Ideal Lattices and Ring-LWE: Overview and Open Problems

Chris Peikert Georgia Institute of Technology

> ICERM 23 April 2015

Agenda

1 Ring-LWE and its hardness from ideal lattices

Open questions

Selected bibliography:

LPR'10 V. Lyubashevsky, C. Peikert, O. Regev.

"On Ideal Lattices and Learning with Errors Over Rings," Eurocrypt'10 and JACM'13.

LPR'13 V. Lyubashevsky, C. Peikert, O. Regev.

"A Toolkit for Ring-LWE Cryptography," Eurocrypt'13.

1996 Ajtai's worst-case/average-case reduction, one-way function & public-key encryption (very inefficient)

1996 Ajtai's worst-case/average-case reduction, one-way function & public-key encryption (very inefficient)

1996 NTRU efficient ring-based encryption (heuristic security)

```
    1996 Ajtai's worst-case/average-case reduction, one-way function & public-key encryption (very inefficient)
    1996 NTRU efficient ring-based encryption (heuristic security)
```

2002 Micciancio's ring-based one-way function with worst-case hardness (no encryption)

```
1996 Ajtai's worst-case/average-case reduction, one-way function
      & public-key encryption
                                                  (very inefficient)
1996 NTRU efficient ring-based encryption
                                                (heuristic security)
2002 Micciancio's ring-based one-way function
     with worst-case hardness
                                                   (no encryption)
2005 Regev's LWE: encryption with worst-case hardness
                                                       (inefficient)
```

```
1996 Ajtai's worst-case/average-case reduction, one-way function
       & public-key encryption
                                                    (very inefficient)
 1996 NTRU efficient ring-based encryption
                                                 (heuristic security)
 2002 Micciancio's ring-based one-way function
       with worst-case hardness
                                                     (no encryption)
 2005 Regev's LWE: encryption with worst-case hardness
                                                         (inefficient)
2008 – Countless applications of LWE
                                                    (still inefficient)
```

```
1996 Ajtai's worst-case/average-case reduction, one-way function
       & public-key encryption
                                                    (very inefficient)
 1996 NTRU efficient ring-based encryption
                                                 (heuristic security)
 2002 Micciancio's ring-based one-way function
       with worst-case hardness
                                                     (no encryption)
 2005 Regev's LWE: encryption with worst-case hardness
                                                         (inefficient)
                                                     (still inefficient)
2008 – Countless applications of LWE
 2010 Ring-LWE: efficient encryption, worst-case hardness
```

Parameters: dimension n, modulus q = poly(n).

- Parameters: dimension n, modulus q = poly(n).
- **Search:** find secret $\mathbf{s} \in \mathbb{Z}_q^n$ given many 'noisy inner products'

```
\mathbf{a}_1 \leftarrow \mathbb{Z}_q^n , \mathbf{b}_1 \approx \langle \mathbf{a}_1 , \mathbf{s} \rangle \bmod q

\mathbf{a}_2 \leftarrow \mathbb{Z}_q^n , \mathbf{b}_2 \approx \langle \mathbf{a}_2 , \mathbf{s} \rangle \bmod q

\vdots
```

- Parameters: dimension n, modulus q = poly(n).
- **Search:** find secret $\mathbf{s} \in \mathbb{Z}_q^n$ given many 'noisy inner products'

- Parameters: dimension n, modulus q = poly(n).
- **Search:** find secret $\mathbf{s} \in \mathbb{Z}_q^n$ given many 'noisy inner products'

$$\begin{pmatrix} \vdots \\ \mathbf{A} \\ \vdots \end{pmatrix} , \begin{pmatrix} \vdots \\ \mathbf{b} \\ \vdots \end{pmatrix} = \mathbf{A}\mathbf{s} + \mathbf{e}$$

$$\sqrt{n} \le \operatorname{error} \ll q$$

- Parameters: dimension n, modulus q = poly(n).
- **Search:** find secret $\mathbf{s} \in \mathbb{Z}_q^n$ given many 'noisy inner products'

$$\begin{pmatrix} \vdots \\ \mathbf{A} \\ \vdots \end{pmatrix} , \begin{pmatrix} \vdots \\ \mathbf{b} \\ \vdots \end{pmatrix} = \mathbf{A}\mathbf{s} + \mathbf{e}$$

$$\sqrt{n} \le \operatorname{error} \ll q$$

Decision: distinguish (A, b) from uniform (A, b)

- Parameters: dimension n, modulus q = poly(n).
- **Search:** find secret $\mathbf{s} \in \mathbb{Z}_q^n$ given many 'noisy inner products'

$$\begin{pmatrix} \vdots \\ \mathbf{A} \\ \vdots \end{pmatrix} , \begin{pmatrix} \vdots \\ \mathbf{b} \\ \vdots \end{pmatrix} = \mathbf{A}\mathbf{s} + \mathbf{e}$$

$$\sqrt{n} \le \operatorname{error} \ll q$$

Decision: distinguish (A, b) from uniform (A, b)

LWE is Hard (... maybe even for quantum!)

```
\begin{array}{c} \textit{worst case} \\ \textit{lattice problems} & \leq \\ \textit{search-LWE} & \leq \\ \textit{decision-LWE} & \leq \\ \textit{crypto} \\ & (\textit{quantum } [R'05]) & [\textit{BFKL'93},R'05,\dots] \end{array}
```

- Parameters: dimension n, modulus q = poly(n).
- **Search:** find secret $\mathbf{s} \in \mathbb{Z}_q^n$ given many 'noisy inner products'

$$\begin{pmatrix} \vdots \\ \mathbf{A} \\ \vdots \end{pmatrix} , \begin{pmatrix} \vdots \\ \mathbf{b} \\ \vdots \end{pmatrix} = \mathbf{A}\mathbf{s} + \mathbf{e}$$

$$\sqrt{n} \le \operatorname{error} \ll q$$

Decision: distinguish (A, b) from uniform (A, b)

LWE is Hard (... maybe even for quantum!)

worst case lattice problems \leq_{τ} search-LWE \leq_{τ} decision-LWE \leq_{τ} crypto (quantum [R'05]) [BFKL'93,R'05,...]

