
Practical Bootstrapping in
Quasilinear Time

Jacob Alperin-Sheriff Chris Peikert

School of Computer Science
Georgia Tech

UC San Diego
29 April 2013

1 / 21

Fully Homomorphic Encryption [RAD’78,Gen’09]

I FHE lets you do this:

µ Eval
(
f , µ

)
f(µ)

where |f(µ)| and decryption time don’t depend on |f |.

A cryptographic “holy grail” with tons of applications.

I Naturally occurring schemes are “somewhat homomorphic” (SHE):
they can only evaluate functions of an a priori bounded depth.

µ Eval
(
f, µ

)
f(µ) Eval

(
g, f(µ)

)
g(f(µ))

2 / 21

Fully Homomorphic Encryption [RAD’78,Gen’09]

I FHE lets you do this:

µ Eval
(
f , µ

)
f(µ)

where |f(µ)| and decryption time don’t depend on |f |.

A cryptographic “holy grail” with tons of applications.

I Naturally occurring schemes are “somewhat homomorphic” (SHE):
they can only evaluate functions of an a priori bounded depth.

µ Eval
(
f, µ

)
f(µ) Eval

(
g, f(µ)

)
g(f(µ))

2 / 21

Bootstrapping: SHE → FHE [Gen’09]

I Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext µ , allowing further homomorphic operations.

sk Eval
(
f(x) = Decx(µ) , sk

)
µ

F The only known way of obtaining unbounded FHE.

F Goal: Efficiency! Minimize depth d and size s of decryption “circuit.”

F Best SHEs [BGV’12] can evaluate in time Õ(d · s · λ).

I Intensive study, many techniques [G’09,GH’11a,GH’11b,GHS’12b], but
still very inefficient – the main bottleneck in FHE, by far.

I The asymptotically most efficient methods on “packed” ciphertexts
[GHS’12a,GHS’12b] are very complex, and appear practically worse than
asymptotically slower methods.

3 / 21

Bootstrapping: SHE → FHE [Gen’09]

I Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext µ , allowing further homomorphic operations.

sk Eval
(
f(x) = Decx(µ) , sk

)
µ

F The only known way of obtaining unbounded FHE.

F Goal: Efficiency! Minimize depth d and size s of decryption “circuit.”

F Best SHEs [BGV’12] can evaluate in time Õ(d · s · λ).

I Intensive study, many techniques [G’09,GH’11a,GH’11b,GHS’12b], but
still very inefficient – the main bottleneck in FHE, by far.

I The asymptotically most efficient methods on “packed” ciphertexts
[GHS’12a,GHS’12b] are very complex, and appear practically worse than
asymptotically slower methods.

3 / 21

Bootstrapping: SHE → FHE [Gen’09]

I Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext µ , allowing further homomorphic operations.

sk Eval
(
f(x) = Decx(µ) , sk

)
µ

F The only known way of obtaining unbounded FHE.

F Goal: Efficiency! Minimize depth d and size s of decryption “circuit.”

F Best SHEs [BGV’12] can evaluate in time Õ(d · s · λ).

I Intensive study, many techniques [G’09,GH’11a,GH’11b,GHS’12b], but
still very inefficient – the main bottleneck in FHE, by far.

I The asymptotically most efficient methods on “packed” ciphertexts
[GHS’12a,GHS’12b] are very complex, and appear practically worse than
asymptotically slower methods.

3 / 21

Bootstrapping: SHE → FHE [Gen’09]

I Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext µ , allowing further homomorphic operations.

sk Eval
(
f(x) = Decx(µ) , sk

)
µ

F The only known way of obtaining unbounded FHE.

F Goal: Efficiency! Minimize depth d and size s of decryption “circuit.”

F Best SHEs [BGV’12] can evaluate in time Õ(d · s · λ).

I Intensive study, many techniques [G’09,GH’11a,GH’11b,GHS’12b], but
still very inefficient – the main bottleneck in FHE, by far.

I The asymptotically most efficient methods on “packed” ciphertexts
[GHS’12a,GHS’12b] are very complex, and appear practically worse than
asymptotically slower methods.

3 / 21

Milestones in Bootstrapping

[Gen’09]: Õ(λ4) runtime

[BGV’12]: Õ(λ2) runtime, or Õ(λ) amortized over λ ciphertexts

Mainly via improved SHE homomorphic capacity.

Amortized method requires “exotic” plaintext rings,
emulating Z2 arithmetic in Zp.

[GHS’12b]: Õ(λ) runtime, for “packed” plaintexts. Declare victory?

