Trapdoors for Lattices: Signatures, ID-Based Encryption, and Beyond

Chris Peikert Georgia Institute of Technology

> Lattice Crypto Day ENS, 29 May 2010

Talk Agenda

- 1 Lattice-based trapdoor functions and 'oblivious' sampling
- 2 Applications: signatures, ID-based encryption (in RO model)
- 3 'Bonsai trees:' removing the RO & more advanced apps

Talk Agenda

- 1 Lattice-based trapdoor functions and 'oblivious' sampling
- 2 Applications: signatures, ID-based encryption (in RO model)
- 3 'Bonsai trees:' removing the RO & more advanced apps

- C. Gentry, C. Peikert, V. Vaikuntanathan (STOC 2008)
 "Trapdoors for Hard Lattices and New Cryptographic Constructions"
- D. Cash, D. Hofheinz, E. Kiltz, C. Peikert (Eurocrypt 2010)
 "Bonsai Trees, or How to Delegate a Lattice Basis"

This Talk's Main Message

Part 1:

Trapdoor Functions and Oblivious Sampling

▶ Public function f with secret 'trapdoor' f^{-1}

- ▶ Public function f with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...]

- ▶ Public function f with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...]

- ▶ Public function f with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...]

- ▶ Public function f with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...]

▶ 'Hash and sign:' pk = f, $sk = f^{-1}$. Sign(msg) = $f^{-1}(H(msg))$.

- ▶ Public function f with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...]

- 'Hash and sign:' pk = f, $sk = f^{-1}$. Sign(msg) = $f^{-1}(H(msg))$.
- ► Candidate TDPs: [RSA'78,Rabin'79,Paillier'99] ("general assumption")
 All rely on hardness of factoring:
 - ✗ Complex: 2048-bit exponentiation
 - Broken by quantum algorithms [Shor'97]

- ▶ Public function f with secret 'trapdoor' f^{-1}
- ► New twist: preimage sampleable trapdoor function

- ▶ Public function f with secret 'trapdoor' f^{-1}
- New twist: preimage sampleable trapdoor function

- ▶ Public function f with secret 'trapdoor' f^{-1}
- ► New twist: preimage sampleable trapdoor function

- ▶ Public function f with secret 'trapdoor' f^{-1}
- New twist: preimage sampleable trapdoor function

► 'Hash and sign:' pk = f, $sk = f^{-1}$. Sign(msg) = $f^{-1}(H(msg))$.

- ▶ Public function f with secret 'trapdoor' f^{-1}
- ► New twist: preimage sampleable trapdoor function

- ▶ 'Hash and sign:' pk = f, $sk = f^{-1}$. Sign(msg) = $f^{-1}(H(msg))$.
- Still secure! Can generate (x, y) in two equivalent ways:

► Key idea: pk = 'bad' basis **B** for \mathcal{L} , sk = 'short' trapdoor basis **S**

- ► Key idea: pk = 'bad' basis B for \mathcal{L} , sk = 'short' trapdoor basis S
- Sign $H(msg) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- ► Key idea: pk ='bad' basis **B** for \mathcal{L} , sk ='short' trapdoor basis **S**
- Sign $H(msg) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- ► Key idea: pk = 'bad' basis **B** for \mathcal{L} , sk = 'short' trapdoor basis **S**
- ▶ Sign $H(msg) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- ► Key idea: pk ='bad' basis **B** for \mathcal{L} , sk ='short' trapdoor basis **S**
- Sign $H(msg) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- ► Key idea: pk ='bad' basis **B** for \mathcal{L} , sk ='short' trapdoor basis **S**
- Sign $H(msg) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- ► Key idea: pk ='bad' basis **B** for \mathcal{L} , sk ='short' trapdoor basis **S**
- Sign $H(msg) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- ► Key idea: pk ='bad' basis **B** for \mathcal{L} , sk ='short' trapdoor basis **S**
- Sign $H(msg) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- ► Key idea: pk ='bad' basis B for \mathcal{L} , sk ='short' trapdoor basis S
- Sign $H(msg) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- ► Key idea: pk ='bad' basis **B** for \mathcal{L} , sk ='short' trapdoor basis **S**
- Sign $H(msg) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

Technical Issues

1 Generating 'hard' lattice together with short basis

- ► Key idea: $pk = \text{'bad' basis } \mathbf{B}$ for \mathcal{L} , $sk = \text{'short' trapdoor basis } \mathbf{S}$
- ▶ Sign $H(msg) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

Technical Issues

- Generating 'hard' lattice together with short basis
- 2 Signing algorithm leaks secret basis!
 - ★ Total break after several signatures [NguyenRegev'06]

'Uniform' in \mathbb{R}^n when Gaussian std dev \geq minimum basis length

'Uniform' in \mathbb{R}^n when Gaussian std dev \geq minimum basis length

► First used in worst/average-case reductions [Regev'03,MiccReg'04,...]

