New and Improved Key-Homomorphic Pseudorandom Functions

Abhishek Banerjee¹

Chris Peikert¹

¹Georgia Institute of Technology

CRYPTO '14 19 August 2014

2 Construction, Parameters and Efficiency

2 Construction, Parameters and Efficiency

Proof of Security (Idea)

Pseudorandom Functions [GGM'84]

• A family of functions $\mathcal{F} = \{F_s : \{0,1\}^k \to B\}$ such that, given adaptive query access,

• Lots of applications in symmetric key cryptography: encryption, message authentication, friend or foe identification, ...

(Thanks to Seth MacFarlane for the adversary)

Goldreich-Goldwasser-Micali [GGM'84]

• Based on any (doubling) PRG: $F_s(x_1, \ldots, x_k) = G_{x_k}(\cdots (G_{x_1}(s)) \cdots)$

Goldreich-Goldwasser-Micali [GGM'84]

• Based on any (doubling) PRG: $F_s(x_1, \ldots, x_k) = G_{x_k}(\cdots (G_{x_1}(s)) \cdots)$

Number-theoretic direct constructions [NR'97, NRR'00]

- Framework: exponentiate to a product of (secret) exponents
- Security from number-theoretic assumptions (DDH, factoring, ...)

Goldreich-Goldwasser-Micali [GGM'84]

• Based on any (doubling) PRG: $F_s(x_1, \ldots, x_k) = G_{x_k}(\cdots (G_{x_1}(s)) \cdots)$

Number-theoretic direct constructions [NR'97, NRR'00]

- Framework: exponentiate to a product of (secret) exponents
- Security from number-theoretic assumptions (DDH, factoring, ...)
- Lattice-based direct constructions [BPR'12]
 - Framework: round a product of (secret) matrices/ring elements
 - Security from lattice assumptions (LWE, worst-case lattice problems)

- Can efficiently compute $F_{s+t}(x)$ from $F_s(x)$ and $F_t(x)$
- Applications:

Key Homomorphism

- Can efficiently compute $F_{s+t}(x)$ from $F_s(x)$ and $F_t(x)$
- Applications: distribute the operation of a Key Distribution Center,

DDH-based construction [NPR'99]

• Security in the random oracle model

- Can efficiently compute $F_{s+t}(x)$ from $F_s(x)$ and $F_t(x)$
- Applications: distribute the operation of a Key Distribution Center, symmetric-key proxy re-encryption, updatable encryption, and PRFs secure against related-key attacks [BC'10,LMR'14]
- DDH-based construction [NPR'99]
 - Security in the random oracle model
- 2 Lattice-based construction [BLMR'13]
 - Security in the standard model; construction and proof similar to [BPR'12] rounded-subset-product construction

- Can efficiently compute $F_{s+t}(x)$ from $F_s(x)$ and $F_t(x)$
- Applications: distribute the operation of a Key Distribution Center, symmetric-key proxy re-encryption, updatable encryption, and PRFs secure against related-key attacks [BC'10,LMR'14]
- DDH-based construction [NPR'99]
 - Security in the random oracle model
- 2 Lattice-based construction [BLMR'13]
 - Security in the standard model; construction and proof similar to [BPR'12] rounded-subset-product construction
 - Main drawback: has huge parameters, keys, and runtimes

- Can efficiently compute $F_{s+t}(x)$ from $F_s(x)$ and $F_t(x)$
- Applications: distribute the operation of a Key Distribution Center, symmetric-key proxy re-encryption, updatable encryption, and PRFs secure against related-key attacks [BC'10,LMR'14]
- DDH-based construction [NPR'99]
 - Security in the random oracle model
- 2 Lattice-based construction [BLMR'13]
 - Security in the standard model; construction and proof similar to [BPR'12] rounded-subset-product construction
 - Main drawback: has huge parameters, keys, and runtimes
 - [BPR'12] also gives (non-KH) PRFs having much better parameters, with slightly worse (still polylog) depth

Key Homomorphism

- Can efficiently compute $F_{s+t}(x)$ from $F_s(x)$ and $F_t(x)$
- Applications: distribute the operation of a Key Distribution Center, symmetric-key proxy re-encryption, updatable encryption, and PRFs secure against related-key attacks [BC'10,LMR'14]
- DDH-based construction [NPR'99]
 - Security in the random oracle model
- 2 Lattice-based construction [BLMR'13]
 - Security in the standard model; construction and proof similar to [BPR'12] rounded-subset-product construction
 - Main drawback: has huge parameters, keys, and runtimes
 - [BPR'12] also gives (non-KH) PRFs having much better parameters, with slightly worse (still polylog) depth
- Can we obtain similar tradeoffs for KH-PRFs?