Dec circuit

mod Φm(X)

[GHS’12a]
compiler

Bootstrapping
Procedure

7 Log-depth mod-Φm(X) circuit is complex, w/large hidden constants.

77 [GHS’12a] compiler is very complex, w/large polylog overhead factor.

4 / 21

Milestones in Bootstrapping

[Gen’09]: Õ(λ4) runtime

[BGV’12]: Õ(λ2) runtime, or Õ(λ) amortized over λ ciphertexts

Mainly via improved SHE homomorphic capacity.

Amortized method requires “exotic” plaintext rings,
emulating Z2 arithmetic in Zp.

[GHS’12b]: Õ(λ) runtime, for “packed” plaintexts. Declare victory?

Dec circuit

mod Φm(X)

[GHS’12a]
compiler

Bootstrapping
Procedure

7 Log-depth mod-Φm(X) circuit is complex, w/large hidden constants.

77 [GHS’12a] compiler is very complex, w/large polylog overhead factor.

4 / 21

Milestones in Bootstrapping

[Gen’09]: Õ(λ4) runtime

[BGV’12]: Õ(λ2) runtime, or Õ(λ) amortized over λ ciphertexts

Mainly via improved SHE homomorphic capacity.

Amortized method requires “exotic” plaintext rings,
emulating Z2 arithmetic in Zp.

[GHS’12b]: Õ(λ) runtime, for “packed” plaintexts. Declare victory?

Dec circuit

mod Φm(X)

[GHS’12a]
compiler

Bootstrapping
Procedure

7 Log-depth mod-Φm(X) circuit is complex, w/large hidden constants.

77 [GHS’12a] compiler is very complex, w/large polylog overhead factor.

4 / 21

Milestones in Bootstrapping

[Gen’09]: Õ(λ4) runtime

[BGV’12]: Õ(λ2) runtime, or Õ(λ) amortized over λ ciphertexts

Mainly via improved SHE homomorphic capacity.

Amortized method requires “exotic” plaintext rings,
emulating Z2 arithmetic in Zp.

[GHS’12b]: Õ(λ) runtime, for “packed” plaintexts. Declare victory?

Dec circuit

mod Φm(X)

[GHS’12a]
compiler

Bootstrapping
Procedure

7 Log-depth mod-Φm(X) circuit is complex, w/large hidden constants.

77 [GHS’12a] compiler is very complex, w/large polylog overhead factor.

4 / 21

Milestones in Bootstrapping

[Gen’09]: Õ(λ4) runtime

[BGV’12]: Õ(λ2) runtime, or Õ(λ) amortized over λ ciphertexts

Mainly via improved SHE homomorphic capacity.

Amortized method requires “exotic” plaintext rings,
emulating Z2 arithmetic in Zp.

[GHS’12b]: Õ(λ) runtime, for “packed” plaintexts. Declare victory?

Dec circuit

mod Φm(X)

[GHS’12a]
compiler

Bootstrapping
Procedure

7 Log-depth mod-Φm(X) circuit is complex, w/large hidden constants.

77 [GHS’12a] compiler is very complex, w/large polylog overhead factor.

4 / 21

Milestones in Bootstrapping

[Gen’09]: Õ(λ4) runtime

[BGV’12]: Õ(λ2) runtime, or Õ(λ) amortized over λ ciphertexts

Mainly via improved SHE homomorphic capacity.

Amortized method requires “exotic” plaintext rings,
emulating Z2 arithmetic in Zp.

[GHS’12b]: Õ(λ) runtime, for “packed” plaintexts. Declare victory?

Dec circuit

mod Φm(X)

[GHS’12a]
compiler

Bootstrapping
Procedure

7 Log-depth mod-Φm(X) circuit is complex, w/large hidden constants.

77 [GHS’12a] compiler is very complex, w/large polylog overhead factor.

4 / 21

Milestones in Bootstrapping

[Gen’09]: Õ(λ4) runtime

[BGV’12]: Õ(λ2) runtime, or Õ(λ) amortized over λ ciphertexts

Mainly via improved SHE homomorphic capacity.

Amortized method requires “exotic” plaintext rings,
emulating Z2 arithmetic in Zp.

[GHS’12b]: Õ(λ) runtime, for “packed” plaintexts. Declare victory?

Dec circuit

mod Φm(X)

[GHS’12a]
compiler

Bootstrapping
Procedure

7 Log-depth mod-Φm(X) circuit is complex, w/large hidden constants.

77 [GHS’12a] compiler is very complex, w/large polylog overhead factor.

