Practical Bootstrapping in
 Quasilinear Time

Jacob Alperin-Sheriff Chris Peikert

School of Computer Science Georgia Tech
UC San Diego
29 April 2013

Fully Homomorphic Encryption [RAD'78,Gen'00]

- FHE lets you do this:

$$
\mu \longrightarrow \operatorname{Eval}(f, \boxed{\mu}) \longrightarrow \quad f(\mu)
$$

where $|f(\mu)|$ and decryption time don't depend on $|f|$.
A cryptographic "holy grail" with tons of applications.

Fully Homomorphic Encryption [RAD'78,Gen'00]

- FHE lets you do this:

$$
\mu \longrightarrow \operatorname{Eval}(f,, \mu) \longrightarrow \quad f(\mu)
$$

where $|f(\mu)|$ and decryption time don't depend on $|f|$.
A cryptographic "holy grail" with tons of applications.

- Naturally occurring schemes are "somewhat homomorphic" (SHE): they can only evaluate functions of an a priori bounded depth.

$$
\mu \rightarrow \operatorname{Eval}(f, \mu) \rightarrow f(\mu) \rightarrow \operatorname{Eval}(g, f(\mu)) \rightarrow g(f(\mu))
$$

Bootstrapping: SHE \rightarrow FHE [Gen'09]

- Homomorphically evaluates the SHE decryption function to "refresh" a ciphertext μ, allowing further homomorphic operations.

$$
s k \longrightarrow \operatorname{Eval}\left(f(x)=\operatorname{Dec}_{x}(\boxed{\mu}), \Delta k\right) \rightarrow \mu
$$

Bootstrapping: SHE \rightarrow FHE [Gen'09]

- Homomorphically evaluates the SHE decryption function to "refresh" a ciphertext μ, allowing further homomorphic operations.

$$
\boxed{s k} \longrightarrow \operatorname{Eval}\left(f(x)=\operatorname{Dec}_{x}(\mu), s k\right) \longrightarrow \mu
$$

« The only known way of obtaining unbounded FHE.

* Goal: Efficiency! Minimize depth d and size s of decryption "circuit."
* Best SHEs [BGV'12] can evaluate in time $\tilde{O}(d \cdot s \cdot \lambda)$.

Bootstrapping: SHE \rightarrow FHE [Gen'09]

- Homomorphically evaluates the SHE decryption function to "refresh" a ciphertext μ, allowing further homomorphic operations.

$$
\boxed{s k} \longrightarrow \operatorname{Eval}\left(f(x)=\operatorname{Dec}_{x}(\mu), s k\right) \rightarrow \mu
$$

« The only known way of obtaining unbounded FHE.

* Goal: Efficiency! Minimize depth d and size s of decryption "circuit."
\star Best SHEs [BGV'12] can evaluate in time $\tilde{O}(d \cdot s \cdot \lambda)$.
- Intensive study, many techniques [G'09,GH'11a, GH'11b, GHS'12b], but still very inefficient - the main bottleneck in FHE, by far.

Bootstrapping: SHE \rightarrow FHE [Gen'09]

- Homomorphically evaluates the SHE decryption function to "refresh" a ciphertext μ, allowing further homomorphic operations.

$$
\boxed{s k} \longrightarrow \operatorname{Eval}\left(f(x)=\operatorname{Dec}_{x}(\mu), s k\right) \longrightarrow \mu
$$

« The only known way of obtaining unbounded FHE.

* Goal: Efficiency! Minimize depth d and size s of decryption "circuit."
\star Best SHEs [BGV'12] can evaluate in time $\tilde{O}(d \cdot s \cdot \lambda)$.
- Intensive study, many techniques [G'09,GH'11a,GH'11b,GHS'12b], but still very inefficient - the main bottleneck in FHE, by far.
- The asymptotically most efficient methods on "packed" ciphertexts [GHS'12a,GHS'12b] are very complex, and appear practically worse than asymptotically slower methods.

Milestones in Bootstrapping

[Gen'09]: $\tilde{O}\left(\lambda^{4}\right)$ runtime

Milestones in Bootstrapping

[Gen'09]: $\tilde{O}\left(\lambda^{4}\right)$ runtime
[BGV'12]: $\tilde{O}\left(\lambda^{2}\right)$ runtime, or $\tilde{O}(\lambda)$ amortized over λ ciphertexts

Milestones in Bootstrapping

[Gen'09]: $\tilde{O}\left(\lambda^{4}\right)$ runtime
[BGV'12]: $\tilde{O}\left(\lambda^{2}\right)$ runtime, or $\tilde{O}(\lambda)$ amortized over λ ciphertexts Mainly via improved SHE homomorphic capacity.
Amortized method requires "exotic" plaintext rings, emulating \mathbb{Z}_{2} arithmetic in \mathbb{Z}_{p}.

Milestones in Bootstrapping

[Gen'09]: $\tilde{O}\left(\lambda^{4}\right)$ runtime
[BGV'12]: $\tilde{O}\left(\lambda^{2}\right)$ runtime, or $\tilde{O}(\lambda)$ amortized over λ ciphertexts Mainly via improved SHE homomorphic capacity.
Amortized method requires "exotic" plaintext rings, emulating \mathbb{Z}_{2} arithmetic in \mathbb{Z}_{p}.
[GHS'12b]: $\tilde{O}(\lambda)$ runtime, for "packed" plaintexts. Declare victory?

Milestones in Bootstrapping

[Gen'09]: $\tilde{O}\left(\lambda^{4}\right)$ runtime
[BGV'12]: $\tilde{O}\left(\lambda^{2}\right)$ runtime, or $\tilde{O}(\lambda)$ amortized over λ ciphertexts Mainly via improved SHE homomorphic capacity.
Amortized method requires "exotic" plaintext rings, emulating \mathbb{Z}_{2} arithmetic in \mathbb{Z}_{p}.
[GHS'12b]: $\tilde{O}(\lambda)$ runtime, for "packed" plaintexts. Declare victory?

Milestones in Bootstrapping

[Gen'09]: $\tilde{O}\left(\lambda^{4}\right)$ runtime
[BGV'12]: $\tilde{O}\left(\lambda^{2}\right)$ runtime, or $\tilde{O}(\lambda)$ amortized over λ ciphertexts Mainly via improved SHE homomorphic capacity.
Amortized method requires "exotic" plaintext rings, emulating \mathbb{Z}_{2} arithmetic in \mathbb{Z}_{p}.
[GHS'12b]: $\tilde{O}(\lambda)$ runtime, for "packed" plaintexts. Declare victory?

x Log-depth $\bmod -\Phi_{m}(X)$ circuit is complex, w/large hidden constants.

Milestones in Bootstrapping

[Gen'09]: $\tilde{O}\left(\lambda^{4}\right)$ runtime
[BGV'12]: $\tilde{O}\left(\lambda^{2}\right)$ runtime, or $\tilde{O}(\lambda)$ amortized over λ ciphertexts Mainly via improved SHE homomorphic capacity.
Amortized method requires "exotic" plaintext rings, emulating \mathbb{Z}_{2} arithmetic in \mathbb{Z}_{p}.
[GHS'12b]: $\tilde{O}(\lambda)$ runtime, for "packed" plaintexts. Declare victory?

x Log-depth $\bmod -\Phi_{m}(X)$ circuit is complex, w/large hidden constants.
$X X$ [GHS'12a] compiler is very complex, w/large polylog overhead factor.

Our Results

Practical bootstrapping algorithms with quasi-linear $\tilde{O}(\lambda)$ runtimes:

Our Results

Practical bootstrapping algorithms with quasi-linear $\tilde{O}(\lambda)$ runtimes:
(1) For "unpacked" (single-bit) plaintexts:
\checkmark Extremely simple!
\checkmark Uses only power-of-2 cyclotomic rings (fast, easy to implement).

Our Results

Practical bootstrapping algorithms with quasi-linear $\tilde{O}(\lambda)$ runtimes:
(1) For "unpacked" (single-bit) plaintexts:
\checkmark Extremely simple!
\checkmark Uses only power-of-2 cyclotomic rings (fast, easy to implement).
\star Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.

Our Results

Practical bootstrapping algorithms with quasi-linear $\tilde{O}(\lambda)$ runtimes:
(1) For "unpacked" (single-bit) plaintexts:
\checkmark Extremely simple!
\checkmark Uses only power-of-2 cyclotomic rings (fast, easy to implement).
\star Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.
(2) For "packed" (many-bit) plaintexts:

Our Results

Practical bootstrapping algorithms with quasi-linear $\tilde{O}(\lambda)$ runtimes:
(1) For "unpacked" (single-bit) plaintexts:
\checkmark Extremely simple!
\checkmark Uses only power-of-2 cyclotomic rings (fast, easy to implement).
\star Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.
(2) For "packed" (many-bit) plaintexts:

* Based on a substantial enhancement of "ring-switching" [GHPS'12] to non-subrings.

Our Results

Practical bootstrapping algorithms with quasi-linear $\tilde{O}(\lambda)$ runtimes:
(1) For "unpacked" (single-bit) plaintexts:
\checkmark Extremely simple!
\checkmark Uses only power-of-2 cyclotomic rings (fast, easy to implement).
\star Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.

