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Conclusions

1 Proposed CSIDH parameters have relatively little quantum security
beyond the cost of quantum evaluation (on a uniform superposition).

2 CSIDH-512 key recovery costs, e.g., only ≈ 216 evaluations using
≈ 240 bits of quantum-accessible RAM (+ small other resources).

3 Assuming evaluation costs not much more than for the ‘best case’:

CSIDH-512 breakable with ≈ 260 T-gates

, so falls well short of its
claimed NIST level 1 p-q security. (≥ 2170/MAXDEPTH)

CSIDH-1024 breakable with ≈ 272 T-gates and ≈ 244 bits QRACM,
so it also falls short of level 1.

CSIDH-1792 breakable with ≈ 284 T-gates and ≈ 248 bits QRACM,
so it also doesn’t reach level 1

possibly except for high end of MAXDEPTH range.
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CSIDH (‘sea-side’) [CastryckLangeMartindalePannyRenes’18]

I Isogeny-based ‘post-quantum commutative group action’ following
[Couveignes’97,RostovtsevStolbunov’06]: abelian group G, set Z, action

? : G× Z → Z

(Other isogeny-based crypto like SIDH [JF’11,. . . ]: nonabelian, no group action.)

DiffieHellman-style noninteractive key exchange with public param z ∈ Z:

Alice: secret a ∈ G, public pA = a ? z ∈ Z
Bob: secret b ∈ G, public pB = b ? z ∈ Z

Shared key: a ? pB = b ? pA = (a+ b) ? z, by commutativity

I Efficient! 64-byte keys, 80ms key exchange for claimed NIST level 1
quantum security: as hard as AES-128 key search

I Signatures [Stolbunov’12,DeFeoGalbraith’19,BeullensKleinjungVercauteren’19]:
pk + sig = 1468 bytes at same claimed security level
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Attacking the CSIDH, Quantumly
I Secret-key recovery: given z, a ? z ∈ Z, find a ∈ G (or equivalent)

Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev’10]

Quantum HShP Algorithm Ingredients [Kuperberg’03,. . . ]

1 Oracle outputs random ‘labeled’ quantum states, by evaluating ? on a
uniform superposition over G.

2 Sieve combines labeled states to generate ‘more favorable’ ones.

3 Measurement of ‘very favorable’ state recovers bit(s) of hidden shift.

Sieve Algorithms

[Kuperberg’03] 2O(
√
n) oracle queries and qubits (n = log|G|)

[Regev’04] 2O(
√
n logn) oracle queries, only poly(n) qubits

[Kuperberg’11] 2O(
√
n) oracle queries and bits of quantum-accessible RAM.

‘Collimation sieve’ subsumes prior two, offers more trade-offs.
E.g., log(queries) · log(QRACM) & n.
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Prior Security Estimates for CSIDH-512

I Oracle costs ≤ 243.3 T-gates (+ much cheaper linear gates)
for ‘best case,’ somewhat non-uniform superposition [BLMP’19]

Good reason to expect similar cost for uniform superposition [BKV’19]

I Sieve costs:

Work Algorithm Oracle queries Sieve memory

CSIDH paper [CLMPR’18] [Regev’04] 262 poly(n)

[BonnetainSchrottenloher’18] [Kuperberg’03] 232.5 231 qubits

None prior! [Kuperberg’11] ?? ??
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Our Contributions
I We generalize and practically improve Kuperberg’s c-sieve, and

analyze its concrete complexity on proposed CSIDH parameters:

F Handle arbitrary group orders (generalizing from two-power/smooth)

F Recover several secret bits from each sieve run

F Control (classical) memory and time complexities better

F Run simulations up to the exact CSIDH-512 order |G| ≈ 2257.1

Work Algorithm Oracle queries Sieve memory

[CLMPR’18] [Regev’04] 262 poly(n)

[BS’18] [Kuperberg’03] 232.5 231 qubits

218.7 232 bits QRACM

This work [Kuperberg’11] 215.7 240 bits QRACM

214.1 248 bits QRACM

∗Independently, Bonnetain and Schrottenloher gave a complementary, theoretical c-sieve
analysis, arriving at similar conclusions.
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Hidden Shifts and CRS-Style Crypto

Hidden-Shift Problem on Group (G,+)

I Given injective f0, f1 : G→ Z such that f1(x) = f0(x+ s) for some
‘secret’ s ∈ G, find s.