4 / 21

Our Results

Practical bootstrapping algorithms with quasi-linear Õ(λ) runtimes:

1 For “unpacked” (single-bit) plaintexts:

4 Extremely simple!

4 Uses only power-of-2 cyclotomic rings (fast, easy to implement).

F Cf. [BGV’12]: Õ(λ) amortized across λ ciphertexts, exotic rings.

2 For “packed” (many-bit) plaintexts:

F Based on a substantial enhancement of “ring-switching” [GHPS’12] to
non-subrings.

4 Appears quite practical, avoids both main inefficiencies of [GHS’12b]:
no homomorphic reduction modulo Φm(X), no generic compilation.

4 Special purpose, completely algebraic description – no “circuits.”

4 Completely decouples the algebraic structure of SHE plaintext ring
from that needed for bootstrapping.

5 / 21

Our Results

Practical bootstrapping algorithms with quasi-linear Õ(λ) runtimes:

1 For “unpacked” (single-bit) plaintexts:

4 Extremely simple!

4 Uses only power-of-2 cyclotomic rings (fast, easy to implement).

F Cf. [BGV’12]: Õ(λ) amortized across λ ciphertexts, exotic rings.

2 For “packed” (many-bit) plaintexts:

F Based on a substantial enhancement of “ring-switching” [GHPS’12] to
non-subrings.

4 Appears quite practical, avoids both main inefficiencies of [GHS’12b]:
no homomorphic reduction modulo Φm(X), no generic compilation.

4 Special purpose, completely algebraic description – no “circuits.”

4 Completely decouples the algebraic structure of SHE plaintext ring
from that needed for bootstrapping.

5 / 21

Our Results

Practical bootstrapping algorithms with quasi-linear Õ(λ) runtimes:

1 For “unpacked” (single-bit) plaintexts:

4 Extremely simple!

4 Uses only power-of-2 cyclotomic rings (fast, easy to implement).

F Cf. [BGV’12]: Õ(λ) amortized across λ ciphertexts, exotic rings.

2 For “packed” (many-bit) plaintexts:

F Based on a substantial enhancement of “ring-switching” [GHPS’12] to
non-subrings.

4 Appears quite practical, avoids both main inefficiencies of [GHS’12b]:
no homomorphic reduction modulo Φm(X), no generic compilation.

4 Special purpose, completely algebraic description – no “circuits.”

4 Completely decouples the algebraic structure of SHE plaintext ring
from that needed for bootstrapping.

5 / 21

Our Results

Practical bootstrapping algorithms with quasi-linear Õ(λ) runtimes:

1 For “unpacked” (single-bit) plaintexts:

4 Extremely simple!

4 Uses only power-of-2 cyclotomic rings (fast, easy to implement).

F Cf. [BGV’12]: Õ(λ) amortized across λ ciphertexts, exotic rings.

2 For “packed” (many-bit) plaintexts:

F Based on a substantial enhancement of “ring-switching” [GHPS’12] to
non-subrings.

4 Appears quite practical, avoids both main inefficiencies of [GHS’12b]:
no homomorphic reduction modulo Φm(X), no generic compilation.

4 Special purpose, completely algebraic description – no “circuits.”

4 Completely decouples the algebraic structure of SHE plaintext ring
from that needed for bootstrapping.

5 / 21

Our Results

Practical bootstrapping algorithms with quasi-linear Õ(λ) runtimes:

1 For “unpacked” (single-bit) plaintexts:

4 Extremely simple!

4 Uses only power-of-2 cyclotomic rings (fast, easy to implement).

F Cf. [BGV’12]: Õ(λ) amortized across λ ciphertexts, exotic rings.

2 For “packed” (many-bit) plaintexts:

F Based on a substantial enhancement of “ring-switching” [GHPS’12] to
non-subrings.

4 Appears quite practical, avoids both main inefficiencies of [GHS’12b]:
no homomorphic reduction modulo Φm(X), no generic compilation.

4 Special purpose, completely algebraic description – no “circuits.”

4 Completely decouples the algebraic structure of SHE plaintext ring
from that needed for bootstrapping.

5 / 21

Our Results

Practical bootstrapping algorithms with quasi-linear Õ(λ) runtimes:

1 For “unpacked” (single-bit) plaintexts:

4 Extremely simple!

4 Uses only power-of-2 cyclotomic rings (fast, easy to implement).

F Cf. [BGV’12]: Õ(λ) amortized across λ ciphertexts, exotic rings.

