Kuperberg's Collimation Sieve vs. CSIDH

Chris Peikert University of Michigan

Quantum Cryptanalysis of Post-Quantum Cryptography Simons Institute 24 February 2020

He Gives C-Sieves on the CSIDH

Chris Peikert University of Michigan

Quantum Cryptanalysis of Post-Quantum Cryptography Simons Institute 24 February 2020

Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).

- Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).
- 2 CSIDH-512 key recovery costs, e.g., only $\approx 2^{16}$ evaluations using $\approx 2^{40}$ bits of quantum-accessible RAM (+ small other resources).

- Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).
- 2 CSIDH-512 key recovery costs, e.g., only $\approx 2^{16}$ evaluations using $\approx 2^{40}$ bits of quantum-accessible RAM (+ small other resources).
- 3 Assuming evaluation costs not much more than for the 'best case':

- Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).
- 2 CSIDH-512 key recovery costs, e.g., only $\approx 2^{16}$ evaluations using $\approx 2^{40}$ bits of quantum-accessible RAM (+ small other resources).
- (3) Assuming evaluation costs not much more than for the 'best case': CSIDH-512 breakable with $\approx 2^{60}$ T-gates

- Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).
- 2 CSIDH-512 key recovery costs, e.g., only $\approx 2^{16}$ evaluations using $\approx 2^{40}$ bits of quantum-accessible RAM (+ small other resources).
- ③ Assuming evaluation costs not much more than for the 'best case': CSIDH-512 breakable with $\approx 2^{60}$ T-gates, so falls well short of its claimed NIST level 1 p-q security. ($\geq 2^{170}$ /MAXDEPTH)

- Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).
- 2 CSIDH-512 key recovery costs, e.g., only $\approx 2^{16}$ evaluations using $\approx 2^{40}$ bits of quantum-accessible RAM (+ small other resources).
- 3 Assuming evaluation costs not much more than for the 'best case': CSIDH-512 breakable with $\approx 2^{60}$ T-gates, so falls well short of its claimed NIST level 1 p-q security. (> 2¹⁷⁰/MAXDEPTH)

CSIDH-1024 breakable with $pprox 2^{72}$ T-gates and $pprox 2^{44}$ bits QRACM

- Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).
- 2 CSIDH-512 key recovery costs, e.g., only $\approx 2^{16}$ evaluations using $\approx 2^{40}$ bits of quantum-accessible RAM (+ small other resources).
- **3** Assuming evaluation costs not much more than for the 'best case':

 $\begin{array}{ll} \mbox{CSIDH-512} & \mbox{breakable with} \approx 2^{60} \mbox{ T-gates, so falls well short of its} \\ & \mbox{claimed NIST level 1 p-q security.} & (\geq 2^{170}/\mbox{MAXDEPTH}) \end{array}$

CSIDH-1024 breakable with $\approx 2^{72}$ T-gates and $\approx 2^{44}$ bits QRACM, so it also falls short of level 1.

- Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).
- 2 CSIDH-512 key recovery costs, e.g., only $\approx 2^{16}$ evaluations using $\approx 2^{40}$ bits of quantum-accessible RAM (+ small other resources).
- **3** Assuming evaluation costs not much more than for the 'best case':

 $\begin{array}{ll} \mbox{CSIDH-512} & \mbox{breakable with} \approx 2^{60} \mbox{ T-gates, so falls well short of its} \\ & \mbox{claimed NIST level 1 p-q security.} & (\geq 2^{170}/\mbox{MAXDEPTH}) \end{array}$

CSIDH-1024 breakable with $\approx 2^{72}$ T-gates and $\approx 2^{44}$ bits QRACM, so it also falls short of level 1.

CSIDH-1792

- Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).
- 2 CSIDH-512 key recovery costs, e.g., only $\approx 2^{16}$ evaluations using $\approx 2^{40}$ bits of quantum-accessible RAM (+ small other resources).
- **3** Assuming evaluation costs not much more than for the 'best case':

 $\begin{array}{ll} \mbox{CSIDH-512} & \mbox{breakable with} \approx 2^{60} \mbox{ T-gates, so falls well short of its} \\ & \mbox{claimed NIST level 1 p-q security.} & (\geq 2^{170}/\mbox{MAXDEPTH}) \end{array}$

CSIDH-1024 breakable with $\approx 2^{72}$ T-gates and $\approx 2^{44}$ bits QRACM, so it also falls short of level 1.

CSIDH-1792 breakable with $\approx 2^{84}$ T-gates and $\approx 2^{48}$ bits QRACM

- Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).
- 2 CSIDH-512 key recovery costs, e.g., only $\approx 2^{16}$ evaluations using $\approx 2^{40}$ bits of quantum-accessible RAM (+ small other resources).
- 3 Assuming evaluation costs not much more than for the 'best case':

 $\begin{array}{ll} \mbox{CSIDH-512} & \mbox{breakable with} \approx 2^{60} \mbox{ T-gates, so falls well short of its} \\ & \mbox{claimed NIST level 1 p-q security.} & (\geq 2^{170}/\mbox{MAXDEPTH}) \end{array}$

CSIDH-1024 breakable with $\approx 2^{72}$ T-gates and $\approx 2^{44}$ bits QRACM, so it also falls short of level 1.