Attacking CRS via HShP [ChildsJaoSoukharev’10]

I Fix a commutative group action ? : G× Z → Z.

I For base value z0 ∈ Z and public key z1 = s ? z0, define

fb : G→ Z

g 7→ g ? zb.

Then fb is injective because ? is free and transitive, and

f1(x) = x ? z1 = x ? (s ? z0) = (x+ s) ? z0 = f0(x+ s).

I So, solving HShP for this f0, f1 recovers the secret key s.
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Overview of ‘High Bits’ Collimation Sieve

I Solves HShP on a finite cyclic group ZN of known order N .

I Works with (pure) quantum states called phase vectors, each having a
vector of integer (phase) multipliers.

Given: ‘fresh’ phase vectors with huge (random) multipliers in [N ],
of any desired feasible length L.

Goal: construct a ‘very nice’ length-L phase vector having small
(random) multipliers in [S] = {0, 1, . . . , S − 1}, for S . L.

From this we can extract secret bit(s) using QFT.

How: make progressively ‘nicer’ phase vectors with multipliers in
successively smaller intervals, by collimating vectors.
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Collimation Sieve Structure

[S0]

[S1]

[S2]

[N ] [N ]

[S2]

[N ] [N ]

[S1]

[S2]

[N ] [N ]

[S2]

[N ] [N ]

I Fix interval sizes L ≈ S0 < S1 < · · · < Sd = N , for Si+1/Si ≈ L.
Depth d ≈ logL(N)− 1 = log(N)/ log(L)− 1.

I Leaf nodes get ‘fresh’ length-L phase vectors on [N ].

I Each internal node collimates its children, narrowing range by ≈ L.

I Key insight: more QRACM =⇒ larger L, lower depth, fewer vectors
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Phase Vectors

I For s ∈ ZN , a phase vector of length L is a pure quantum state

|ψ〉 ∝
∑
j∈[L]

χ(b(j) · s/N)|j〉 , χ(x) = exp(2πi · x)

where the (known) b(j) ∈ [N ] are its phase multipliers.

I E.g., we get qubit |ψ〉 ∝ |0〉+ χ(b′ · s/N)|1〉 for uniform b′ ∈ [N ] by
querying the hidden-shift oracle. So L = 2, b(0) = 0, and b(1) = b′.

I In general, we store the phase multipliers in a sorted list.
So a phase vector requires Õ(L) bits but only logL qubits.

I This is the source of the exponential improvement in quantum space
versus Kuperberg’s first sieve.
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Combining Phase Vectors

I Given phase vectors |ψ1〉, |ψ2〉 of lengths L1, L2 with multiplier
functions b1, b2, tensoring them yields a state

|ψ′〉 = |ψ1, ψ2〉 ∝
∑

j1∈[L1]

∑
j2∈[L2]

χ(b1(j1) · s/N) · χ(b2(j2) · s/N)|j1, j2〉

=
∑
~∈L

χ(b′(~) · s/N)|~〉

where b′(~) = b1(j1) + b2(j2) and L = [L1]× [L2] ∼= [L1L2].

I E.g., ` ‘fresh’ labeled qubits from the oracle yield a length-2` phase
vector whose multipliers are the (mod-N) subset-sums of the labels.

This yields a ‘fresh’ length-L phase vector on [N ], in logL queries.

I A more interesting combination procedure: collimation. . .
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Collimation Procedure
Given: two phase vectors |ψi〉 of length Li ≈ L on [S′]

Goal: one phase vector |ψ〉 of length ≈ L on [S], for S ≈ S′/L

How: 1 Form the phase vector |ψ′〉 = |ψ1, ψ2〉 with index set
[L1]× [L2] and multipliers b′(~) = b1(j1) + b2(j2).