Also a classical reduction for search-LWE [P'09,BLPRS'13]

What kinds of crypto can we do with LWE?

What kinds of crypto can we do with LWE?

Public Key Encryption and Oblivious Transfer Actively Secure PKE (w/o RO)

[R'05,PVW'08]

[PW'08,P'09,MP'12]

What kinds of crypto can we do with LWE?

Public Key Encryption and Oblivious Transfer

Actively Secure PKE (w/o RO)

_ _ _ _ _ _ .

Identity-Based Encryption (in RO model)

Hierarchical ID-Based Encryption (w/o RO)

[R'05,PVW'08]

[PW'08,P'09,MP'12]

[GPV'08]

[CHKP'10,ABB'10]

What kinds of crypto can we do with LWE?

```
Public Key Encryption and Oblivious Transfer
                                                        [R'05,PVW'08]
Actively Secure PKE (w/o RO)
                                                   [PW'08,P'09,MP'12]
Identity-Based Encryption (in RO model)
                                                             [GPV'08]
Hierarchical ID-Based Encryption (w/o RO)
                                                     [CHKP'10,ABB'10]
Leakage-Resilient Crypto
                           [AGV'09,DGKPV'10,GKPV'10,ADNSWW'10,...]
Fully Homomorphic Encryption
                                             [BV'11,BGV'12,GSW'13,...]
Attribute-Based Encryption
                                          [AFV'11,GVW'13,BGG+'14,...]
Symmetric-Key Primitives
                                            [BPR'12,BMLR'13,BP'14,...]
Other Exotic Encryption
                                           [ACPS'09,BHHI'10,OP'10,...]
the list goes on...
```

$$\left(\cdots \mathbf{a}_{i} \cdots\right) \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + e = \mathbf{b} \in \mathbb{Z}_{q}$$

Getting one pseudorandom scalar requires an n-dim inner product mod q

$$(\cdots \mathbf{a}_i \cdots) \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + e = \mathbf{b} \in \mathbb{Z}_q \qquad \qquad \textbf{Product mod } q$$

$$\vdash \mathbf{can amortize each } \mathbf{a}_i \text{ over many secrets } \mathbf{s}_j, \text{ but still } \tilde{O}(n) \text{ work}$$

- Getting one pseudorandom scalar requires an n-dim inner
- per scalar output.

- Getting one pseudorandom scalar requires an n-dim inner
- per scalar output.
- Cryptosystems have rather large keys:

$$pk = \left(\begin{array}{c} \vdots \\ \mathbf{A} \\ \vdots \end{array}\right) \quad , \quad \left(\begin{array}{c} \vdots \\ \mathbf{b} \\ \vdots \end{array}\right) \right\} \Omega(n)$$

- Getting one pseudorandom scalar requires an n-dim inner product mod q
- per scalar output.
- Cryptosystems have rather large keys:

$$pk = \left(\begin{array}{c} \vdots \\ \mathbf{A} \\ \vdots \end{array}\right) \quad , \quad \left(\begin{array}{c} \vdots \\ \mathbf{b} \\ \vdots \end{array}\right) \right\} \Omega(n)$$

ightharpoonup Can fix A for all users, but still $\geq n^2$ work to encrypt & decrypt an *n*-bit message

$$\begin{pmatrix} \vdots \\ \mathbf{a}_i \\ \vdots \end{pmatrix} \star \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + \begin{pmatrix} \vdots \\ \mathbf{e}_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \mathbf{b}_i \\ \vdots \end{pmatrix} \in \mathbb{Z}_q^n$$

Get n pseudorandom scalars from just one (cheap) product operation?

$$\begin{pmatrix} \vdots \\ \mathbf{a}_i \\ \vdots \end{pmatrix} \star \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + \begin{pmatrix} \vdots \\ \mathbf{e}_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \mathbf{b}_i \\ \vdots \end{pmatrix} \in \mathbb{Z}_q^n$$

▶ Get n pseudorandom scalars from just one (cheap) product operation?

Question

▶ How to define the product ' \star ' so that $(\mathbf{a}_i, \mathbf{b}_i)$ is pseudorandom?

$$\begin{pmatrix} \vdots \\ \mathbf{a}_i \\ \vdots \end{pmatrix} \star \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + \begin{pmatrix} \vdots \\ \mathbf{e}_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \mathbf{b}_i \\ \vdots \end{pmatrix} \in \mathbb{Z}_q^n$$

▶ Get n pseudorandom scalars from just one (cheap) product operation?

Question

- ▶ How to define the product '*' so that (a_i, b_i) is pseudorandom?
- ► Careful! With small error, coordinate-wise multiplication is insecure!

$$\begin{pmatrix} \vdots \\ \mathbf{a}_i \\ \vdots \end{pmatrix} \star \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + \begin{pmatrix} \vdots \\ \mathbf{e}_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \mathbf{b}_i \\ \vdots \end{pmatrix} \in \mathbb{Z}_q^n$$

Get n pseudorandom scalars from just one (cheap) product operation?