2 For “packed” (many-bit) plaintexts:

F Based on a substantial enhancement of “ring-switching” [GHPS’12] to
non-subrings.

4 Appears quite practical, avoids both main inefficiencies of [GHS’12b]:
no homomorphic reduction modulo Φm(X), no generic compilation.

4 Special purpose, completely algebraic description – no “circuits.”

4 Completely decouples the algebraic structure of SHE plaintext ring
from that needed for bootstrapping.

5 / 21

Our Results

Practical bootstrapping algorithms with quasi-linear Õ(λ) runtimes:

1 For “unpacked” (single-bit) plaintexts:

4 Extremely simple!

4 Uses only power-of-2 cyclotomic rings (fast, easy to implement).

F Cf. [BGV’12]: Õ(λ) amortized across λ ciphertexts, exotic rings.

2 For “packed” (many-bit) plaintexts:

F Based on a substantial enhancement of “ring-switching” [GHPS’12] to
non-subrings.

4 Appears quite practical, avoids both main inefficiencies of [GHS’12b]:
no homomorphic reduction modulo Φm(X), no generic compilation.

4 Special purpose, completely algebraic description – no “circuits.”

4 Completely decouples the algebraic structure of SHE plaintext ring
from that needed for bootstrapping.

5 / 21

Our Results

Practical bootstrapping algorithms with quasi-linear Õ(λ) runtimes:

1 For “unpacked” (single-bit) plaintexts:

4 Extremely simple!

4 Uses only power-of-2 cyclotomic rings (fast, easy to implement).

F Cf. [BGV’12]: Õ(λ) amortized across λ ciphertexts, exotic rings.

2 For “packed” (many-bit) plaintexts:

F Based on a substantial enhancement of “ring-switching” [GHPS’12] to
non-subrings.

4 Appears quite practical, avoids both main inefficiencies of [GHS’12b]:
no homomorphic reduction modulo Φm(X), no generic compilation.

4 Special purpose, completely algebraic description – no “circuits.”

4 Completely decouples the algebraic structure of SHE plaintext ring
from that needed for bootstrapping.

5 / 21

Setting the Stage: Decryption in SHE [LPR’10,BV’11,BGV’12]

I Let R = Z[X]/(Xk/2 + 1), for k a power of 2. (The kth cyclotomic ring.)

Let Rq = R/qR = Zq[X]/(Xk/2 + 1) for any integer q.

I Plaintext ring is R2, ciphertext ring is Rq for q � 2.

Can assume k, q = Õ(λ) by ring- and modulus-switching.

I Ciphertext c = (c0, c1) ∈ R2
q encrypting µ ∈ R2 under s ∈ R satisfies

v = c0 + c1 · s ≈ q
2µ (mod qR).

Define the decryption function

Decs(c) := bve = µ ∈ R2,

where “rounding” b·e : Zq → Z2 is applied to coeffs of v = v(X).

I “Unpacked” plaintext µ ∈ Z2 ⊆ R2, i.e., just a constant polynomial.

“Packed” plaintext uses more of R2, e.g., multiple “slots” [SV’11].

6 / 21

Setting the Stage: Decryption in SHE [LPR’10,BV’11,BGV’12]

I Let R = Z[X]/(Xk/2 + 1), for k a power of 2. (The kth cyclotomic ring.)

Let Rq = R/qR = Zq[X]/(Xk/2 + 1) for any integer q.

I Plaintext ring is R2, ciphertext ring is Rq for q � 2.

Can assume k, q = Õ(λ) by ring- and modulus-switching.

I Ciphertext c = (c0, c1) ∈ R2
q encrypting µ ∈ R2 under s ∈ R satisfies

v = c0 + c1 · s ≈ q
2µ (mod qR).

Define the decryption function

Decs(c) := bve = µ ∈ R2,

where “rounding” b·e : Zq → Z2 is applied to coeffs of v = v(X).

I “Unpacked” plaintext µ ∈ Z2 ⊆ R2, i.e., just a constant polynomial.

“Packed” plaintext uses more of R2, e.g., multiple “slots” [SV’11].

6 / 21

Setting the Stage: Decryption in SHE [LPR’10,BV’11,BGV’12]

I Let R = Z[X]/(Xk/2 + 1), for k a power of 2. (The kth cyclotomic ring.)

Let Rq = R/qR = Zq[X]/(Xk/2 + 1) for any integer q.

I Plaintext ring is R2, ciphertext ring is Rq for q � 2.

Can assume k, q = Õ(λ) by ring- and modulus-switching.

