 Prepare: view c as a "noiseless" encryption of plaintext

$$v = c_0 + c_1 \cdot s = \sum_j v_j \cdot b_j \in \mathbb{R}_q.$$
 (Z-basis $\{b_j\}$ of R)

Recall: $v \approx \frac{q}{2} \cdot \mu$, so $\mu = \lfloor v \rceil := \sum_j \lfloor v_j \rceil \cdot b_j \in R_2$.

2 Homomorphically map \mathbb{Z}_q -coeffs v_j to " \mathbb{Z}_q -slots" of certain ring S_q : $\sum v_j \cdot b_j \in R_q \quad \longmapsto \quad \sum v_j \cdot c_j \in S_q.$

(Change of basis, analogous to homomorphic DFT.)

3 Batch-round: homom'ly apply $\lfloor \cdot \rfloor$ on all \mathbb{Z}_q -slots at once [SV'11]:

$$\sum v_j \cdot c_j \in S_q \quad \longmapsto \quad \sum \lfloor v_j \rfloor \cdot c_j \in S_2.$$

1 Prepare: view c as a "noiseless" encryption of plaintext

$$v = c_0 + c_1 \cdot s = \sum_j v_j \cdot b_j \in \mathbb{R}_q.$$
 (Z-basis $\{b_j\}$ of R)

Recall: $v \approx \frac{q}{2} \cdot \mu$, so $\mu = \lfloor v \rceil := \sum_j \lfloor v_j \rceil \cdot b_j \in R_2$.

2 Homomorphically map \mathbb{Z}_q -coeffs v_j to " \mathbb{Z}_q -slots" of certain ring S_q : $\sum v_j \cdot b_j \in R_q \quad \longmapsto \quad \sum v_j \cdot c_j \in S_q.$

(Change of basis, analogous to homomorphic DFT.)

3 Batch-round: homom'ly apply $\lfloor \cdot \rfloor$ on all \mathbb{Z}_q -slots at once [SV'11]:

$$\sum v_j \cdot \mathbf{c}_j \in \mathbf{S}_q \quad \longmapsto \quad \sum \lfloor v_j \rfloor \cdot \mathbf{c}_j \in \mathbf{S}_2.$$

4 Homomorphically reverse-map \mathbb{Z}_2 -slots back to *B*-coeffs:

$$\sum \lfloor v_j \rceil \cdot c_j \in S_2 \quad \longmapsto \quad \sum \lfloor v_j \rceil \cdot b_j = \mu \in R_2.$$

(Akin to homomorphic DFT^{-1} .)

• Let $1 = \ell_0 |\ell_1| |\ell_2| \cdots$ (all odd), and $S^{(i)} = \mathcal{O}_{\ell_i} = \mathbb{Z}[\zeta_{\ell_i}].$

So we have a cyclotomic tower $S^{(i)}/S^{(i-1)}/\cdots/\mathbb{Z}$.

• Let $1 = \ell_0 |\ell_1| |\ell_2| \cdots$ (all odd), and $S^{(i)} = \mathcal{O}_{\ell_i} = \mathbb{Z}[\zeta_{\ell_i}].$

So we have a cyclotomic tower $S^{(i)}/S^{(i-1)}/\cdots/\mathbb{Z}$.

ln $S = S^{(i)}$, 2 factors into distinct prime ideals, like so:

• Let $1 = \ell_0 |\ell_1| |\ell_2| \cdots$ (all odd), and $S^{(i)} = \mathcal{O}_{\ell_i} = \mathbb{Z}[\zeta_{\ell_i}].$

So we have a cyclotomic tower $S^{(i)}/S^{(i-1)}/\cdots/\mathbb{Z}$.

ln $S = S^{(i)}$, 2 factors into distinct prime ideals, like so:

▶ By Chinese Rem Thm, $S_2 \cong \bigoplus_j (S/\mathfrak{p}_j)$ via natural homomorphism.

• Let $1 = \ell_0 |\ell_1| |\ell_2| \cdots$ (all odd), and $S^{(i)} = \mathcal{O}_{\ell_i} = \mathbb{Z}[\zeta_{\ell_i}].$

So we have a cyclotomic tower $S^{(i)}/S^{(i-1)}/\cdots/\mathbb{Z}$.

ln $S = S^{(i)}$, 2 factors into distinct prime ideals, like so:

By Chinese Rem Thm, S₂ ≅ ⊕_j (S/p_j) via natural homomorphism.
"CRT set:" C = {c_j} ⊂ S s.t. c_j = 1 (mod p_j), = 0 (mod p_{≠j}).
Map v_j ∈ Z₂ ↦ v_j · c_j ∈ S₂ embeds Z₂ into jth "slot" of S₂.

