Lattices that Admit Logarithmic Worst-Case to Average-Case Connection Factors

Chris Peikert¹ Alon Rosen²

¹SRI International

 $^2\text{Harvard}$ SEAS \rightarrow IDC Herzliya

STOC 2007

Worst-case versus average-case complexity

Lattices are an intriguing case study:

- Believed hard in the worst case
- Worst-case / average-case reductions

Worst-case versus average-case complexity

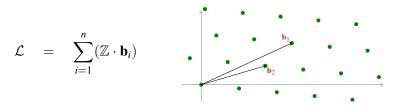
Lattices are an intriguing case study:

- Believed hard in the worst case
- Worst-case / average-case reductions

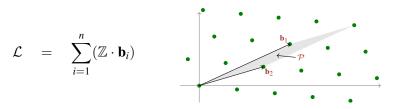
This Talk...

- Not (exactly) about crypto
- Special, natural class of algebraic lattices
- Very tight worst-case/average-case reductions
 - Much tighter than known for general lattices
- Distinctions between decision and search
- Many open problems

Let $\mathbf{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n} \subset \mathbb{R}^n$ be linearly independent. The *n*-dim lattice \mathcal{L} having basis **B** is:

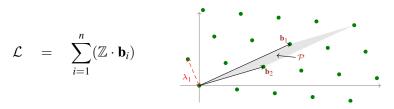


Let $\mathbf{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n} \subset \mathbb{R}^n$ be linearly independent. The *n*-dim lattice \mathcal{L} having basis **B** is:



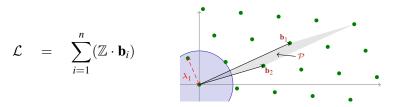
Fundamental region: Parallelepiped \mathcal{P} spanned by \mathbf{b}_i s.

Let $\mathbf{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n} \subset \mathbb{R}^n$ be linearly independent. The *n*-dim lattice \mathcal{L} having basis **B** is:



Fundamental region: Parallelepiped \mathcal{P} spanned by $\mathbf{b}_i \mathbf{s}$. **Minimum distance:** $\lambda_1 = \text{length of shortest nonzero } \mathbf{v} \in \mathcal{L}$.

Let $\mathbf{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n} \subset \mathbb{R}^n$ be linearly independent. The *n*-dim lattice \mathcal{L} having basis **B** is:



Fundamental region: Parallelepiped \mathcal{P} spanned by $\mathbf{b}_i \mathbf{s}$. **Minimum distance:** $\lambda_1 = \text{length of shortest nonzero } \mathbf{v} \in \mathcal{L}$.

Minkowski's Theorem

$$\lambda_1 \leq \sqrt{n} \cdot \operatorname{vol}(\mathcal{P})^{1/n}$$

(Non-constructive, non-algorithmic proof...)

Approximation factor $\gamma = \gamma(n)$.

Decision: Given basis, distinguish $\lambda_1 \leq 1$ from $\lambda_1 > \gamma$.

Approximation factor $\gamma = \gamma(n)$.

Decision: Given basis, distinguish $\lambda_1 \leq 1$ from $\lambda_1 > \gamma$.

Search: Given basis, find nonzero $\mathbf{v} \in \mathcal{L}$ such that $\|\mathbf{v}\| \leq \gamma \cdot \lambda_1$.

Approximation factor $\gamma = \gamma(n)$.

Decision: Given basis, distinguish $\lambda_1 \leq 1$ from $\lambda_1 > \gamma$.

Search: Given basis, find nonzero $\mathbf{v} \in \mathcal{L}$ such that $\|\mathbf{v}\| \le \gamma \cdot \lambda_1$.

Hardness

Almost-polynomial factors $\gamma(n)$ [Ajt,Mic,Kho,HaRe]

Approximation factor $\gamma = \gamma(n)$.

Decision: Given basis, distinguish $\lambda_1 \leq 1$ from $\lambda_1 > \gamma$.

Search: Given basis, find nonzero $\mathbf{v} \in \mathcal{L}$ such that $\|\mathbf{v}\| \le \gamma \cdot \lambda_1$.

Hardness

Almost-polynomial factors γ(n) [Ajt,Mic,Kho,HaRe]

Algorithms for SVP $_{\gamma}$

- $\gamma(n) \sim 2^n$ approximation in poly-time [LLL]
- Can trade-off running time/approximation [Sch,AKS]

Worst-Case/Average-Case Connections [Ajtai,...]