2 Measure |ψ′〉 according to q = bb′(~)/Sc.
All ‘surviving’ multipliers are in [S], up to global phase.

3 Compute the subset J ⊆ [L1]× [L2] of ~ that satisfy the
above, reindex J to [|J |], and output the resulting |ψ〉.

Analysis

I Phase vector |ψ′〉 has length L1L2 ≈ L2, and the multipliers b′(~) are
well distributed in [2S′].

I So, most size-S subintervals have ≈ L2 · S/(2S′) ≈ L multipliers.
(In practice, need some tricks to control the variance.)

I Step 3 requires O(1) QRACM[L] lookups and Õ(L) classical work.
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12 / 16



Collimation Procedure
Given: two phase vectors |ψi〉 of length Li ≈ L on [S′]

Goal: one phase vector |ψ〉 of length ≈ L on [S], for S ≈ S′/L

How: 1 Form the phase vector |ψ′〉 = |ψ1, ψ2〉 with index set
[L1]× [L2] and multipliers b′(~) = b1(j1) + b2(j2).

2 Measure |ψ′〉 according to q = bb′(~)/Sc.
All ‘surviving’ multipliers are in [S], up to global phase.

3 Compute the subset J ⊆ [L1]× [L2] of ~ that satisfy the
above, reindex J to [|J |], and output the resulting |ψ〉.

Analysis

I Phase vector |ψ′〉 has length L1L2 ≈ L2, and the multipliers b′(~) are
well distributed in [2S′].

I So, most size-S subintervals have ≈ L2 · S/(2S′) ≈ L multipliers.
(In practice, need some tricks to control the variance.)

I Step 3 requires O(1) QRACM[L] lookups and Õ(L) classical work.
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Post-Processing: Regularization and Measurement

I Collimation sieve yields a phase vector |ψ〉 on [S] of length L ≈ S.

I Suppose L = S and b : [S]→ [S] is a bijection.

Can reindex |ψ〉 as

|ψ〉 ∝
∑
j∈[S]

χ(j · s/N)|j〉.

Its QFTS is essentially the point function at s · S/N . Measuring
yields the logS most-significant bits of s, with large probability.

I If b : [L]→ [S] is not a bijection, measure to make it densely injective
onto some X ⊆ [S]. Can then reindex as

|ψ̃〉 ∝
∑
j∈X

χ(j · s/N)|j〉.

This is a densely subsampled Fourier transform of a point function.
Measuring its QFT yields almost logS bits of s.
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Practical Issues

Issue 1: Lengths of collimated phase vectors are quite variable.
Too short and too long are both problems.

Solution: Request lengths adaptively, and discard too-short vectors.

(Discarding 2% saves ≥ 210 factor in longest vector.)

Issue 2: Measuring sieve output on [S] yields ≈ logS MSBs of secret.

Solution: Sieve to ‘scaled intervals’ Si · [S] for i = 0, . . . , logS(N)− 1,
tensor results and measure to get entire secret.
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Open Questions

I Key Question: what is the complexity of the requisite CSIDH oracle?

I Existing estimates [BLMP’19] are for ‘best conceivable’ distributions;
we need uniform distribution.

Or do we?

I We have many short relations in class group [BKV’19], enabling fast
reduction of uniform distribution to exponent vectors with similar
norm statistics as ‘best conceivable’. Overall cost? Depth?

I More direct constructions of quantum CSIDH circuits?

I Amortize the oracle computations? E.g., to get initial phase vectors?

I Question 2: break CSIDH using partial information about secret?
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Conclusions

1 Proposed CSIDH parameters have relatively little quantum security
beyond the cost of quantum evaluation (on a uniform superposition).

2 CSIDH-512 key recovery costs, e.g., only ≈ 216 evaluations using
≈ 240 bits of quantum-accessible RAM (+ small other resources).

3 Assuming evaluation costs not much more than for the ‘best case’:

CSIDH-512, -1024, and maybe even -1792 do not reach NIST level 1
quantum security.

Paper: ePrint 2019/725

Code: https://github.com/cpeikert/CollimationSieve
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