Blurring a Lattice

'Uniform' in \mathbb{R}^n when Gaussian std dev \geq minimum basis length

- ► First used in worst/average-case reductions [Regev'03,MiccReg'04,...]
- Now an essential ingredient in many crypto protocols [GPV'08,PV'08,ACPS'09,CHKP'10,OP'10,...]

ightharpoonup 'Bad' basis for \mathcal{L} specifies f

- ightharpoonup 'Bad' basis for \mathcal{L} specifies f
- ▶ $f(\mathbf{v}, \mathbf{x}) = \mathbf{v} + \mathbf{x}$ for $\mathbf{v} \in \mathcal{L}$, Gaussian \mathbf{x} .
 - \Rightarrow Output **u** is uniform over \mathbb{R}^n .

- ▶ 'Bad' basis for \mathcal{L} specifies f
- ► $f(\mathbf{v}, \mathbf{x}) = \mathbf{v} + \mathbf{x}$ for $\mathbf{v} \in \mathcal{L}$, Gaussian \mathbf{x} . ⇒ Output \mathbf{u} is uniform over \mathbb{R}^n .
- ► Inverting ⇔ decoding u (hard?)

- ► 'Bad' basis for £ specifies f
- $f(\mathbf{v}, \mathbf{x}) = \mathbf{v} + \mathbf{x}$ for $\mathbf{v} \in \mathcal{L}$, Gaussian \mathbf{x} .
 - \Rightarrow Output **u** is uniform over \mathbb{R}^n .
- Inverting \Leftrightarrow decoding \mathbf{u} (hard?)

Distribution of preimage offsets x is a discrete Gaussian $D_{\mathcal{L},\mathbf{u}}$

Analyzed in [Ban'93,B'95,R'03,AR'04,MR'04,P'07...]

- ightharpoonup 'Bad' basis for \mathcal{L} specifies f
- $f(\mathbf{v}, \mathbf{x}) = \mathbf{v} + \mathbf{x}$ for $\mathbf{v} \in \mathcal{L}$, Gaussian \mathbf{x} .
 - \Rightarrow Output **u** is uniform over \mathbb{R}^n .
- ► Inverting ⇔ decoding u (hard?)

Distribution of preimage offsets x is a discrete Gaussian D_{f, y}

Analyzed in [Ban'93,B'95,R'03,AR'04,MR'04,P'07...]

Typical fact: $||D_{\mathcal{L},\mathbf{u}}|| \leq \sqrt{n} \cdot \mathsf{std} \; \mathsf{dev}$

- ▶ Sample $D_{\mathcal{L},\mathbf{u}}$ given any 'short enough' basis S: $\max \|\tilde{\mathbf{s}}_i\| \leq \mathsf{std}$ dev
 - ⋆ Output distribution leaks no information about S!

- ▶ Sample $D_{\mathcal{L},\mathbf{u}}$ given any 'short enough' basis S: $\max \|\tilde{\mathbf{s}}_i\| \leq \text{std dev}$
 - ⋆ Output distribution leaks no information about S!
- Randomized "nearest-plane" algorithm [Babai'86,Klein'00,GPV'08]

- ▶ Sample $D_{\mathcal{L},\mathbf{u}}$ given any 'short enough' basis S: $\max \|\tilde{\mathbf{s}}_i\| \leq \text{std dev}$
 - ⋆ Output distribution leaks no information about S!
- Randomized "nearest-plane" algorithm [Babai'86,Klein'00,GPV'08]

- ▶ Sample $D_{\mathcal{L},\mathbf{u}}$ given any 'short enough' basis S: $\max \|\tilde{\mathbf{s}}_i\| \leq \text{std dev}$
 - ⋆ Output distribution leaks no information about S!
- Randomized "nearest-plane" algorithm [Babai'86,Klein'00,GPV'08]

- ▶ Sample $D_{\mathcal{L},\mathbf{u}}$ given any 'short enough' basis S: $\max \|\tilde{\mathbf{s}}_i\| \leq \text{std dev}$
 - ⋆ Output distribution leaks no information about S!
- Randomized "nearest-plane" algorithm [Babai'86,Klein'00,GPV'08]