CSIDH-1792 breakable with $\approx 2^{84}$ T-gates and $\approx 2^{48}$ bits QRACM, so it also doesn't reach level 1

possibly except for high end of MAXDEPTH range.

Isogeny-based 'post-quantum commutative group action' following [Couveignes'97,RostovtsevStolbunov'06]: abelian group G, set Z, action

$$\star \colon G \times Z \to Z$$

Isogeny-based 'post-quantum commutative group action' following [Couveignes'97,RostovtsevStolbunov'06]: abelian group G, set Z, action

$$\star \colon G \times Z \to Z$$

(Other isogeny-based crypto like SIDH [JF'11,...]: nonabelian, no group action.)

Isogeny-based 'post-quantum commutative group action' following [Couveignes'97,RostovtsevStolbunov'06]: abelian group G, set Z, action

$$\star \colon G \times Z \to Z$$

(Other isogeny-based crypto like SIDH [JF'11,...]: nonabelian, no group action.) DiffieHellman-style noninteractive key exchange with public param $z \in Z$:

Alice: secret $a \in G$, public $p_A = a \star z \in Z$ Bob: secret $b \in G$, public $p_B = b \star z \in Z$ Shared key: $a \star p_B = b \star p_A = (a + b) \star z$, by commutativity

Isogeny-based 'post-quantum commutative group action' following [Couveignes'97,RostovtsevStolbunov'06]: abelian group G, set Z, action

$$\star \colon G \times Z \to Z$$

(Other isogeny-based crypto like SIDH [JF'11,...]: nonabelian, no group action.) DiffieHellman-style noninteractive key exchange with public param $z \in Z$:

Alice: secret $a \in G$, public $p_A = a \star z \in Z$

Bob: secret $b \in G$, public $p_B = b \star z \in Z$

Shared key: $a \star p_B = b \star p_A = (a + b) \star z$, by commutativity

Efficient! 64-byte keys, 80ms key exchange for claimed NIST level 1 quantum security: as hard as AES-128 key search

Isogeny-based 'post-quantum commutative group action' following [Couveignes'97,RostovtsevStolbunov'06]: abelian group G, set Z, action

$$\star \colon G \times Z \to Z$$

(Other isogeny-based crypto like SIDH [JF'11,...]: nonabelian, no group action.) DiffieHellman-style noninteractive key exchange with public param $z \in Z$:

Alice: secret $a \in G$, public $p_A = a \star z \in Z$

Bob: secret $b \in G$, public $p_B = b \star z \in Z$

Shared key: $a \star p_B = b \star p_A = (a + b) \star z$, by commutativity

- Efficient! 64-byte keys, 80ms key exchange for claimed NIST level 1 quantum security: as hard as AES-128 key search
- Signatures [Stolbunov'12,DeFeoGalbraith'19,BeullensKleinjungVercauteren'19]: pk + sig = 1468 bytes at same claimed security level

Secret-key recovery: given $z, a \star z \in Z$, find $a \in G$ (or equivalent)

Secret-key recovery: given $z, a \star z \in Z$, find $a \in G$ (or equivalent) Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev'10]

Secret-key recovery: given $z, a \star z \in Z$, find $a \in G$ (or equivalent) Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev'10]

Quantum HShP Algorithm Ingredients [Kuperberg'03,...]

• Oracle outputs random 'labeled' quantum states, by evaluating \star on a uniform superposition over *G*.

Secret-key recovery: given $z, a \star z \in Z$, find $a \in G$ (or equivalent) Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev'10]

Quantum HShP Algorithm Ingredients [Kuperberg'03,...]

- Oracle outputs random 'labeled' quantum states, by evaluating * on a uniform superposition over G.
- **2** Sieve combines labeled states to generate 'more favorable' ones.

Secret-key recovery: given $z, a \star z \in Z$, find $a \in G$ (or equivalent) Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev'10]

Quantum HShP Algorithm Ingredients [Kuperberg'03,...]

- Oracle outputs random 'labeled' quantum states, by evaluating * on a uniform superposition over G.
- **2** Sieve combines labeled states to generate 'more favorable' ones.
- **3** Measurement of 'very favorable' state recovers bit(s) of hidden shift.

Secret-key recovery: given $z, a \star z \in Z$, find $a \in G$ (or equivalent) Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev'10]

Quantum HShP Algorithm Ingredients [Kuperberg'03,...]

- Oracle outputs random 'labeled' quantum states, by evaluating * on a uniform superposition over G.
- **2** Sieve combines labeled states to generate 'more favorable' ones.
- **3** Measurement of 'very favorable' state recovers bit(s) of hidden shift.

Sieve Algorithms

[Kuperberg'03] $2^{O(\sqrt{n})}$ oracle queries and qubits

 $(n = \log|G|)$

Secret-key recovery: given $z, a \star z \in Z$, find $a \in G$ (or equivalent) Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev'10]

Quantum HShP Algorithm Ingredients [Kuperberg'03,...]

- Oracle outputs random 'labeled' quantum states, by evaluating * on a uniform superposition over G.
- **2** Sieve combines labeled states to generate 'more favorable' ones.
- **3** Measurement of 'very favorable' state recovers bit(s) of hidden shift.

