Lossy Trapdoor Functions and Their Applications

Chris Peikert

Brent Waters

SRI International

 $2.3~\text{MB} \rightarrow 0.4~\text{MB}$

Lossy object indistinguishable from original

This Talk

1 Trapdoor functions without factoring: discrete log & lattices

This Talk

1 Trapdoor functions without factoring: discrete log & lattices

2 Black-box chosen-ciphertext security via randomness recovery

This Talk

- 1 Trapdoor functions without factoring: discrete log & lattices
- 2 Black-box chosen-ciphertext security via randomness recovery

3 A new general primitive: Lossy Trapdoor Functions

1-1 Trapdoor Functions

1-1 Trapdoor Functions

1-1 Trapdoor Functions

1-1 Trapdoor Functions

$$(F, F^{-1}) \leftarrow S$$

Public Key Encryption

$$(E, D) \leftarrow S$$

1-1 Trapdoor Functions

$$(F, F^{-1}) \leftarrow S$$

$$\{0, 1\}^n$$

$$F^{-1}$$

$$F(x)$$

 $\{0,1\}^{N}$

Public Key Encryption

$$(E, D) \leftarrow S$$

	Factoring	Discrete log	Lattices
PKE	✓ [RSA,]	✓ [ElGamal]	✓ [AD,R1,R2]
CCA	✓ [DDN,,CS2]	✓ [CS1]	??
TDF	✓ [RSA,R,P]	??	??

	Factoring	Discrete log	Lattices
PKE	✓ [RSA,]	✓ [ElGamal]	✓ [AD,R1,R2]
CCA	✓ [DDN,,CS2]	✓ [CS1]	??
TDF	✓ [RSA,R,P]	??	??

Lattice-Based Crypto:

- Simple & parallelizable
- Resist quantum algorithms (so far)
- Security from worst-case assumptions [Ajtai,...]

	Factoring	Discrete log	Lattices
PKE	✓ [RSA,]	✓ [ElGamal]	✓ [AD,R1,R2]
CCA	✓ [DDN,,CS2]	✓ [CS1]	??
TDF	✔ [RSA,R,P]	??	??

Black-Box Separations:

	Factoring	Discrete log	Lattices
PKE	✓ [RSA,]	✓ [ElGamal]	✓ [AD,R1,R2]
CCA	✓ [DDN,,CS2]	✓ [CS1]	✓
TDF	✓ [RSA,R,P]	✓	✓

This Work:

Theorem

► S_{inj} generates 1-1 trapdoor functions (F, F^{-1}) .

Theorem

- ► S_{inj} generates 1-1 trapdoor functions (F, F^{-1}) .
- \triangleright Efficient \mathcal{I} wants to invert F.

Theorem

- ► S_{inj} generates 1-1 trapdoor functions (F, F^{-1}) .
- \triangleright Efficient \mathcal{I} wants to invert F.

Theorem

- ► S_{inj} generates 1-1 trapdoor functions (F, F^{-1}) .
- \triangleright Efficient \mathcal{I} wants to invert F.

▶ F(x) has 2^{n-r} preimages (on average).

Theorem

- ► S_{inj} generates 1-1 trapdoor functions (F, F^{-1}) .
- \triangleright Efficient \mathcal{I} wants to invert F.

▶ F(x) has 2^{n-r} preimages (on average).

Main Technique

► Swapping *F* with *F* yields *statistically secure* system.

► Hard-core functions [GoldreichLevin] — the lazy way.

- ► Hard-core functions [GoldreichLevin] the lazy way.
 - Pairwise independent $H: \{0,1\}^n \to \{0,1\}^k$ for $k \approx n-r$.

- Hard-core functions [GoldreichLevin] the lazy way.
 - Pairwise independent $H: \{0,1\}^n \to \{0,1\}^k$ for $k \approx n-r$.

- Hard-core functions [GoldreichLevin] the lazy way.
 - Pairwise independent $H: \{0,1\}^n \to \{0,1\}^k$ for $k \approx n-r$.

- Hard-core functions [GoldreichLevin] the lazy way.
 - Pairwise independent $H: \{0,1\}^n \to \{0,1\}^k$ for $k \approx n-r$.

- Hard-core functions [GoldreichLevin] the lazy way.
 - Pairwise independent $H: \{0,1\}^n \to \{0,1\}^k$ for $k \approx n-r$.

▶ Public key (F, H), secret key F^{-1} .

Encrypt $m \in \{0,1\}^k$ as $(F(x), m \oplus H(x))$.

Chosen Ciphertext-Secure Encryption

Intuitive Definition [DDN,NY,RS]

Encryption hides message, even with decryption oracle

Chosen Ciphertext-Secure Encryption

Intuitive Definition [DDN,NY,RS]

Encryption hides message, even with decryption oracle

Why It Matters

- "Correct" security notion for active adversaries
- Real-world attacks on protocols [Bleichenbacher, JKS]

Chosen Ciphertext-Secure Encryption

Intuitive Definition [DDN,NY,RS]

Encryption hides message, even with decryption oracle

Why It Matters

- "Correct" security notion for active adversaries
- Real-world attacks on protocols [Bleichenbacher, JKS]

Technical Difficulty

- Verify ciphertext is "well-formed"
- Usually via zero-knowledge proof
- Our approach: recover randomness

▶ G(b, x) has extra parameter: branch $b \in \{0, 1\}^n$.

- ▶ G(b, x) has extra parameter: branch $b \in \{0, 1\}^n$.
- ▶ Generate (G, G^{-1}) with hidden *lossy branch* ℓ .