- ▶ Sample $D_{\mathcal{L},\mathbf{u}}$ given any 'short enough' basis S: $\max \|\tilde{\mathbf{s}}_i\| \leq \text{std dev}$
 - ⋆ Output distribution leaks no information about S!
- Randomized "nearest-plane" algorithm [Babai'86,Klein'00,GPV'08]

Proof idea: $D_{\mathcal{L},\mathbf{u}}(\text{plane})$ depends only on $dist(\mathbf{u}, \text{plane})$

- ▶ Sample $D_{\mathcal{L},\mathbf{u}}$ given any 'short enough' basis S: $\max \|\tilde{\mathbf{s}}_i\| \leq \text{std dev}$
 - ⋆ Output distribution leaks no information about S!
- Randomized "nearest-plane" algorithm [Babai'86,Klein'00,GPV'08]

- ▶ Proof idea: $D_{\mathcal{L},\mathbf{u}}(\text{plane})$ depends only on $dist(\mathbf{u}, \text{plane})$
- ▶ [P'10]: Efficient & parallel algorithm for std dev $\geq s_1(\mathbf{S}) \approx \max \|\tilde{\mathbf{s}}_i\|$

▶ Let $n = \mathsf{sec}$ param, $q = \mathsf{poly}(n) \longrightarrow \mathsf{additive}$ group \mathbb{Z}_q^n

- ▶ Let $n = \mathsf{sec}$ param, $q = \mathsf{poly}(n) \longrightarrow \mathsf{additive}$ group \mathbb{Z}_q^n
- ▶ Given $\mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbb{Z}_q^n$, consider integer solutions $\mathbf{z} \in \mathbb{Z}^m$ of:

$$f_{\mathbf{A}}(\mathbf{z}) := \mathbf{A}\mathbf{z} = \underbrace{\begin{pmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_m \\ | & | & | \end{pmatrix}}_{m \gg n} \left(\mathbf{z}\right) = \begin{pmatrix} | \\ \mathbf{0} \\ | \end{pmatrix} \mod q$$

- ▶ Let $n = \mathsf{sec}$ param, $q = \mathsf{poly}(n) \longrightarrow \mathsf{additive}$ group \mathbb{Z}_q^n
- ▶ Given $\mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbb{Z}_q^n$, consider integer solutions $\mathbf{z} \in \mathbb{Z}^m$ of:

$$f_{\mathbf{A}}(\mathbf{z}) := \mathbf{A}\mathbf{z} = \underbrace{\begin{pmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_m \\ | & | & | \end{pmatrix}}_{m \gg n} \left(\mathbf{z}\right) = \begin{pmatrix} | \\ \mathbf{0} \end{pmatrix} \mod q$$

Easy to find a 'long' solution: e.g., $\mathbf{z} = (q, 0, \dots, 0)$

— but very hard to find a 'short' one!

- ▶ Let $n = \mathsf{sec}$ param, $q = \mathsf{poly}(n) \longrightarrow \mathsf{additive}$ group \mathbb{Z}_q^n
- ▶ Given $\mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbb{Z}_q^n$, consider integer solutions $\mathbf{z} \in \mathbb{Z}^m$ of:

$$f_{\mathbf{A}}(\mathbf{z}) := \mathbf{A}\mathbf{z} = \underbrace{\begin{pmatrix} | & | & & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_m \\ | & | & & | \end{pmatrix}}_{m \gg n} \left(\mathbf{z}\right) = \begin{pmatrix} | \\ \mathbf{0} \\ | \end{pmatrix} \mod q$$

Easy to find a 'long' solution: e.g., $\mathbf{z} = (q, 0, \dots, 0)$

— but very hard to find a 'short' one!

Theorem: Worst-Case/Average-Case [Ajtai'96,...,MR'04,GPV'08]

For uniform ${\bf A}$ and $q \geq \beta \sqrt{n},$ finding solution ${\bf z} \neq {\bf 0}$ where $\|{\bf z}\| \leq \beta$

Solving $\beta\sqrt{n}$ -approx GapSVP & more, on any n-dim lattice!