• Let $1 = \ell_0 |\ell_1| |\ell_2| \cdots$ (all odd), and $S^{(i)} = \mathcal{O}_{\ell_i} = \mathbb{Z}[\zeta_{\ell_i}].$

So we have a cyclotomic tower $S^{(i)}/S^{(i-1)}/\cdots/\mathbb{Z}$.

ln $S = S^{(i)}$, 2 factors into distinct prime ideals, like so:

- ▶ By Chinese Rem Thm, $S_2 \cong \bigoplus_j (S/\mathfrak{p}_j)$ via natural homomorphism. "CRT set:" $C = \{c_j\} \subset S$ s.t. $c_j = 1 \pmod{\mathfrak{p}_j}, = 0 \pmod{\mathfrak{p}_{\neq j}}$. Map $v_j \in \mathbb{Z}_2 \mapsto v_j \cdot c_j \in S_2$ embeds \mathbb{Z}_2 into *j*th "slot" of S_2 .
- ► Can factor $C_i = C'_i \cdot C_{i-1}$: let $c'_k = 1 \pmod{\mathfrak{p}_{\star,k}}$, $= 0 \pmod{\mathfrak{p}_{\star,\neq k}}$.

• Let $1 = \ell_0 |\ell_1| |\ell_2| \cdots$ (all odd), and $S^{(i)} = \mathcal{O}_{\ell_i} = \mathbb{Z}[\zeta_{\ell_i}].$

So we have a cyclotomic tower $S^{(i)}/S^{(i-1)}/\cdots/\mathbb{Z}$.

ln $S = S^{(i)}$, 2 factors into distinct prime ideals, like so:

- By Chinese Rem Thm, S₂ ≅ ⊕_j (S/p_j) via natural homomorphism.
 "CRT set:" C = {c_j} ⊂ S s.t. c_j = 1 (mod p_j), = 0 (mod p_{≠j}).
 Map v_j ∈ Z₂ ↦ v_j · c_j ∈ S₂ embeds Z₂ into jth "slot" of S₂.
- ▶ Can factor $C_i = C'_i \cdot C_{i-1}$: let $c'_k = 1 \pmod{\mathfrak{p}_{\star,k}}$, $= 0 \pmod{\mathfrak{p}_{\star,\neq k}}$.

• Similarly for
$$S_q \cong \bigoplus_j (S/\mathfrak{p}_j^{\lg q}).$$

Mapping Coeffs to Slots: Overview

• Choose S so that S_q has $\geq n = \deg(R/\mathbb{Z}) \quad \mathbb{Z}_q$ -slots, via:

$$(v_j) \in \mathbb{Z}_q^n \longmapsto \sum v_j \cdot c_j \mod q$$

for an appropriate CRT set $C = \{c_j\} \subset S$ of size n.

• Choose S so that S_q has $\geq n = \deg(R/\mathbb{Z}) \quad \mathbb{Z}_q$ -slots, via:

$$(v_j) \in \mathbb{Z}_q^n \longmapsto \sum v_j \cdot c_j \mod q$$

for an appropriate CRT set $C = \{c_j\} \subset S$ of size n.

▶ Our goal: homomorphically map $\sum v_j \cdot b_j \in R_q \longmapsto \sum v_j \cdot c_j \in S_q$.

• Choose S so that S_q has $\ge n = \deg(R/\mathbb{Z}) \quad \mathbb{Z}_q$ -slots, via:

$$(v_j) \in \mathbb{Z}_q^n \longmapsto \sum v_j \cdot c_j \mod q$$

for an appropriate CRT set $C = \{c_j\} \subset S$ of size n.

• Our goal: homomorphically map $\sum v_j \cdot b_j \in R_q \mapsto \sum v_j \cdot c_j \in S_q$. Equivalently, evaluate the Z-linear map $L \colon R \to S$ defined by

$$L(\boldsymbol{b_j}) = \boldsymbol{c_j}.$$

• Choose S so that S_q has $\ge n = \deg(R/\mathbb{Z}) \quad \mathbb{Z}_q$ -slots, via:

$$(v_j) \in \mathbb{Z}_q^n \longmapsto \sum v_j \cdot c_j \mod q$$

for an appropriate CRT set $C = \{c_j\} \subset S$ of size n.