Banerjee and Peikert (Georgia Tech)

New and Improved KH-PRFs

★ New KH-PRFs (from lattices):

- Polylog $\tilde{O}(1)$ depth (still)
- Quasi-optimal $\tilde{O}(\lambda)$ key sizes

First sublinear-depth PRFs (KH or otherwise) with $\tilde{O}(\lambda)$ key size!

- ⋆ New KH-PRFs (from lattices):
 - Polylog $\tilde{O}(1)$ depth (still)
 - Quasi-optimal $\tilde{O}(\lambda)$ key sizes

First sublinear-depth PRFs (KH or otherwise) with $\tilde{O}(\lambda)$ key size!

Reference	Key	Pub Params	Time/Bit
[BLMR'13]	$\lambda^3 \ [\lambda^3]$	$\lambda^6 \ [\lambda^4]$	$\lambda^5 \ [\lambda^3]$
This work	$\lambda [\lambda]$	$\lambda^2 \ [\lambda]$	λ^{ω} [λ]

Figure : For input length λ with 2^{λ} security under standard assumptions. Log factors omitted. Ring-based constructions appear in [brackets].

- ⋆ New KH-PRFs (from lattices):
 - Polylog $\tilde{O}(1)$ depth (still)
 - Quasi-optimal $\tilde{O}(\lambda)$ key sizes

First sublinear-depth PRFs (KH or otherwise) with $\tilde{O}(\lambda)$ key size!

Reference	Key	Pub Params	Time/Bit
[BLMR'13]	$\lambda^3 \ [\lambda^3]$	$\lambda^6 \ [\lambda^4]$	$\lambda^5 \ [\lambda^3]$
This work	$\lambda [\lambda]$	$\lambda^2 \ [\lambda]$	λ^{ω} [λ]

Figure : For input length λ with 2^{λ} security under standard assumptions. Log factors omitted. Ring-based constructions appear in [brackets].

* New proof technique that may be useful elsewhere

- ⋆ New KH-PRFs (from lattices):
 - Polylog $\tilde{O}(1)$ depth (still)
 - Quasi-optimal $\tilde{O}(\lambda)$ key sizes

First sublinear-depth PRFs (KH or otherwise) with $\tilde{O}(\lambda)$ key size!

Reference	Key	Pub Params	Time/Bit
[BLMR'13]	$\lambda^3 \ [\lambda^3]$	$\lambda^6 \ [\lambda^4]$	$\lambda^5 \ [\lambda^3]$
This work	$\lambda [\lambda]$	$\lambda^2 \ [\lambda]$	λ^{ω} [λ]

Figure : For input length λ with 2^{λ} security under standard assumptions. Log factors omitted. Ring-based constructions appear in [brackets].

 \star New proof technique that may be useful elsewhere

Full version: http://eprint.iacr.org/2014/074

2 Construction, Parameters and Efficiency

3 Proof of Security (Idea)

Banerjee and Peikert (Georgia Tech)

• Secret key $\mathbf{s} \in \mathbb{Z}_q^n$, pub params $\mathbf{B}_0, \mathbf{B}_1 \in \{0,1\}^{n imes n}$, input $x \in \{0,1\}^k$

$$F_{\mathbf{s}}(x) = \left\lfloor \mathbf{s} \cdot \prod_{i=1}^{k} \mathbf{B}_{x_i} \right\rceil_p$$

• Secret key $\mathbf{s} \in \mathbb{Z}_q^n$, pub params $\mathbf{B}_0, \mathbf{B}_1 \in \{0,1\}^{n imes n}$, input $x \in \{0,1\}^k$

$$F_{\mathbf{s}}(x) = \left[\mathbf{s} \cdot \prod_{i=1}^{k} \mathbf{B}_{x_i}\right]_p$$

• Secret key $\mathbf{s} \in \mathbb{Z}_q^n$, pub params $\mathbf{B}_0, \mathbf{B}_1 \in \{0,1\}^{n imes n}$, input $x \in \{0,1\}^k$

$$F_{\mathbf{s}}(x) = \left[\mathbf{s} \cdot \prod_{i=1}^{k} \mathbf{B}_{x_i}\right]_p$$