2 For "packed" (many-bit) plaintexts:

* Based on a substantial enhancement of "ring-switching" [GHPS'12] to non-subrings.
\checkmark Appears quite practical, avoids both main inefficiencies of [GHS'12b]: no homomorphic reduction modulo $\Phi_{m}(X)$, no generic compilation.

Our Results

Practical bootstrapping algorithms with quasi-linear $\tilde{O}(\lambda)$ runtimes:
(1) For "unpacked" (single-bit) plaintexts:
\checkmark Extremely simple!
\checkmark Uses only power-of-2 cyclotomic rings (fast, easy to implement).
\star Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.

2 For "packed" (many-bit) plaintexts:

* Based on a substantial enhancement of "ring-switching" [GHPS'12] to non-subrings.
\checkmark Appears quite practical, avoids both main inefficiencies of [GHS'12b]: no homomorphic reduction modulo $\Phi_{m}(X)$, no generic compilation.
\checkmark Special purpose, completely algebraic description - no "circuits."

Our Results

Practical bootstrapping algorithms with quasi-linear $\tilde{O}(\lambda)$ runtimes:
(1) For "unpacked" (single-bit) plaintexts:
\checkmark Extremely simple!
\checkmark Uses only power-of-2 cyclotomic rings (fast, easy to implement).
\star Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.

2 For "packed" (many-bit) plaintexts:

* Based on a substantial enhancement of "ring-switching" [GHPS'12] to non-subrings.
\checkmark Appears quite practical, avoids both main inefficiencies of [GHS'12b]: no homomorphic reduction modulo $\Phi_{m}(X)$, no generic compilation.
\checkmark Special purpose, completely algebraic description - no "circuits."
\checkmark Completely decouples the algebraic structure of SHE plaintext ring from that needed for bootstrapping.

Setting the Stage: Decryption in SHE [LPR'10,BV'11,BGV'12]

- Let $R=\mathbb{Z}[X] /\left(X^{k / 2}+1\right)$, for k a power of 2 . (The k th cyclotomic ring.)

Setting the Stage: Decryption in SHE [LPR'10,BV'11,BGV'12]

- Let $R=\mathbb{Z}[X] /\left(X^{k / 2}+1\right)$, for k a power of 2. (The k th cyclotomic ring.)

Let $R_{q}=R / q R=\mathbb{Z}_{q}[X] /\left(X^{k / 2}+1\right)$ for any integer q.

Setting the Stage: Decryption in SHE [LPR'10,BV'11,BGV'12]

- Let $R=\mathbb{Z}[X] /\left(X^{k / 2}+1\right)$, for k a power of 2 . (The k th cyclotomic ring.)

Let $R_{q}=R / q R=\mathbb{Z}_{q}[X] /\left(X^{k / 2}+1\right)$ for any integer q.

- Plaintext ring is R_{2}, ciphertext ring is R_{q} for $q \gg 2$.

Can assume $k, q=\tilde{O}(\lambda)$ by ring- and modulus-switching.

Setting the Stage: Decryption in SHE [LPR'10,BV'11,BGV'12]

- Let $R=\mathbb{Z}[X] /\left(X^{k / 2}+1\right)$, for k a power of 2 . (The k th cyclotomic ring.)

Let $R_{q}=R / q R=\mathbb{Z}_{q}[X] /\left(X^{k / 2}+1\right)$ for any integer q.

- Plaintext ring is R_{2}, ciphertext ring is R_{q} for $q \gg 2$.

Can assume $k, q=\tilde{O}(\lambda)$ by ring- and modulus-switching.

- Ciphertext $c=\left(c_{0}, c_{1}\right) \in R_{q}^{2}$ encrypting $\mu \in R_{2}$ under $s \in R$ satisfies

$$
v=c_{0}+c_{1} \cdot s \approx \frac{q}{2} \mu \quad(\bmod q R)
$$

Setting the Stage: Decryption in SHE [LPR'10,BV'11,BGV'12]

- Let $R=\mathbb{Z}[X] /\left(X^{k / 2}+1\right)$, for k a power of 2 . (The k th cyclotomic ring.)

Let $R_{q}=R / q R=\mathbb{Z}_{q}[X] /\left(X^{k / 2}+1\right)$ for any integer q.

- Plaintext ring is R_{2}, ciphertext ring is R_{q} for $q \gg 2$.

Can assume $k, q=\tilde{O}(\lambda)$ by ring- and modulus-switching.

- Ciphertext $c=\left(c_{0}, c_{1}\right) \in R_{q}^{2}$ encrypting $\mu \in R_{2}$ under $s \in R$ satisfies

$$
v=c_{0}+c_{1} \cdot s \approx \frac{q}{2} \mu \quad(\bmod q R)
$$

Define the decryption function

$$
\operatorname{Dec}_{s}(c):=\lfloor v\rceil=\mu \in R_{2},
$$

where "rounding" $\lfloor\cdot\rceil: \mathbb{Z}_{q} \rightarrow \mathbb{Z}_{2}$ is applied to coeffs of $v=v(X)$.

Setting the Stage: Decryption in SHE [LPR'10,BV'11,BGV'12]

- Let $R=\mathbb{Z}[X] /\left(X^{k / 2}+1\right)$, for k a power of 2 . (The k th cyclotomic ring.) Let $R_{q}=R / q R=\mathbb{Z}_{q}[X] /\left(X^{k / 2}+1\right)$ for any integer q.
- Plaintext ring is R_{2}, ciphertext ring is R_{q} for $q \gg 2$.

Can assume $k, q=\tilde{O}(\lambda)$ by ring- and modulus-switching.

- Ciphertext $c=\left(c_{0}, c_{1}\right) \in R_{q}^{2}$ encrypting $\mu \in R_{2}$ under $s \in R$ satisfies

$$
v=c_{0}+c_{1} \cdot s \approx \frac{q}{2} \mu \quad(\bmod q R)
$$

Define the decryption function

$$
\operatorname{Dec}_{s}(c):=\lfloor v\rceil=\mu \in R_{2},
$$

where "rounding" $\lfloor\cdot\rceil: \mathbb{Z}_{q} \rightarrow \mathbb{Z}_{2}$ is applied to coeffs of $v=v(X)$.

- "Unpacked" plaintext $\mu \in \mathbb{Z}_{2} \subseteq R_{2}$, i.e., just a constant polynomial.

Setting the Stage: Decryption in SHE [LPR'10,BV'11,BGV'12]

- Let $R=\mathbb{Z}[X] /\left(X^{k / 2}+1\right)$, for k a power of 2 . (The k th cyclotomic ring.) Let $R_{q}=R / q R=\mathbb{Z}_{q}[X] /\left(X^{k / 2}+1\right)$ for any integer q.
- Plaintext ring is R_{2}, ciphertext ring is R_{q} for $q \gg 2$.

Can assume $k, q=\tilde{O}(\lambda)$ by ring- and modulus-switching.

- Ciphertext $c=\left(c_{0}, c_{1}\right) \in R_{q}^{2}$ encrypting $\mu \in R_{2}$ under $s \in R$ satisfies

$$
v=c_{0}+c_{1} \cdot s \approx \frac{q}{2} \mu \quad(\bmod q R)
$$

Define the decryption function

$$
\operatorname{Dec}_{s}(c):=\lfloor v\rceil=\mu \in R_{2},
$$

where "rounding" $\lfloor\cdot\rceil: \mathbb{Z}_{q} \rightarrow \mathbb{Z}_{2}$ is applied to coeffs of $v=v(X)$.

- "Unpacked" plaintext $\mu \in \mathbb{Z}_{2} \subseteq R_{2}$, i.e., just a constant polynomial.
"Packed" plaintext uses more of R_{2}, e.g., multiple "slots" [SV'11].

Warm-Up:
 Bootstrapping Unpacked Ciphertexts

Bootstrapping Unpacked Ciphertexts: Main Idea

(1) Isolate message-carrying coefficient v_{0} of $v(X)$ by homomorphically "tracing down" a tower of cyclotomic rings $\mathcal{O}_{2 k} / \mathcal{O}_{k} / \cdots / \mathcal{O}_{4} / \mathbb{Z}$.
(Trace $=$ sum of the two automorphisms of $\mathcal{O}_{2 i} / \mathcal{O}_{i}$.)

