Lossy Trapdoor Functions
and Their Applications

Chris Peikert| Brent Waters

SRl International

1/15

On Losing Information

2/15

On Losing Information

2/15

On Losing Information

2/15

On Losing Information

2/15

On Losing Information

2.3MB — 0.4 MB

2/15

On Losing Information

2/15

On Losing Information

Lossy object indistinguishable from original

2/15

This Talk

© Trapdoor functions without factoring: discrete log & lattices

3/15

This Talk

© Trapdoor functions without factoring: discrete log & lattices

@ Black-box chosen-ciphertext security via randomness recovery

3/15

This Talk

© Trapdoor functions without factoring: discrete log & lattices

@ Black-box chosen-ciphertext security via randomness recovery

©® A new general primitive: Lossy Trapdoor Functions

3/15

Public Key Cryptography

1-1 Trapdoor Functions

(F,F7')«s

{0, 1}"

F

{o, 13"

4/15

Public Key Cryptography

1-1 Trapdoor Functions

(F,F7')«s

4/15

Public Key Cryptography

1-1 Trapdoor Functions

(F,F7')«s

4/15

Public Key Cryptography
1-1 Trapdoor Functions Public Key Encryption

(F,F7')«S§S (E,D)« S

{o, 13"

4/15

Public Key Cryptography
1-1 Trapdoor Functions Public Key Encryption

(F,F7')«S§S (E,D)« S

(7 5
{4

{o, 13"

4/15

Realizing Public Key Crypto

Factoring Discrete log Lattices
PKE v/ [RSA,...] v/ [ElGamal] v/ [AD,R1,R2]
CCA v/ [DDN,...,CS2] v [CS1] ??
TDF v/ [RSAR,P] 27 ??

5/15

Realizing Public Key Crypto

Factoring Discrete log Lattices
PKE v/ [RSA,...] v/ [ElGamal] v/ [AD,R1,R2]
CCA v/ [DDN,...,CS2] v [CS1] ??
TDF v/ [RSAR,P] 27 ??

Lattice-Based Crypto:

» Simple & parallelizable

» Resist quantum algorithms (so far)

» Security from worst-case assumptions [Ajtai,...

5/15

Realizing Public Key Crypto

Factoring Discrete log Lattices
PKE v/ [RSA,...] v/ [ElGamal] v/ [AD,R1,R2]
CCA v/ [DDN,...,CS2] v [CS1] ??
TDF v/ [RSAR,P] 27 ??

Black-Box Separations:

PKE

[GMR]% \\[GMM]

TDF CCA

5/15

Realizing Public Key Crypto

Factoring Discrete log Lattices
PKE v/ [RSA,...] v/ [ElGamal] v/ [AD,R1,R2]
CCA v/ [DDN,...,CS2] v [CS1] v
TDF v/ [RSAR,P] (4 v

This Work:

Factoring \ TDF
T
Lattices / \ CRHF, OT, ...

5/15

Lossy Trapdoor Functions

(F, Fﬁl) — Sinj

{0,1}"

{o,1}"

6/15

Lossy Trapdoor Functions

(F7 Fﬁl) — Sinj F — Sioss
{0,1}" I {0, 1}"
F

{o,1}" {o,1}"

6/15

Lossy Trapdoor Functions

(F, Fﬁl) — Sinj

{0,1}"

{o,1}"

6/15

Lossy Trapdoor Functions

F

Us
|
A

(F, Fﬁl) — Sinj

{0, 1}"

{o,1}"

6/15

Lossy TDFs = 1-1 Trapdoor Functions

> Sinj generates 1-1 trapdoor functions (F,F~').

7/15

Lossy TDFs = 1-1 Trapdoor Functions

> Sinj generates 1-1 trapdoor functions (F,F~').

> Efficient wants to invert F.

{0, 1" Sinj

| !
@

7/15

Lossy TDFs = 1-1 Trapdoor Functions

> Sinj generates 1-1 trapdoor functions (F,F~').

> Efficient wants to invert F.

{07 l}n Sloss

| |
x*>F*>*>éx

7/15

Lossy TDFs = 1-1 Trapdoor Functions

> Sinj generates 1-1 trapdoor functions (F, F).

> Efficient wants to invert F.

{07 l}n Sloss
| |
X — F *)*) éx

» F(x) has 2"~" preimages (on average).

7/15

Lossy TDFs = 1-1 Trapdoor Functions

> Sinj generates 1-1 trapdoor functions (F, F).

> Efficient wants to invert F.

{07 l}n Sloss
| |
X — F *)*) éx

» F(x) has 2"~" preimages (on average).

Main Technique
» Swapping F with F yields statistically secure system.

7/15

Lossy TDFs = Public-Key Encryption

» Hard-core functions [GoldreichLevinl — the lazy way.