Sieve Algorithms

[Kuperberg'03] $2^{O(\sqrt{n})}$ oracle queries and qubits $(n = \log|G|)$ [Regev'04] $2^{O(\sqrt{n \log n})}$ oracle queries, only poly(n) qubits

Secret-key recovery: given $z, a \star z \in Z$, find $a \in G$ (or equivalent) Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev'10]

Quantum HShP Algorithm Ingredients [Kuperberg'03,...]

- Oracle outputs random 'labeled' quantum states, by evaluating * on a uniform superposition over G.
- **2** Sieve combines labeled states to generate 'more favorable' ones.
- **3** Measurement of 'very favorable' state recovers bit(s) of hidden shift.

Sieve Algorithms

 $\begin{array}{ll} [{\rm Kuperberg'03}] & 2^{O(\sqrt{n})} \text{ oracle queries and qubits} & (n=\log|G|)\\ \\ [{\rm Regev'04}] & 2^{O(\sqrt{n\log n})} \text{ oracle queries, only poly}(n) \text{ qubits} \\ \\ [{\rm Kuperberg'11}] & 2^{O(\sqrt{n})} \text{ oracle queries and bits of quantum-accessible RAM.} \end{array}$

Secret-key recovery: given $z, a \star z \in Z$, find $a \in G$ (or equivalent) Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev'10]

Quantum HShP Algorithm Ingredients [Kuperberg'03,...]

- Oracle outputs random 'labeled' quantum states, by evaluating * on a uniform superposition over G.
- **2** Sieve combines labeled states to generate 'more favorable' ones.
- **3** Measurement of 'very favorable' state recovers bit(s) of hidden shift.

Sieve Algorithms

 $\begin{array}{ll} [{\tt Kuperberg'03}] & 2^{O(\sqrt{n})} \text{ oracle queries and qubits} & (n=\log|G|) \\ [{\tt Regev'04}] & 2^{O(\sqrt{n\log n})} \text{ oracle queries, only poly}(n) \text{ qubits} \\ [{\tt Kuperberg'11}] & 2^{O(\sqrt{n})} \text{ oracle queries and bits of quantum-accessible RAM.} \\ & `Collimation sieve' subsumes prior two, offers more trade-offs. \\ & {\tt E.g., } \log({\tt queries}) \cdot \log({\tt QRACM}) \gtrsim n. \end{array}$

 Oracle costs ≤ 2^{43.3} T-gates (+ much cheaper linear gates) for 'best case,' somewhat non-uniform superposition [BLMP'19]

 Oracle costs ≤ 2^{43.3} T-gates (+ much cheaper linear gates) for 'best case,' somewhat non-uniform superposition [BLMP'19]

Good reason to expect similar cost for uniform superposition [BKV'19]

- Oracle costs ≤ 2^{43.3} T-gates (+ much cheaper linear gates) for 'best case,' somewhat non-uniform superposition [BLMP'19]
 Good reason to expect similar cost for uniform superposition [BKV'19]
- Sieve costs:

Work	Algorithm	Oracle queries	Sieve memory
CSIDH paper [CLMPR'18]	[Regev'04]	2^{62}	poly(n)

- Oracle costs ≤ 2^{43.3} T-gates (+ much cheaper linear gates) for 'best case,' somewhat non-uniform superposition [BLMP'19]
 Good reason to expect similar cost for uniform superposition [BKV'19]
- Sieve costs:

Work	Algorithm	Oracle queries	Sieve memory
CSIDH paper [CLMPR'18]	[Regev'04]	2^{62}	poly(n)
[BonnetainSchrottenloher'18]	[Kuperberg'03]	$2^{32.5}$	2^{31} qubits

- Oracle costs ≤ 2^{43.3} T-gates (+ much cheaper linear gates) for 'best case,' somewhat non-uniform superposition [BLMP'19]
 Good reason to expect similar cost for uniform superposition [BKV'19]
- Sieve costs:

Work	Algorithm	Oracle queries	Sieve memory
CSIDH paper [CLMPR'18]	[Regev'04]	2^{62}	poly(n)
[BonnetainSchrottenloher'18]	[Kuperberg'03]	$2^{32.5}$	2^{31} qubits
None prior!	[Kuperberg'11]	??	??

We generalize and practically improve Kuperberg's c-sieve, and analyze its concrete complexity on proposed CSIDH parameters:

- We generalize and practically improve Kuperberg's c-sieve, and analyze its concrete complexity on proposed CSIDH parameters:
 - * Handle arbitrary group orders (generalizing from two-power/smooth)
 - * Recover several secret bits from each sieve run
 - * Control (classical) memory and time complexities better
 - * Run simulations up to the exact CSIDH-512 order $|G|\approx 2^{257.1}$

- We generalize and practically improve Kuperberg's c-sieve, and analyze its concrete complexity on proposed CSIDH parameters:
 - Handle arbitrary group orders (generalizing from two-power/smooth)
 - * Recover several secret bits from each sieve run
 - * Control (classical) memory and time complexities better
 - $\star\,$ Run simulations up to the exact CSIDH-512 order $|G|\approx 2^{257.1}$