Question

- ▶ How to define the product ' \star ' so that $(\mathbf{a}_i, \mathbf{b}_i)$ is pseudorandom?
- ► Careful! With small error, coordinate-wise multiplication is insecure!

Answer

 $lackbox{ `$\star$'} = \text{multiplication in a polynomial ring: e.g., } \mathbb{Z}_q[X]/(X^n+1).$

Fast and practical with FFT: $n \log n$ operations mod q.

$$\begin{pmatrix} \vdots \\ \mathbf{a}_i \\ \vdots \end{pmatrix} \star \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + \begin{pmatrix} \vdots \\ \mathbf{e}_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \mathbf{b}_i \\ \vdots \end{pmatrix} \in \mathbb{Z}_q^n$$

Get n pseudorandom scalars from just one (cheap) product operation?

Question

- ▶ How to define the product ' \star ' so that $(\mathbf{a}_i, \mathbf{b}_i)$ is pseudorandom?
- Careful! With small error, coordinate-wise multiplication is insecure!

Answer

- $lackbox{}$ ' \star ' = multiplication in a polynomial ring: e.g., $\mathbb{Z}_q[X]/(X^n+1)$.
 - Fast and practical with FFT: $n\log n$ operations mod q.
- Same ring structures used in NTRU cryptosystem [HPS'98],
 & in compact one-way / CR hash functions [Mic'02,PR'06,LM'06,...]

lacksquare Let $R=\mathbb{Z}[X]/(X^n+1)$ for n a power of two, and $R_q=R/qR$

- Let $R = \mathbb{Z}[X]/(X^n+1)$ for n a power of two, and $R_q = R/qR$
 - \star Elements of R_q are $\deg < n$ polynomials with $\operatorname{mod-}q$ coefficients
 - \star Operations in R_q are very efficient using FFT-like algorithms

- Let $R = \mathbb{Z}[X]/(X^n + 1)$ for n a power of two, and $R_q = R/qR$
 - \star Elements of R_q are $\deg < n$ polynomials with $\operatorname{mod-}q$ coefficients
 - \star Operations in R_q are very efficient using FFT-like algorithms
- **Search**: find secret ring element $s(X) \in R_q$, given:

$$\begin{aligned} a_1 \leftarrow R_q &, & b_1 = a_1 \cdot s + e_1 \in R_q \\ a_2 \leftarrow R_q &, & b_2 = a_2 \cdot s + e_2 \in R_q \\ a_3 \leftarrow R_q &, & b_3 = a_3 \cdot s + e_3 \in R_q \end{aligned} \qquad \text{$(e_i \in R$ are 'small')}$$

$$\vdots$$

- Let $R = \mathbb{Z}[X]/(X^n + 1)$ for n a power of two, and $R_q = R/qR$
 - \star Elements of R_q are $\deg < n$ polynomials with mod-q coefficients
 - \star Operations in R_q are very efficient using FFT-like algorithms
- **Search**: find secret ring element $s(X) \in R_q$, given:

$$\begin{array}{lll} a_1 \leftarrow R_q & , & b_1 = a_1 \cdot s + e_1 \in R_q \\ a_2 \leftarrow R_q & , & b_2 = a_2 \cdot s + e_2 \in R_q \\ a_3 \leftarrow R_q & , & b_3 = a_3 \cdot s + e_3 \in R_q \end{array} \qquad \text{$(e_i \in R$ are 'small')}$$

$$\vdots$$

Note: (a_i, b_i) are uniformly random subject to $b_i - a_i \cdot s \approx 0$

- Let $R = \mathbb{Z}[X]/(X^n + 1)$ for n a power of two, and $R_q = R/qR$
 - ★ Elements of R_q are $\deg < n$ polynomials with mod-q coefficients
 - \star Operations in R_q are very efficient using FFT-like algorithms
- ▶ Search: $\underline{\text{find}}$ secret ring element $s(X) \in R_q$, given:

$$\begin{aligned} a_1 \leftarrow R_q &, & b_1 = a_1 \cdot s + e_1 \in R_q \\ a_2 \leftarrow R_q &, & b_2 = a_2 \cdot s + e_2 \in R_q \\ a_3 \leftarrow R_q &, & b_3 = a_3 \cdot s + e_3 \in R_q \end{aligned} \qquad \text{$(e_i \in R$ are 'small')}$$

$$\vdots$$

Note: (a_i, b_i) are uniformly random subject to $b_i - a_i \cdot s \approx 0$

▶ Decision: distinguish (a_i , b_i) from uniform $(a_i , b_i) \in R_q \times R_q$ (with noticeable advantage)

Hardness of Ring-LWE

Two main theorems (reductions):

```
\begin{array}{c} \text{worst-case approx-SVP} \\ \text{on } \textit{ideal} \text{ lattices in } R & \leq_{\P} \text{search } R\text{-LWE} & \leq_{\P} \text{decision } R\text{-LWE} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &
```

Hardness of Ring-LWE

Two main theorems (reductions):

```
\begin{array}{ccc} \text{worst-case approx-SVP} & \leq_{\mathbf{f}} \text{search } R\text{-LWE} & \leq_{\mathbf{f}} \text{decision } R\text{-LWE} \\ \text{on } & \text{ideal lattices in } R & \leq_{\mathbf{f}} \text{search } R\text{-LWE} & \leq_{\mathbf{f}} \text{decision } R\text{-LWE} \\ & & \text{(quantum, (classical, any } R = \mathcal{O}_K)) & \text{any cyclotomic } R) \end{array}
```

1 If you can $\underline{\text{find}}\ s$ given $(a_i\ ,\ b_i)$, then you can $\underline{\text{find}}\ approximately$ shortest vectors in $\underline{\text{any}}\ \text{ideal lattice}$ in R (using a quantum algorithm).

