Lattices that Admit Logarithmic Worst-Case to Average-Case Connection Factors

Chris Peikert1 Alon Rosen2

1SRI International

2Harvard SEAS → IDC Herzliya

STOC 2007
Worst-case versus average-case complexity

Lattices are an intriguing case study:

▶ Believed hard in the worst case
▶ Worst-case / average-case reductions
Worst-case versus average-case complexity

Lattices are an intriguing case study:

- Believed hard in the worst case
- Worst-case / average-case reductions

This Talk . . .

- Not (exactly) about crypto
- Special, natural class of algebraic lattices
- Very tight worst-case/average-case reductions
 - Much tighter than known for general lattices
- Distinctions between decision and search
- Many open problems
Lattices

Let $\mathbf{B} = \{\mathbf{b}_1, \ldots, \mathbf{b}_n\} \subset \mathbb{R}^n$ be linearly independent. The n-dim lattice \mathcal{L} having basis \mathbf{B} is:

$$\mathcal{L} = \sum_{i=1}^{n} (\mathbb{Z} \cdot \mathbf{b}_i)$$
Lattices

Let $B = \{b_1, \ldots, b_n\} \subset \mathbb{R}^n$ be linearly independent.
The n-dim lattice L having basis B is:

$$L = \sum_{i=1}^{n} (\mathbb{Z} \cdot b_i)$$

Fundamental region: Parallelepiped P spanned by b_i's.
Lattices

Let $\mathbf{B} = \{\mathbf{b}_1, \ldots, \mathbf{b}_n\} \subset \mathbb{R}^n$ be linearly independent.
The n-dim **lattice** \mathcal{L} having **basis** \mathbf{B} is:

$$
\mathcal{L} = \sum_{i=1}^{n} (\mathbb{Z} \cdot \mathbf{b}_i)
$$

Fundamental region: Parallelepiped \mathcal{P} spanned by \mathbf{b}_is.

Minimum distance: $\lambda_1 = \text{length of shortest nonzero } \mathbf{v} \in \mathcal{L}$.
Lattices

Let $\mathcal{B} = \{b_1, \ldots, b_n\} \subset \mathbb{R}^n$ be linearly independent. The n-dim lattice \mathcal{L} having basis \mathcal{B} is:

$$\mathcal{L} = \sum_{i=1}^{n} (\mathbb{Z} \cdot b_i)$$

Fundamental region: Parallelepiped \mathcal{P} spanned by b_is.

Minimum distance: $\lambda_1 = \text{length of shortest nonzero } v \in \mathcal{L}$.

Minkowski’s Theorem

$$\lambda_1 \leq \sqrt{n} \cdot \text{vol}(\mathcal{P})^{1/n}$$

(Non-constructive, non-algorithmic proof...)

Shortest Vector Problem (SVP)

Approximation factor $\gamma = \gamma(n)$.

Decision: Given basis, distinguish $\lambda_1 \leq 1$ from $\lambda_1 > \gamma$.
Shortest Vector Problem (SVP)

Approximation factor $\gamma = \gamma(n)$.

Decision: Given basis, distinguish $\lambda_1 \leq 1$ from $\lambda_1 > \gamma$.

Search: Given basis, find nonzero $v \in \mathcal{L}$ such that $\|v\| \leq \gamma \cdot \lambda_1$.
Shortest Vector Problem (SVP)

Approximation factor \(\gamma = \gamma(n) \).

Decision: Given basis, distinguish \(\lambda_1 \leq 1 \) from \(\lambda_1 > \gamma \).

Search: Given basis, find nonzero \(v \in \mathcal{L} \) such that \(\|v\| \leq \gamma \cdot \lambda_1 \).

Hardness

- Almost-polynomial factors \(\gamma(n) \) [Ajt,Mic,Kho,HaRe]
Shortest Vector Problem (SVP)

Approximation factor $\gamma = \gamma(n)$.

Decision: Given basis, distinguish $\lambda_1 \leq 1$ from $\lambda_1 > \gamma$.

Search: Given basis, find nonzero $v \in \mathcal{L}$ such that $\|v\| \leq \gamma \cdot \lambda_1$.