Work	Algorithm	Oracle queries	Sieve memory
[CLMPR'18] [BS'18]	[Regev'04] [Kuperberg'03]	2^{62} $2^{32.5}$	$\operatorname{poly}(n) \ 2^{31} \ \operatorname{qubits}$
This work	[Kuperberg'11]	$2^{18.7} \\ 2^{15.7} \\ 2^{14.1}$	2^{32} bits QRACM 2^{40} bits QRACM 2^{48} bits QRACM

- We generalize and practically improve Kuperberg's c-sieve, and analyze its concrete complexity on proposed CSIDH parameters:
 - Handle arbitrary group orders (generalizing from two-power/smooth)
 - * Recover several secret bits from each sieve run
 - * Control (classical) memory and time complexities better
 - \star Run simulations up to the exact CSIDH-512 order $|G|pprox 2^{257.1}$

Work	Algorithm	Oracle queries	Sieve memory
[CLMPR'18] [BS'18]	[Regev'04] [Kuperberg'03]	2^{62} $2^{32.5}$	$\begin{array}{c} \operatorname{poly}(n) \\ 2^{31} \ \operatorname{qubits} \end{array}$
This work	[Kuperberg'11]	$2^{18.7} \\ 2^{15.7} \\ 2^{14.1}$	2^{32} bits QRACM 2^{40} bits QRACM 2^{48} bits QRACM

*Independently, Bonnetain and Schrottenloher gave a complementary, theoretical c-sieve analysis, arriving at similar conclusions.

Hidden Shifts and CRS-Style Crypto

Hidden-Shift Problem on Group (G, +)

• Given injective $f_0, f_1: G \to Z$ such that $f_1(x) = f_0(x+s)$ for some 'secret' $s \in G$, find s.
Hidden-Shift Problem on Group (G, +)

• Given injective $f_0, f_1: G \to Z$ such that $f_1(x) = f_0(x+s)$ for some 'secret' $s \in G$, find s.

Attacking CRS via HShP [ChildsJaoSoukharev'10]

Fix a commutative group action $\star : G \times Z \to Z$.

Hidden-Shift Problem on Group (G, +)

• Given injective $f_0, f_1: G \to Z$ such that $f_1(x) = f_0(x+s)$ for some 'secret' $s \in G$, find s.

Attacking CRS via HShP [ChildsJaoSoukharev'10]

- Fix a commutative group action $\star : G \times Z \to Z$.
- For base value $z_0 \in Z$ and public key $z_1 = s \star z_0$, define

$$f_b \colon G \to Z$$
$$g \mapsto g \star z_b.$$

Hidden-Shift Problem on Group (G, +)

• Given injective $f_0, f_1: G \to Z$ such that $f_1(x) = f_0(x+s)$ for some 'secret' $s \in G$, find s.

Attacking CRS via HShP [ChildsJaoSoukharev'10]

- Fix a commutative group action $\star : G \times Z \to Z$.
- For base value $z_0 \in Z$ and public key $z_1 = s \star z_0$, define

$$f_b \colon G \to Z$$
$$g \mapsto g \star z_b.$$

Then f_b is injective because \star is free and transitive, and

$$f_1(x) = x \star z_1 = x \star (s \star z_0) = (x+s) \star z_0 = f_0(x+s).$$

Hidden-Shift Problem on Group (G, +)

• Given injective $f_0, f_1: G \to Z$ such that $f_1(x) = f_0(x+s)$ for some 'secret' $s \in G$, find s.

Attacking CRS via HShP [ChildsJaoSoukharev'10]

- Fix a commutative group action $\star : G \times Z \to Z$.
- For base value $z_0 \in Z$ and public key $z_1 = s \star z_0$, define

$$f_b \colon G \to Z$$
$$g \mapsto g \star z_b.$$

Then f_b is injective because \star is free and transitive, and

$$f_1(x) = x \star z_1 = x \star (s \star z_0) = (x+s) \star z_0 = f_0(x+s).$$

So, solving HShP for this f_0, f_1 recovers the secret key s.

Solves HShP on a finite cyclic group \mathbb{Z}_N of known order N.

- Solves HShP on a finite cyclic group \mathbb{Z}_N of known order N.
- Works with (pure) quantum states called phase vectors, each having a vector of integer (phase) multipliers.

- Solves HShP on a finite cyclic group \mathbb{Z}_N of known order N.
- Works with (pure) quantum states called phase vectors, each having a vector of integer (phase) multipliers.
 - **Given:** 'fresh' phase vectors with huge (random) multipliers in [N], of any desired feasible length L.

- Solves HShP on a finite cyclic group \mathbb{Z}_N of known order N.
- Works with (pure) quantum states called phase vectors, each having a vector of integer (phase) multipliers.
 - **Given:** 'fresh' phase vectors with huge (random) multipliers in [N], of any desired feasible length L.
 - **Goal:** construct a 'very nice' length-*L* phase vector having small (random) multipliers in $[S] = \{0, 1, ..., S 1\}$, for $S \leq L$.

- Solves HShP on a finite cyclic group \mathbb{Z}_N of known order N.
- Works with (pure) quantum states called phase vectors, each having a vector of integer (phase) multipliers.
 - **Given:** 'fresh' phase vectors with huge (random) multipliers in [N], of any desired feasible length L.
 - Goal: construct a 'very nice' length-L phase vector having small (random) multipliers in $[S] = \{0, 1, \dots, S-1\}$, for $S \leq L$.