Hardness of Ring-LWE

Two main theorems (reductions):

```
\begin{array}{c} \text{worst-case approx-SVP} \\ \text{on } \textit{ideal} \text{ lattices in } R & \leq_{\P} \text{search } R\text{-LWE} & \leq_{\P} \text{decision } R\text{-LWE} \\ & \text{(quantum, } \\ & \text{any } R = \mathcal{O}_K) & \text{any cyclotomic } R) \end{array}
```

- 1 If you can $\underline{\text{find}}\ s$ given $(a_i\ ,\ b_i)$, then you can $\underline{\text{find}}\ approximately$ shortest vectors in $\underline{\text{any}}\ \text{ideal lattice}$ in R (using a quantum algorithm).
- 2 If you can distinguish (a_i, b_i) from (a_i, b_i) , then you can find s.

Hardness of Ring-LWE

Two main theorems (reductions):

```
\begin{array}{c} \text{worst-case approx-SVP} \\ \text{on } \textit{ideal} \text{ lattices in } R \\ & \overset{\text{(quantum,}}{\underset{\text{any } R = \mathcal{O}_K)}{\text{(classical,}}} \\ & \overset{\text{(classical,}}{\underset{\text{any cyclotomic } R)}{\text{(classical,}}} \end{array}
```

- **1** If you can $\underline{\text{find}}$ s given (a_i, b_i) , then you can $\underline{\text{find}}$ approximately shortest vectors in $\underline{\text{any}}$ ideal lattice in R (using a quantum algorithm).
- 2 If you can distinguish (a_i, b_i) from (a_i, b_i) , then you can find s.
- ► Then:

 $\frac{\text{decision } R\text{-LWE}}{} \leq \text{lots of crypto}$

Hardness of Ring-LWE

Two main theorems (reductions):

```
\begin{array}{c} \text{worst-case approx-SVP} \\ \text{on } \textit{ideal} \text{ lattices in } R & \leq_{\P} \text{search } R\text{-LWE} & \leq_{\P} \text{decision } R\text{-LWE} \\ & \text{(quantum, (classical, any } R = \mathcal{O}_K)) & \text{any cyclotomic } R) \end{array}
```

- 1 If you can $\underline{\text{find}}$ s given (a_i, b_i) , then you can $\underline{\text{find}}$ approximately shortest vectors in <u>any</u> ideal lattice in R (using a quantum algorithm).
- **2** If you can distinguish (a_i, b_i) from (a_i, b_i) , then you can find s.
- Then:

$\frac{\text{decision } R\text{-LWE}}{} \leq \text{lots of crypto}$

★ If you can break the crypto, then you can distinguish (a_i, b_i) from (a_i, b_i) ...

- lacksquare Say $R=\mathbb{Z}[X]/(X^n+1)$ for power-of-two n. (Or $R=\mathcal{O}_K.$)
- ▶ An ideal $\mathcal{I} \subseteq R$ is closed under + and -, and under \cdot with R.

- $\blacktriangleright \ \, \mathsf{Say} \,\, R = \mathbb{Z}[X]/(X^n+1) \,\, \mathsf{for \,\, power-of-two} \,\, n. \qquad \qquad (\mathsf{Or} \,\, R = \mathcal{O}_{K.})$
- ▶ An ideal $\mathcal{I} \subseteq R$ is closed under + and -, and under \cdot with R.

To get ideal lattices, embed R and its ideals into \mathbb{R}^n . How?

- ▶ Say $R = \mathbb{Z}[X]/(X^n + 1)$ for power-of-two n. (Or $R = \mathcal{O}_{K.}$)
- ▶ An ideal $\mathcal{I} \subseteq R$ is closed under + and -, and under \cdot with R.

To get ideal lattices, embed R and its ideals into \mathbb{R}^n . How?

Obvious' answer: 'coefficient embedding'

$$a_0 + a_1 X + \dots + a_{n-1} X^{n-1} \in R \quad \mapsto \quad (a_0, \dots, a_{n-1}) \in \mathbb{Z}^n$$

- ▶ Say $R = \mathbb{Z}[X]/(X^n + 1)$ for power-of-two n. (Or $R = \mathcal{O}_{K}$.)
- ▶ An ideal $\mathcal{I} \subseteq R$ is closed under + and -, and under \cdot with R.

To get ideal lattices, embed R and its ideals into \mathbb{R}^n . How?

Obvious' answer: 'coefficient embedding'

$$a_0 + a_1 X + \dots + a_{n-1} X^{n-1} \in R \quad \mapsto \quad (a_0, \dots, a_{n-1}) \in \mathbb{Z}^n$$

+ is coordinate-wise, but analyzing \cdot is cumbersome.

- ▶ Say $R = \mathbb{Z}[X]/(X^n + 1)$ for power-of-two n. (Or $R = \mathcal{O}_{K}$.)
- ▶ An ideal $\mathcal{I} \subseteq R$ is closed under + and -, and under \cdot with R.