- ▶ Let $n = \mathsf{sec}$ param, $q = \mathsf{poly}(n) \longrightarrow \mathsf{additive}$ group \mathbb{Z}_q^n
- ▶ Given $\mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbb{Z}_q^n$, consider integer solutions $\mathbf{z} \in \mathbb{Z}^m$ of:

$$f_{\mathbf{A}}(\mathbf{z}) := \mathbf{A}\mathbf{z} = \underbrace{\begin{pmatrix} | & | & & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_m \\ | & | & & | \end{pmatrix}}_{m \gg n} \left(\mathbf{z}\right) = \begin{pmatrix} | \\ \mathbf{0} \\ | \end{pmatrix} \mod q$$

Putting it all together:

1 Solutions **z** form a 'hard' lattice $\mathcal{L} \subseteq \mathbb{Z}^m$

- $\blacktriangleright \ \, \mathsf{Let} \, n = \mathsf{sec} \, \mathsf{param}, \, q = \mathsf{poly}(n) \longrightarrow \mathsf{additive} \, \mathsf{group} \, \mathbb{Z}_q^n$
- ▶ Given $\mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbb{Z}_q^n$, consider integer solutions $\mathbf{z} \in \mathbb{Z}^m$ of:

$$f_{\mathbf{A}}(\mathbf{z}) := \mathbf{A}\mathbf{z} = \underbrace{\begin{pmatrix} | & | & & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_m \\ | & | & & | \end{pmatrix}}_{m \gg n} \left(\mathbf{z}\right) = \begin{pmatrix} | \\ \mathbf{0} \\ | \end{pmatrix} \mod q$$

Putting it all together:

- **1** Solutions **z** form a 'hard' lattice $\mathcal{L} \subseteq \mathbb{Z}^m$
- 2 [Ajtai'99,AlwenP'09]: can generate uniform A together with a short basis S (i.e., AS = 0).

- $lackbox{ Let } n = \mathsf{sec} \ \mathsf{param}, \ q = \mathsf{poly}(n) \longrightarrow \mathsf{additive} \ \mathsf{group} \ \mathbb{Z}_q^n$
- ▶ Given $\mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbb{Z}_q^n$, consider integer solutions $\mathbf{z} \in \mathbb{Z}^m$ of:

$$f_{\mathbf{A}}(\mathbf{z}) := \mathbf{A}\mathbf{z} = \underbrace{\begin{pmatrix} | & | & & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_m \\ | & | & & | \end{pmatrix}}_{m \gg n} \left(\mathbf{z}\right) = \begin{pmatrix} | \\ \mathbf{0} \\ | \end{pmatrix} \mod q$$

Putting it all together:

- **1** Solutions **z** form a 'hard' lattice $\mathcal{L} \subseteq \mathbb{Z}^m$
- 2 [Ajtai'99,AlwenP'09]: can generate uniform A together with a short basis S (i.e., AS=0).
- 3 Gaussian $\mathbf{x} \leftrightarrow \text{syndrome } \mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})$

- $lackbox{ Let } n = \mathsf{sec} \ \mathsf{param}, \ q = \mathsf{poly}(n) \longrightarrow \mathsf{additive} \ \mathsf{group} \ \mathbb{Z}_q^n$
- ▶ Given $\mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbb{Z}_q^n$, consider integer solutions $\mathbf{z} \in \mathbb{Z}^m$ of:

$$f_{\mathbf{A}}(\mathbf{z}) := \mathbf{A}\mathbf{z} = \underbrace{\begin{pmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_m \\ | & | & | \end{pmatrix}}_{m \gg n} \left(\mathbf{z}\right) = \begin{pmatrix} | \\ \mathbf{0} \\ | \end{pmatrix} \mod q$$

Putting it all together:

- **1** Solutions **z** form a 'hard' lattice $\mathcal{L} \subseteq \mathbb{Z}^m$
- 2 [Ajtai'99,AlwenP'09]: can generate uniform A together with a short basis S (i.e., AS = 0).
- **3** Gaussian $\mathbf{x} \leftrightarrow \text{syndrome } \mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})$
 - ★ Given \mathbf{u} , hard to find short $\mathbf{x} \in f_{\mathbf{A}}^{-1}(\mathbf{u})$.
 - ★ But given basis S, can sample $f_{\Lambda}^{-1}(\mathbf{u})!$

Part 2: Identity-Based Encryption

Proposed by [Shamir'84]:

- Proposed by [Shamir'84]:
 - ★ 'Master' keys mpk (public) and msk (held by trusted authority)

- Proposed by [Shamir'84]:
 - ★ 'Master' keys mpk (public) and msk (held by trusted authority)
 - ★ Given mpk, can encrypt to ID "Alice" or "Bob" or . . .

- Proposed by [Shamir'84]:
 - ★ 'Master' keys mpk (public) and msk (held by trusted authority)
 - ★ Given mpk, can encrypt to ID "Alice" or "Bob" or . . .
 - ★ Using msk, authority can calculate sk_{Alice} or sk_{Bob} or . . .