Bootstrapping Unpacked Ciphertexts: Main Idea

(1) Isolate message-carrying coefficient v_{0} of $v(X)$ by homomorphically "tracing down" a tower of cyclotomic rings $\mathcal{O}_{2 k} / \mathcal{O}_{k} / \cdots / \mathcal{O}_{4} / \mathbb{Z}$.
(Trace $=$ sum of the two automorphisms of $\mathcal{O}_{2 i} / \mathcal{O}_{i}$.)

$$
\begin{array}{cc}
v_{0}+v_{1} X+v_{2} X^{2}+\cdots v_{k-1} X^{k-1} & \mathbb{Z}_{q}[X] /\left(X^{k}+1\right) \\
v_{0}+0 X+v_{2} X^{2}+\cdots 0 X^{k-1} & \nmid \\
v_{0}+v_{k / 4} X^{k / 4}+\cdots+v_{3 k / 4} X^{3 k / 4} & \mathbb{Z}_{q}\left[X^{2}\right] /\left(X^{k / 4}+1\right) /\left(X^{k}+1\right) \\
v_{0}+v_{k / 2} X^{k / 2} & \vdots \\
v_{0} & \mathbb{Z}_{q}\left[X^{k / 2}\right] /\left(X^{k}+1\right) \\
& \mathbb{Z}_{q}
\end{array}
$$

Bootstrapping Unpacked Ciphertexts: Main Idea

(1) Isolate message-carrying coefficient v_{0} of $v(X)$ by homomorphically "tracing down" a tower of cyclotomic rings $\mathcal{O}_{2 k} / \mathcal{O}_{k} / \cdots / \mathcal{O}_{4} / \mathbb{Z}$.
(Trace $=$ sum of the two automorphisms of $\mathcal{O}_{2 i} / \mathcal{O}_{i}$.)

$$
\begin{array}{cc}
v_{0}+v_{1} X+v_{2} X^{2}+\cdots v_{k-1} X^{k-1} & \mathbb{Z}_{q}[X] /\left(X^{k}+1\right) \\
v_{0}+0 X+v_{2} X^{2}+\cdots 0 X^{k-1} & \mid \\
\left.v_{0}+v_{k / 4} X^{k / 4}+\cdots+x_{3 k / 4} X^{3 k / 4}\right] /\left(X^{k}+1\right) \\
\vdots & \vdots \\
v_{0}+v_{k / 2} X^{k / 2} & \mathbb{Z}_{q}\left[X^{k / 4}\right] /\left(X^{k}+1\right) \\
v_{0} & \mathbb{Z}_{q}\left[X^{k / 2}\right] /\left(X^{k}+1\right) \\
& \mid
\end{array}
$$

(2) Homomorphically "round" $v_{0} \in \mathbb{Z}_{q}$ to the message bit $\left\lfloor\frac{2}{q} \cdot v_{0}\right\rceil \in \mathbb{Z}_{2}$.

Algebra: Cyclotomic Towers and Product Bases

- Let $\zeta=\zeta_{k}$ have order k, a power of 2 . Its min. poly: $\zeta^{k / 2}+1=0$.

Algebra: Cyclotomic Towers and Product Bases

- Let $\zeta=\zeta_{k}$ have order k, a power of 2. Its min. poly: $\zeta^{k / 2}+1=0$. So $\mathcal{O}_{k}=\mathbb{Z}[\zeta] \cong \mathbb{Z}[X] /\left(X^{k / 2}+1\right)$ has \mathbb{Z}-basis $\left\{1, \zeta, \zeta^{2}, \ldots, \zeta^{k / 2-1}\right\}$.

Algebra: Cyclotomic Towers and Product Bases

- Let $\zeta=\zeta_{k}$ have order k, a power of 2. Its min. poly: $\zeta^{k / 2}+1=0$. So $\mathcal{O}_{k}=\mathbb{Z}[\zeta] \cong \mathbb{Z}[X] /\left(X^{k / 2}+1\right)$ has \mathbb{Z}-basis $\left\{1, \zeta, \zeta^{2}, \ldots, \zeta^{k / 2-1}\right\}$.
- Tower of quadratic extensions $\mathcal{O}_{k} / \mathcal{O}_{k / 2} / \cdots / \mathcal{O}_{4} / \mathbb{Z}$:

Algebra: Cyclotomic Towers and Product Bases

- Let $\zeta=\zeta_{k}$ have order k, a power of 2. Its min. poly: $\zeta^{k / 2}+1=0$. So $\mathcal{O}_{k}=\mathbb{Z}[\zeta] \cong \mathbb{Z}[X] /\left(X^{k / 2}+1\right)$ has \mathbb{Z}-basis $\left\{1, \zeta, \zeta^{2}, \ldots, \zeta^{k / 2-1}\right\}$.
- Tower of quadratic extensions $\mathcal{O}_{k} / \mathcal{O}_{k / 2} / \cdots / \mathcal{O}_{4} / \mathbb{Z}$:

$$
\begin{array}{ccc}
\zeta_{k}^{2}=\zeta_{k / 2} & \mathcal{O}_{k}=\mathcal{O}_{k / 2}\left[\zeta_{k}\right] & \mathcal{O}_{k / 2} \text {-basis } B_{k}^{\prime}=\left\{1, \zeta_{k}\right\} \\
\vdots & \vdots & \\
\zeta_{8}^{2}=\zeta_{4} & \mathcal{O}_{8}=\mathcal{O}_{4}\left[\zeta_{8}\right] & \mathcal{O}_{4} \text {-basis } B_{8}^{\prime}=\left\{1, \zeta_{8}\right\} \\
\zeta_{4}^{2}=\zeta_{2} & \mathcal{O}_{4}=\mathcal{O}_{2}\left[\zeta_{4}\right] & \mathcal{O}_{2} \text {-basis } B_{4}^{\prime}=\left\{1, \zeta_{4}\right\} \\
\zeta_{2}^{2}=1 & \mathcal{O}_{2}=\mathbb{Z}\left[\zeta_{2}\right]=\mathbb{Z} & \text { Z-basis } B_{2}^{\prime}=\{1\}
\end{array}
$$

Algebra: Cyclotomic Towers and Product Bases

- Let $\zeta=\zeta_{k}$ have order k, a power of 2. Its min. poly: $\zeta^{k / 2}+1=0$. So $\mathcal{O}_{k}=\mathbb{Z}[\zeta] \cong \mathbb{Z}[X] /\left(X^{k / 2}+1\right)$ has \mathbb{Z}-basis $\left\{1, \zeta, \zeta^{2}, \ldots, \zeta^{k / 2-1}\right\}$.
- Tower of quadratic extensions $\mathcal{O}_{k} / \mathcal{O}_{k / 2} / \cdots / \mathcal{O}_{4} / \mathbb{Z}$:

$$
\begin{array}{ccc}
\zeta_{k}^{2}=\zeta_{k / 2} & \mathcal{O}_{k}=\mathcal{O}_{k / 2}\left[\zeta_{k}\right] & \mathcal{O}_{k / 2} \text {-basis } B_{k}^{\prime}=\left\{1, \zeta_{k}\right\} \\
\zeta_{8}^{2}=\zeta_{4} & \mathcal{O}_{8}=\mathcal{O}_{4}\left[\zeta_{8}\right] & \mathcal{O}_{4} \text {-basis } B_{8}^{\prime}=\left\{1, \zeta_{8}\right\} \\
& \mathcal{O}_{4}=\mathcal{O}_{2}\left[\zeta_{4}\right] & \mathcal{O}_{2} \text {-basis } B_{4}^{\prime}=\left\{1, \zeta_{4}\right\} \\
\zeta_{4}^{2}=\zeta_{2} & \mid & \\
\zeta_{2}^{2}=1 & \mathcal{O}_{2}=\mathbb{Z}\left[\zeta_{2}\right]=\mathbb{Z} & \mathbb{Z} \text {-basis } B_{2}^{\prime}=\{1\}
\end{array}
$$

- "Product" \mathbb{Z}-basis of \mathcal{O}_{k} :

$$
B_{k}:=B_{k}^{\prime} \cdot B_{k / 2}=B_{k}^{\prime} \cdot B_{k / 2}^{\prime} \cdots B_{2}^{\prime}=\left\{1, \zeta, \zeta^{2}, \ldots, \zeta^{k / 2-1}\right\}
$$

Algebra: The Trace

- Tower of quadratic extensions $\mathcal{O}_{k} / \mathcal{O}_{k / 2} / \cdots / \mathcal{O}_{4} / \mathbb{Z}$, where $\zeta_{i}^{2}=\zeta_{i / 2}$.

Algebra: The Trace

- Tower of quadratic extensions $\mathcal{O}_{k} / \mathcal{O}_{k / 2} / \cdots / \mathcal{O}_{4} / \mathbb{Z}$, where $\zeta_{i}^{2}=\zeta_{i / 2}$.
- \mathcal{O}_{i} has exactly two automorphisms that fix $\mathcal{O}_{i / 2}: \zeta_{i} \mapsto \pm \zeta_{i}$.

The trace function $\operatorname{Tr}: \mathcal{O}_{i} \rightarrow \mathcal{O}_{i / 2}$ simply sums these automorphisms.

Algebra: The Trace

- Tower of quadratic extensions $\mathcal{O}_{k} / \mathcal{O}_{k / 2} / \cdots / \mathcal{O}_{4} / \mathbb{Z}$, where $\zeta_{i}^{2}=\zeta_{i / 2}$.
- \mathcal{O}_{i} has exactly two automorphisms that fix $\mathcal{O}_{i / 2}: \zeta_{i} \mapsto \pm \zeta_{i}$.

The trace function $\operatorname{Tr}: \mathcal{O}_{i} \rightarrow \mathcal{O}_{i / 2}$ simply sums these automorphisms.

- Let $v=v_{0} \cdot 1+v_{1} \cdot \zeta_{i} \in \mathcal{O}_{i}$ for $v_{0}, v_{1} \in \mathcal{O}_{i / 2}$.

Then $\operatorname{Tr}(v)=2 \cdot v_{0}$. So $\operatorname{Tr}\left(\mathcal{O}_{i}\right)=2 \cdot \mathcal{O}_{i / 2}$.