Hardness
- Almost-polynomial factors $\gamma(n)$ [Ajt,Mic,Kho,HaRe]

Algorithms for SVP$_\gamma$
- $\gamma(n) \sim 2^n$ approximation in poly-time [LLL]
- Can trade-off running time/approximation [Sch,AKS]
Worst-Case/Average-Case Connections [Ajtai,…]

For some $\gamma(n) = \text{poly}(n)$ ("connection factor"):

SVP_{γ} hard in the worst case

\[\Downarrow\]

problems hard on the average
Worst-Case/Average-Case Connections [Ajtai,…]

For some $\gamma(n) = \text{poly}(n)$ ("connection factor"):

SVP_γ hard in the worst case

\Downarrow

problems hard on the average

Cryptographic Applications

- One-way & collision-resistant functions [Ajtai,GGH,…]
- Public-key encryption [AjtaiDwork,Regev]
Worst-Case/Average-Case Connections \([\text{Ajtai,} \ldots]\)

For some \(\gamma(n) = \text{poly}(n)\) ("connection factor"):

SVP\(_\gamma\) hard in the worst case

\[\Downarrow\]

problems hard on the average

Cryptographic Applications

- One-way & collision-resistant functions \([\text{Ajtai,GGH,} \ldots]\)
- Public-key encryption \([\text{AjtaiDwork,Regev}]\)

Optimizing the Connection Factor \(\gamma\)

- Interesting to characterize complexity
- Important for crypto due to time/accuracy tradeoff
- Current best \(\gamma(n) \sim n\) \([\text{MicciancioRegev}]\)
This Work: Ideal Lattices

- **Ideal lattices:** special class from algebraic number theory. Ideals in the ring of integers of a number field.
This Work: Ideal Lattices

- Ideal lattices: special class from algebraic number theory. Ideals in the ring of integers of a number field.
- Our interest: number fields with small root discriminant.
This Work: Ideal Lattices

- Ideal lattices: special class from algebraic number theory. Ideals in the ring of integers of a number field.
- Our interest: number fields with small root discriminant.

SVP on Ideal Lattices

- Well-known bottleneck in number theory algorithms: Ideal reduction, unit & class group computation, ...
This Work: Ideal Lattices

▶ Ideal lattices: special class from algebraic number theory. Ideals in the ring of integers of a number field.

▶ Our interest: number fields with small root discriminant.

SVP on Ideal Lattices

▶ Well-known bottleneck in number theory algorithms:
 Ideal reduction, unit & class group computation, . . .

▶ Decision-SVP is easy to approximate: $\lambda_1 \approx$ Minkowski bound. Not NP-hard!
This Work: Ideal Lattices

- Ideal lattices: special class from algebraic number theory. Ideals in the ring of integers of a number field.
- Our interest: number fields with small root discriminant.

SVP on Ideal Lattices

- Well-known bottleneck in number theory algorithms:
 Ideal reduction, unit & class group computation, …
- Decision-SVP is easy to approximate: $\lambda_1 \approx$ Minkowski bound. Not NP-hard!
- Search-SVP appears hard, despite structure. Best known algorithms [LLL, Sch, AKS].
Our Results

Complexity of Ideal Lattices

1. Connection factors as low as $\gamma = \sqrt{\log n}$.
 - Based on search-SVP. (Decision is easy.)
 - For SVP in any ℓ_p norm. (Stay for CCC.)

 Classic *win-win* situation.

2. Relations among problems on ideal lattices (SVP, CVP).
Our Results

Complexity of Ideal Lattices

1. Connection factors as low as $\gamma = \sqrt{\log n}$.
 - Based on search-SVP.
 - For SVP in any ℓ_p norm.

Classic win-win situation.

2. Relations among problems on ideal lattices (SVP, CVP).

Subtleties

No efficient constructions of best number fields (yet).

⇒ Non-uniformity (preprocessing) in reductions.
⇒ Crypto is tricky.
⇒ Many interesting open problems!
Other Special Classes of Lattices

1 “Unique” shortest vector:
 - One-way/CR functions [Ajtai, GGH]
 - Public-key encryption [AjtaiDwork, Regev]
Other Special Classes of Lattices

1. “Unique” shortest vector:
 - One-way/CR functions [Ajtai, GGH]
 - Public-key encryption [Ajtai Dwork, Regev]

2. Cyclic lattices:
 - Efficient & compact OWFs [Micciancio]
 - Collision-resistant hashing [Peikert Rosen, Lyubashevsky Micciancio]
Other Special Classes of Lattices

1. “Unique” shortest vector:
 - One-way/CR functions [Ajtai, GGH]
 - Public-key encryption [Ajtai Dwork, Regev]

2. Cyclic lattices:
 - Efficient & compact OWFs [Micciancio]
 - Collision-resistant hashing [Peikert Rosen, Lyubashevsky Micciancio]