8/15

Lossy TDFs = Public-Key Encryption

» Hard-core functions [GoldreichLevinl — the lazy way.

o Pairwise independent H : {0,1}" — {0,1} fork ~ n — r.

8/15

Lossy TDFs = Public-Key Encryption

» Hard-core functions [GoldreichLevinl — the lazy way.
« Pairwise independent H : {0,1}" — {0,1} for k ~ n — r.

x —— F— F(x)

\—>H—>H(x)

8/15

Lossy TDFs = Public-Key Encryption

» Hard-core functions [GoldreichLevinl — the lazy way.
« Pairwise independent H : {0,1}" — {0,1} for k ~ n — r.

x —— F— F(x)

\—>H—>H(x)

8/15

Lossy TDFs = Public-Key Encryption

» Hard-core functions [GoldreichLevinl — the lazy way.

o Pairwise independent H : {0,1}" — {0,1} fork ~ n — r.

X —— F — F(x)
L

k unif bits
[ILL,DRS]

8/15

Lossy TDFs = Public-Key Encryption

» Hard-core functions [GoldreichLevinl — the lazy way.

o Pairwise independent H : {0,1}" — {0,1} fork ~ n — r.
I , X —— F —— F(x)
\—’ H— H(x)

» Public key (F,H), secret key F~!.

k unif bits
[ILL,DRS]

Encrypt m € {0,1}" as (F(x), m ® H(x)).

8/15

Chosen Ciphertext-Secure Encryption

Intuitive Definition [DDN,NY,RS]
» Encryption hides message, even with decryption oracle

9/15

Chosen Ciphertext-Secure Encryption

Intuitive Definition [DDN,NY,RS]
» Encryption hides message, even with decryption oracle

» “Correct” security notion for active adversaries

> Real-world attacks on protocols [Bleichenbacher,JKS]

9/15

Chosen Ciphertext-Secure Encryption

Intuitive Definition [DDN,NY,RS]
» Encryption hides message, even with decryption oracle

> “Correct” security notion for active adversaries

> Real-world attacks on protocols [Bleichenbacher,JKS]

Technical Difficulty

» Verify ciphertext is “well-formed”
» Usually via zero-knowledge proof

» Our approach: recover randomness

All-But-One TDFs

» G(b, x) has extra parameter: branch b € {0, 1}".

10/15

All-But-One TDFs

» G(b, x) has extra parameter: branch b € {0, 1}".

» Generate (G, G!) with hidden lossy branch ¢.

10/15

All-But-One TDFs

» G(b, x) has extra parameter: branch b € {0, 1}".

» Generate (G, G~!) with hidden lossy branch ¢.
/ i \
G(0,) / G(l+1,")
G(1,)

) G(Ev)

10/15

All-But-One TDFs

» G(b, x) has extra parameter: branch b € {0, 1}".
» Generate (G, G~!) with hidden lossy branch ¢.
/ i \
G(0, -) / G(l+1,-)
G(1,)

(1, G/,)

» Lossy TDFs < all-but-one TDFs.

10/15

Lossy TDFs = CCA-Secure Encryption

11/15

Lossy TDFs = CCA-Secure Encryption

71

T

FGH

11/15

Lossy TDFs = CCA-Secure Encryption

Wﬁ Zzz

|

71

F,G,H)
v =F) I
yZZG(bax) 1
c =H(x)®m 2

11/15

Lossy TDFs = CCA-Secure Encryption

Wﬁ o) [oo

h Recover x = F~!(y).

71

F,G,H) Reencrypt & check.
v = F(x) |
y2 = G(b, x) y1
c =Hx)&m y2

11/15

Lossy TDFs = CCA-Secure Encryption

Wﬁ o) [oo

h Recover x = F~!(y).

71

F,G,H) Reencrypt & check.
v = F(x) |
y2 = G(b, x) y1
c =Hx)&m y2 c® H(x)

11/15

Lossy TDFs = CCA-Secure Encryption

Wf Challenge Decrypt

h Recover x = F~!(y).

71

F,G,H) Reencrypt & check.
yi = F(x) |
2 =G, x) y1
c =Hx)&m y2 c® H(x)

11/15

Lossy TDFs = CCA-Secure Encryption

Wf Challenge Decrypt

h Recover x = G~ '(y).

—1

F,G,H) Reencrypt & check.
yi = F(x) |
2 =G, x) y1
c =Hx)&m y2 c® H(x)

11/15

Lossy TDFs = CCA-Secure Encryption

Wf Challenge Decrypt

h Recover x = G~ '(y).

—1

F,G,H) Reencrypt & check.
v = F(x) |
2 =G, x) y1
c =Hx)&m y2 c® H(x)

11/15

Lossy TDFs = CCA-Secure Encryption

Wf Challenge Decrypt

G—]

Recover x = G !(y).
F,G,H) Reencrypt & check.
= F(x) | J
2 =G, x) y1
c =H(x)®m y2 c® H(x)
¢ or L

» Challenge ciphertext hides m statistically.