Algebra: The Trace

- Tower of quadratic extensions $\mathcal{O}_{k} / \mathcal{O}_{k / 2} / \cdots / \mathcal{O}_{4} / \mathbb{Z}$, where $\zeta_{i}^{2}=\zeta_{i / 2}$.
- \mathcal{O}_{i} has exactly two automorphisms that fix $\mathcal{O}_{i / 2}: \zeta_{i} \mapsto \pm \zeta_{i}$.

The trace function $\operatorname{Tr}: \mathcal{O}_{i} \rightarrow \mathcal{O}_{i / 2}$ simply sums these automorphisms.

- Let $v=v_{0} \cdot 1+v_{1} \cdot \zeta_{i} \in \mathcal{O}_{i}$ for $v_{0}, v_{1} \in \mathcal{O}_{i / 2}$.

Then $\operatorname{Tr}(v)=2 \cdot v_{0}$. So $\operatorname{Tr}\left(\mathcal{O}_{i}\right)=2 \cdot \mathcal{O}_{i / 2}$.

- More generally, $\operatorname{Tr}_{\mathcal{O}_{i} / \mathcal{O}_{i^{\prime}}}$ sums the automorphisms of \mathcal{O}_{i} that fix $\mathcal{O}_{i^{\prime}}$. Key facts:

Algebra: The Trace

- Tower of quadratic extensions $\mathcal{O}_{k} / \mathcal{O}_{k / 2} / \cdots / \mathcal{O}_{4} / \mathbb{Z}$, where $\zeta_{i}^{2}=\zeta_{i / 2}$.
- \mathcal{O}_{i} has exactly two automorphisms that fix $\mathcal{O}_{i / 2}: \zeta_{i} \mapsto \pm \zeta_{i}$.

The trace function $\operatorname{Tr}: \mathcal{O}_{i} \rightarrow \mathcal{O}_{i / 2}$ simply sums these automorphisms.

- Let $v=v_{0} \cdot 1+v_{1} \cdot \zeta_{i} \in \mathcal{O}_{i}$ for $v_{0}, v_{1} \in \mathcal{O}_{i / 2}$.

Then $\operatorname{Tr}(v)=2 \cdot v_{0}$. So $\operatorname{Tr}\left(\mathcal{O}_{i}\right)=2 \cdot \mathcal{O}_{i / 2}$.

- More generally, $\operatorname{Tr}_{\mathcal{O}_{i} / \mathcal{O}_{i^{\prime}}}$ sums the automorphisms of \mathcal{O}_{i} that fix $\mathcal{O}_{i^{\prime}}$. Key facts:

$$
\star \operatorname{Tr}_{\mathcal{O}_{i} / \mathcal{O}_{i^{\prime \prime}}}=\operatorname{Tr}_{\mathcal{O}_{i^{\prime}} / \mathcal{O}_{i^{\prime \prime}} \circ \operatorname{Tr}_{\mathcal{O}_{i} / \mathcal{O}_{i^{\prime}}} .}
$$

Algebra: The Trace

- Tower of quadratic extensions $\mathcal{O}_{k} / \mathcal{O}_{k / 2} / \cdots / \mathcal{O}_{4} / \mathbb{Z}$, where $\zeta_{i}^{2}=\zeta_{i / 2}$.
- \mathcal{O}_{i} has exactly two automorphisms that fix $\mathcal{O}_{i / 2}: \zeta_{i} \mapsto \pm \zeta_{i}$.

The trace function $\operatorname{Tr}: \mathcal{O}_{i} \rightarrow \mathcal{O}_{i / 2}$ simply sums these automorphisms.

- Let $v=v_{0} \cdot 1+v_{1} \cdot \zeta_{i} \in \mathcal{O}_{i}$ for $v_{0}, v_{1} \in \mathcal{O}_{i / 2}$.

Then $\operatorname{Tr}(v)=2 \cdot v_{0}$. So $\operatorname{Tr}\left(\mathcal{O}_{i}\right)=2 \cdot \mathcal{O}_{i / 2}$.

- More generally, $\operatorname{Tr}_{\mathcal{O}_{i} / \mathcal{O}_{i^{\prime}}}$ sums the automorphisms of \mathcal{O}_{i} that fix $\mathcal{O}_{i^{\prime}}$. Key facts:

$$
\begin{aligned}
& \star \operatorname{Tr}_{\mathcal{O}_{i} / \mathcal{O}_{i^{\prime \prime}}}=\operatorname{Tr}_{\mathcal{O}_{i^{\prime}} / \mathcal{O}_{i^{\prime \prime}} \circ \operatorname{Tr}_{\mathcal{O}_{i} / \mathcal{O}_{i^{\prime}}}}^{\Rightarrow \operatorname{Tr}_{\mathcal{O}_{i} / \mathcal{O}_{i^{\prime}}}\left(\mathcal{O}_{i}\right)=\operatorname{deg}\left(\mathcal{O}_{i} / \mathcal{O}_{i^{\prime}}\right) \cdot \mathcal{O}_{i^{\prime}}} .
\end{aligned}
$$

Algebra: The Trace

- Tower of quadratic extensions $\mathcal{O}_{k} / \mathcal{O}_{k / 2} / \cdots / \mathcal{O}_{4} / \mathbb{Z}$, where $\zeta_{i}^{2}=\zeta_{i / 2}$.
- \mathcal{O}_{i} has exactly two automorphisms that fix $\mathcal{O}_{i / 2}: \zeta_{i} \mapsto \pm \zeta_{i}$.

The trace function $\operatorname{Tr}: \mathcal{O}_{i} \rightarrow \mathcal{O}_{i / 2}$ simply sums these automorphisms.

- Let $v=v_{0} \cdot 1+v_{1} \cdot \zeta_{i} \in \mathcal{O}_{i}$ for $v_{0}, v_{1} \in \mathcal{O}_{i / 2}$.

Then $\operatorname{Tr}(v)=2 \cdot v_{0}$. So $\operatorname{Tr}\left(\mathcal{O}_{i}\right)=2 \cdot \mathcal{O}_{i / 2}$.

- More generally, $\operatorname{Tr}_{\mathcal{O}_{i} / \mathcal{O}_{i^{\prime}}}$ sums the automorphisms of \mathcal{O}_{i} that fix $\mathcal{O}_{i^{\prime}}$. Key facts:

$$
\begin{aligned}
& \star \operatorname{Tr}_{\mathcal{O}_{i} / \mathcal{O}_{i^{\prime \prime}}}=\operatorname{Tr}_{\mathcal{O}_{i^{\prime}} / \mathcal{O}_{i^{\prime \prime}}} \circ \operatorname{Tr}_{\mathcal{O}_{i} / \mathcal{O}_{i^{\prime}}} \\
& \Rightarrow \operatorname{Tr}_{\mathcal{O}_{i} / \mathcal{O}_{i^{\prime}}}\left(\mathcal{O}_{i}\right)=\operatorname{deg}\left(\mathcal{O}_{i} / \mathcal{O}_{i^{\prime}}\right) \cdot \mathcal{O}_{i^{\prime}} \\
& \Rightarrow \operatorname{Tr}_{\mathcal{O}_{i} / \mathbb{Z}}(v)=\frac{i}{2} \cdot v_{0}, \text { where } v_{0} \in \mathbb{Z} \text { is the coeff of } \zeta_{i}^{0}=1 .
\end{aligned}
$$

Bootstrapping Unpacked Ciphertexts: Overview

Recall: $R=\mathcal{O}_{k}$, and $v=c_{0}+c_{1} \cdot s \approx \frac{q}{2} \mu \in R_{q}$ for message $\mu \in \mathbb{Z}_{2} \subseteq R_{2}$.

Bootstrapping Unpacked Ciphertexts: Overview

Recall: $R=\mathcal{O}_{k}$, and $v=c_{0}+c_{1} \cdot s \approx \frac{q}{2} \mu \in R_{q}$ for message $\mu \in \mathbb{Z}_{2} \subseteq R_{2}$.
(1) Prepare:
\star View c as a "noiseless" encryption of plaintext

$$
v=\frac{q}{q} \cdot v+0=c_{0}+c_{1} \cdot s \in R_{q} .
$$

Plaintext ring is now R_{q}, not R_{2} !

Bootstrapping Unpacked Ciphertexts: Overview

Recall: $R=\mathcal{O}_{k}$, and $v=c_{0}+c_{1} \cdot s \approx \frac{q}{2} \mu \in R_{q}$ for message $\mu \in \mathbb{Z}_{2} \subseteq R_{2}$.
(1) Prepare:
\star View c as a "noiseless" encryption of plaintext

$$
v=\frac{q}{q} \cdot v+0=c_{0}+c_{1} \cdot s \in R_{q}
$$

Plaintext ring is now R_{q}, not R_{2} !
\star (Switch to larger ciphertext modulus $Q \gg q$ and ring $\tilde{R} \supseteq R$, to support upcoming homomorphic operations.)

Bootstrapping Unpacked Ciphertexts: Overview

Recall: $R=\mathcal{O}_{k}$, and $v=c_{0}+c_{1} \cdot s \approx \frac{q}{2} \mu \in R_{q}$ for message $\mu \in \mathbb{Z}_{2} \subseteq R_{2}$.
(1) Prepare:
\star View c as a "noiseless" encryption of plaintext

$$
v=\frac{q}{q} \cdot v+0=c_{0}+c_{1} \cdot s \in R_{q}
$$

Plaintext ring is now R_{q}, not R_{2} !

