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Realizing Public Key Crypto

Factoring Discrete log Lattices
PKE v/ [RSA,...] v/ [ElGamal] v/ [AD,R1,R2]
CCA v/ [DDN,...,CS2] v [CS1] ??
TDF v/ [RSAR,P] 27 ??
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Lattice-Based Crypto:

» Simple & parallelizable

» Resist quantum algorithms (so far)

» Security from worst-case assumptions [Ajtai,...
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Lossy TDFs = 1-1 Trapdoor Functions

> Sinj generates 1-1 trapdoor functions (F, F ).

> Efficient wants to invert F.

{07 l}n Sloss
| |
X — F *)*) éx

» F(x) has 2"~" preimages (on average).

Main Technique
» Swapping F with F yields statistically secure system.
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Lossy TDFs = Public-Key Encryption

» Hard-core functions [GoldreichLevinl — the lazy way.

o Pairwise independent H : {0,1}" — {0,1} fork ~ n — r.
I , X —— F —— F(x)
\—’ H— H(x)

» Public key (F,H), secret key F~!.

k unif bits
[ILL,DRS]

Encrypt m € {0,1}" as (F(x), m ® H(x)).

8/15



Chosen Ciphertext-Secure Encryption

Intuitive Definition [DDN,NY,RS]
» Encryption hides message, even with decryption oracle
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Chosen Ciphertext-Secure Encryption

Intuitive Definition [DDN,NY,RS]
» Encryption hides message, even with decryption oracle

> “Correct” security notion for active adversaries

> Real-world attacks on protocols [Bleichenbacher,JKS]

Technical Difficulty

» Verify ciphertext is “well-formed”
» Usually via zero-knowledge proof

» Our approach: recover randomness
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All-But-One TDFs

» G(b, x) has extra parameter: branch b € {0, 1}".
» Generate (G, G~!) with hidden lossy branch ¢.
/ i \
G(0, -) / G(l+1,-)
G(1, )

(1, G/, )

» Lossy TDFs < all-but-one TDFs.
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Wf Challenge Decrypt

G—]

Recover x = G !(y).
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Lossy TDFs = CCA-Secure Encryption

Wf Challenge Decrypt

G—l

Recover x = G !(y).
F,G,H) Reencrypt & check.
= F) | J
2 =G, x) y1
c =Hx)&m y2 c® H(x)
¢ or L

» Challenge ciphertext hides m statistically.

» (One-time signature for CCA2 security. [DolevDworkNaor])
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Realizing Lossy TDFs
» Use any (additively) homomorphic cryptosystem.

» Encrypted n x n matrix: I for F, 0 for F.

F~! is decryption key.

» F(x) computed by “encrypted linear algebra.”

0 0 X1 0
0 0 0 2| |0
0 0 0 tn 0

» Randomness in each (y leaks information!
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Realizing Lossy TDFs (Really)

» Homomorphic cryptosystem with special properties:

© Secure to reuse randomness across different keys

©® Homomorphism isolates randomness

O;rp 05 70 Oy x| s R
0;rr O;n 0; r, X3 0; R
0;r 0; 0; r, Xn 0; R

» Just need n > |R| for lossiness.
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Concrete Assumptions

© Decisional Diffie-Hellman (DDH) on cyclic groups

o Additive homomorphism in EIGamal: message in the exponent

¢ Reusing randomness [NaorReingold,Kurosawa,. . . ]
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Concrete Assumptions

© Decisional Diffie-Hellman (DDH) on cyclic groups

o Additive homomorphism in EIGamal: message in the exponent

¢ Reusing randomness [NaorReingold,Kurosawa,. . . ]

@ Learning With Errors (LWE) on lattices [Regev]

e Bounded homomorphism

e Reuse most randomness — but not the error terms
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