From this we can extract secret bit(s) using QFT.

- Solves HShP on a finite cyclic group \mathbb{Z}_N of known order N.
- Works with (pure) quantum states called phase vectors, each having a vector of integer (phase) multipliers.
 - **Given:** 'fresh' phase vectors with huge (random) multipliers in [N], of any desired feasible length L.
 - **Goal:** construct a 'very nice' length-L phase vector having small (random) multipliers in $[S] = \{0, 1, \dots, S-1\}$, for $S \leq L$. From this we can extract secret bit(s) using QFT.
 - **How:** make progressively 'nicer' phase vectors with multipliers in successively smaller intervals, by collimating vectors.

Fix interval sizes $L \approx S_0 < S_1 < \cdots < S_d = N$, for $S_{i+1}/S_i \approx L$. Depth $d \approx \log_L(N) - 1 = \frac{\log(N)}{\log(L)} - 1$.

- Fix interval sizes $L \approx S_0 < S_1 < \cdots < S_d = N$, for $S_{i+1}/S_i \approx L$. Depth $d \approx \log_L(N) - 1 = \log(N)/\log(L) - 1$.
- Leaf nodes get 'fresh' length-L phase vectors on [N].

- Fix interval sizes $L \approx S_0 < S_1 < \cdots < S_d = N$, for $S_{i+1}/S_i \approx L$. Depth $d \approx \log_L(N) - 1 = \log(N)/\log(L) - 1$.
- Leaf nodes get 'fresh' length-L phase vectors on [N].
- Each internal node collimates its children, narrowing range by $\approx L$.

- Fix interval sizes $L \approx S_0 < S_1 < \cdots < S_d = N$, for $S_{i+1}/S_i \approx L$. Depth $d \approx \log_L(N) - 1 = \log(N)/\log(L) - 1$.
- Leaf nodes get 'fresh' length-L phase vectors on [N].
- Each internal node collimates its children, narrowing range by $\approx L$.
- **•** Key insight: more QRACM \implies larger L, lower depth, fewer vectors

For $s \in \mathbb{Z}_N$, a phase vector of length L is a pure quantum state

$$|\psi\rangle \propto \sum_{j\in[L]} \chi(b(j)\cdot s/N)|j\rangle$$
, $\chi(x) = \exp(2\pi i\cdot x)$

where the (known) $b(j) \in [N]$ are its phase multipliers.

For $s \in \mathbb{Z}_N$, a phase vector of length L is a pure quantum state

$$|\psi\rangle \propto \sum_{j\in[L]} \chi(b(j)\cdot s/N)|j\rangle , \quad \chi(x) = \exp(2\pi i\cdot x)$$

where the (known) $b(j) \in [N]$ are its phase multipliers.

► E.g., we get qubit $|\psi\rangle \propto |0\rangle + \chi(b' \cdot s/N)|1\rangle$ for uniform $b' \in [N]$ by querying the hidden-shift oracle. So L = 2, b(0) = 0, and b(1) = b'.

For $s \in \mathbb{Z}_N$, a phase vector of length L is a pure quantum state

$$|\psi\rangle \propto \sum_{j\in[L]} \chi(b(j)\cdot s/N)|j\rangle , \quad \chi(x) = \exp(2\pi i\cdot x)$$

where the (known) $b(j) \in [N]$ are its phase multipliers.

- ► E.g., we get qubit $|\psi\rangle \propto |0\rangle + \chi(b' \cdot s/N)|1\rangle$ for uniform $b' \in [N]$ by querying the hidden-shift oracle. So L = 2, b(0) = 0, and b(1) = b'.
- In general, we store the phase multipliers in a sorted list. So a phase vector requires Õ(L) bits but only log L qubits.

For $s \in \mathbb{Z}_N$, a phase vector of length L is a pure quantum state

$$|\psi\rangle \propto \sum_{j\in[L]} \chi(b(j)\cdot s/N)|j\rangle , \quad \chi(x) = \exp(2\pi i\cdot x)$$

where the (known) $b(j) \in [N]$ are its phase multipliers.

- ► E.g., we get qubit $|\psi\rangle \propto |0\rangle + \chi(b' \cdot s/N)|1\rangle$ for uniform $b' \in [N]$ by querying the hidden-shift oracle. So L = 2, b(0) = 0, and b(1) = b'.
- In general, we store the phase multipliers in a sorted list. So a phase vector requires Õ(L) bits but only log L qubits.
- This is the source of the exponential improvement in quantum space versus Kuperberg's first sieve.

• Given phase vectors $|\psi_1\rangle, |\psi_2\rangle$ of lengths L_1, L_2 with multiplier functions b_1, b_2 , tensoring them yields a state

$$\begin{aligned} |\psi'\rangle &= |\psi_1, \psi_2\rangle \propto \sum_{j_1 \in [L_1]} \sum_{j_2 \in [L_2]} \chi(b_1(j_1) \cdot s/N) \cdot \chi(b_2(j_2) \cdot s/N) |j_1, j_2\rangle \\ &= \sum_{\vec{j} \in L} \chi(b'(\vec{j}) \cdot s/N) |\vec{j}\rangle \end{aligned}$$

where $b'(j) = b_1(j_1) + b_2(j_2)$ and $L = [L_1] \times [L_2] \cong [L_1L_2]$.