• "Somewhat key-homomorphic:" $F_{\mathbf{s}}(x) + F_{\mathbf{t}}(x) \in F_{\mathbf{s}+\mathbf{t}}(x) + \{0,\pm1\}^n$

• Secret key $\mathbf{s} \in \mathbb{Z}_q^n$, pub params $\mathbf{B}_0, \mathbf{B}_1 \in \{0,1\}^{n imes n}$, input $x \in \{0,1\}^k$

$$F_{\mathbf{s}}(x) = \left\| \mathbf{s} \cdot \prod_{i=1}^{k} \mathbf{B}_{x_i} \right\|_p$$

- "Somewhat key-homomorphic:" $F_{\mathbf{s}}(x) + F_{\mathbf{t}}(x) \in F_{\mathbf{s}+\mathbf{t}}(x) + \{0, \pm 1\}^n$
- Proof strategy: introduce "short" error which "rounds away"

$$\mathbf{F}_{\mathbf{s}}(x) = \left[\mathbf{s} \cdot \prod_{i=1}^{k} \mathbf{B}_{x_i} \right]_p \approx \left[\underbrace{(\mathbf{s} \mathbf{B}_{x_1} + \mathbf{e}_{x_1})}_{\mathbf{s}_{x_1}} \cdot \prod_{i=2}^{k} \mathbf{B}_{x_i} \right]_p$$

• Secret key $\mathbf{s} \in \mathbb{Z}_q^n$, pub params $\mathbf{B}_0, \mathbf{B}_1 \in \{0,1\}^{n imes n}$, input $x \in \{0,1\}^k$

$$F_{\mathbf{s}}(x) = \left[\mathbf{s} \cdot \prod_{i=1}^{k} \mathbf{B}_{x_i} \right]_p$$

- "Somewhat key-homomorphic:" $F_{\mathbf{s}}(x) + F_{\mathbf{t}}(x) \in F_{\mathbf{s}+\mathbf{t}}(x) + \{0, \pm 1\}^n$
- Proof strategy: introduce "short" error which "rounds away"

$$\mathbf{A}_{\mathbf{x}_{3}} \mathbf{A}_{\mathbf{x}_{3}} \mathbf{A}_{\mathbf{x}_{3}} \mathbf{A}_{\mathbf{x}_{3}} \mathbf{A}_{\mathbf{x}_{1}} = \left[\mathbf{s} \cdot \prod_{i=1}^{k} \mathbf{B}_{x_{i}} \right]_{p} \stackrel{s}{\approx} \left[\underbrace{(\mathbf{s} \mathbf{B}_{x_{1}} + \mathbf{e}_{x_{1}})}_{\mathbf{s}_{x_{1}}} \cdot \prod_{i=2}^{k} \mathbf{B}_{x_{i}} \right]_{p} \\ \stackrel{c}{\approx} \left[\mathbf{s}_{x_{1}} \cdot \prod_{i=2}^{k} \mathbf{B}_{x_{i}} \right]_{p} \stackrel{c}{\approx} \dots \stackrel{c}{\approx} \left[\mathbf{s}_{x} \right]_{p} = \mathbf{U}(x)$$

• Secret key $\mathbf{s} \in \mathbb{Z}_q^n$, pub params $\mathbf{B}_0, \mathbf{B}_1 \in \{0,1\}^{n imes n}$, input $x \in \{0,1\}^k$

$$F_{\mathbf{s}}(x) = \left[\mathbf{s} \cdot \prod_{i=1}^{k} \mathbf{B}_{x_i} \right]_p$$

- "Somewhat key-homomorphic:" $F_{\mathbf{s}}(x) + F_{\mathbf{t}}(x) \in F_{\mathbf{s}+\mathbf{t}}(x) + \{0, \pm 1\}^n$
- Proof strategy: introduce "short" error which "rounds away"

$$\mathbf{x}_{2} \quad F_{\mathbf{s}}(x) = \left[\mathbf{s} \cdot \prod_{i=1}^{k} \mathbf{B}_{x_{i}} \right]_{p} \stackrel{s}{\approx} \left[\underbrace{(\mathbf{s}\mathbf{B}_{x_{1}} + \mathbf{e}_{x_{1}})}_{\mathbf{s}_{x_{1}}} \cdot \prod_{i=2}^{k} \mathbf{B}_{x_{i}} \right]_{p}$$
$$\stackrel{c}{\approx} \left[\mathbf{s}_{x_{1}} \cdot \prod_{i=2}^{k} \mathbf{B}_{x_{i}} \right]_{p} \stackrel{c}{\approx} \dots \stackrel{c}{\approx} \left[\mathbf{s}_{x} \right]_{p} = U(x)$$

X LWE approx factor grows exponentially in input length k.