11/15

Lossy TDFs = CCA-Secure Encryption

Wf Challenge Decrypt

G—l

Recover x = G !(y).
F,G,H) Reencrypt & check.
= F) | J
2 =G, x) y1
c =Hx)&m y2 c® H(x)
¢ or L

» Challenge ciphertext hides m statistically.

» (One-time signature for CCA2 security. [DolevDworkNaor])

11/15

Realizing Lossy TDFs

» Use any (additively) homomorphic cryptosystem.

12/15

Realizing Lossy TDFs
» Use any (additively) homomorphic cryptosystem.

» Encrypted n x n matrix: I for F, 0 for F.

F~! is decryption key.

12/15

Realizing Lossy TDFs

» Use any (additively) homomorphic cryptosystem.

» Encrypted n x n matrix: I for F, 0 for F.

F~! is decryption key.

» F(x) computed by “encrypted linear algebra.”

12/15

Realizing Lossy TDFs
» Use any (additively) homomorphic cryptosystem.

» Encrypted n x n matrix: I for F, 0 for F.

F~! is decryption key.

» F(x) computed by “encrypted linear algebra.”

1 0 0 x| x1
0 1 0 2 | X2
0 0 1 Xn Xn

12/15

Realizing Lossy TDFs

» Use any (additively) homomorphic cryptosystem.

» Encrypted n x n matrix: I for F, 0 for F.

F~! is decryption key.

» F(x) computed by “encrypted linear algebra.”

0 0 0 X1 0
0 0 0 2| |0
0 0 0 tn 0

12/15

Realizing Lossy TDFs
» Use any (additively) homomorphic cryptosystem.

» Encrypted n x n matrix: I for F, 0 for F.

F~! is decryption key.

» F(x) computed by “encrypted linear algebra.”

0 0 X1 0
0 0 0 2| |0
0 0 0 tn 0

» Randomness in each (y leaks information!

12/15

Realizing Lossy TDFs (Really)

» Homomorphic cryptosystem with special properties:

13/15

Realizing Lossy TDFs (Really)

» Homomorphic cryptosystem with special properties:

© Secure to reuse randomness across different keys

13/15

Realizing Lossy TDFs (Really)

» Homomorphic cryptosystem with special properties:

© Secure to reuse randomness across different keys

@® Homomorphism isolates randomness

13/15

Realizing Lossy TDFs (Really)

» Homomorphic cryptosystem with special properties:

© Secure to reuse randomness across different keys

©® Homomorphism isolates randomness

0;r
0;nr

0;r

13/15

Realizing Lossy TDFs (Really)

» Homomorphic cryptosystem with special properties:

© Secure to reuse randomness across different keys

©® Homomorphism isolates randomness

0;r 0;m
0;r1 0;nm
0;r1 0;m

13/15

Realizing Lossy TDFs (Really)

» Homomorphic cryptosystem with special properties:

© Secure to reuse randomness across different keys

©® Homomorphism isolates randomness

O;r O5m 7 O5rmy
0;r1 0;nm 0; 7y
0;r1 0;m 0; 1

13/15

Realizing Lossy TDFs (Really)

» Homomorphic cryptosystem with special properties:

© Secure to reuse randomness across different keys

©® Homomorphism isolates randomness

O;rp 05 70 Oy x| s R
0;rr O;n 0; r, X3 0; R
0;r 0; 0; r, Xn 0; R

13/15

Realizing Lossy TDFs (Really)

» Homomorphic cryptosystem with special properties:

© Secure to reuse randomness across different keys

©® Homomorphism isolates randomness

O;rp 05 70 Oy x| s R
0;rr O;n 0; r, X3 0; R
0;r 0; 0; r, Xn 0; R

» Just need n > |R| for lossiness.

13/15

Concrete Assumptions

© Decisional Diffie-Hellman (DDH) on cyclic groups

o Additive homomorphism in EIGamal: message in the exponent

¢ Reusing randomness [NaorReingold,Kurosawa,. . .]

14/15

Concrete Assumptions

© Decisional Diffie-Hellman (DDH) on cyclic groups

o Additive homomorphism in EIGamal: message in the exponent

¢ Reusing randomness [NaorReingold,Kurosawa,. . .]

@ Learning With Errors (LWE) on lattices [Regev]

e Bounded homomorphism

e Reuse most randomness — but not the error terms

14/15

Future Directions

» Other applications of lossy TDFs (NIZK, PIR, ... ?)

15/15

Future Directions

» Other applications of lossy TDFs (NIZK, PIR, ... ?)

> “Natural” trapdoors for lattices [GPv]

15/15

Future Directions

» Other applications of lossy TDFs (NIZK, PIR, ... ?)

> “Natural” trapdoors for lattices [GPv]

» Other indistinguishable properties of “huge” objects?

15/15