For some $\gamma(n) = poly(n)$ ("connection factor"): SVP_{γ} hard in the worst case $\downarrow \downarrow$ problems hard on the average

Worst-Case/Average-Case Connections [Ajtai,...]

For some $\gamma(n) = poly(n)$ ("connection factor"): SVP_{γ} hard in the worst case $\downarrow \downarrow$ problems hard on the average

Cryptographic Applications

- One-way & collision-resistant functions [Ajtai,GGH,...]
- Public-key encryption [AjtaiDwork,Regev]

Worst-Case/Average-Case Connections [Ajtai,...]

For some $\gamma(n) = poly(n)$ ("connection factor"): SVP_{γ} hard in the worst case $\downarrow \downarrow$ problems hard on the average

Cryptographic Applications

- One-way & collision-resistant functions [Ajtai,GGH,...]
- Public-key encryption [AjtaiDwork,Regev]

Optimizing the Connection Factor γ

- Interesting to characterize complexity
- Important for crypto due to time/accuracy tradeoff
- Current best $\gamma(n) \sim n$ [MicciancioRegev]

Ideal lattices: special class from algebraic number theory. Ideals in the ring of integers of a number field.

- Ideal lattices: special class from algebraic number theory. Ideals in the ring of integers of a number field.
- Our interest: number fields with small root discriminant.

- Ideal lattices: special class from algebraic number theory. Ideals in the ring of integers of a number field.
- Our interest: number fields with small root discriminant.

SVP on Ideal Lattices

Well-known bottleneck in number theory algorithms: Ideal reduction, unit & class group computation, ...

- Ideal lattices: special class from algebraic number theory. Ideals in the ring of integers of a number field.
- Our interest: number fields with small root discriminant.

SVP on Ideal Lattices

- Well-known bottleneck in number theory algorithms:
 Ideal reduction, unit & class group computation, ...
- Decision-SVP is easy to approximate: λ₁ ≈ Minkowski bound. Not NP-hard!

- Ideal lattices: special class from algebraic number theory. Ideals in the ring of integers of a number field.
- Our interest: number fields with small root discriminant.

SVP on Ideal Lattices

- Well-known bottleneck in number theory algorithms: Ideal reduction, unit & class group computation, ...
- ► Decision-SVP is *easy* to approximate: λ₁ ≈ Minkowski bound. Not NP-hard!
- Search-SVP appears hard, despite structure.
 Best known algorithms [LLL,Sch,AKS].

Our Results

Complexity of Ideal Lattices

- **1** Connection factors as low as $\gamma = \sqrt{\log n}$.
 - Based on search-SVP.
 - For SVP in any ℓ_p norm.

Classic win-win situation.

2 Relations among problems on ideal lattices (SVP, CVP).

(Decision is easy.)

(Stay for CCC.)

Our Results

Complexity of Ideal Lattices

- 1 Connection factors as low as $\gamma = \sqrt{\log n}$.
 - Based on search-SVP.
 - For SVP in any ℓ_p norm.

Classic win-win situation.

2 Relations among problems on ideal lattices (SVP, CVP).

Subtleties

No efficient constructions of best number fields (yet).

- \Rightarrow Non-uniformity (preprocessing) in reductions.
- \Rightarrow Crypto is tricky.
- ⇒ Many interesting open problems!

(Decision is easy.)

(Stay for CCC.)

Other Special Classes of Lattices

1 "Unique" shortest vector:

- One-way/CR functions [Ajtai,GGH]
- Public-key encryption [AjtaiDwork,Regev]

Other Special Classes of Lattices

1 "Unique" shortest vector:

- One-way/CR functions [Ajtai,GGH]
- Public-key encryption [AjtaiDwork,Regev]

2 Cyclic lattices:

- Efficient & compact OWFs [Micciancio]
- Collision-resistant hashing [PeikertRosen,LyubashevskyMicciancio]

Other Special Classes of Lattices

1 "Unique" shortest vector:

- One-way/CR functions [Ajtai,GGH]
- Public-key encryption [AjtaiDwork,Regev]

2 Cyclic lattices:

- Efficient & compact OWFs [Micciancio]
- Collision-resistant hashing [PeikertRosen,LyubashevskyMicciancio]

Structure used for functionality & efficiency.

Connection factors $\gamma \sim n$ or more.