* (Switch to larger ciphertext modulus $Q \gg q$ and ring $\tilde{R} \supseteq R$, to support upcoming homomorphic operations.)
2 Extract "constant term" $v_{0} \in \mathbb{Z}_{q}$ of v : homomorphically evaluate

$$
\frac{\operatorname{Tr}_{R / \mathbb{Z}}(v)}{\operatorname{deg}(R / \mathbb{Z})}=v_{0} \approx \frac{q}{2} \cdot \mu \in \mathbb{Z}_{q}
$$

Fast, increases noise rate by only $\approx \sqrt{k}$ factor.

Bootstrapping Unpacked Ciphertexts: Overview

Recall: $R=\mathcal{O}_{k}$, and $v=c_{0}+c_{1} \cdot s \approx \frac{q}{2} \mu \in R_{q}$ for message $\mu \in \mathbb{Z}_{2} \subseteq R_{2}$.
(1) Prepare:
\star View c as a "noiseless" encryption of plaintext

$$
v=\frac{q}{q} \cdot v+0=c_{0}+c_{1} \cdot s \in R_{q}
$$

Plaintext ring is now R_{q}, not R_{2} !

* (Switch to larger ciphertext modulus $Q \gg q$ and ring $\tilde{R} \supseteq R$, to support upcoming homomorphic operations.)
(2) Extract "constant term" $v_{0} \in \mathbb{Z}_{q}$ of v : homomorphically evaluate

$$
\frac{\operatorname{Tr}_{R / \mathbb{Z}}(v)}{\operatorname{deg}(R / \mathbb{Z})}=v_{0} \approx \frac{q}{2} \cdot \mu \in \mathbb{Z}_{q}
$$

Fast, increases noise rate by only $\approx \sqrt{k}$ factor.
(3) Round: homomorphically evaluate $\left\lfloor v_{0}\right\rceil=\mu \in \mathbb{Z}_{2}$.

Uses algebraic procedure of depth $\lg (q / 2) \&$ size $\lg ^{2}(q / 2)$ [GHS'12b]

Bootstrapping Unpacked Ciphertexts: Overview

Recall: $R=\mathcal{O}_{k}$, and $v=c_{0}+c_{1} \cdot s \approx \frac{q}{2} \mu \in R_{q}$ for message $\mu \in \mathbb{Z}_{2} \subseteq R_{2}$.
(1) Prepare:
\star View c as a "noiseless" encryption of plaintext

$$
v=\frac{q}{q} \cdot v+0=c_{0}+c_{1} \cdot s \in R_{q}
$$

Plaintext ring is now R_{q}, not R_{2} !

* (Switch to larger ciphertext modulus $Q \gg q$ and ring $\tilde{R} \supseteq R$, to support upcoming homomorphic operations.)
(2) Extract "constant term" $v_{0} \in \mathbb{Z}_{q}$ of v : homomorphically evaluate

$$
\frac{\operatorname{Tr}_{R / \mathbb{Z}}(v)}{\operatorname{deg}(R / \mathbb{Z})}=v_{0} \approx \frac{q}{2} \cdot \mu \in \mathbb{Z}_{q}
$$

Fast, increases noise rate by only $\approx \sqrt{k}$ factor.
(3) Round: homomorphically evaluate $\left\lfloor v_{0}\right\rceil=\mu \in \mathbb{Z}_{2}$.

Uses algebraic procedure of depth $\lg (q / 2) \&$ size $\lg ^{2}(q / 2)$ [GHS'12b]
** Now have an encryption of $\left\lfloor v_{0}\right\rceil=\mu$. Done!

${\text { Evaluating } \operatorname{Trace}_{R / \mathbb{Z}} \text { Homomorphically }}$

?? Use "ring switching" [GHPS'12] ?

\checkmark Computes $\operatorname{Tr}_{R / R^{\prime}}$ homomorphically, by taking $\operatorname{Tr}_{R / R^{\prime}}$ of ciphertext.

${\text { Evaluating } \operatorname{Trace}_{R / \mathbb{Z}} \text { Homomorphically }}$

?? Use "ring switching" [GHPS'12] ?
\checkmark Computes $\operatorname{Tr}_{R / R^{\prime}}$ homomorphically, by taking $\operatorname{Tr}_{R / R^{\prime}}$ of ciphertext.
\times Requires hardness of ring-LWE in $R^{\prime} \ldots$ but here $R^{\prime}=\mathbb{Z}$.

Evaluating $\operatorname{Trace}_{R / \mathbb{Z}}$ Homomorphically

?? Use "ring switching" [GHPS'12] ?
\checkmark Computes $\operatorname{Tr}_{R / R^{\prime}}$ homomorphically, by taking $\operatorname{Tr}_{R / R^{\prime}}$ of ciphertext.
\times Requires hardness of ring-LWE in $R^{\prime} \ldots$ but here $R^{\prime}=\mathbb{Z}$.
?? Directly apply all automorphisms τ of R / \mathbb{Z} to ciphertext, then sum?

$$
\tau\left(c_{0}\right)+\tau\left(c_{1}\right) \cdot \tau(s)=\tau(v) \stackrel{\text { key-switch }}{\Longrightarrow} \quad c_{0}^{\prime}+c_{1}^{\prime} \cdot s \approx \tau(v)
$$

Evaluating $\operatorname{Trace}_{R / \mathbb{Z}}$ Homomorphically

?? Use "ring switching" [GHPS'12] ?
\checkmark Computes $\operatorname{Tr}_{R / R^{\prime}}$ homomorphically, by taking $\operatorname{Tr}_{R / R^{\prime}}$ of ciphertext.
\times Requires hardness of ring-LWE in $R^{\prime} \ldots$ but here $R^{\prime}=\mathbb{Z}$.
?? Directly apply all automorphisms τ of R / \mathbb{Z} to ciphertext, then sum?

$$
\tau\left(c_{0}\right)+\tau\left(c_{1}\right) \cdot \tau(s)=\tau(v) \stackrel{\text { key-switch }}{\Longrightarrow} \quad c_{0}^{\prime}+c_{1}^{\prime} \cdot s \approx \tau(v)
$$

X $k / 2$ automorphisms \& key-switches: quadratic work \& space

Evaluating $\operatorname{Trace}_{R / \mathbb{Z}}$ Homomorphically

?? Use "ring switching" [GHPS'12] ?
\checkmark Computes $\operatorname{Tr}_{R / R^{\prime}}$ homomorphically, by taking $\operatorname{Tr}_{R / R^{\prime}}$ of ciphertext.
\times Requires hardness of ring-LWE in $R^{\prime} \ldots$ but here $R^{\prime}=\mathbb{Z}$.
?? Directly apply all automorphisms τ of R / \mathbb{Z} to ciphertext, then sum?

$$
\tau\left(c_{0}\right)+\tau\left(c_{1}\right) \cdot \tau(s)=\tau(v) \stackrel{\text { key-switch }}{\Longrightarrow} \quad c_{0}^{\prime}+c_{1}^{\prime} \cdot s \approx \tau(v)
$$

X $k / 2$ automorphisms \& key-switches: quadratic work \& space
\checkmark Iteratively "trace down" $R=\mathcal{O}_{k} \rightarrow \mathcal{O}_{k / 2} \rightarrow \cdots \rightarrow \mathbb{Z}$.

Evaluating $\operatorname{Trace}_{R / \mathbb{Z}}$ Homomorphically

?? Use "ring switching" [GHPS'12] ?
\checkmark Computes $\operatorname{Tr}_{R / R^{\prime}}$ homomorphically, by taking $\operatorname{Tr}_{R / R^{\prime}}$ of ciphertext.
\times Requires hardness of ring-LWE in $R^{\prime} \ldots$ but here $R^{\prime}=\mathbb{Z}$.
?? Directly apply all automorphisms τ of R / \mathbb{Z} to ciphertext, then sum?

$$
\tau\left(c_{0}\right)+\tau\left(c_{1}\right) \cdot \tau(s)=\tau(v) \stackrel{\text { key-switch }}{\Longrightarrow} \quad c_{0}^{\prime}+c_{1}^{\prime} \cdot s \approx \tau(v)
$$

$x \quad k / 2$ automorphisms \& key-switches: quadratic work \& space
\checkmark Iteratively "trace down" $R=\mathcal{O}_{k} \rightarrow \mathcal{O}_{k / 2} \rightarrow \cdots \rightarrow \mathbb{Z}$.
\star Only need to apply the two automorphisms of each $\mathcal{O}_{i} / \mathcal{O}_{i / 2}$.
\star Total $\lg (k)$ automorphisms \& key-switches $\Rightarrow \tilde{O}(k)$ work.