To get ideal lattices, embed R and its ideals into \mathbb{C}^n . How?

1 'Obvious' answer: 'coefficient embedding'

$$a_0 + a_1 X + \dots + a_{n-1} X^{n-1} \in R \quad \mapsto \quad (a_0, \dots, a_{n-1}) \in \mathbb{Z}^n$$

- + is coordinate-wise, but analyzing \cdot is cumbersome.
- ② [Minkowski]: 'canonical embedding.' Let $\omega = \exp(\pi i/n) \in \mathbb{C}$, so roots of X^n+1 are $\omega^1,\omega^3,\ldots,\omega^{2n-1}$. Embed:

$$a(X) \in R \quad \mapsto \quad (a(\omega^1), a(\omega^3), \dots, a(\omega^{2n-1})) \in \mathbb{C}^n$$

- ▶ Say $R = \mathbb{Z}[X]/(X^n + 1)$ for power-of-two n. (Or $R = \mathcal{O}_{K}$.)
- ▶ An ideal $\mathcal{I} \subseteq R$ is closed under + and -, and under \cdot with R.

To get ideal lattices, embed R and its ideals into \mathbb{C}^n . How?

1 'Obvious' answer: 'coefficient embedding'

$$a_0 + a_1 X + \dots + a_{n-1} X^{n-1} \in R \quad \mapsto \quad (a_0, \dots, a_{n-1}) \in \mathbb{Z}^n$$

- + is coordinate-wise, but analyzing \cdot is cumbersome.
- 2 [Minkowski]: 'canonical embedding.' Let $\omega=\exp(\pi i/n)\in\mathbb{C}$, so roots of X^n+1 are $\omega^1,\omega^3,\ldots,\omega^{2n-1}$. Embed:

$$a(X) \in R \quad \mapsto \quad (a(\omega^1), a(\omega^3), \dots, a(\omega^{2n-1})) \in \mathbb{C}^n$$

Both + and \cdot are coordinate-wise.

- ▶ Say $R = \mathbb{Z}[X]/(X^n + 1)$ for power-of-two n. (Or $R = \mathcal{O}_{K}$.)
- ▶ An ideal $\mathcal{I} \subseteq R$ is closed under + and -, and under \cdot with R.

To get ideal lattices, embed R and its ideals into \mathbb{R}^n . How?

1 'Obvious' answer: 'coefficient embedding'

$$a_0 + a_1 X + \dots + a_{n-1} X^{n-1} \in R \quad \mapsto \quad (a_0, \dots, a_{n-1}) \in \mathbb{Z}^n$$

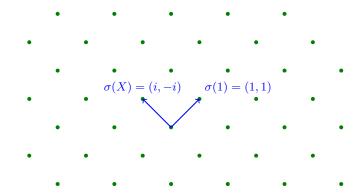
- + is coordinate-wise, but analyzing \cdot is cumbersome.
- 2 [Minkowski]: 'canonical embedding.' Let $\omega = \exp(\pi i/n) \in \mathbb{C}$, so roots of X^n+1 are $\omega^1,\omega^3,\ldots,\omega^{2n-1}$. Embed:

$$a(X) \in R \quad \mapsto \quad (a(\omega^1), a(\omega^3), \dots, a(\omega^{2n-1})) \in \mathbb{C}^n$$

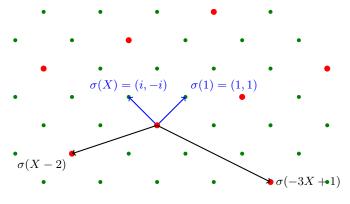
Both + and \cdot are coordinate-wise.

(NB: LWE error distribution is Gaussian in canonical embedding.)

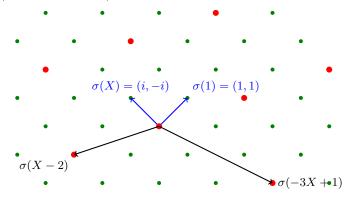
▶ Say $R = \mathbb{Z}[X]/(X^2 + 1)$. Embeddings map $X \mapsto \pm i$.



- ▶ Say $R = \mathbb{Z}[X]/(X^2 + 1)$. Embeddings map $X \mapsto \pm i$.
- $ightharpoonup \mathcal{I} = \langle X-2, -3X+1 \rangle$ is an ideal in R.



- ▶ Say $R = \mathbb{Z}[X]/(X^2 + 1)$. Embeddings map $X \mapsto \pm i$.
- $ightharpoonup \mathcal{I} = \langle X-2, -3X+1 \rangle$ is an ideal in R.



(Approximate) Shortest Vector Problem

▶ Given (an arbitrary basis of) an arbitrary ideal $\mathcal{I} \subseteq R$, find a nearly shortest nonzero $a \in \mathcal{I}$.

Hardness of Search Ring-LWE

Theorem 1

For any large enough q, solving search R-LWE is as hard as quantumly solving $\operatorname{poly}(n)$ -approx SVP in any (worst-case) ideal lattice in $R = \mathcal{O}_K$.

Hardness of Search Ring-LWE

Theorem 1

For any large enough q, solving search R-LWE is as hard as quantumly solving poly(n)-approx SVP in any (worst-case) ideal lattice in $R = \mathcal{O}_K$.

Proof follows the template of [Regev'05] for LWE & arbitrary lattices.
Quantum component used as 'black-box;' only classical part needs adaptation to the ring setting.