• Given phase vectors $|\psi_1\rangle, |\psi_2\rangle$ of lengths L_1, L_2 with multiplier functions b_1, b_2 , tensoring them yields a state

$$\begin{aligned} |\psi'\rangle &= |\psi_1, \psi_2\rangle \propto \sum_{j_1 \in [L_1]} \sum_{j_2 \in [L_2]} \chi(b_1(j_1) \cdot s/N) \cdot \chi(b_2(j_2) \cdot s/N) |j_1, j_2\rangle \\ &= \sum_{\vec{j} \in L} \chi(b'(\vec{j}) \cdot s/N) |\vec{j}\rangle \end{aligned}$$

where $b'(\vec{j}) = b_1(j_1) + b_2(j_2)$ and $L = [L_1] \times [L_2] \cong [L_1L_2]$.

► E.g., l 'fresh' labeled qubits from the oracle yield a length-2^l phase vector whose multipliers are the (mod-N) subset-sums of the labels.

• Given phase vectors $|\psi_1\rangle, |\psi_2\rangle$ of lengths L_1, L_2 with multiplier functions b_1, b_2 , tensoring them yields a state

$$\begin{aligned} |\psi'\rangle &= |\psi_1, \psi_2\rangle \propto \sum_{j_1 \in [L_1]} \sum_{j_2 \in [L_2]} \chi(b_1(j_1) \cdot s/N) \cdot \chi(b_2(j_2) \cdot s/N) |j_1, j_2\rangle \\ &= \sum_{\vec{j} \in L} \chi(b'(\vec{j}) \cdot s/N) |\vec{j}\rangle \end{aligned}$$

where $b'(\vec{j}) = b_1(j_1) + b_2(j_2)$ and $L = [L_1] \times [L_2] \cong [L_1L_2]$.

► E.g., l 'fresh' labeled qubits from the oracle yield a length-2^l phase vector whose multipliers are the (mod-N) subset-sums of the labels.
 This yields a 'fresh' length-L phase vector on [N], in log L queries.

• Given phase vectors $|\psi_1\rangle, |\psi_2\rangle$ of lengths L_1, L_2 with multiplier functions b_1, b_2 , tensoring them yields a state

$$\begin{aligned} |\psi'\rangle &= |\psi_1, \psi_2\rangle \propto \sum_{j_1 \in [L_1]} \sum_{j_2 \in [L_2]} \chi(b_1(j_1) \cdot s/N) \cdot \chi(b_2(j_2) \cdot s/N) |j_1, j_2\rangle \\ &= \sum_{\vec{j} \in L} \chi(b'(\vec{j}) \cdot s/N) |\vec{j}\rangle \end{aligned}$$

where $b'(\vec{j}) = b_1(j_1) + b_2(j_2)$ and $L = [L_1] \times [L_2] \cong [L_1L_2]$.

- ► E.g., l 'fresh' labeled qubits from the oracle yield a length-2^l phase vector whose multipliers are the (mod-N) subset-sums of the labels.
 This yields a 'fresh' length-L phase vector on [N], in log L queries.
- A more interesting combination procedure: collimation...

Given: two phase vectors $|\psi_i\rangle$ of length $L_i \approx L$ on [S']**Goal:** one phase vector $|\psi\rangle$ of length $\approx L$ on [S], for $S \approx S'/L$

Given: two phase vectors $|\psi_i\rangle$ of length $L_i \approx L$ on [S']**Goal:** one phase vector $|\psi\rangle$ of length $\approx L$ on [S], for $S \approx S'/L$

How: **1** Form the phase vector $|\psi'\rangle = |\psi_1, \psi_2\rangle$ with index set $[L_1] \times [L_2]$ and multipliers $b'(\vec{j}) = b_1(j_1) + b_2(j_2)$.

Given: two phase vectors $|\psi_i\rangle$ of length $L_i \approx L$ on [S']**Goal:** one phase vector $|\psi\rangle$ of length $\approx L$ on [S], for $S \approx S'/L$

How: **1** Form the phase vector $|\psi'\rangle = |\psi_1, \psi_2\rangle$ with index set $[L_1] \times [L_2]$ and multipliers $b'(\vec{j}) = b_1(j_1) + b_2(j_2)$.

2 Measure $|\psi'\rangle$ according to $q = \lfloor b'(\overline{j})/S \rfloor$. All 'surviving' multipliers are in [S], up to global phase.

Given: two phase vectors $|\psi_i\rangle$ of length $L_i \approx L$ on [S']**Goal:** one phase vector $|\psi\rangle$ of length $\approx L$ on [S], for $S \approx S'/L$

- How: **1** Form the phase vector $|\psi'\rangle = |\psi_1, \psi_2\rangle$ with index set $[L_1] \times [L_2]$ and multipliers $b'(\vec{j}) = b_1(j_1) + b_2(j_2)$.
 - 2 Measure $|\psi'\rangle$ according to $q = \lfloor b'(j)/S \rfloor$. All 'surviving' multipliers are in [S], up to global phase.
 - **3** Compute the subset $J \subseteq [L_1] \times [L_2]$ of \vec{j} that satisfy the above, reindex J to [|J|], and output the resulting $|\psi\rangle$.