Evaluating $\operatorname{Trace}_{R / \mathbb{Z}}$ Homomorphically

?? Use "ring switching" [GHPS'12] ?
\checkmark Computes $\operatorname{Tr}_{R / R^{\prime}}$ homomorphically, by taking $\operatorname{Tr}_{R / R^{\prime}}$ of ciphertext.
\times Requires hardness of ring-LWE in $R^{\prime} \ldots$ but here $R^{\prime}=\mathbb{Z}$.
?? Directly apply all automorphisms τ of R / \mathbb{Z} to ciphertext, then sum?

$$
\tau\left(c_{0}\right)+\tau\left(c_{1}\right) \cdot \tau(s)=\tau(v) \stackrel{\text { key-switch }}{\Longrightarrow} \quad c_{0}^{\prime}+c_{1}^{\prime} \cdot s \approx \tau(v)
$$

X $k / 2$ automorphisms \& key-switches: quadratic work \& space
\checkmark Iteratively "trace down" $R=\mathcal{O}_{k} \rightarrow \mathcal{O}_{k / 2} \rightarrow \cdots \rightarrow \mathbb{Z}$.
\star Only need to apply the two automorphisms of each $\mathcal{O}_{i} / \mathcal{O}_{i / 2}$.

* Total $\lg (k)$ automorphisms \& key-switches $\Rightarrow \tilde{O}(k)$ work.

Detail \#1: ciphertexts are over $\tilde{R} \supseteq R$, so use automorphisms of \tilde{R} that coincide with those of $\mathcal{O}_{i} / \mathcal{O}_{i / 2}$.

Evaluating $\operatorname{Trace}_{R / \mathbb{Z}}$ Homomorphically

?? Use "ring switching" [GHPS'12] ?
\checkmark Computes $\operatorname{Tr}_{R / R^{\prime}}$ homomorphically, by taking $\operatorname{Tr}_{R / R^{\prime}}$ of ciphertext.
\times Requires hardness of ring-LWE in $R^{\prime} \ldots$ but here $R^{\prime}=\mathbb{Z}$.
?? Directly apply all automorphisms τ of R / \mathbb{Z} to ciphertext, then sum?

$$
\tau\left(c_{0}\right)+\tau\left(c_{1}\right) \cdot \tau(s)=\tau(v) \stackrel{\text { key-switch }}{\Longrightarrow} \quad c_{0}^{\prime}+c_{1}^{\prime} \cdot s \approx \tau(v)
$$

$x \quad k / 2$ automorphisms \& key-switches: quadratic work \& space
\checkmark Iteratively "trace down" $R=\mathcal{O}_{k} \rightarrow \mathcal{O}_{k / 2} \rightarrow \cdots \rightarrow \mathbb{Z}$.
\star Only need to apply the two automorphisms of each $\mathcal{O}_{i} / \mathcal{O}_{i / 2}$.
\star Total $\lg (k)$ automorphisms \& key-switches $\Rightarrow \tilde{O}(k)$ work.
Detail \#1: ciphertexts are over $\tilde{R} \supseteq R$, so use automorphisms of \tilde{R} that coincide with those of $\mathcal{O}_{i} / \mathcal{O}_{i / 2}$.
Detail \#2: each $\operatorname{Tr}\left(\mathcal{O}_{i}\right)=2 \mathcal{O}_{i / 2}$, so lift to plaintext modulus $2 q$, then halve result.

Main Result: Bootstrapping Packed Ciphertexts

Bootstrapping Packed Ciphertexts: Overview

(1) Prepare: as before, view c as a "noiseless" encryption of plaintext

$$
v=c_{0}+c_{1} \cdot s=\sum_{j} v_{j} \cdot b_{j} \in R_{q} .
$$

Recall: $\mu=\lfloor v\rceil=\sum_{j}\left\lfloor v_{j}\right\rceil \cdot b_{j} \in R_{2}$ (where $b_{j}=\zeta^{j}$).

Bootstrapping Packed Ciphertexts: Overview

(1) Prepare: as before, view c as a "noiseless" encryption of plaintext

$$
v=c_{0}+c_{1} \cdot s=\sum_{j} v_{j} \cdot b_{j} \in R_{q}
$$

Recall: $\mu=\lfloor v\rceil=\sum_{j}\left\lfloor v_{j}\right\rceil \cdot b_{j} \in R_{2}$ (where $b_{j}=\zeta^{j}$).
(2) Homomorphically map coeffs v_{j} to " \mathbb{Z}_{q}-slots" of certain ring S_{q} :

$$
\sum v_{j} \cdot b_{j} \in R_{q} \quad \longmapsto \quad \sum v_{j} \cdot c_{j} \in S_{q}
$$

(Change of basis, analogous to homomorphic DFT.)

Bootstrapping Packed Ciphertexts: Overview

(1) Prepare: as before, view c as a "noiseless" encryption of plaintext

$$
v=c_{0}+c_{1} \cdot s=\sum_{j} v_{j} \cdot b_{j} \in R_{q} .
$$

Recall: $\mu=\lfloor v\rceil=\sum_{j}\left\lfloor v_{j}\right\rceil \cdot b_{j} \in R_{2}\left(\right.$ where $\left.b_{j}=\zeta^{j}\right)$.
(2) Homomorphically map coeffs v_{j} to " \mathbb{Z}_{q}-slots" of certain ring S_{q} :

$$
\sum v_{j} \cdot b_{j} \in R_{q} \quad \longmapsto \quad \sum v_{j} \cdot c_{j} \in S_{q} .
$$

(Change of basis, analogous to homomorphic DFT.)
(3) Batch-round: homom'ly apply $\lfloor\cdot\rceil$ on all \mathbb{Z}_{q}-slots at once [SV'11]:

$$
\sum v_{j} \cdot c_{j} \in S_{q} \quad \longmapsto \quad \sum\left\lfloor v_{j}\right\rceil \cdot c_{j} \in S_{2} .
$$

Bootstrapping Packed Ciphertexts: Overview

(1) Prepare: as before, view c as a "noiseless" encryption of plaintext

$$
v=c_{0}+c_{1} \cdot s=\sum_{j} v_{j} \cdot b_{j} \in R_{q} .
$$

Recall: $\mu=\lfloor v\rceil=\sum_{j}\left\lfloor v_{j}\right\rceil \cdot b_{j} \in R_{2}$ (where $b_{j}=\zeta^{j}$).
(2) Homomorphically map coeffs v_{j} to " \mathbb{Z}_{q}-slots" of certain ring S_{q} :

$$
\sum v_{j} \cdot b_{j} \in R_{q} \quad \longmapsto \quad \sum v_{j} \cdot c_{j} \in S_{q} .
$$

(Change of basis, analogous to homomorphic DFT.)
(3) Batch-round: homom'ly apply $\lfloor\cdot\rceil$ on all \mathbb{Z}_{q}-slots at once [SV'11]:

$$
\sum v_{j} \cdot c_{j} \in S_{q} \quad \longmapsto \quad \sum\left\lfloor v_{j}\right\rceil \cdot c_{j} \in S_{2}
$$

(4) Homomorphically reverse-map \mathbb{Z}_{2}-slots back to B-coeffs:

$$
\sum\left\lfloor v_{j}\right\rceil \cdot c_{j} \in S_{2} \quad \longmapsto \quad \sum\left\lfloor v_{j}\right\rceil \cdot b_{j}=\mu \in R_{2}
$$

(Akin to homomorphic DFT ${ }^{-1}$.)

Algebra: Slots and CRT Sets

- Let $1=\ell_{0}\left|\ell_{1}\right| \ell_{2} \mid \cdots$ (all odd), and $S^{(i)}=\mathcal{O}_{\ell_{i}}=\mathbb{Z}\left[\zeta_{\ell_{i}}\right]$. Identifying $\zeta_{\ell_{i}}^{\ell_{i} / \ell_{i-1}}=\zeta_{\ell_{i-1}}$, we get a tower $S^{(i)} / S^{(i-1)} / \cdots / \mathbb{Z}$.

Algebra: Slots and CRT Sets

- Let $1=\ell_{0}\left|\ell_{1}\right| \ell_{2} \mid \cdots$ (all odd), and $S^{(i)}=\mathcal{O}_{\ell_{i}}=\mathbb{Z}\left[\zeta_{\ell_{i}}\right]$. Identifying $\zeta_{\ell_{i}}^{\ell_{i} / \ell_{i-1}}=\zeta_{\ell_{i-1}}$, we get a tower $S^{(i)} / S^{(i-1)} / \cdots / \mathbb{Z}$.
- $\ln S=S^{(i)}, 2$ factors into distinct prime ideals, like so:

Algebra: Slots and CRT Sets

- Let $1=\ell_{0}\left|\ell_{1}\right| \ell_{2} \mid \cdots$ (all odd), and $S^{(i)}=\mathcal{O}_{\ell_{i}}=\mathbb{Z}\left[\zeta_{\ell_{i}}\right]$. Identifying $\zeta_{\ell_{i}}^{\ell_{i} / \ell_{i-1}}=\zeta_{\ell_{i-1}}$, we get a tower $S^{(i)} / S^{(i-1)} / \cdots / \mathbb{Z}$.
- $\ln S=S^{(i)}, 2$ factors into distinct prime ideals, like so:

- By Chinese Rem Thm, $S_{2} \cong \bigoplus_{j}\left(S / \mathfrak{p}_{j}\right)$ via natural homomorphism.