Average-Case Problem

For uniform $\mathbf{a}_1, \ldots, \mathbf{a}_m \leftarrow \mathbb{Z}^n \mod q$, find short nonzero $\mathbf{z} \in \mathbb{Z}^m$:

$$\sum z_i \mathbf{a}_i = \mathbf{0} \bmod q.$$

Average-Case Problem

For uniform $\mathbf{a}_1, \ldots, \mathbf{a}_m \leftarrow \mathbb{Z}^n \mod q$, find short nonzero $\mathbf{z} \in \mathbb{Z}^m$:

$$\sum z_i \mathbf{a}_i = \mathbf{0} \mod q.$$

Reduction

- **1** Sample offset vectors $\geq_i \in \mathbb{R}^n$, derive uniform \mathbf{a}_i 's
- **2** Get short solution $\mathbf{z} \in \mathbb{Z}^m$

3 Output $(\sum z_i \cdot \nearrow_i) \in \mathcal{L}$

Average-Case Problem

For uniform $\mathbf{a}_1, \ldots, \mathbf{a}_m \leftarrow \mathbb{Z}^n \mod q$, find short nonzero $\mathbf{z} \in \mathbb{Z}^m$:

$$\sum z_i \mathbf{a}_i = \mathbf{0} \mod q.$$

Reduction

- **1** Sample offset vectors $\nearrow_i \in \mathbb{R}^n$, derive uniform \mathbf{a}_i 's
- **2** Get short solution $\mathbf{z} \in \mathbb{Z}^m$

3 Output $(\sum z_i \cdot \nearrow_i) \in \mathcal{L}$

Average-Case Problem

For uniform $\mathbf{a}_1, \ldots, \mathbf{a}_m \leftarrow \mathbb{Z}^n \mod q$, find short nonzero $\mathbf{z} \in \mathbb{Z}^m$:

$$\sum z_i \mathbf{a}_i = \mathbf{0} \bmod q.$$

Reduction

- **1** Sample offset vectors $\nearrow_i \in \mathbb{R}^n$, derive uniform \mathbf{a}_i 's
- **2** Get short solution $\mathbf{z} \in \mathbb{Z}^m$

3 Output $(\sum z_i \cdot \nearrow_i) \in \mathcal{L}$

Average-Case Problem

For uniform $\mathbf{a}_1, \ldots, \mathbf{a}_m \leftarrow \mathbb{Z}^n \mod q$, find short nonzero $\mathbf{z} \in \mathbb{Z}^m$:

$$\sum z_i \mathbf{a}_i = \mathbf{0} \bmod q.$$

Reduction

- **1** Sample offset vectors $\nearrow_i \in \mathbb{R}^n$, derive uniform \mathbf{a}_i 's
- **2** Get short solution $\mathbf{z} \in \mathbb{Z}^m$
- **3** Output $(\sum z_i \cdot \nearrow_i) \in \mathcal{L}$

Average-Case Problem

For uniform $\mathbf{a}_1, \ldots, \mathbf{a}_m \leftarrow \mathbb{Z}^n \mod q$, find short nonzero $\mathbf{z} \in \mathbb{Z}^m$:

$$\sum z_i \mathbf{a}_i = \mathbf{0} \bmod q.$$

Reduction

- **1** Sample offset vectors $\nearrow_i \in \mathbb{R}^n$, derive uniform \mathbf{a}_i 's
- **2** Get short solution $\mathbf{z} \in \mathbb{Z}^m$

3 Output
$$(\sum z_i \cdot \nearrow_i) \in \mathcal{L}$$

Connection Factor

- Size of solution $\mathbf{z} \in \mathbb{Z}^m$
- Lengths of offset vectors >_i

▶ Replace "1-dim" integers \mathbb{Z} with "*n*-dim integers" \mathcal{O}_K .

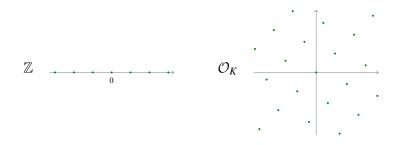
▶ Replace "1-dim" integers \mathbb{Z} with "*n*-dim integers" \mathcal{O}_K .

 \mathcal{O}_K = ring of algebraic integers in number field *K* of degree *n*.

• Has + and \times , "absolute value" $|\cdot|, \ldots$

▶ Replace "1-dim" integers \mathbb{Z} with "*n*-dim integers" \mathcal{O}_K .

- Has + and \times , "absolute value" $|\cdot|, \ldots$
- Is an *n*-dim lattice under *K*'s canonical embedding.



▶ Replace "1-dim" integers \mathbb{Z} with "*n*-dim integers" \mathcal{O}_K .

- Has + and $\times,$ "absolute value" $|\cdot|,\ldots$
- Is an *n*-dim lattice under *K*'s canonical embedding.