Hardness of Search Ring-LWE

Theorem 1

For any large enough q, solving search R-LWE is as hard as quantumly solving poly(n)-approx SVP in any (worst-case) ideal lattice in $R = \mathcal{O}_K$.

- ▶ Proof follows the template of [Regev'05] for LWE & arbitrary lattices. Quantum component used as 'black-box;' only classical part needs adaptation to the ring setting.
- ► Main technique: 'clearing ideals' while preserving *R*-module structure:

$$\begin{array}{ccc} \mathcal{I}/q\mathcal{I} & \mapsto & R/qR, \\ \mathcal{I}^{\vee}/q\mathcal{I}^{\vee} & \mapsto & R^{\vee}/qR^{\vee}. \end{array}$$

Uses Chinese remainder theorem and theory of duality for ideals.

Theorem 2

```
Solving decision R-LWE in any cyclotomic R=\mathbb{Z}[\zeta_m]\cong\mathbb{Z}[X]/\Phi_m(X) (for any poly(n)-bounded prime q=1 \bmod m) is as hard as solving search R-LWE.
```

Theorem 2

Solving decision R-LWE in any cyclotomic $R=\mathbb{Z}[\zeta_m]\cong\mathbb{Z}[X]/\Phi_m(X)$ (for any poly(n)-bounded prime $q=1 \bmod m$) is as hard as solving search R-LWE.

Facts Used in the Proof

ightharpoons \mathbb{Z}_q^* has order q-1=0 mod m, so has an element ω of order m.

Theorem 2

```
Solving decision R-LWE in any cyclotomic R=\mathbb{Z}[\zeta_m]\cong\mathbb{Z}[X]/\Phi_m(X) (for any poly(n)-bounded prime q=1 \bmod m) is as hard as solving search R-LWE.
```

Facts Used in the Proof

- lacksquare \mathbb{Z}_q^* has order q-1=0 mod m, so has an element ω of order m.
- lacktriangle Modulo q, $\Phi_m(X)$ has n=arphi(m) roots ω^j , for $j\in\mathbb{Z}_m^*$.

Theorem 2

Solving decision R-LWE in any cyclotomic $R=\mathbb{Z}[\zeta_m]\cong\mathbb{Z}[X]/\Phi_m(X)$ (for any poly(n)-bounded prime $q=1 \bmod m$) is as hard as solving search R-LWE.

Facts Used in the Proof

- lacksquare \mathbb{Z}_q^* has order q-1=0 mod m, so has an element ω of order m.
- ▶ Modulo q, $\Phi_m(X)$ has $n = \varphi(m)$ roots ω^j , for $j \in \mathbb{Z}_m^*$.
- lacktriangle So there is a ring isomorphism $R_q\cong \mathbb{Z}_q^n$ given by

$$a(X) \in R_q \mapsto \left(a(\omega^j) \right)_{j \in \mathbb{Z}_+^*} \in \mathbb{Z}_q^n.$$

Theorem 2

Solving decision Ring-LWE in $R_q = \mathbb{Z}_q[X]/\Phi_m(X)$ is as hard as solving search Ring-LWE.

Proof Sketch

 $\underline{\text{Given}} \colon \mathcal{O} \text{ distinguishes samples } (a\,, \textcolor{red}{b} \approx a \cdot s) \text{ from uniform } (a\,, \textcolor{red}{b}).$

Goal: Find $s \in R_q$, given samples $(a, b \approx a \cdot s)$.

Theorem 2

Solving decision Ring-LWE in $R_q = \mathbb{Z}_q[X]/\Phi_m(X)$ is as hard as solving search Ring-LWE.

Proof Sketch

Given: \mathcal{O} distinguishes samples $(a, b \approx a \cdot s)$ from uniform (a, b).

Goal: Find $s \in R_q$, given samples $(a, b \approx a \cdot s)$.

1 Equivalent to finding $s(\omega^j) \in \mathbb{Z}_q$ for all $j \in \mathbb{Z}_m^*$.

Theorem 2

Solving decision Ring-LWE in $R_q = \mathbb{Z}_q[X]/\Phi_m(X)$ is as hard as solving search Ring-LWE.

Proof Sketch

Given: \mathcal{O} distinguishes samples $(a, b \approx a \cdot s)$ from uniform (a, b).

Goal: Find $s \in R_a$, given samples $(a, b \approx a \cdot s)$.

- **1** Equivalent to finding $s(\omega^j) \in \mathbb{Z}_q$ for all $j \in \mathbb{Z}_m^*$.
- **2** Hybrid argument: randomize one $b(\omega^j) \in \mathbb{Z}_q$; or two; or three; or . . .

Then \mathcal{O} must distinguish relative to some ω^{j^*} .

Theorem 2

Solving decision Ring-LWE in $R_q = \mathbb{Z}_q[X]/\Phi_m(X)$ is as hard as solving search Ring-LWE.

Proof Sketch

Given: \mathcal{O} distinguishes samples $(a, b \approx a \cdot s)$ from uniform (a, b).

Goal: Find $s \in R_q$, given samples $(a, \mathbf{b} \approx a \cdot s)$.

- **1** Equivalent to finding $s(\omega^j) \in \mathbb{Z}_q$ for all $j \in \mathbb{Z}_m^*$.
- **2** Hybrid argument: randomize one $b(\omega^j) \in \mathbb{Z}_q$; or two; or three; or . . . Then \mathcal{O} must distinguish relative to some ω^{j^*} .
- **3** Using \mathcal{O} , guess-and-check to find $s(\omega^{j^*}) \in \mathbb{Z}_q$.