• Our goal: homomorphically map $\sum v_j \cdot b_j \in R_q \mapsto \sum v_j \cdot c_j \in S_q$. Equivalently, evaluate the \mathbb{Z} -linear map $L \colon R \to S$ defined by

$$L(\boldsymbol{b_j}) = \boldsymbol{c_j}.$$

▶ Ring-switching lets us evaluate any R'-linear map $L \colon R \to R'$

• Choose S so that S_q has $\ge n = \deg(R/\mathbb{Z}) \quad \mathbb{Z}_q$ -slots, via:

$$(v_j) \in \mathbb{Z}_q^n \longmapsto \sum v_j \cdot c_j \mod q$$

for an appropriate CRT set $C = \{c_j\} \subset S$ of size n.

• Our goal: homomorphically map $\sum v_j \cdot b_j \in R_q \mapsto \sum v_j \cdot c_j \in S_q$. Equivalently, evaluate the \mathbb{Z} -linear map $L \colon R \to S$ defined by

$$L(\mathbf{b}_{\mathbf{j}}) = \mathbf{c}_{\mathbf{j}}.$$

Ring-switching lets us evaluate any R'-linear map $L \colon R \to R'$... but only for a subring $R' \subseteq R$.

• Choose S so that S_q has $\ge n = \deg(R/\mathbb{Z}) \quad \mathbb{Z}_q$ -slots, via:

$$(v_j) \in \mathbb{Z}_q^n \longmapsto \sum v_j \cdot \frac{c_j}{c_j} \mod q$$

for an appropriate CRT set $C = \{c_j\} \subset S$ of size n.

• Our goal: homomorphically map $\sum v_j \cdot b_j \in R_q \mapsto \sum v_j \cdot c_j \in S_q$. Equivalently, evaluate the \mathbb{Z} -linear map $L \colon R \to S$ defined by

$$L(\boldsymbol{b_j}) = \boldsymbol{c_j}.$$

Ring-switching lets us evaluate any R'-linear map $L \colon R \to R'$... but only for a subring $R' \subseteq R$.

Goal for Remainder of Talk

Extend ring-switching to (efficiently) handle \mathbb{Z} -linear maps $L: \mathbb{R} \to S$.

▶ Let $R = O_k$, $S = O_\ell$. Let $d = \operatorname{gcd}(k, \ell)$ and $m = \operatorname{lcm}(k, \ell)$.

• Let $R = \mathcal{O}_k$, $S = \mathcal{O}_\ell$. Let $d = \operatorname{gcd}(k, \ell)$ and $m = \operatorname{lcm}(k, \ell)$.

▶ Let $R = \mathcal{O}_k$, $S = \mathcal{O}_\ell$. Let $d = \operatorname{gcd}(k, \ell)$ and $m = \operatorname{lcm}(k, \ell)$.

Easy Lemma

For any *E*-linear $L: \mathbb{R} \to S$, there is an *S*-linear $\overline{L}: T \to S$ that agrees with *L* on *R*.

▶ Let $R = \mathcal{O}_k$, $S = \mathcal{O}_{\ell}$. Let $d = \operatorname{gcd}(k, \ell)$ and $m = \operatorname{lcm}(k, \ell)$.

Easy Lemma

For any *E*-linear $L: \mathbb{R} \to S$, there is an *S*-linear $\overline{L}: T \to S$ that agrees with *L* on *R*.

Proof: define \overline{L} by $\overline{L}(r \cdot s) = L(r) \cdot s \in S$.

▶ Let $R = \mathcal{O}_k$, $S = \mathcal{O}_\ell$ be s.t. $gcd(k, \ell) = 1$, $lcm(k, \ell) = k\ell$.

• Let $R = \mathcal{O}_k$, $S = \mathcal{O}_\ell$ be s.t. $gcd(k, \ell) = 1$, $lcm(k, \ell) = k\ell$.

• Let $R = \mathcal{O}_k$, $S = \mathcal{O}_\ell$ be s.t. $gcd(k, \ell) = 1$, $lcm(k, \ell) = k\ell$.

▶ To homom'ly eval. \mathbb{Z} -linear $L: \mathbb{R} \to S$ on an encryption of $v \in R_q$,

• Let $R = \mathcal{O}_k$, $S = \mathcal{O}_\ell$ be s.t. $gcd(k, \ell) = 1$, $lcm(k, \ell) = k\ell$.

- ▶ To homom'ly eval. \mathbb{Z} -linear $L \colon \mathbb{R} \to S$ on an encryption of $v \in R_q$,
 - **1** Trivially embed ciphertext $R \rightarrow T$ (still encrypts v).
 - **2** Homomorphically apply S-linear $\overline{L}: T \to S$ using ring-switching.
 - ✓ We now have an encryption of $\overline{L}(v) = L(v)$!