Algebra: Slots and CRT Sets

- Let $1=\ell_{0}\left|\ell_{1}\right| \ell_{2} \mid \cdots$ (all odd), and $S^{(i)}=\mathcal{O}_{\ell_{i}}=\mathbb{Z}\left[\zeta_{\ell_{i}}\right]$. Identifying $\zeta_{\ell_{i}}^{\ell_{i} / \ell_{i-1}}=\zeta_{\ell_{i-1}}$, we get a tower $S^{(i)} / S^{(i-1)} / \cdots / \mathbb{Z}$.
- $\ln S=S^{(i)}, 2$ factors into distinct prime ideals, like so:

- By Chinese Rem Thm, $S_{2} \cong \bigoplus_{j}\left(S / \mathfrak{p}_{j}\right)$ via natural homomorphism. "CRT set:" $C=\left\{c_{j}\right\} \subset S$ s.t. $c_{j}=1\left(\bmod \mathfrak{p}_{j}\right),=0\left(\bmod \mathfrak{p}_{\neq j}\right)$. Mapping $v_{j} \in \mathbb{Z}_{2} \mapsto v_{j} \cdot c_{j} \in S_{2}$ embeds \mathbb{Z}_{2} into j th "slot" of S_{2}.

Algebra: Slots and CRT Sets

- Let $1=\ell_{0}\left|\ell_{1}\right| \ell_{2} \mid \cdots$ (all odd), and $S^{(i)}=\mathcal{O}_{\ell_{i}}=\mathbb{Z}\left[\zeta_{\ell_{i}}\right]$.

Identifying $\zeta_{\ell_{i}}^{\ell_{i} / \ell_{i-1}}=\zeta_{\ell_{i-1}}$, we get a tower $S^{(i)} / S^{(i-1)} / \cdots / \mathbb{Z}$.

- $\ln S=S^{(i)}, 2$ factors into distinct prime ideals, like so:

- By Chinese Rem Thm, $S_{2} \cong \bigoplus_{j}\left(S / \mathfrak{p}_{j}\right)$ via natural homomorphism. "CRT set:" $C=\left\{c_{j}\right\} \subset S$ s.t. $c_{j}=1\left(\bmod \mathfrak{p}_{j}\right),=0\left(\bmod \mathfrak{p}_{\neq j}\right)$. Mapping $v_{j} \in \mathbb{Z}_{2} \mapsto v_{j} \cdot c_{j} \in S_{2}$ embeds \mathbb{Z}_{2} into j th "slot" of S_{2}.
- Can factor $C_{i}=C_{i}^{\prime} \cdot C_{i-1}$: let $c_{k}^{\prime}=1\left(\bmod \mathfrak{p}_{\star, k}\right),=0\left(\bmod \mathfrak{p}_{\star, \neq k}\right)$.

Algebra: Slots and CRT Sets

- Let $1=\ell_{0}\left|\ell_{1}\right| \ell_{2} \mid \cdots$ (all odd), and $S^{(i)}=\mathcal{O}_{\ell_{i}}=\mathbb{Z}\left[\zeta_{\ell_{i}}\right]$.

Identifying $\zeta_{\ell_{i}}^{\ell_{i} / \ell_{i-1}}=\zeta_{\ell_{i-1}}$, we get a tower $S^{(i)} / S^{(i-1)} / \cdots / \mathbb{Z}$.

- $\ln S=S^{(i)}, 2$ factors into distinct prime ideals, like so:

- By Chinese Rem Thm, $S_{2} \cong \bigoplus_{j}\left(S / \mathfrak{p}_{j}\right)$ via natural homomorphism. "CRT set:" $C=\left\{c_{j}\right\} \subset S$ s.t. $c_{j}=1\left(\bmod \mathfrak{p}_{j}\right),=0\left(\bmod \mathfrak{p}_{\neq j}\right)$. Mapping $v_{j} \in \mathbb{Z}_{2} \mapsto v_{j} \cdot c_{j} \in S_{2}$ embeds \mathbb{Z}_{2} into j th "slot" of S_{2}.
- Can factor $C_{i}=C_{i}^{\prime} \cdot C_{i-1}$: let $c_{k}^{\prime}=1\left(\bmod \mathfrak{p}_{\star, k}\right),=0\left(\bmod \mathfrak{p}_{\star, \neq k}\right)$.
- Similarly for $S_{q} \cong \bigoplus_{j}\left(S / \mathfrak{p}_{j}^{\lg q}\right)$.

Mapping Coeffs to Slots: Overview

- Choose S so that S_{q} has $\geq \operatorname{deg}(R / \mathbb{Z}) \mathbb{Z}_{q}$-slots, via:

$$
\left(v_{j}\right) \in \mathbb{Z}_{q}^{k / 2} \longmapsto \sum v_{j} \cdot c_{j} \bmod q
$$

for an appropriate CRT set $C=\left\{c_{j}\right\} \subset S$ of size $k / 2$.

Mapping Coeffs to Slots: Overview

- Choose S so that S_{q} has $\geq \operatorname{deg}(R / \mathbb{Z}) \mathbb{Z}_{q}$-slots, via:

$$
\left(v_{j}\right) \in \mathbb{Z}_{q}^{k / 2} \longmapsto \sum v_{j} \cdot c_{j} \bmod q
$$

for an appropriate CRT set $C=\left\{c_{j}\right\} \subset S$ of size $k / 2$.

- Our goal: homomorphically map $\sum v_{j} \cdot b_{j} \in R_{q} \longmapsto \sum v_{j} \cdot c_{j} \in S_{q}$.

Mapping Coeffs to Slots: Overview

- Choose S so that S_{q} has $\geq \operatorname{deg}(R / \mathbb{Z}) \mathbb{Z}_{q}$-slots, via:

$$
\left(v_{j}\right) \in \mathbb{Z}_{q}^{k / 2} \longmapsto \sum v_{j} \cdot c_{j} \bmod q
$$

for an appropriate CRT set $C=\left\{c_{j}\right\} \subset S$ of size $k / 2$.

- Our goal: homomorphically map $\sum v_{j} \cdot b_{j} \in R_{q} \longmapsto \sum v_{j} \cdot c_{j} \in S_{q}$.

Equivalently, evaluate the \mathbb{Z}-linear* map $L: R \rightarrow S$ defined by

$$
L\left(b_{j}\right)=c_{j} .
$$

${ }^{*} \mathbb{Z}$-linear: $L\left(b+b^{\prime}\right)=L(b)+L\left(b^{\prime}\right), L(v \cdot b)=v \cdot L(b)$ for any $b, b^{\prime} \in R, v \in \mathbb{Z}$.

Mapping Coeffs to Slots: Overview

- Choose S so that S_{q} has $\geq \operatorname{deg}(R / \mathbb{Z}) \mathbb{Z}_{q}$-slots, via:

$$
\left(v_{j}\right) \in \mathbb{Z}_{q}^{k / 2} \longmapsto \sum v_{j} \cdot c_{j} \bmod q
$$

for an appropriate CRT set $C=\left\{c_{j}\right\} \subset S$ of size $k / 2$.

- Our goal: homomorphically map $\sum v_{j} \cdot b_{j} \in R_{q} \longmapsto \sum v_{j} \cdot c_{j} \in S_{q}$.

Equivalently, evaluate the \mathbb{Z}-linear* map $L: R \rightarrow S$ defined by

$$
L\left(b_{j}\right)=c_{j} .
$$

- Ring-switching [GHPS'12] lets us eval any R^{\prime}-linear map $L: R \rightarrow R^{\prime}$

Mapping Coeffs to Slots: Overview

- Choose S so that S_{q} has $\geq \operatorname{deg}(R / \mathbb{Z}) \mathbb{Z}_{q}$-slots, via:

$$
\left(v_{j}\right) \in \mathbb{Z}_{q}^{k / 2} \longmapsto \sum v_{j} \cdot c_{j} \bmod q
$$

for an appropriate CRT set $C=\left\{c_{j}\right\} \subset S$ of size $k / 2$.

- Our goal: homomorphically map $\sum v_{j} \cdot b_{j} \in R_{q} \longmapsto \sum v_{j} \cdot c_{j} \in S_{q}$.

Equivalently, evaluate the \mathbb{Z}-linear* map $L: R \rightarrow S$ defined by

$$
L\left(b_{j}\right)=c_{j} .
$$

- Ring-switching [GHPS'12] lets us eval any R^{\prime}-linear map $L: R \rightarrow R^{\prime}$
\ldots but only for a subring $R^{\prime} \subseteq R$.
${ }^{*} \mathbb{Z}$-linear: $L\left(b+b^{\prime}\right)=L(b)+L\left(b^{\prime}\right), L(v \cdot b)=v \cdot L(b)$ for any $b, b^{\prime} \in R, v \in \mathbb{Z}$.

Mapping Coeffs to Slots: Overview

- Choose S so that S_{q} has $\geq \operatorname{deg}(R / \mathbb{Z}) \mathbb{Z}_{q}$-slots, via:

$$
\left(v_{j}\right) \in \mathbb{Z}_{q}^{k / 2} \longmapsto \sum v_{j} \cdot c_{j} \bmod q
$$

for an appropriate CRT set $C=\left\{c_{j}\right\} \subset S$ of size $k / 2$.

- Our goal: homomorphically map $\sum v_{j} \cdot b_{j} \in R_{q} \longmapsto \sum v_{j} \cdot c_{j} \in S_{q}$.