I Ciphertext c = (c0, c1) ∈ R2
q encrypting µ ∈ R2 under s ∈ R satisfies

v = c0 + c1 · s ≈ q
2µ (mod qR).

Define the decryption function

Decs(c) := bve = µ ∈ R2,

where “rounding” b·e : Zq → Z2 is applied to coeffs of v = v(X).

I “Unpacked” plaintext µ ∈ Z2 ⊆ R2, i.e., just a constant polynomial.

“Packed” plaintext uses more of R2, e.g., multiple “slots” [SV’11].

6 / 21

Setting the Stage: Decryption in SHE [LPR’10,BV’11,BGV’12]

I Let R = Z[X]/(Xk/2 + 1), for k a power of 2. (The kth cyclotomic ring.)

Let Rq = R/qR = Zq[X]/(Xk/2 + 1) for any integer q.

I Plaintext ring is R2, ciphertext ring is Rq for q � 2.

Can assume k, q = Õ(λ) by ring- and modulus-switching.

I Ciphertext c = (c0, c1) ∈ R2
q encrypting µ ∈ R2 under s ∈ R satisfies

v = c0 + c1 · s ≈ q
2µ (mod qR).

Define the decryption function

Decs(c) := bve = µ ∈ R2,

where “rounding” b·e : Zq → Z2 is applied to coeffs of v = v(X).

I “Unpacked” plaintext µ ∈ Z2 ⊆ R2, i.e., just a constant polynomial.

“Packed” plaintext uses more of R2, e.g., multiple “slots” [SV’11].

6 / 21

Setting the Stage: Decryption in SHE [LPR’10,BV’11,BGV’12]

I Let R = Z[X]/(Xk/2 + 1), for k a power of 2. (The kth cyclotomic ring.)

Let Rq = R/qR = Zq[X]/(Xk/2 + 1) for any integer q.

I Plaintext ring is R2, ciphertext ring is Rq for q � 2.

Can assume k, q = Õ(λ) by ring- and modulus-switching.

I Ciphertext c = (c0, c1) ∈ R2
q encrypting µ ∈ R2 under s ∈ R satisfies

v = c0 + c1 · s ≈ q
2µ (mod qR).

Define the decryption function

Decs(c) := bve = µ ∈ R2,

where “rounding” b·e : Zq → Z2 is applied to coeffs of v = v(X).

I “Unpacked” plaintext µ ∈ Z2 ⊆ R2, i.e., just a constant polynomial.

“Packed” plaintext uses more of R2, e.g., multiple “slots” [SV’11].

6 / 21

Setting the Stage: Decryption in SHE [LPR’10,BV’11,BGV’12]

I Let R = Z[X]/(Xk/2 + 1), for k a power of 2. (The kth cyclotomic ring.)

Let Rq = R/qR = Zq[X]/(Xk/2 + 1) for any integer q.

I Plaintext ring is R2, ciphertext ring is Rq for q � 2.

Can assume k, q = Õ(λ) by ring- and modulus-switching.

I Ciphertext c = (c0, c1) ∈ R2
q encrypting µ ∈ R2 under s ∈ R satisfies

v = c0 + c1 · s ≈ q
2µ (mod qR).

Define the decryption function

Decs(c) := bve = µ ∈ R2,

where “rounding” b·e : Zq → Z2 is applied to coeffs of v = v(X).

I “Unpacked” plaintext µ ∈ Z2 ⊆ R2, i.e., just a constant polynomial.

“Packed” plaintext uses more of R2, e.g., multiple “slots” [SV’11].

6 / 21

Setting the Stage: Decryption in SHE [LPR’10,BV’11,BGV’12]

I Let R = Z[X]/(Xk/2 + 1), for k a power of 2. (The kth cyclotomic ring.)

Let Rq = R/qR = Zq[X]/(Xk/2 + 1) for any integer q.

I Plaintext ring is R2, ciphertext ring is Rq for q � 2.

Can assume k, q = Õ(λ) by ring- and modulus-switching.

I Ciphertext c = (c0, c1) ∈ R2
q encrypting µ ∈ R2 under s ∈ R satisfies

v = c0 + c1 · s ≈ q
2µ (mod qR).

Define the decryption function

Decs(c) := bve = µ ∈ R2,

where “rounding” b·e : Zq → Z2 is applied to coeffs of v = v(X).

I “Unpacked” plaintext µ ∈ Z2 ⊆ R2, i.e., just a constant polynomial.