- ▶ G(b, x) has extra parameter: branch $b \in \{0, 1\}^n$.
- ▶ Generate (G, G^{-1}) with hidden *lossy branch* ℓ .

- ▶ G(b, x) has extra parameter: branch $b \in \{0, 1\}^n$.
- ▶ Generate (G, G^{-1}) with hidden *lossy branch* ℓ .

▶ Lossy TDFs ⇔ all-but-one TDFs.

Challenge ciphertext hides m statistically.

- Challenge ciphertext hides m statistically.
- (One-time signature for CCA2 security. [DolevDworkNaor])

▶ Use any (additively) homomorphic cryptosystem.

- Use any (additively) homomorphic cryptosystem.
- ► Encrypted $n \times n$ matrix: I for F, 0 for F. F^{-1} is decryption key.

- Use any (additively) homomorphic cryptosystem.
- ► Encrypted $n \times n$ matrix: I for F, 0 for F. F^{-1} is decryption key.
- ightharpoonup F(x) computed by "encrypted linear algebra."

- Use any (additively) homomorphic cryptosystem.
- ► Encrypted $n \times n$ matrix: **I** for F, **0** for F. F^{-1} is decryption key.
- ightharpoonup F(x) computed by "encrypted linear algebra."

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & & 0 \\ \vdots & & \ddots & \\ 0 & 0 & & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

- Use any (additively) homomorphic cryptosystem.
- ► Encrypted $n \times n$ matrix: I for F, 0 for F. F^{-1} is decryption key.
- ightharpoonup F(x) computed by "encrypted linear algebra."

$$\begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & & 0 \\ \vdots & & \ddots & \\ 0 & 0 & & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

- Use any (additively) homomorphic cryptosystem.
- ► Encrypted $n \times n$ matrix: **I** for F, **0** for F. F^{-1} is decryption key.
- ightharpoonup F(x) computed by "encrypted linear algebra."

$$\begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & & 0 \\ \vdots & & \ddots & \\ 0 & 0 & & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Randomness in each leaks information!

Homomorphic cryptosystem with special properties:

- Homomorphic cryptosystem with special properties:
 - 1 Secure to reuse randomness across different keys

- Homomorphic cryptosystem with special properties:
 - 1 Secure to reuse randomness across different keys
 - 2 Homomorphism isolates randomness

- Homomorphic cryptosystem with special properties:
 - 1 Secure to reuse randomness across different keys
 - 2 Homomorphism isolates randomness

```
\left( egin{array}{c} 0\,;\,r_1 \ 0\,;\,r_1 \ dots \ 0\,;\,r_1 \end{array} 
ight)
```

- Homomorphic cryptosystem with special properties:
 - 1 Secure to reuse randomness across different keys
 - 2 Homomorphism isolates randomness

```
\begin{pmatrix}
0; r_1 & 0; r_2 \\
0; r_1 & 0; r_2 \\
\vdots & & \\
0; r_1 & 0; r_2
\end{pmatrix}
```

- Homomorphic cryptosystem with special properties:
 - 1 Secure to reuse randomness across different keys
 - 2 Homomorphism isolates randomness

$$\begin{pmatrix}
0; r_1 & 0; r_2 & \cdots & 0; r_n \\
0; r_1 & 0; r_2 & & 0; r_n \\
\vdots & & \ddots & \\
0; r_1 & 0; r_2 & & 0; r_n
\end{pmatrix}$$

- Homomorphic cryptosystem with special properties:
 - 1 Secure to reuse randomness across different keys
 - 2 Homomorphism isolates randomness

$$\begin{pmatrix}
0; r_1 & 0; r_2 & \cdots & 0; r_n \\
0; r_1 & 0; r_2 & & 0; r_n \\
\vdots & & \ddots & \\
0; r_1 & 0; r_2 & & 0; r_n
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix} = \begin{pmatrix}
0; R \\
0; R \\
\vdots \\
0; R
\end{pmatrix}$$

- Homomorphic cryptosystem with special properties:
 - 1 Secure to reuse randomness across different keys
 - 2 Homomorphism isolates randomness

$$\begin{pmatrix}
0; r_1 & 0; r_2 & \cdots & 0; r_n \\
0; r_1 & 0; r_2 & & 0; r_n \\
\vdots & & \ddots & \\
0; r_1 & 0; r_2 & & 0; r_n
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix} =
\begin{pmatrix}
0; R \\
0; R \\
\vdots \\
0; R
\end{pmatrix}$$

▶ Just need n > |R| for lossiness.

Concrete Assumptions

- 1 Decisional Diffie-Hellman (DDH) on cyclic groups
 - Additive homomorphism in ElGamal: message in the exponent
 - Reusing randomness [NaorReingold, Kurosawa,...]

Concrete Assumptions

- 1 Decisional Diffie-Hellman (DDH) on cyclic groups
 - Additive homomorphism in ElGamal: message in the exponent
 - Reusing randomness [NaorReingold, Kurosawa,...]
- 2 Learning With Errors (LWE) on lattices [Regev]
 - Bounded homomorphism
 - Reuse most randomness but not the error terms

Future Directions

▶ Other applications of lossy TDFs (NIZK, PIR, ...?)

Future Directions

Other applications of lossy TDFs (NIZK, PIR, ...?)

"Natural" trapdoors for lattices [GPV]

Future Directions

Other applications of lossy TDFs (NIZK, PIR, ...?)

"Natural" trapdoors for lattices [GPV]

Other indistinguishable properties of "huge" objects?