	Before	After
Worst-case object	<i>lattice</i> in \mathbb{R}^n :	<i>ideal</i> in \mathcal{O}_K :
	$\sum (\mathbb{Z} \cdot \mathbf{b}_i)$ for $\mathbf{b}_i \in \mathbb{R}^n$	$\sum (\mathcal{O}_K \cdot b_i)$ for $b_i \in \mathcal{O}_K$

▶ Replace "1-dim" integers \mathbb{Z} with "*n*-dim integers" \mathcal{O}_K .

- Has + and $\times,$ "absolute value" $|\cdot|,\ldots$
- Is an *n*-dim lattice under *K*'s canonical embedding.

	Before	After
Worst-case object	<i>lattice</i> in \mathbb{R}^n :	<i>ideal</i> in \mathcal{O}_K :
	$\sum (\mathbb{Z} \cdot \mathbf{b}_i)$ for $\mathbf{b}_i \in \mathbb{R}^n$	$\sum (\mathcal{O}_K \cdot b_i)$ for $b_i \in \mathcal{O}_K$
Avg-case problem	for $\mathbf{a}_i \leftarrow \mathbb{Z}^n ext{ mod } q$	for $a_i \leftarrow \mathcal{O}_K \mod q$
	find small $z_i \in \mathbb{Z}$:	find "small" $z_i \in \mathcal{O}_K$:
	$\sum z_i \mathbf{a}_i = 0 \mod q$	$\sum z_i a_i = 0 \mod q$

Improving the Reduction

- ▶ Replace \mathbb{Z} with \mathcal{O}_K .
- ► Use *K* having constant root discriminant (as function of dim *n*).

Improving the Reduction

▶ Replace \mathbb{Z} with \mathcal{O}_K .

► Use *K* having constant root discriminant (as function of dim *n*).

	Before	After
1. Size of solution z	$\sqrt{n\log n}$	$\sqrt{\log n}$
2. Length of offsets >	$\geq \sqrt{n} \cdot \lambda_1$	λ_1

Improving the Reduction

▶ Replace \mathbb{Z} with \mathcal{O}_K .

► Use *K* having constant root discriminant (as function of dim *n*).

	Before	After
1. Size of solution z	$\sqrt{n\log n}$	$\sqrt{\log n}$
2. Length of offsets >	$\geq \sqrt{n} \cdot \lambda_1$	λ_1

1 Why shorter solutions?

• \mathcal{O}_K is much "denser" than \mathbb{Z} .

Improving the Reduction

▶ Replace \mathbb{Z} with \mathcal{O}_K .

Use K having constant root discriminant (as function of dim n).

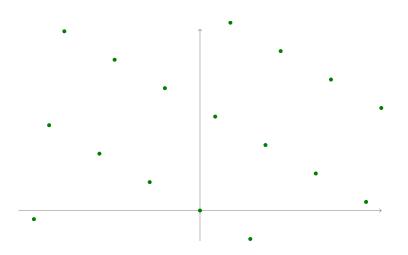
	Before	After
1. Size of solution z	$\sqrt{n\log n}$	$\sqrt{\log n}$
2. Length of offsets >	$\geq \sqrt{n} \cdot \lambda_1$	λ_1

1 Why shorter solutions?

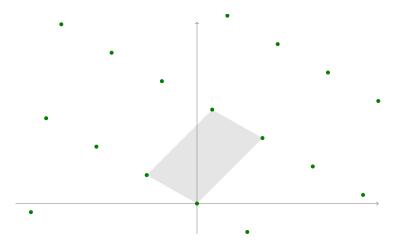
- \mathcal{O}_K is much "denser" than \mathbb{Z} .
- Why shorter offsets?
 - Ideal lattice primal & dual have (optimally) large λ_1 .

Crash Course in Algebraic Number Theory

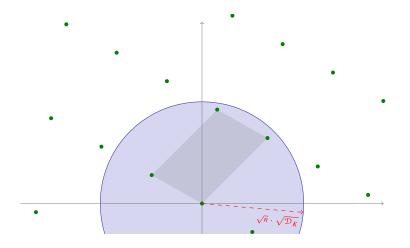
Crash Course in Algebraic Number Theory



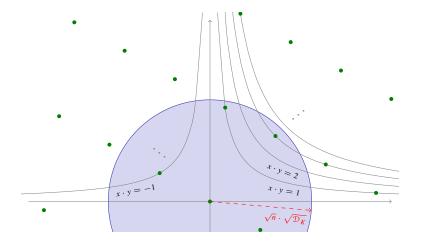
• Root discriminant $\mathcal{D}_K = (\text{fundamental volume})^{2/n}$