• "Gadget" \mathbb{Z}_q -matrix G [MP'12]:

• "Gadget" \mathbb{Z}_q -matrix G [MP'12]:

 A ubiquitous tool in lattice cryptography: FHE [BV'11,GSW'13,AP'14], CCA/IBE/ABE/FHS [MP'12,BGG⁺'14,GVW'14]

For matrices A_0, A_1 , full binary tree T and $x \in \{0, 1\}^{|T|}$, define $A_T(x)$:

For matrices A_0, A_1 , full binary tree T and $x \in \{0, 1\}^{|T|}$, define $A_T(x)$:

$$T \underset{x}{\circ} \qquad \qquad \mathbf{A}_T(x) := \mathbf{A}_x \quad \text{for } |T| = 1$$

For matrices A_0, A_1 , full binary tree T and $x \in \{0, 1\}^{|T|}$, define $A_T(x)$:

$$\mathbf{A}_T(x) := \mathbf{A}_x \quad \text{for } |T| = 1$$

$$\mathbf{A}_T(x_l \| x_r) := \mathbf{A}_{T.l}(x_l) \cdot \mathbf{G}^{-1}(\mathbf{A}_{T.r}(x_r))$$

For matrices A_0, A_1 , full binary tree T and $x \in \{0, 1\}^{|T|}$, define $A_T(x)$:

$$\mathbf{A}_T(x) := \mathbf{A}_x \quad \text{for } |T| = 1$$

$$\mathbf{A}_T(x_l \| x_r) := \mathbf{A}_{T.l}(x_l) \cdot \mathbf{G}^{-1}(\mathbf{A}_{T.r}(x_r))$$

New KH-PRF Construction

- Public parameters: matrices A_0, A_1 , full binary tree T
- Function $F_{\mathbf{s}}$ on |T|-bit input x defined as

$$F_{\mathbf{s}}(x) = \lfloor \mathbf{s} \cdot \mathbf{A}_T(x) \rceil_p$$

Banerjee and Peikert (Georgia Tech)

For matrices A_0, A_1 , full binary tree T and $x \in \{0, 1\}^{|T|}$, define $A_T(x)$:

$$\mathbf{A}_T(x) := \mathbf{A}_x \quad \text{for } |T| = 1$$

$$\mathbf{A}_T(x_l \| x_r) := \mathbf{A}_{T.l}(x_l) \cdot \mathbf{G}^{-1}(\mathbf{A}_{T.r}(x_r))$$

New KH-PRF Construction

- Public parameters: matrices A_0, A_1 , full binary tree T
- Function $F_{\mathbf{s}}$ on |T|-bit input x defined as

$$F_{\mathbf{s}}(x) = \lfloor \mathbf{s} \cdot \mathbf{A}_T(x) \rceil_p$$

• Somewhat KH just as in [BLMR'13]. Same applications!

Banerjee and Peikert (Georgia Tech)

New and Improved KH-PRFs

- \bullet Sequentiality s(T): the "right depth" of T
 - $\bullet\,$ Circuit depth of PRF is proportional to s(T)

s = 2

- \bullet Sequentiality s(T) : the "right depth" of T
 - Circuit depth of PRF is proportional to s(T)
- Expansion e(T): the "left depth" of T
 - LWE approx factor is exponential in e(T)

e=2

- \bullet Sequentiality s(T) : the "right depth" of T
 - Circuit depth of PRF is proportional to s(T)
- Expansion e(T): the "left depth" of T
 - LWE approx factor is exponential in e(T)
- Max input length = max # leaves = $\binom{e+s}{s}$

- \bullet Sequentiality s(T) : the "right depth" of T
 - Circuit depth of PRF is proportional to s(T)
- Expansion e(T): the "left depth" of T
 - LWE approx factor is exponential in e(T)
- Max input length = max # leaves = $\binom{e+s}{s}$

- \bullet Sequentiality s(T): the "right depth" of T
 - Circuit depth of PRF is proportional to $\boldsymbol{s}(T)$
- Expansion e(T): the "left depth" of T
 - LWE approx factor is exponential in $e({\cal T})$