- Proposed by [Shamir'84]:
 - ★ 'Master' keys mpk (public) and msk (held by trusted authority)
 - ★ Given mpk, can encrypt to ID "Alice" or "Bob" or . . .
 - ★ Using msk, authority can calculate sk_{Alice} or sk_{Bob} or . . .
 - ★ Messages to Carol remain secret, even given sk_{Alice}, sk_{Bob}, . . .

- Proposed by [Shamir'84]:
 - ★ 'Master' keys mpk (public) and msk (held by trusted authority)
 - ★ Given mpk, can encrypt to ID "Alice" or "Bob" or . . .
 - ★ Using msk, authority can calculate sk_{Alice} or sk_{Bob} or . . .
 - ★ Messages to Carol remain secret, even given sk_{Alice}, sk_{Bob}, . . .

(Fast-forward 17 years...)

- Proposed by [Shamir'84]:
 - ★ 'Master' keys mpk (public) and msk (held by trusted authority)
 - ★ Given mpk, can encrypt to ID "Alice" or "Bob" or . . .
 - ★ Using msk, authority can calculate sk_{Alice} or sk_{Bob} or . . .
 - ★ Messages to Carol remain secret, even given sk_{Alice}, sk_{Bob}, . . .

```
(Fast-forward 17 years...)
```

► [BonehFranklin'01,...]: construction using bilinear pairings

- Proposed by [Shamir'84]:
 - ★ 'Master' keys mpk (public) and msk (held by trusted authority)
 - ★ Given mpk, can encrypt to ID "Alice" or "Bob" or . . .
 - ★ Using msk, authority can calculate sk_{Alice} or sk_{Bob} or . . .
 - ★ Messages to Carol remain secret, even given sk_{Alice}, sk_{Bob}, . . .

```
(Fast-forward 17 years...)
```

- ► [BonehFranklin'01,...]: construction using bilinear pairings
- ightharpoonup [Cocks'01,BGH'07]: quadratic residuosity (mod N=pq)

- Proposed by [Shamir'84]:
 - ★ 'Master' keys mpk (public) and msk (held by trusted authority)
 - ★ Given mpk, can encrypt to ID "Alice" or "Bob" or . . .
 - ★ Using msk, authority can calculate sk_{Alice} or sk_{Bob} or . . .
 - ★ Messages to Carol remain secret, even given sk_{Alice}, sk_{Bob}, . . .

```
(Fast-forward 17 years...)
```

- ► [BonehFranklin'01,...]: construction using bilinear pairings
- ightharpoonup [Cocks'01,BGH'07]: quadratic residuosity (mod N=pq)
- [GPV'08]: lattices!

▶ Secret $\mathbf{s} \in \mathbb{Z}_q^n$, uniform $\mathbf{a}_i \in \mathbb{Z}_q^n$ (here q is prime)

- Secret $\mathbf{s} \in \mathbb{Z}_q^n$, uniform $\mathbf{a}_i \in \mathbb{Z}_q^n$ (here q is prime)
- ▶ **Goal:** distinguish $(\mathbf{a}_i, \mathbf{b}_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i)$ from uniform (\mathbf{a}_i, b_i)

$$\mathbf{a}_1$$
 , $\mathbf{b}_1 = \langle \mathbf{a}_1 , \mathbf{s} \rangle + e_1$
 \mathbf{a}_2 , $\mathbf{b}_2 = \langle \mathbf{a}_2 , \mathbf{s} \rangle + e_2$
 \vdots

- Secret $\mathbf{s} \in \mathbb{Z}_q^n$, uniform $\mathbf{a}_i \in \mathbb{Z}_q^n$ (here q is prime)
- ► **Goal**: distinguish (\mathbf{A} , $\mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e}$) from uniform (\mathbf{A} , \mathbf{b})

$$m \left\{ \left(\begin{array}{c} \vdots \\ \mathbf{A}^t \\ \vdots \end{array} \right) \right. , \quad \left(\begin{array}{c} \vdots \\ \mathbf{b} \\ \vdots \end{array} \right) = \mathbf{A}^t \mathbf{s} + \mathbf{e}$$

$$\sqrt{n} \le \operatorname{error} \ll q$$

- ▶ Secret $\mathbf{s} \in \mathbb{Z}_q^n$, uniform $\mathbf{a}_i \in \mathbb{Z}_q^n$ (here q is prime)
- ► **Goal**: distinguish (\mathbf{A} , $\mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e}$) from uniform (\mathbf{A} , \mathbf{b})

$$m\left\{ \left(\begin{array}{c} \vdots \\ \mathbf{A}^t \\ \vdots \end{array} \right) \quad , \quad \left(\begin{array}{c} \vdots \\ \mathbf{b} \\ \vdots \end{array} \right) = \mathbf{A}^t \mathbf{s} + \mathbf{e}$$

$$\sqrt{n} \le \operatorname{error} \ll q$$

Recall: as hard as worst-case lattice problems [Regev'05,P'09]