Given: two phase vectors $|\psi_i\rangle$ of length $L_i \approx L$ on [S']

Goal: one phase vector $|\psi\rangle$ of length $\approx L$ on [S], for $S\approx S'/L$

How: 1 Form the phase vector $|\psi'\rangle = |\psi_1, \psi_2\rangle$ with index set $[L_1] \times [L_2]$ and multipliers $b'(\vec{j}) = b_1(j_1) + b_2(j_2)$.

2 Measure $|\psi'\rangle$ according to $q = \lfloor b'(\overline{j})/S \rfloor$. All 'surviving' multipliers are in [S], up to global phase.

3 Compute the subset $J \subseteq [L_1] \times [L_2]$ of \vec{j} that satisfy the above, reindex J to [|J|], and output the resulting $|\psi\rangle$.

Analysis

▶ Phase vector $|\psi'\rangle$ has length $L_1L_2 \approx L^2$, and the multipliers b'(j) are well distributed in [2S'].

Given: two phase vectors $|\psi_i\rangle$ of length $L_i \approx L$ on [S']

Goal: one phase vector $|\psi\rangle$ of length $\approx L$ on [S], for $S\approx S'/L$

How: 1 Form the phase vector $|\psi'\rangle = |\psi_1, \psi_2\rangle$ with index set $[L_1] \times [L_2]$ and multipliers $b'(\vec{j}) = b_1(j_1) + b_2(j_2)$.

2 Measure $|\psi'\rangle$ according to $q = \lfloor b'(\overline{j})/S \rfloor$. All 'surviving' multipliers are in [S], up to global phase.

3 Compute the subset $J \subseteq [L_1] \times [L_2]$ of \vec{j} that satisfy the above, reindex J to [|J|], and output the resulting $|\psi\rangle$.

Analysis

- ▶ Phase vector $|\psi'\rangle$ has length $L_1L_2 \approx L^2$, and the multipliers b'(j) are well distributed in [2S'].
- ▶ So, most size-S subintervals have $\approx L^2 \cdot S/(2S') \approx L$ multipliers.

(In practice, need some tricks to control the variance.)

Given: two phase vectors $|\psi_i\rangle$ of length $L_i \approx L$ on [S']

Goal: one phase vector $|\psi\rangle$ of length $\approx L$ on [S], for $S \approx S'/L$ **How: 1** Form the phase vector $|\psi'\rangle = |\psi_1, \psi_2\rangle$ with index set

[L_1] × [L_2] and multipliers $b'(\vec{j}) = b_1(j_1) + b_2(j_2)$.

2 Measure $|\psi'\rangle$ according to $q = \lfloor b'(\overline{j})/S \rfloor$. All 'surviving' multipliers are in [S], up to global phase.

3 Compute the subset $J \subseteq [L_1] \times [L_2]$ of \vec{j} that satisfy the above, reindex J to [|J|], and output the resulting $|\psi\rangle$.

Analysis

▶ Phase vector $|\psi'\rangle$ has length $L_1L_2 \approx L^2$, and the multipliers b'(j) are well distributed in [2S'].

► So, most size-S subintervals have $\approx L^2 \cdot S/(2S') \approx L$ multipliers. (In practice, need some tricks to control the variance.)

• Step 3 requires O(1) QRACM[L] lookups and $\tilde{O}(L)$ classical work.

• Collimation sieve yields a phase vector $|\psi\rangle$ on [S] of length $L \approx S$.

- Collimation sieve yields a phase vector $|\psi\rangle$ on [S] of length $L \approx S$.
- Suppose L = S and $b: [S] \rightarrow [S]$ is a bijection.

- Collimation sieve yields a phase vector $|\psi\rangle$ on [S] of length $L \approx S$.
- ▶ Suppose L = S and $b : [S] \rightarrow [S]$ is a bijection. Can reindex $|\psi\rangle$ as

$$|\psi\rangle \propto \sum_{j\in[S]} \chi(j\cdot s/N)|j\rangle.$$

- Collimation sieve yields a phase vector $|\psi\rangle$ on [S] of length $L \approx S$.
- Suppose L = S and $b \colon [S] \to [S]$ is a bijection. Can reindex $|\psi\rangle$ as

$$|\psi\rangle \propto \sum_{j\in [S]} \chi(j\cdot s/N) |j\rangle.$$

Its QFT_S is essentially the point function at $s \cdot S/N$. Measuring yields the $\log S$ most-significant bits of s, with large probability.

- Collimation sieve yields a phase vector $|\psi\rangle$ on [S] of length $L \approx S$.
- ▶ Suppose L = S and $b \colon [S] \to [S]$ is a bijection. Can reindex $|\psi\rangle$ as

$$|\psi\rangle \propto \sum_{j\in [S]} \chi(j\cdot s/N) |j\rangle.$$

Its QFT_S is essentially the point function at $s \cdot S/N$. Measuring yields the $\log S$ most-significant bits of s, with large probability.