• Max input length = max # leaves =
$$\binom{e+s}{s}$$

s=2, e=2

"Left Spine"

e(T)	s(T)	Key	Params
$\lambda - 1$	1	λ^3	λ^6

Banerjee and Peikert (Georgia Tech)

- \bullet Sequentiality s(T) : the "right depth" of T
 - Circuit depth of PRF is proportional to $\boldsymbol{s}(T)$
- Expansion e(T): the "left depth" of T
 - LWE approx factor is exponential in $e({\cal T})$

• Max input length = max # leaves =
$$\binom{e+s}{s}$$

s=2, e=2

[BLMR'13] Construction!

s(T)	Key	Params
1	λ^3	λ^6
	1 1	$\frac{s(T)}{1} \qquad \frac{\text{Key}}{\lambda^3}$

Banerjee and Peikert (Georgia Tech)

- \bullet Sequentiality s(T) : the "right depth" of T
 - Circuit depth of PRF is proportional to $\boldsymbol{s}(T)$
- Expansion e(T): the "left depth" of T
 - LWE approx factor is exponential in $e({\cal T})$

• Max input length = max # leaves =
$$\binom{e+s}{s}$$

s=2, e=2

"Right Spine"

Instantiations

e(T)	s(T)	Key	Params
$\lambda - 1$	1	λ^3	λ^6
1	$\lambda - 1$	λ	λ^2

- \bullet Sequentiality s(T): the "right depth" of T
 - Circuit depth of PRF is proportional to $\boldsymbol{s}(T)$
- Expansion e(T): the "left depth" of T
 - LWE approx factor is exponential in $e({\cal T})$

• Max input length = max # leaves =
$$\binom{e+s}{s}$$

s=2, e=2

าร		
s(T)) Key	Params
1 1	λ^3	λ^6
$\lambda - 1$	1λ	λ^2
$(\lambda) \approx \log_4$	(λ) λ	λ^2
) $s(T)$ $1 \qquad 1$ $\lambda - 1$ $(\lambda) \approx \log_4$) $s(T)$ Key 1 1 λ^3 $\lambda - 1$ λ $(\lambda) \approx \log_4(\lambda)$ λ

In

Banerjee and Peikert (Georgia Tech)

1 Introduction

2 Construction, Parameters and Efficiency

Proof of Security (Idea)

CRYPTO '14 10 / 11

✓ New Idea: $\mathbf{u} = \mathbf{s} \cdot \mathbf{G} + \mathbf{v}$ for uniform, *independent* \mathbf{s} and $\mathbf{v} \in \mathcal{P}(\mathbf{G})$.

$$F_{\mathbf{s}}(x) = \begin{bmatrix} \mathbf{s} \cdot \mathbf{A}_{x_0} \cdot \mathbf{G}^{-1}(\mathbf{A}_{T_1}(\overrightarrow{x_1})) \cdots \end{bmatrix}_p$$

$$\stackrel{T}{\approx} \begin{bmatrix} \mathbf{s} \cdot \mathbf{A}_{x_0} \cdot \mathbf{G}^{-1}(\mathbf{A}_{T_1}(\overrightarrow{x_1})) \cdots \end{bmatrix}_p$$

$$\stackrel{s}{\approx} \begin{bmatrix} (\mathbf{s} \cdot \mathbf{A}_{x_0} + \mathbf{e}_{x_0}) \\ \mathbf{u}_{x_0} \end{bmatrix} \cdot \mathbf{G}^{-1}(\mathbf{A}_{T_1}(\overrightarrow{x_1})) \cdots \end{bmatrix}_p$$

$$\stackrel{c}{\approx} \begin{bmatrix} \mathbf{u}_{x_0} \cdot \mathbf{G}^{-1}(\mathbf{A}_{T_1}(\overrightarrow{x_1})) \cdots \end{bmatrix}_p$$

✓ New Idea: $\mathbf{u} = \mathbf{s} \cdot \mathbf{G} + \mathbf{v}$ for uniform, *independent* \mathbf{s} and $\mathbf{v} \in \mathcal{P}(\mathbf{G})$.