• Let $R = \mathcal{O}_k$, $S = \mathcal{O}_\ell$ be s.t. $gcd(k, \ell) = 1$, $lcm(k, \ell) = k\ell$.

- ▶ To homom'ly eval. \mathbb{Z} -linear $L: \mathbb{R} \to S$ on an encryption of $v \in R_q$,
 - **1** Trivially embed ciphertext $R \rightarrow T$ (still encrypts v).
 - **2** Homomorphically apply S-linear $\overline{L}: T \to S$ using ring-switching.
 - ✓ We now have an encryption of $\overline{L}(v) = L(v)$!
- **XX** Problem: degree of T is quadratic, therefore so is runtime & space.

▶ Let $R = \mathcal{O}_k$, $S = \mathcal{O}_\ell$ be s.t. $gcd(k, \ell) = 1$, $lcm(k, \ell) = k\ell$.

- ▶ To homom'ly eval. \mathbb{Z} -linear $L: \mathbb{R} \to S$ on an encryption of $v \in R_q$,
 - **1** Trivially embed ciphertext $R \rightarrow T$ (still encrypts v).
 - **2** Homomorphically apply S-linear $\overline{L}: T \to S$ using ring-switching.
 - ✓ We now have an encryption of $\overline{L}(v) = L(v)$!
- **XX** Problem: degree of T is quadratic, therefore so is runtime & space. This is inherent if we treat L as a generic \mathbb{Z} -linear map!

Enhanced Ring-Switching, Efficiently

Key Ideas

The Z-linear L: R → S given by L(b_j) = c_j is "highly structured," because B, C are product sets.

Enhanced Ring-Switching, Efficiently

Key Ideas

- The Z-linear L: R → S given by L(b_j) = c_j is "highly structured," because B, C are product sets.
- ► Gradually map B to C through a sequence of "hybrid rings" H⁽ⁱ⁾, via E⁽ⁱ⁾-linear functions that each send a factor of B to one of C.

Enhanced Ring-Switching, Efficiently

Key Ideas

- The Z-linear L: R → S given by L(b_j) = c_j is "highly structured," because B, C are product sets.
- Gradually map B to C through a sequence of "hybrid rings" H⁽ⁱ⁾, via E⁽ⁱ⁾-linear functions that each send a factor of B to one of C.
- ► Ensure small compositums T⁽ⁱ⁾ = H⁽ⁱ⁻¹⁾ + H⁽ⁱ⁾ via large gcd's: replace prime factors of k with those of l, one at a time.

• $R = \mathcal{O}_8$, basis $B = B'_8 \cdot B'_4 = \{1, \zeta_8\} \cdot \{1, \zeta_4\}.$

- $R = \mathcal{O}_8$, basis $B = B'_8 \cdot B'_4 = \{1, \zeta_8\} \cdot \{1, \zeta_4\}.$
- $S = \mathcal{O}_{7,13}$, CRT set $C = C'_7 \cdot C'_{91} = \{c_1, c_2\} \cdot \{c'_1, c'_2, c'_3\}$.

- $R = \mathcal{O}_8$, basis $B = B'_8 \cdot B'_4 = \{1, \zeta_8\} \cdot \{1, \zeta_4\}.$
- ► $S = \mathcal{O}_{7,13}$, CRT set $C = C'_7 \cdot C'_{91} = \{c_1, c_2\} \cdot \{c'_1, c'_2, c'_3\}$.

- $R = \mathcal{O}_8$, basis $B = B'_8 \cdot B'_4 = \{1, \zeta_8\} \cdot \{1, \zeta_4\}.$
- ► $S = \mathcal{O}_{7,13}$, CRT set $C = C'_7 \cdot C'_{91} = \{c_1, c_2\} \cdot \{c'_1, c'_2, c'_3\}$.

In general, switch through ≤ log(deg(R/Z)) = log(λ) hybrid rings, one for each prime factor of k.

Gradually converting B to C via hybrid rings is roughly analogous to a log-depth FFT butterfly network.

- Gradually converting B to C via hybrid rings is roughly analogous to a log-depth FFT butterfly network.
- Technique should also be useful for homomorphically evaluating other signal-processing transforms having "sparse decompositions."

- Gradually converting B to C via hybrid rings is roughly analogous to a log-depth FFT butterfly network.
- Technique should also be useful for homomorphically evaluating other signal-processing transforms having "sparse decompositions."
- Practical implementation and evaluation are underway.

- Gradually converting B to C via hybrid rings is roughly analogous to a log-depth FFT butterfly network.
- Technique should also be useful for homomorphically evaluating other signal-processing transforms having "sparse decompositions."
- Practical implementation and evaluation are underway.

Thanks!