Theorem 2

Solving decision Ring-LWE in $R_q = \mathbb{Z}_q[X]/\Phi_m(X)$ is as hard as solving search Ring-LWE.

Proof Sketch

Given: \mathcal{O} distinguishes samples $(a, b \approx a \cdot s)$ from uniform (a, b).

Goal: Find $s \in R_q$, given samples $(a, \mathbf{b} \approx a \cdot s)$.

- **1** Equivalent to finding $s(\omega^j) \in \mathbb{Z}_q$ for all $j \in \mathbb{Z}_m^*$.
- ② Hybrid argument: randomize one $b(\omega^j) \in \mathbb{Z}_q$; or two; or three; or . . . Then \mathcal{O} must distinguish relative to some ω^{j^*} .
- **3** Using \mathcal{O} , guess-and-check to find $s(\omega^{j^*}) \in \mathbb{Z}_q$.
- **4** How to find other $s(\omega^j)$? Couldn't \mathcal{O} be useless at other roots?

Theorem 2

Solving decision Ring-LWE in $R_q = \mathbb{Z}_q[X]/\Phi_m(X)$ is as hard as solving search Ring-LWE.

Proof Sketch

Given: \mathcal{O} distinguishes samples $(a, \mathbf{b} \approx a \cdot s)$ from uniform (a, b).

Goal: Find $s \in R_q$, given samples $(a, \mathbf{b} \approx a \cdot s)$.

- **1** Equivalent to finding $s(\omega^j) \in \mathbb{Z}_q$ for all $j \in \mathbb{Z}_m^*$.
- ② Hybrid argument: randomize one $b(\omega^j) \in \mathbb{Z}_q$; or two; or three; or ... Then \mathcal{O} must distinguish relative to some ω^{j^*} .
- **3** Using \mathcal{O} , guess-and-check to find $s(\omega^{j^*}) \in \mathbb{Z}_q$.
- **4** How to find other $s(\omega^j)$? Couldn't \mathcal{O} be useless at other roots? $\omega \mapsto \omega^k \ (k \in \mathbb{Z}_m^*)$ permutes roots of $\Phi_m(X)$, and preserves error.

Theorem 2

Solving decision Ring-LWE in $R_q = \mathbb{Z}_q[X]/\Phi_m(X)$ is as hard as solving search Ring-LWE.

Proof Sketch

Given: \mathcal{O} distinguishes samples $(a, \mathbf{b} \approx a \cdot s)$ from uniform (a, \mathbf{b}) .

Goal: Find $s \in R_q$, given samples $(a, \mathbf{b} \approx a \cdot s)$.

- **1** Equivalent to finding $s(\omega^j) \in \mathbb{Z}_q$ for all $j \in \mathbb{Z}_m^*$.
 - ② Hybrid argument: randomize one $b(\omega^j) \in \mathbb{Z}_q$; or two; or three; or . . . Then \mathcal{O} must distinguish relative to some ω^{j^*} .
 - **3** Using \mathcal{O} , guess-and-check to find $s(\omega^{j^*}) \in \mathbb{Z}_q$.
 - **4** How to find other $s(\omega^j)$? Couldn't \mathcal{O} be useless at other roots? $\omega \mapsto \omega^k \ (k \in \mathbb{Z}_m^*)$ permutes roots of $\Phi_m(X)$, and preserves error.

So send each ω^j to ω^{j^*} , and use \mathcal{O} to find $s(\omega^j)$.

Search-R-LWE is quantumly at least as hard as approx-R-SVP. Is there a classical reduction?

- Search-R-LWE is quantumly at least as hard as approx-R-SVP. Is there a classical reduction?
 - ★ [P'09] reduces GapSVP (i.e., estimate $\lambda_1(\mathcal{L})$) on general lattices to plain-LWE, classically.

- Search-R-LWE is quantumly at least as hard as approx-R-SVP. Is there a classical reduction?
 - * [P'09] reduces GapSVP (i.e., estimate $\lambda_1(\mathcal{L})$) on general lattices to plain-LWE, classically.
 - * But estimating $\lambda_1(\mathcal{L})$ is trivially easy on ideal lattices! Finding short vectors is what appears hard.

- Search-R-LWE is quantumly at least as hard as approx-R-SVP. Is there a classical reduction?
 - ★ [P'09] reduces GapSVP (i.e., estimate $\lambda_1(\mathcal{L})$) on general lattices to plain-LWE, classically.
 - * But estimating $\lambda_1(\mathcal{L})$ is trivially easy on ideal lattices! Finding short vectors is what appears hard.
- Search- and decision-R-LWE are equivalent in cyclotomic R. Does this hold in other kinds of rings?

- Search-R-LWE is quantumly at least as hard as approx-R-SVP. Is there a classical reduction?
 - ★ [P'09] reduces GapSVP (i.e., estimate $\lambda_1(\mathcal{L})$) on general lattices to plain-LWE, classically.
 - * But estimating $\lambda_1(\mathcal{L})$ is trivially easy on ideal lattices! Finding short vectors is what appears hard.
- Search- and decision-R-LWE are equivalent in cyclotomic R. Does this hold in other kinds of rings?
 - ★ Yes, for any Galois number field (identical proof).