$$F_{\mathbf{s}}(x) = \begin{bmatrix} \mathbf{s} \cdot \mathbf{A}_{x_0} \cdot \mathbf{G}^{-1}(\mathbf{A}_{T_1}(\overrightarrow{x_1})) \cdots \end{bmatrix}_p$$

$$\stackrel{\mathbf{s}}{\approx} \begin{bmatrix} (\mathbf{s} \cdot \mathbf{A}_{x_0} + \mathbf{e}_{x_0}) \\ \mathbf{s} \\ \mathbf{s}$$

$$= \left[\mathbf{s}_{x_0} \cdot \mathbf{A}_{T_1}(\overrightarrow{x_1}) \cdot \mathbf{G}^{-1}(\mathbf{A}_{T_2}(\overrightarrow{x_2})) \cdots + \mathbf{v}_{x_0} \cdot \mathbf{G}^{-1}(\mathbf{A}_{T_1}(\overrightarrow{x_1})) \cdots \right]_p$$

✓ New Idea: $\mathbf{u} = \mathbf{s} \cdot \mathbf{G} + \mathbf{v}$ for uniform, *independent* \mathbf{s} and $\mathbf{v} \in \mathcal{P}(\mathbf{G})$.

$$F_{\mathbf{s}}(x) = \begin{bmatrix} \mathbf{s} \cdot \mathbf{A}_{x_0} \cdot \mathbf{G}^{-1}(\mathbf{A}_{T_1}(\overrightarrow{x_1})) \cdots \end{bmatrix}_p$$

$$\stackrel{s}{\approx} \begin{bmatrix} \underbrace{(\mathbf{s} \cdot \mathbf{A}_{x_0} + \mathbf{e}_{x_0})}_{\mathbf{u}_{x_0}} \cdot \mathbf{G}^{-1}(\mathbf{A}_{T_1}(\overrightarrow{x_1})) \cdots \end{bmatrix}_p$$

$$\stackrel{c}{\approx} \begin{bmatrix} \mathbf{u}_{x_0} \cdot \mathbf{G}^{-1}(\mathbf{A}_{T_1}(\overrightarrow{x_1})) \cdots \end{bmatrix}_p$$

$$= \begin{bmatrix} \mathbf{s}_{x_0} \cdot \mathbf{A}_{T_1}(\overrightarrow{x_1}) \cdot \mathbf{G}^{-1}(\mathbf{A}_{T_2}(\overrightarrow{x_2})) \cdots + \mathbf{v}_{x_0} \cdot \mathbf{G}^{-1}(\mathbf{A}_{T_1}(\overrightarrow{x_1})) \cdots \end{bmatrix}_p$$
$$= \begin{bmatrix} \mathbf{s}_{x_0} \cdot \mathbf{A}_{T'}(\overrightarrow{x_1} \| \cdots \| \overrightarrow{x_d}) + \mathbf{v}_{x_0} \cdot \mathbf{G}^{-1}(\mathbf{A}_{T_1}(\overrightarrow{x_1})) \cdots \end{bmatrix}_p$$

✓ New Idea: $\mathbf{u} = \mathbf{s} \cdot \mathbf{G} + \mathbf{v}$ for uniform, *independent* \mathbf{s} and $\mathbf{v} \in \mathcal{P}(\mathbf{G})$.

$$= \begin{bmatrix} \mathbf{s}_{x_0} \cdot \mathbf{A}_{T_1}(\overrightarrow{x_1}) \cdot \mathbf{G}^{-1}(\mathbf{A}_{T_2}(\overrightarrow{x_2})) \cdots + \mathbf{v}_{x_0} \cdot \mathbf{G}^{-1}(\mathbf{A}_{T_1}(\overrightarrow{x_1})) \cdots \end{bmatrix}_p$$

= $\begin{bmatrix} \mathbf{s}_{x_0} \cdot \mathbf{A}_{T'}(\overrightarrow{x_1} \| \cdots \| \overrightarrow{x_d}) + \mathbf{v}_{x_0} \cdot \mathbf{G}^{-1}(\mathbf{A}_{T_1}(\overrightarrow{x_1})) \cdots \end{bmatrix}_p$
 $\cdots \approx \begin{bmatrix} \mathbf{s}_x + \mathbf{v}_{x_0} \mathbf{G}^{-1}(\mathbf{A}_{T_1}(\overrightarrow{x_1})) \cdots + \text{other } \mathbf{v} \text{ terms} \end{bmatrix}_p \approx U(x).$

.

Our main contributions

- New KH-PRFs from lattices: quasi-optimal key sizes, polylog depth
- New proof technique

Our main contributions

- New KH-PRFs from lattices: quasi-optimal key sizes, polylog depth
- New proof technique

The Last Word [Mun'07]

```
int getRandomNumber()
{
return 4; // chosen by fair dice roll.
// guaranteed to be random.
}
```

(Image source: http://xkcd.com/221/)