- Secret $\mathbf{s} \in \mathbb{Z}_q^n$, uniform $\mathbf{a}_i \in \mathbb{Z}_q^n$ (here q is prime)
- ► **Goal**: distinguish (\mathbf{A} , $\mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e}$) from uniform (\mathbf{A} , \mathbf{b})

$$m\left\{ \begin{pmatrix} \vdots \\ \mathbf{A}^t \\ \vdots \end{pmatrix} , \begin{pmatrix} \vdots \\ \mathbf{b} \\ \vdots \end{pmatrix} = \mathbf{A}^t \mathbf{s} + \mathbf{e} \\ \sqrt{n} \le \operatorname{error} \ll q \right\}$$

- Recall: as hard as worst-case lattice problems [Regev'05,P'09]
- ▶ Observe: given short nonzero $\mathbf{z} \in \mathbb{Z}^m$ such that $\mathbf{Az} = \mathbf{0} \mod q$,

$$\langle \mathbf{z}, \mathbf{b} \rangle = \langle \mathbf{A}\mathbf{z}, \mathbf{s} \rangle + \langle \mathbf{z}, \mathbf{e} \rangle \approx 0 \bmod q$$

$$\langle \mathbf{z}, \mathbf{b} \rangle = \text{uniform mod } q$$

'Learning With Errors' (LWE) Problem [Regev'05]

- $lackbox{\sf Secret } \mathbf{s} \in \mathbb{Z}_q^n, \, \mathsf{uniform } \, \mathbf{a}_i \in \mathbb{Z}_q^n \quad \, \mathsf{(here } \mathit{q} \mathsf{ is prime)}$
- ▶ **Goal**: distinguish $(A, b = A^t s + e)$ from uniform (A, b)

$$m\left\{ \begin{pmatrix} \vdots \\ \mathbf{A}^t \\ \vdots \end{pmatrix} , \begin{pmatrix} \vdots \\ \mathbf{b} \\ \vdots \end{pmatrix} = \mathbf{A}^t \mathbf{s} + \mathbf{e} \\ \sqrt{n} \le \operatorname{error} \ll q \right\}$$

- Recall: as hard as worst-case lattice problems [Regev'05,P'09]
- ▶ Observe: given short nonzero $\mathbf{z} \in \mathbb{Z}^m$ such that $\mathbf{Az} = \mathbf{0} \mod q$,

$$\langle \mathbf{z}, \mathbf{b} \rangle = \langle \mathbf{Az}, \mathbf{s} \rangle + \langle \mathbf{z}, \mathbf{e} \rangle \approx 0 \mod q$$

 $\langle \mathbf{z}, \mathbf{b} \rangle = \text{uniform mod } q$

⇒ z is a 'weak' trapdoor, for distinguishing LWE from uniform

$$\xrightarrow[\text{(public key)}]{\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})}$$

 \mathbf{s}, \mathbf{e}

$$\xrightarrow{\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})}$$
(public key)

$$\leftarrow \frac{\mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e}}{\text{(ciphertext 'preamble')}}$$

$$\underbrace{\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})}_{\text{(public key)}}$$

$$\leftarrow \mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e}$$
(ciphertext 'preamble')

$$b' = \langle \mathbf{u}, \mathbf{s} \rangle + e'$$

$$\xrightarrow{\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})}$$
(public key)

$$\leftarrow \mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e}$$
(ciphertext 'preamble')

$$b' + \text{bit} \cdot \lfloor \frac{q}{2} \rfloor$$
 ('payload')

$$\frac{b'}{} = \langle \mathbf{u}, \mathbf{s} \rangle + e'$$

 $x \leftarrow Gauss$

$$\mathbf{s}, \mathbf{e}$$

$$\frac{\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})}{\text{(public key)}}$$

$$\mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e}$$
(ciphertext 'preamble')

$$\langle \mathbf{x}, \textcolor{red}{\mathbf{b}} \rangle \approx \langle \textcolor{red}{\mathbf{u}}, \textcolor{red}{\mathbf{s}} \rangle$$

$$\frac{b' + \mathsf{bit} \cdot \lfloor \frac{q}{2} \rfloor}{\text{('payload')}}$$

$$\frac{b'}{b'} = \langle \mathbf{u}, \mathbf{s} \rangle + e'$$

 $x \leftarrow Gauss$

s, e

$$\frac{\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})}{\text{(public key)}}$$