- Search-R-LWE is quantumly at least as hard as approx-R-SVP. Is there a classical reduction?
 - ★ [P'09] reduces GapSVP (i.e., estimate $\lambda_1(\mathcal{L})$) on general lattices to plain-LWE, classically.
 - * But estimating $\lambda_1(\mathcal{L})$ is trivially easy on ideal lattices! Finding short vectors is what appears hard.
- Search- and decision-R-LWE are equivalent in cyclotomic R. Does this hold in other kinds of rings?
 - ★ Yes, for any Galois number field (identical proof).
 - * Probably not, for carefully constructed rings S, moduli q, and errors!

 Decision-S-LWE easily broken, but search unaffected. [EHL'14,ELOS'15] $Update\ 8/2016$: both search and decision are broken [CIV'16,P'16]

- Search-R-LWE is quantumly at least as hard as approx-R-SVP. Is there a classical reduction?
 - ★ [P'09] reduces GapSVP (i.e., estimate $\lambda_1(\mathcal{L})$) on general lattices to plain-LWE, classically.
 - * But estimating $\lambda_1(\mathcal{L})$ is trivially easy on ideal lattices! Finding short vectors is what appears hard.
- **2** Search- and decision-R-LWE are equivalent in cyclotomic R. Does this hold in other kinds of rings?
 - ★ Yes, for any Galois number field (identical proof).
 - * Probably not, for carefully constructed rings S, moduli q, and errors!

 Decision-S-LWE easily broken, but search unaffected. [EHL'14,ELOS'15] $Update\ 8/2016$: both search and decision are broken [CIV'16,P'16]

 "cyclotomic fields, used for Ring-LWE, are uniquely protected against the attacks presented in this paper"

• We know approx-R-SVP $\leq R$ -LWE (quantumly). Other direction? Can we solve R-LWE using an oracle for approx-R-SVP?

- ① We know approx-R-SVP $\leq R$ -LWE (quantumly). Other direction? Can we solve R-LWE using an oracle for approx-R-SVP?
 - * R-LWE samples $(a_i, b_i)_{i=1,...,\ell}$ don't readily translate to ideals in R.

- **1** We know approx-R-SVP $\leq R$ -LWE (quantumly). Other direction? Can we solve R-LWE using an oracle for approx-R-SVP?
 - ★ R-LWE samples $(a_i, b_i)_{i=1,...,\ell}$ don't readily translate to ideals in R.
 - ★ They do yield a BDD instance on an R-module lattice:

$$\mathcal{L} = \{(v_i) : v_i = a_i \cdot z \pmod{qR}\} \subseteq R^{\ell}$$

- ① We know approx-R-SVP $\leq R$ -LWE (quantumly). Other direction? Can we solve R-LWE using an oracle for approx-R-SVP?
 - ★ R-LWE samples $(a_i, b_i)_{i=1,...,\ell}$ don't readily translate to ideals in R.
 - ★ They do yield a BDD instance on an R-module lattice:

$$\mathcal{L} = \{ (v_i) : v_i = a_i \cdot z \pmod{qR} \} \subseteq R^{\ell}$$

2 How hard/easy is approx-R-SVP, anyway? (In cyclotomics etc.)

- ① We know approx-R-SVP $\leq R$ -LWE (quantumly). Other direction? Can we solve R-LWE using an oracle for approx-R-SVP?
 - ★ R-LWE samples $(a_i, b_i)_{i=1,...,\ell}$ don't readily translate to ideals in R.
 - \star They do yield a BDD instance on an R-module lattice:

$$\mathcal{L} = \{ (v_i) : v_i = a_i \cdot z \pmod{qR} \} \subseteq R^{\ell}$$

- ② How hard/easy is approx-R-SVP, anyway? (In cyclotomics etc.)
 - ★ Despite abundant ring structure (e.g., subfields, Galois), no substantial improvement over attacks on general lattices.

- ① We know approx-R-SVP $\leq R$ -LWE (quantumly). Other direction? Can we solve R-LWE using an oracle for approx-R-SVP?
 - ★ R-LWE samples $(a_i, b_i)_{i=1,...,\ell}$ don't readily translate to ideals in R.
 - ★ They do yield a BDD instance on an R-module lattice:

$$\mathcal{L} = \{(v_i) : v_i = a_i \cdot z \pmod{qR}\} \subseteq R^{\ell}$$

- ② How hard/easy is approx-R-SVP, anyway? (In cyclotomics etc.)
 - ★ Despite abundant ring structure (e.g., subfields, Galois), no substantial improvement over attacks on general lattices.
 - * Next up: attacks on a specialized variant: given a principal ideal \mathcal{I} guaranteed to have an "unusually short" generator, find it.

- We know approx-R-SVP $\leq R$ -LWE (quantumly). Other direction? Can we solve R-LWE using an oracle for approx-R-SVP?
 - ★ R-LWE samples $(a_i, b_i)_{i=1,...,\ell}$ don't readily translate to ideals in R.
 - \star They do yield a BDD instance on an R-module lattice:

$$\mathcal{L} = \{ (v_i) : v_i = a_i \cdot z \pmod{qR} \} \subseteq R^{\ell}$$

- ② How hard/easy is approx-R-SVP, anyway? (In cyclotomics etc.)
 - ★ Despite abundant ring structure (e.g., subfields, Galois), no substantial improvement over attacks on general lattices.
 - * Next up: attacks on a specialized variant: given a principal ideal \mathcal{I} guaranteed to have an "unusually short" generator, find it.
 - ★ These conditions are extremely rare for general ideals, so (worst-case) approx-*R*-SVP is unaffected.