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Worst-case versus average-case complexity
Lattices are an intriguing case study:

I Believed hard in the worst case
I Worst-case / average-case reductions

This Talk. . .
I Not (exactly) about crypto

I Special, natural class of algebraic lattices

I Very tight worst-case/average-case reductions
• Much tighter than known for general lattices

I Distinctions between decision and search

I Many open problems
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Lattices
Let B = {b1, . . . ,bn} ⊂ Rn be linearly independent.
The n-dim lattice L having basis B is:

L =
n∑

i=1

(Z · bi)
b1

b2

Fundamental region: Parallelepiped P spanned by bis.
Minimum distance: λ1 = length of shortest nonzero v ∈ L.

Minkowski’s Theorem

λ1 ≤
√

n · vol(P)1/n

(Non-constructive, non-algorithmic proof. . . )
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Shortest Vector Problem (SVP)

Approximation factor γ = γ(n).

Decision: Given basis, distinguish λ1 ≤ 1 from λ1 > γ.

Search: Given basis, find nonzero v ∈ L
such that ‖v‖ ≤ γ · λ1.

Hardness
I Almost-polynomial factors γ(n) [Ajt,Mic,Kho,HaRe]

Algorithms for SVPγ
I γ(n) ∼ 2n approximation in poly-time [LLL]

I Can trade-off running time/approximation [Sch,AKS]
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Worst-Case/Average-Case Connections [Ajtai,. . . ]

For some γ(n) = poly(n) (“connection factor”):

SVPγ hard in the worst case
⇓

problems hard on the average

Cryptographic Applications
I One-way & collision-resistant functions [Ajtai,GGH,. . . ]

I Public-key encryption [AjtaiDwork,Regev]

Optimizing the Connection Factor γ
I Interesting to characterize complexity
I Important for crypto due to time/accuracy tradeoff
I Current best γ(n) ∼ n [MicciancioRegev]
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This Work: Ideal Lattices

I Ideal lattices: special class from algebraic number theory.
Ideals in the ring of integers of a number field.

I Our interest: number fields with small root discriminant.

SVP on Ideal Lattices
I Well-known bottleneck in number theory algorithms:

Ideal reduction, unit & class group computation, . . .

I Decision-SVP is easy to approximate: λ1 ≈ Minkowski bound.
Not NP-hard!

I Search-SVP appears hard, despite structure.
Best known algorithms [LLL,Sch,AKS].
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Our Results

Complexity of Ideal Lattices

1 Connection factors as low as γ =
√

log n.
• Based on search-SVP. (Decision is easy.)

• For SVP in any `p norm. (Stay for CCC.)

Classic win-win situation.
2 Relations among problems on ideal lattices (SVP, CVP).

Subtleties
No efficient constructions of best number fields (yet).
⇒ Non-uniformity (preprocessing) in reductions.
⇒ Crypto is tricky.
⇒ Many interesting open problems!
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Other Special Classes of Lattices

1 “Unique” shortest vector:
• One-way/CR functions [Ajtai,GGH]

• Public-key encryption [AjtaiDwork,Regev]

2 Cyclic lattices:
• Efficient & compact OWFs [Micciancio]

• Collision-resistant hashing [PeikertRosen,LyubashevskyMicciancio]

Structure used for functionality & efficiency.

Connection factors γ ∼ n or more.
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Worst-to-Average Reduction [Ajtai,. . . ]

Average-Case Problem
For uniform a1, . . . , am ← Zn mod q, find short nonzero z ∈ Zm:∑

ziai = 0 mod q.

Reduction
1 Sample offset vectors i ∈ Rn, derive uniform ai’s

2 Get short solution z ∈ Zm

3 Output (
∑

zi · i) ∈ L

Connection Factor
I Size of solution z ∈ Zm

I Lengths of offset vectors i
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Our Approach

I Replace “1-dim” integers Z with “n-dim integers” OK .

OK = ring of algebraic integers in number field K of degree n.

• Has + and ×, “absolute value” |·|, . . .

• Is an n-dim lattice under K’s canonical embedding.
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Improving the Reduction

I Replace Z with OK .
I Use K having constant root discriminant (as function of dim n).

Before After

1. Size of solution z
√

n log n
√

log n

2. Length of offsets ≥
√

n · λ1 λ1

1 Why shorter solutions?

• OK is much “denser” than Z.

2 Why shorter offsets?

• Ideal lattice primal & dual have (optimally) large λ1.
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Crash Course in Algebraic Number Theory
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Pretty Pictures: Ideal Lattices
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Pretty Pictures: Ideal Lattices

I Root discriminant DK = (fundamental volume)2/n

I Minimum distance λ1 easy to estimate
I Same for dual lattice⇒ short offsets
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Shorter Average-Case Solutions

I OK is much denser than Z.

Z

|z| ≤ β

0

∼ 2β elements

OK

∼ βn elements!

I Solutions taken over OK instead of Z.

I Denser OK ⇒ denser, shorter solutions.
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Open Problems

Good families of number fields K are crucial!

1 Need small root discriminant DK (as function of dim n).

Families with DK < 100 exist & are easy to verify.

Q1: Are there efficient asymptotic constructions?

• Concrete good K known up to n ∼ 85
• Even DK ∼ n2/3 is useful

2 Reductions are non-uniform: need short basis for OK .

Q2: Can explicit constructions yield this advice “for free”?

3 Crypto is tricky: must map {0, 1}∗ to short elts of OK .

Q3: Can this be done efficiently?

15 / 15



Open Problems

Good families of number fields K are crucial!

1 Need small root discriminant DK (as function of dim n).

Families with DK < 100 exist & are easy to verify.

Q1: Are there efficient asymptotic constructions?

• Concrete good K known up to n ∼ 85
• Even DK ∼ n2/3 is useful

2 Reductions are non-uniform: need short basis for OK .

Q2: Can explicit constructions yield this advice “for free”?

3 Crypto is tricky: must map {0, 1}∗ to short elts of OK .

Q3: Can this be done efficiently?

15 / 15



Open Problems

Good families of number fields K are crucial!

1 Need small root discriminant DK (as function of dim n).

Families with DK < 100 exist & are easy to verify.

Q1: Are there efficient asymptotic constructions?
• Concrete good K known up to n ∼ 85
• Even DK ∼ n2/3 is useful

2 Reductions are non-uniform: need short basis for OK .

Q2: Can explicit constructions yield this advice “for free”?

3 Crypto is tricky: must map {0, 1}∗ to short elts of OK .

Q3: Can this be done efficiently?

15 / 15



Open Problems

Good families of number fields K are crucial!

1 Need small root discriminant DK (as function of dim n).

Families with DK < 100 exist & are easy to verify.

Q1: Are there efficient asymptotic constructions?
• Concrete good K known up to n ∼ 85
• Even DK ∼ n2/3 is useful

2 Reductions are non-uniform: need short basis for OK .

Q2: Can explicit constructions yield this advice “for free”?

3 Crypto is tricky: must map {0, 1}∗ to short elts of OK .

Q3: Can this be done efficiently?

15 / 15



Open Problems

Good families of number fields K are crucial!

1 Need small root discriminant DK (as function of dim n).

Families with DK < 100 exist & are easy to verify.

Q1: Are there efficient asymptotic constructions?
• Concrete good K known up to n ∼ 85
• Even DK ∼ n2/3 is useful

2 Reductions are non-uniform: need short basis for OK .

Q2: Can explicit constructions yield this advice “for free”?

3 Crypto is tricky: must map {0, 1}∗ to short elts of OK .

Q3: Can this be done efficiently?

15 / 15