Structure used for functionality & efficiency.
Connection factors $\gamma \sim n$ or more.
Worst-to-Average Reduction [Ajtai,…]

Average-Case Problem

For uniform $a_1, \ldots, a_m \leftarrow \mathbb{Z}^n \mod q$, find short nonzero $z \in \mathbb{Z}^m$:

$$\sum z_i a_i = 0 \mod q.$$
Worst-to-Average Reduction [Ajtai,…]

Average-Case Problem

For uniform \(\mathbf{a}_1, \ldots, \mathbf{a}_m \leftarrow \mathbb{Z}^n \mod q \), find short nonzero \(\mathbf{z} \in \mathbb{Z}^m \):

\[
\sum z_i \mathbf{a}_i = 0 \mod q.
\]

Reduction

1. Sample offset vectors \(\mathbf{i}_i \in \mathbb{R}^n \), derive uniform \(\mathbf{a}_i \)’s
2. Get short solution \(\mathbf{z} \in \mathbb{Z}^m \)
3. Output \((\sum z_i \cdot \mathbf{i}_i) \in \mathcal{L} \)
Worst-to-Average Reduction [Ajtai,…]

Average-Case Problem

For uniform \(a_1, \ldots, a_m \leftarrow \mathbb{Z}^n \mod q \), find short nonzero \(z \in \mathbb{Z}^m \):

\[
\sum z_i a_i = 0 \mod q.
\]

Reduction

1. Sample offset vectors \(\vec{i} \in \mathbb{R}^n \), derive uniform \(a_i \)'s
2. Get short solution \(z \in \mathbb{Z}^m \)
3. Output \((\sum z_i \cdot \vec{i}) \in \mathcal{L} \)
Worst-to-Average Reduction [Ajtai,...]

Average-Case Problem

For uniform $a_1, \ldots, a_m \leftarrow \mathbb{Z}^n \mod q$, find short nonzero $z \in \mathbb{Z}^m$:

$$\sum z_i a_i = 0 \mod q.$$

Reduction

1. Sample offset vectors $i \in \mathbb{R}^n$, derive uniform a_i's
2. Get short solution $z \in \mathbb{Z}^m$
3. Output $(\sum z_i \cdot i) \in \mathcal{L}$
Worst-to-Average Reduction [Ajtai,…]

Average-Case Problem

For uniform \(a_1, \ldots, a_m \leftarrow \mathbb{Z}^n \mod q \), find short nonzero \(z \in \mathbb{Z}^m \):

\[
\sum z_i a_i = 0 \mod q.
\]

Reduction

1. Sample offset vectors \(\vec{\eta}_i \in \mathbb{R}^n \), derive uniform \(a_i \)'s
2. Get short solution \(z \in \mathbb{Z}^m \)
3. Output \((\sum z_i \cdot \vec{\eta}_i) \in \mathcal{L} \)
Worst-to-Average Reduction [Ajtai,…]

Average-Case Problem

For uniform $a_1, \ldots, a_m \leftarrow \mathbb{Z}^n \mod q$, find short nonzero $z \in \mathbb{Z}^m$:

$$
\sum z_i a_i = 0 \mod q.
$$

Reduction

1. Sample offset vectors $i \in \mathbb{R}^n$, derive uniform a_i’s
2. Get short solution $z \in \mathbb{Z}^m$
3. Output $(\sum z_i \cdot i) \in \mathcal{L}$

Connection Factor

- Size of solution $z \in \mathbb{Z}^m$
- Lengths of offset vectors i
Our Approach

- Replace “1-dim” integers \(\mathbb{Z} \) with “\(n \)-dim integers” \(\mathcal{O}_K \).

\[\mathcal{O}_K = \text{ring of algebraic integers in number field } K \text{ of degree } n. \]
Our Approach

- Replace “1-dim” integers \mathbb{Z} with “n-dim integers” \mathcal{O}_K.

$\mathcal{O}_K = \text{ring of algebraic integers in number field } K \text{ of degree } n.$

- Has $+$ and \times, “absolute value” $|\cdot|$, . . .
Our Approach

- Replace “1-dim” integers \mathbb{Z} with “n-dim integers” \mathcal{O}_K.

$\mathcal{O}_K = \text{ring of algebraic integers in number field } K \text{ of degree } n.$

- Has $+$ and \times, “absolute value” $|\cdot|$, . . .
- Is an n-dim lattice under K’s canonical embedding.
Our Approach

- Replace “1-dim” integers \mathbb{Z} with “n-dim integers” \mathcal{O}_K.