If b: [L] → [S] is not a bijection, measure to make it densely injective onto some X ⊆ [S]. Can then reindex as

$$|\tilde{\psi}\rangle \propto \sum_{j\in X} \chi(j\cdot s/N) |j\rangle.$$

- Collimation sieve yields a phase vector $|\psi\rangle$ on [S] of length $L \approx S$.
- ▶ Suppose L = S and $b \colon [S] \to [S]$ is a bijection. Can reindex $|\psi\rangle$ as

$$|\psi\rangle \propto \sum_{j\in [S]} \chi(j\cdot s/N) |j\rangle.$$

Its QFT_S is essentially the point function at $s \cdot S/N$. Measuring yields the $\log S$ most-significant bits of s, with large probability.

If b: [L] → [S] is not a bijection, measure to make it densely injective onto some X ⊆ [S]. Can then reindex as

$$|\tilde{\psi}
angle \propto \sum_{j\in X} \chi(j\cdot s/N)|j
angle.$$

This is a densely subsampled Fourier transform of a point function. Measuring its QFT yields almost $\log S$ bits of s.

Practical Issues

Issue 1: Lengths of collimated phase vectors are quite variable. Too short and too long are both problems.
Issue 1: Lengths of collimated phase vectors are quite variable. Too short and too long are both problems.

Solution: Request lengths adaptively, and discard too-short vectors.

Issue 1: Lengths of collimated phase vectors are quite variable. Too short and too long are both problems.

Solution: Request lengths adaptively, and discard too-short vectors. (Discarding 2% saves $\geq 2^{10}$ factor in longest vector.)

Issue 1: Lengths of collimated phase vectors are quite variable. Too short and too long are both problems.

Solution: Request lengths adaptively, and discard too-short vectors. (Discarding 2% saves $\geq 2^{10}$ factor in longest vector.)

Issue 2: Measuring sieve output on [S] yields $\approx \log S$ MSBs of secret.

- **Issue 1:** Lengths of collimated phase vectors are quite variable. Too short and too long are both problems.
- **Solution:** Request lengths adaptively, and discard too-short vectors. (Discarding 2% saves $\geq 2^{10}$ factor in longest vector.)

Issue 2: Measuring sieve output on [S] yields $\approx \log S$ MSBs of secret. Solution: Sieve to 'scaled intervals' $S^i \cdot [S]$ for $i = 0, \dots, \log_S(N) - 1$, tensor results and measure to get entire secret.

Key Question: what is the complexity of the requisite CSIDH oracle?

- Key Question: what is the complexity of the requisite CSIDH oracle?
- Existing estimates [BLMP'19] are for 'best conceivable' distributions; we need uniform distribution.

- Key Question: what is the complexity of the requisite CSIDH oracle?
- Existing estimates [BLMP'19] are for 'best conceivable' distributions; we need uniform distribution. Or do we?

- Key Question: what is the complexity of the requisite CSIDH oracle?
- Existing estimates [BLMP'19] are for 'best conceivable' distributions; we need uniform distribution. Or do we?
- We have many short relations in class group [BKV'19], enabling fast reduction of uniform distribution to exponent vectors with similar norm statistics as 'best conceivable'. Overall cost? Depth?

- Key Question: what is the complexity of the requisite CSIDH oracle?
- Existing estimates [BLMP'19] are for 'best conceivable' distributions; we need uniform distribution. Or do we?
- We have many short relations in class group [BKV'19], enabling fast reduction of uniform distribution to exponent vectors with similar norm statistics as 'best conceivable'. Overall cost? Depth?
- More direct constructions of quantum CSIDH circuits?

- Key Question: what is the complexity of the requisite CSIDH oracle?
- Existing estimates [BLMP'19] are for 'best conceivable' distributions; we need uniform distribution. Or do we?
- We have many short relations in class group [BKV'19], enabling fast reduction of uniform distribution to exponent vectors with similar norm statistics as 'best conceivable'. Overall cost? Depth?
- More direct constructions of quantum CSIDH circuits?
- Amortize the oracle computations? E.g., to get initial phase vectors?

- Key Question: what is the complexity of the requisite CSIDH oracle?
- Existing estimates [BLMP'19] are for 'best conceivable' distributions; we need uniform distribution. Or do we?
- We have many short relations in class group [BKV'19], enabling fast reduction of uniform distribution to exponent vectors with similar norm statistics as 'best conceivable'. Overall cost? Depth?
- More direct constructions of quantum CSIDH circuits?
- Amortize the oracle computations? E.g., to get initial phase vectors?
- Question 2: break CSIDH using partial information about secret?

- Key Question: what is the complexity of the requisite CSIDH oracle?
- Existing estimates [BLMP'19] are for 'best conceivable' distributions; we need uniform distribution. Or do we?
- We have many short relations in class group [BKV'19], enabling fast reduction of uniform distribution to exponent vectors with similar norm statistics as 'best conceivable'. Overall cost? Depth?
- More direct constructions of quantum CSIDH circuits?
- Amortize the oracle computations? E.g., to get initial phase vectors?
- Question 2: break CSIDH using partial information about secret?

Conclusions

- Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).
- **2** CSIDH-512 key recovery costs, e.g., only $\approx 2^{16}$ evaluations using $\approx 2^{40}$ bits of quantum-accessible RAM (+ small other resources).
- 3 Assuming evaluation costs not much more than for the 'best case': CSIDH-512, -1024, and maybe even -1792 do not reach NIST level 1 quantum security.

Paper: ePrint 2019/725

Code: https://github.com/cpeikert/CollimationSieve