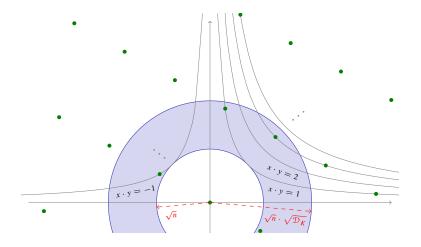
• Root discriminant $\mathcal{D}_K = (\text{fundamental volume})^{2/n}$



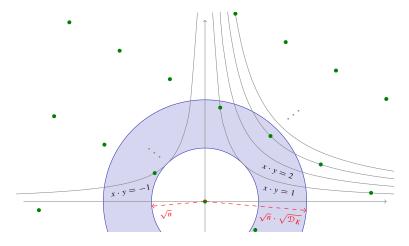
• Root discriminant $\mathcal{D}_K = (\text{fundamental volume})^{2/n}$



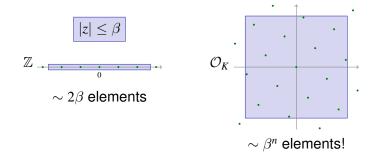
- Root discriminant $\mathcal{D}_K = (\text{fundamental volume})^{2/n}$
- Minimum distance λ_1 easy to estimate



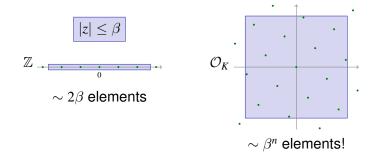
- Root discriminant $\mathcal{D}_K = (\text{fundamental volume})^{2/n}$
- Minimum distance λ_1 easy to estimate
- Same for dual lattice ⇒ short offsets ∧



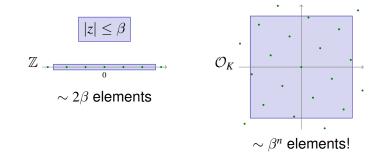
 \triangleright \mathcal{O}_K is much denser than \mathbb{Z} .



 \triangleright \mathcal{O}_K is much denser than \mathbb{Z} .

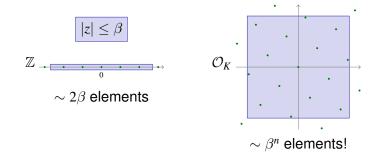


 \triangleright \mathcal{O}_K is much denser than \mathbb{Z} .



Solutions taken over \mathcal{O}_K instead of \mathbb{Z} .

 \triangleright \mathcal{O}_K is much denser than \mathbb{Z} .



- Solutions taken over \mathcal{O}_K instead of \mathbb{Z} .
- Denser $\mathcal{O}_K \Rightarrow$ denser, shorter solutions.

Good families of number fields *K* are crucial!

Good families of number fields K are crucial!

Need small root discriminant D_K (as function of dim *n*).
 Families with D_K < 100 exist & are easy to verify.
 Q1: Are there efficient asymptotic constructions?

Good families of number fields K are crucial!

Need small root discriminant D_K (as function of dim *n*).
 Families with D_K < 100 exist & are easy to verify.

Q1: Are there efficient asymptotic constructions?

- Concrete good K known up to $n \sim 85$
- Even $\mathcal{D}_K \sim n^{2/3}$ is useful

Good families of number fields K are crucial!

1 Need small root discriminant \mathcal{D}_K (as function of dim *n*). Families with $\mathcal{D}_K < 100$ exist & are easy to verify.

Q1: Are there efficient asymptotic constructions?

- Concrete good K known up to $n \sim 85$
- Even $\mathcal{D}_K \sim n^{2/3}$ is useful
- **2** Reductions are non-uniform: need short basis for \mathcal{O}_K .

Q2: Can explicit constructions yield this advice "for free"?

Good families of number fields K are crucial!

1 Need small root discriminant \mathcal{D}_K (as function of dim *n*). Families with $\mathcal{D}_K < 100$ exist & are easy to verify.

Q1: Are there efficient asymptotic constructions?

- Concrete good K known up to $n \sim 85$
- Even $\mathcal{D}_K \sim n^{2/3}$ is useful
- 2 Reductions are non-uniform: need short basis for O_K.
 Q2: Can explicit constructions yield this advice "for free"?
- Crypto is tricky: must map {0,1}* to short elts of O_K.
 Q3: Can this be done efficiently?