$\mathcal{O}_K =$ ring of algebraic integers in number field K of degree n.

- Has $+$ and \times, “absolute value” $|\cdot|$, . . .
- Is an n-dim lattice under K’s canonical embedding.

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst-case object</td>
<td>ideal in \mathcal{O}_K:</td>
</tr>
<tr>
<td>lattice in \mathbb{R}^n:</td>
<td>$\sum (\mathcal{O}_K \cdot b_i)$ for $b_i \in \mathcal{O}_K$</td>
</tr>
<tr>
<td>$\sum (\mathbb{Z} \cdot b_i)$ for $b_i \in \mathbb{R}^n$</td>
<td>$\sum (\mathcal{O}_K \cdot b_i)$ for $b_i \in \mathcal{O}_K$</td>
</tr>
</tbody>
</table>
Our Approach

- Replace “1-dim” integers \mathbb{Z} with “n-dim integers” \mathcal{O}_K.

$\mathcal{O}_K = \text{ring of algebraic integers in number field } K \text{ of degree } n$.

- Has $+$ and \times, “absolute value” $|\cdot|$, . . .
- Is an n-dim lattice under K’s canonical embedding.

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst-case object</td>
<td>Ideal in \mathcal{O}_K:</td>
</tr>
<tr>
<td>$lattice$ in \mathbb{R}^n:</td>
<td>$\sum (\mathcal{O}_K \cdot b_i)$ for $b_i \in \mathcal{O}_K$</td>
</tr>
<tr>
<td>$\sum (\mathbb{Z} \cdot b_i)$ for $b_i \in \mathbb{R}^n$</td>
<td>for $a_i \leftarrow \mathcal{O}_K \ mod \ q$</td>
</tr>
<tr>
<td>Avg-case problem</td>
<td>find “small” $z_i \in \mathcal{O}_K$:</td>
</tr>
<tr>
<td>find small $z_i \in \mathbb{Z}$:</td>
<td>$\sum z_i a_i = 0 \ mod \ q$</td>
</tr>
<tr>
<td>$\sum z_i a_i = 0 \ mod \ q$</td>
<td>for $a_i \leftarrow \mathcal{O}_K \ mod \ q$</td>
</tr>
</tbody>
</table>
Improving the Reduction

- Replace \mathbb{Z} with \mathcal{O}_K.
- Use K having constant root discriminant (as function of dim n).
Improving the Reduction

- Replace \mathbb{Z} with O_K.
- Use K having constant root discriminant (as function of dim n).

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Size of solution z</td>
<td>$\sqrt{n \log n}$</td>
<td>$\sqrt{\log n}$</td>
</tr>
<tr>
<td>2. Length of offsets</td>
<td>$\geq \sqrt{n \cdot \lambda_1}$</td>
<td>λ_1</td>
</tr>
</tbody>
</table>
Improving the Reduction

- Replace \mathbb{Z} with \mathcal{O}_K.
- Use K having constant root discriminant (as function of dim n).

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Size of solution z</td>
<td>$\sqrt{n \log n}$</td>
</tr>
<tr>
<td>2. Length of offsets</td>
<td>$\geq \sqrt{n \cdot \lambda_1}$</td>
</tr>
</tbody>
</table>

Why shorter solutions?

- \mathcal{O}_K is much “denser” than \mathbb{Z}.
Improving the Reduction

- Replace \(\mathbb{Z} \) with \(\mathcal{O}_K \).
- Use \(K \) having constant root discriminant (as function of dim \(n \)).

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Size of solution (z)</td>
<td>(\sqrt{n \log n})</td>
<td>(\sqrt{\log n})</td>
</tr>
<tr>
<td>2. Length of offsets</td>
<td>(\geq \sqrt{n} \cdot \lambda_1)</td>
<td>(\lambda_1)</td>
</tr>
</tbody>
</table>

Why shorter solutions?
- \(\mathcal{O}_K \) is much “denser” than \(\mathbb{Z} \).