Equivalently, evaluate the \mathbb{Z}-linear* map $L: R \rightarrow S$ defined by

$$
L\left(b_{j}\right)=c_{j} .
$$

- Ring-switching [GHPS'12] lets us eval any R^{\prime}-linear map $L: R \rightarrow R^{\prime}$
\ldots but only for a subring $R^{\prime} \subseteq R$.

Goal for Remainder of Talk

- Extend ring-switching to (efficiently) handle \mathbb{Z}-linear maps $L: R \rightarrow S$.
${ }^{*} \mathbb{Z}$-linear: $L\left(b+b^{\prime}\right)=L(b)+L\left(b^{\prime}\right), L(v \cdot b)=v \cdot L(b)$ for any $b, b^{\prime} \in R, v \in \mathbb{Z}$.

Algebra: Combining Cyclotomic Rings

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$. Let $d=\operatorname{gcd}(k, \ell)$ and $m=\operatorname{lcm}(k, \ell)$.

Algebra: Combining Cyclotomic Rings

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$. Let $d=\operatorname{gcd}(k, \ell)$ and $m=\operatorname{lcm}(k, \ell)$.

Algebra: Combining Cyclotomic Rings

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$. Let $d=\operatorname{gcd}(k, \ell)$ and $m=\operatorname{lcm}(k, \ell)$.

- Compositum T as a tensor product of R, S, where \otimes is E-bilinear:
$T \cong(R / E) \otimes(S / E):=\left\{\sum e_{i, j}\left(r_{i} \otimes s_{j}\right): e_{i, j} \in E, r_{i} \in R, s_{j} \in S\right\}$.

Algebra: Combining Cyclotomic Rings

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$. Let $d=\operatorname{gcd}(k, \ell)$ and $m=\operatorname{lcm}(k, \ell)$.

- Compositum T as a tensor product of R, S, where \otimes is E-bilinear:
$T \cong(R / E) \otimes(S / E):=\left\{\sum e_{i, j}\left(r_{i} \otimes s_{j}\right): e_{i, j} \in E, r_{i} \in R, s_{j} \in S\right\}$.

Easy Lemma

- For any E-linear $L: R \rightarrow S$, there is an S-linear $\bar{L}: T \rightarrow S$ that agrees with L on R.

Algebra: Combining Cyclotomic Rings

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$. Let $d=\operatorname{gcd}(k, \ell)$ and $m=\operatorname{lcm}(k, \ell)$.

- Compositum T as a tensor product of R, S, where \otimes is E-bilinear:
$T \cong(R / E) \otimes(S / E):=\left\{\sum e_{i, j}\left(r_{i} \otimes s_{j}\right): e_{i, j} \in E, r_{i} \in R, s_{j} \in S\right\}$.

Easy Lemma

- For any E-linear $L: R \rightarrow S$, there is an S-linear $\bar{L}: T \rightarrow S$ that agrees with L on R.
- Proof: define \bar{L} by $\bar{L}(r \otimes s)=L(r) \cdot s \in S$.

Enhanced Ring-Switching: First Attempt

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$ be s.t. $\operatorname{gcd}(k, \ell)=1, \operatorname{lcm}(k, \ell)=k \ell$.

Enhanced Ring-Switching: First Attempt

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$ be s.t. $\operatorname{gcd}(k, \ell)=1, \operatorname{lcm}(k, \ell)=k \ell$.

Enhanced Ring-Switching: First Attempt

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$ be s.t. $\operatorname{gcd}(k, \ell)=1, \operatorname{lcm}(k, \ell)=k \ell$.

- To homom'ly eval. \mathbb{Z}-linear $L: R \rightarrow S$ on an encryption of $v \in R_{q}$,

Enhanced Ring-Switching: First Attempt

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$ be s.t. $\operatorname{gcd}(k, \ell)=1, \operatorname{lcm}(k, \ell)=k \ell$.

- To homom'ly eval. Z-linear $L: R \rightarrow S$ on an encryption of $v \in R_{q}$,
(1) Trivially embed ciphertext $R \rightarrow T$ (still encrypts v).
(2) Homomorphically apply S-linear $\bar{L}: T \rightarrow S$ using ring-switching.
\checkmark We now have an encryption of $\bar{L}(v)=L(v)$!

Enhanced Ring-Switching: First Attempt

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$ be s.t. $\operatorname{gcd}(k, \ell)=1, \operatorname{lcm}(k, \ell)=k \ell$.

- To homom'ly eval. Z-linear $L: R \rightarrow S$ on an encryption of $v \in R_{q}$,
(1) Trivially embed ciphertext $R \rightarrow T$ (still encrypts v).
(2) Homomorphically apply S-linear $\bar{L}: T \rightarrow S$ using ring-switching.
\checkmark We now have an encryption of $\bar{L}(v)=L(v)$!
XX Problem: degree of T is quadratic, therefore so is runtime \& space.

Enhanced Ring-Switching: First Attempt

- Let $R=\mathcal{O}_{k}, S=\mathcal{O}_{\ell}$ be s.t. $\operatorname{gcd}(k, \ell)=1, \operatorname{lcm}(k, \ell)=k \ell$.

- To homom'ly eval. \mathbb{Z}-linear $L: R \rightarrow S$ on an encryption of $v \in R_{q}$,
(1) Trivially embed ciphertext $R \rightarrow T$ (still encrypts v).
(2) Homomorphically apply S-linear $\bar{L}: T \rightarrow S$ using ring-switching.
\checkmark We now have an encryption of $\bar{L}(v)=L(v)$!
XX Problem: degree of T is quadratic, therefore so is runtime \& space. This is inherent if we treat L as a generic \mathbb{Z}-linear map!

Enhanced Ring-Switching, Efficiently

Key Ideas

- The \mathbb{Z}-linear $L: R \rightarrow S$ given by $L(B)=C$ is "highly structured," because B, C are product sets.

Enhanced Ring-Switching, Efficiently

Key Ideas

- The \mathbb{Z}-linear $L: R \rightarrow S$ given by $L(B)=C$ is "highly structured," because B, C are product sets.
- Gradually map B to C through a sequence of "hybrid rings" $H^{(i)}$, via $E^{(i)}$-linear functions that each send a factor of B to one of C.

Enhanced Ring-Switching, Efficiently

Key Ideas

- The \mathbb{Z}-linear $L: R \rightarrow S$ given by $L(B)=C$ is "highly structured," because B, C are product sets.
- Gradually map B to C through a sequence of "hybrid rings" $H^{(i)}$, via $E^{(i)}$-linear functions that each send a factor of B to one of C.
- Ensure small compositums $T^{(i)}=H^{(i-1)}+H^{(i)}$ via large gcd's: replace prime factors of k with those of ℓ, one at a time.

Toy Example

- $R=\mathcal{O}_{8}$, basis $B=B_{8}^{\prime} \cdot B_{4}^{\prime}=\left\{1, \zeta_{8}\right\} \cdot\left\{1, \zeta_{4}\right\}$.

Toy Example

- $R=\mathcal{O}_{8}$, basis $B=B_{8}^{\prime} \cdot B_{4}^{\prime}=\left\{1, \zeta_{8}\right\} \cdot\left\{1, \zeta_{4}\right\}$.
- $S=\mathcal{O}_{7 \cdot 13}$, CRT set $C=C_{7}^{\prime} \cdot C_{91}^{\prime}=\left\{c_{1}, c_{2}\right\} \cdot\left\{c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}\right\}$.

Toy Example

- $R=\mathcal{O}_{8}$, basis $B=B_{8}^{\prime} \cdot B_{4}^{\prime}=\left\{1, \zeta_{8}\right\} \cdot\left\{1, \zeta_{4}\right\}$.
- $S=\mathcal{O}_{7 \cdot 13}$, CRT set $C=C_{7}^{\prime} \cdot C_{91}^{\prime}=\left\{c_{1}, c_{2}\right\} \cdot\left\{c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}\right\}$.

Toy Example

- $R=\mathcal{O}_{8}$, basis $B=B_{8}^{\prime} \cdot B_{4}^{\prime}=\left\{1, \zeta_{8}\right\} \cdot\left\{1, \zeta_{4}\right\}$.
- $S=\mathcal{O}_{7 \cdot 13}$, CRT set $C=C_{7}^{\prime} \cdot C_{91}^{\prime}=\left\{c_{1}, c_{2}\right\} \cdot\left\{c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}\right\}$.

- In general, switch through $\leq \log (\operatorname{deg}(R / \mathbb{Z}))=\log (\lambda)$ hybrid rings, one for each prime factor of k.

Final Thoughts

- Gradually converting B to C via hybrid rings is roughly analogous to a log-depth FFT butterfly network.

Final Thoughts

- Gradually converting B to C via hybrid rings is roughly analogous to a log-depth FFT butterfly network.
- Technique should also be useful for homomorphically evaluating other signal-processing transforms having "sparse decompositions."

Final Thoughts

- Gradually converting B to C via hybrid rings is roughly analogous to a log-depth FFT butterfly network.
- Technique should also be useful for homomorphically evaluating other signal-processing transforms having "sparse decompositions."
- Practical implementation and evaluation are underway.

Final Thoughts

- Gradually converting B to C via hybrid rings is roughly analogous to a log-depth FFT butterfly network.
- Technique should also be useful for homomorphically evaluating other signal-processing transforms having "sparse decompositions."
- Practical implementation and evaluation are underway.

Thanks!