$$\mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e}$$
 (ciphertext 'preamble')

$$\langle \mathbf{x}, \mathbf{b} \rangle \approx \langle \mathbf{u}, \mathbf{s} \rangle$$

$$\boxed{b' = \langle \mathbf{u}, \mathbf{s} \rangle + e'}$$

$$? (\mathbf{A}, \mathbf{u}, \mathbf{b}, \mathbf{b'})$$

 $x \leftarrow Gauss$

 \mathbf{s}, \mathbf{e}

$$\underbrace{\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})}_{\text{(public key)}}$$

$$\mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e}$$
(ciphertext 'preamble')

$$\langle \mathbf{x}, \mathbf{b} \rangle \approx \langle \mathbf{u}, \mathbf{s} \rangle$$

$$\boxed{b' = \langle \mathbf{u}, \mathbf{s} \rangle + e'}$$

$$? (\mathbf{A}, \mathbf{u}, \mathbf{b}, b')$$

ID-Based Encryption

Part 3:

Bonsai Trees: Removing the Random Oracle and More Advanced Applications

CONTROLLED or NATURAL?

CONTROLLED or NATURAL?

Bonsai: collection of techniques for selective control of tree growth, for the creation of natural aesthetic forms

Bonsai Trees in Cryptography

1 Hierarchy of TDFs

(Functions specified by public key, random oracle, interaction, ...)

Bonsai Trees in Cryptography

- Hierarchy of TDFs (Functions specified by public key, random oracle, interaction, ...)
- 2 Techniques for selective 'control' of growth & delegation of control

Bonsai Trees in Cryptography

- 1 Hierarchy of TDFs (Functions specified by public key, random oracle, interaction, ...)
- 2 Techniques for selective 'control' of growth & delegation of control
- Applications: 'hash-and-sign,' (hierarchical) IBE
 all without random oracles!

1 Controlling f_v (knowing trapdoor) \Longrightarrow controlling f_{vz} , for all z.

- **1** Controlling f_v (knowing trapdoor) \Longrightarrow controlling f_{vz} , for all z.
- 2 Can grow a controlled branch off of any uncontrolled node.

- **1** Controlling f_v (knowing trapdoor) \Longrightarrow controlling f_{vz} , for all z.
- 2 Can grow a controlled branch off of any uncontrolled node.

(Allows simulation to embed its challenge into the tree, while still being able to answer queries.)

- **1** Controlling f_v (knowing trapdoor) \Longrightarrow controlling f_{vz} , for all z.
- 2 Can grow a controlled branch off of any uncontrolled node.
 - (Allows simulation to embed its challenge into the tree, while still being able to answer queries.)
- 3 Can delegate control of any subtree, w/o endangering ancestors.

Property 1: Control $f_v \Rightarrow$ Control f_{vz}

Short basis S_1 for $A_1 \Rightarrow$ short basis S for $A = [A_1 \mid A_2]$, for any A_2 .

Property 1: Control $f_v \Rightarrow$ Control f_{vz}

Short basis S_1 for $A_1 \Rightarrow$ short basis S for $A = [A_1 \mid A_2]$, for any A_2 .

Using S_1 , compute a short integer soln X to $A_1X = -A_2 \mod q$. Then:

$$\mathbf{A} \cdot \mathbf{S} = [\mathbf{A}_1 \mid \mathbf{A}_2] \cdot \underbrace{\begin{bmatrix} \mathbf{S}_1 & \mathbf{X} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}}_{\mathbf{S}} = \mathbf{0} \bmod q.$$

Property 1: Control $f_v \Rightarrow$ Control f_{vz}

Short basis S_1 for $A_1 \Rightarrow$ short basis S for $A = [A_1 \mid A_2]$, for any A_2 .

▶ Using S_1 , compute a short integer soln X to $A_1X = -A_2 \mod q$. Then:

$$\mathbf{A} \cdot \mathbf{S} = [\mathbf{A}_1 \mid \mathbf{A}_2] \cdot \underbrace{\begin{bmatrix} \mathbf{S}_1 & \mathbf{X} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}}_{\mathbf{S}} = \mathbf{0} \bmod q.$$

(In fact, X need not be short — we have $\tilde{\mathbf{S}} = \begin{pmatrix} \tilde{\mathbf{S}}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$, so $\|\tilde{\mathbf{S}}\| = \|\tilde{\mathbf{S}}_1\|$.)

Property 1: Control $f_v \Rightarrow$ Control f_{vz}

Short basis S_1 for $A_1 \Rightarrow$ short basis S for $A = [A_1 \mid A_2]$, for any A_2 .