Why shorter offsets?
- Ideal lattice primal & dual have (optimally) large \(\lambda_1 \).
Pretty Pictures: Ideal Lattices
Pretty Pictures: Ideal Lattices
Pretty Pictures: Ideal Lattices

- Root discriminant $D_K = \frac{\text{(fundamental volume)}}{n}$
- Minimum distance λ_1 easy to estimate
- Same for dual lattice \Rightarrow short offsets
Pretty Pictures: Ideal Lattices

- Root discriminant $D_K = (\text{fundamental volume})^{2/n}$
Pretty Pictures: Ideal Lattices

- Root discriminant $D_K = (\text{fundamental volume})^{2/n}$
Pretty Pictures: Ideal Lattices

- Root discriminant $\mathcal{D}_K = (\text{fundamental volume})^{2/n}$
Pretty Pictures: Ideal Lattices

- Root discriminant $D_K = (\text{fundamental volume})^{2/n}$
- Minimum distance λ_1 easy to estimate
Pretty Pictures: Ideal Lattices

- Root discriminant $D_K = (\text{fundamental volume})^{2/n}$
- Minimum distance λ_1 easy to estimate
- Same for dual lattice \Rightarrow short offsets
Shorter Average-Case Solutions

- \(\mathcal{O}_K \) is much denser than \(\mathbb{Z} \).

- \(|z| \leq \beta\)

- \(\sim 2\beta\) elements

- \(\sim \beta^n\) elements!
Shorter Average-Case Solutions

- \(\mathcal{O}_K \) is much denser than \(\mathbb{Z} \).

\[
|z| \leq \beta
\]

\(\mathbb{Z} \)

\sim 2\beta \text{ elements}

\(\mathcal{O}_K \)

\sim \beta^n \text{ elements!}
Shorter Average-Case Solutions

- \mathcal{O}_K is much denser than \mathbb{Z}.

$|z| \leq \beta$

$\sim 2\beta$ elements

$\sim \beta^n$ elements!

- Solutions taken over \mathcal{O}_K instead of \mathbb{Z}.
Shorter Average-Case Solutions

- \mathcal{O}_K is much denser than \mathbb{Z}.

- Solutions taken over \mathcal{O}_K instead of \mathbb{Z}.

- Denser $\mathcal{O}_K \Rightarrow$ denser, shorter solutions.

\[|z| \leq \beta \]

\[\sim 2\beta \text{ elements} \]

\[\mathbb{Z} \]

\[\mathcal{O}_K \]

\[\sim \beta^n \text{ elements!} \]
Open Problems

Good families of number fields K are crucial!

1. Need small root discriminant D_K (as function of dim n).
 Families with $D_K < 100$ exist & are easy to verify.

2. Concrete good K known up to $n \sim 85$.
 Even $D_K \sim n^{2/3}$ is useful.

3. Reductions are non-uniform: need short basis for O_K.

Q1: Are there efficient asymptotic constructions?

Q2: Can explicit constructions yield this advice "for free"?

Q3: Can this be done efficiently?

Crypto is tricky: must map \{0, 1\} \ast to short elts of O_K.
Open Problems

Good families of number fields K are crucial!

1. Need small root discriminant \mathcal{D}_K (as function of dim n).
 Families with $\mathcal{D}_K < 100$ exist & are easy to verify.

Q1: Are there efficient asymptotic constructions?

Q2: Can explicit constructions yield this advice “for free”?

Q3: Can this be done efficiently?
Open Problems

Good families of number fields K are crucial!

1. Need small root discriminant D_K (as function of dim n).

Families with $D_K < 100$ exist & are easy to verify.

Q1: Are there efficient asymptotic constructions?

- Concrete good K known up to $n \sim 85$
- Even $D_K \sim n^{2/3}$ is useful

Q2: Can explicit constructions yield this advice "for free"?

Crypto is tricky: must map $\{0, 1\}^*$ to short elts of O_K.

Q3: Can this be done efficiently?
Open Problems

Good families of number fields K are crucial!

1. Need small root discriminant D_K (as function of dim n).

 Families with $D_K < 100$ exist & are easy to verify.

 Q1: Are there efficient asymptotic constructions?

 - Concrete good K known up to $n \sim 85$
 - Even $D_K \sim n^{2/3}$ is useful

2. Reductions are non-uniform: need short basis for \mathcal{O}_K.

 Q2: Can explicit constructions yield this advice “for free”?

Open Problems

Good families of number fields K are crucial!

1. Need small root discriminant D_K (as function of dim n).
 Families with $D_K < 100$ exist & are easy to verify.
 Q1: Are there efficient asymptotic constructions?
 - Concrete good K known up to $n \sim 85$
 - Even $D_K \sim n^{2/3}$ is useful

2. Reductions are non-uniform: need short basis for \mathcal{O}_K.
 Q2: Can explicit constructions yield this advice “for free”?

3. Crypto is tricky: must map $\{0, 1\}^*$ to short elts of \mathcal{O}_K.
 Q3: Can this be done efficiently?