▶ Using S_1 , compute a short integer soln X to $A_1X = -A_2 \mod q$. Then:

$$\mathbf{A} \cdot \mathbf{S} = [\mathbf{A}_1 \mid \mathbf{A}_2] \cdot \underbrace{\begin{bmatrix} \mathbf{S}_1 & \mathbf{X} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}}_{\mathbf{S}} = \mathbf{0} \bmod q.$$

(In fact, X need not be short — we have $\tilde{S} = \begin{pmatrix} \tilde{S}_1 & 0 \\ 0 & I \end{pmatrix}$, so $\|\tilde{S}\| = \|\tilde{S}_1\|$.)

Property 2: Grow a Controlled Branch

Given (uncontrolled) A_1 , create controlled extension $A = [A_1 \mid A_2]$.

Property 1: Control $f_v \Rightarrow$ Control f_{vz}

Short basis S_1 for $A_1 \Rightarrow$ short basis S for $A = [A_1 \mid A_2]$, for any A_2 .

▶ Using S_1 , compute a short integer soln X to $A_1X = -A_2 \mod q$. Then:

$$\mathbf{A} \cdot \mathbf{S} = [\mathbf{A}_1 \mid \mathbf{A}_2] \cdot \underbrace{\begin{bmatrix} \mathbf{S}_1 & \mathbf{X} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}}_{\mathbf{S}} = \mathbf{0} \bmod q.$$

(In fact, X need not be short — we have $\tilde{S} = {\tilde{S}_1 \ 0 \brack 0 \ I}$, so $\|\tilde{S}\| = \|\tilde{S}_1\|$.)

Property 2: Grow a Controlled Branch

Given (uncontrolled) A_1 , create controlled extension $A = [A_1 \mid A_2]$.

▶ Just generate A_2 with short basis S_2 .

Then use above technique to control A!

Property 1: Control $f_v \Rightarrow$ Control f_{vz}

Short basis S_1 for $A_1 \Rightarrow$ short basis S for $A = [A_1 \mid A_2]$, for any A_2 .

▶ Using S_1 , compute a short integer soln X to $A_1X = -A_2 \mod q$. Then:

$$\mathbf{A} \cdot \mathbf{S} = [\mathbf{A}_1 \mid \mathbf{A}_2] \cdot \underbrace{\begin{bmatrix} \mathbf{S}_1 & \mathbf{X} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}}_{\mathbf{S}} = \mathbf{0} \bmod q.$$

(In fact, X need not be short — we have $\tilde{S}=\left(\begin{smallmatrix}\tilde{S}_1&0\\0&1\end{smallmatrix}\right)$, so $\|\tilde{S}\|=\|\tilde{S}_1\|.)$

Property 3: Securely Delegate Control?

▶ Basis S contains S_1 , so unsafe to reveal!

Property 1: Control $f_v \Rightarrow$ Control f_{vz}

Short basis S_1 for $A_1 \Rightarrow$ short basis S for $A = [A_1 \mid A_2]$, for any A_2 .

▶ Using S_1 , compute a short integer soln X to $A_1X = -A_2 \mod q$. Then:

$$\mathbf{A} \cdot \mathbf{S} = [\mathbf{A}_1 \mid \mathbf{A}_2] \cdot \underbrace{\begin{bmatrix} \mathbf{S}_1 & \mathbf{X} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}}_{\mathbf{S}} = \mathbf{0} \bmod q.$$

(In fact, X need not be short — we have $\tilde{S} = \begin{pmatrix} \tilde{S}_1 & 0 \\ 0 & I \end{pmatrix}$, so $\|\tilde{S}\| = \|\tilde{S}_1\|$.)

Property 3: Securely Delegate Control?

Basis S contains S₁, so unsafe to reveal! Solution: Use S to sample new Gaussian basis.

Other Applications of Today's Tools

- Noninteractive (Statistical) Zero Knowledge [PV'08]
- Universally Composable Oblivious Transfer [PVW'08]
- 3 CCA-Secure Encryption [P'09]
- Many-add, Single-mult Homomorphic Encryption [GHV'10]
- 5 Bonsai trees with smaller keys [ABB'10]
- 6 (Bi-)Deniable Encryption [OP'10]
- Whatever you can invent!

Closing Thoughts

A hierarchy of trapdoors for lattices:

```
Short vector (decryption)

< Short basis (sampling)

< Short basis for 'ancestor' lattice (delegation)

< ⋯
```

Closing Thoughts

A hierarchy of trapdoors for lattices:

Thanks!