“Packed” plaintext uses more of R2, e.g., multiple “slots” [SV’11].

6 / 21

Warm-Up:

Bootstrapping Unpacked Ciphertexts

7 / 21

Bootstrapping Unpacked Ciphertexts: Main Idea

1 Isolate message-carrying coefficient v0 of v(X) by homomorphically
“tracing down” a tower of cyclotomic rings O2k/Ok/ · · · /O4/Z.

(Trace = sum of the two automorphisms of O2i/Oi.)

v0 + v1X + v2X
2 + · · · vk−1Xk−1 Zq[X]/(Xk + 1)

v0 + 0X + v2X
2 + · · · 0Xk−1 Zq[X

2]/(Xk + 1)

v0 + vk/4X
k/4 + · · ·+ v3k/4X

3k/4 Zq[X
k/4]/(Xk + 1)

v0 + vk/2X
k/2 Zq[X

k/2]/(Xk + 1)

v0 Zq

2 Homomorphically “round” v0 ∈ Zq to the message bit b2q · v0e ∈ Z2.

8 / 21

Bootstrapping Unpacked Ciphertexts: Main Idea

1 Isolate message-carrying coefficient v0 of v(X) by homomorphically
“tracing down” a tower of cyclotomic rings O2k/Ok/ · · · /O4/Z.

(Trace = sum of the two automorphisms of O2i/Oi.)

v0 + v1X + v2X
2 + · · · vk−1Xk−1 Zq[X]/(Xk + 1)

v0 + 0X + v2X
2 + · · · 0Xk−1 Zq[X

2]/(Xk + 1)

v0 + vk/4X
k/4 + · · ·+ v3k/4X

3k/4 Zq[X
k/4]/(Xk + 1)

v0 + vk/2X
k/2 Zq[X

k/2]/(Xk + 1)

v0 Zq

2 Homomorphically “round” v0 ∈ Zq to the message bit b2q · v0e ∈ Z2.

8 / 21

Bootstrapping Unpacked Ciphertexts: Main Idea

1 Isolate message-carrying coefficient v0 of v(X) by homomorphically
“tracing down” a tower of cyclotomic rings O2k/Ok/ · · · /O4/Z.

(Trace = sum of the two automorphisms of O2i/Oi.)

v0 + v1X + v2X
2 + · · · vk−1Xk−1 Zq[X]/(Xk + 1)

v0 + 0X + v2X
2 + · · · 0Xk−1 Zq[X

2]/(Xk + 1)

v0 + vk/4X
k/4 + · · ·+ v3k/4X

3k/4 Zq[X
k/4]/(Xk + 1)

v0 + vk/2X
k/2 Zq[X

k/2]/(Xk + 1)

v0 Zq

2 Homomorphically “round” v0 ∈ Zq to the message bit b2q · v0e ∈ Z2.
8 / 21

Algebra: Cyclotomic Towers and Product Bases

I Let ζ = ζk have order k, a power of 2. Its min. poly: ζk/2 + 1 = 0.

So Ok = Z[ζ] ∼= Z[X]/(Xk/2 + 1) has Z-basis {1, ζ, ζ2, . . . , ζk/2−1}.

I Tower of quadratic extensions Ok/Ok/2/ · · · /O4/Z:

ζ2k = ζk/2 Ok = Ok/2[ζk] Ok/2-basis B′k = {1, ζk}

ζ28 = ζ4 O8 = O4[ζ8] O4-basis B′8 = {1, ζ8}

ζ24 = ζ2 O4 = O2[ζ4] O2-basis B′4 = {1, ζ4}

ζ22 = 1 O2 = Z[ζ2] = Z Z-basis B′2 = {1}

I “Product” Z-basis of Ok:

Bk := B′k ·Bk/2 = B′k ·B′k/2 · · ·B
′
2 = {1, ζ, ζ2, . . . , ζk/2−1}.

9 / 21

Algebra: Cyclotomic Towers and Product Bases

I Let ζ = ζk have order k, a power of 2. Its min. poly: ζk/2 + 1 = 0.

So Ok = Z[ζ] ∼= Z[X]/(Xk/2 + 1) has Z-basis {1, ζ, ζ2, . . . , ζk/2−1}.

I Tower of quadratic extensions Ok/Ok/2/ · · · /O4/Z:

ζ2k = ζk/2 Ok = Ok/2[ζk] Ok/2-basis B′k = {1, ζk}

ζ28 = ζ4 O8 = O4[ζ8] O4-basis B′8 = {1, ζ8}

ζ24 = ζ2 O4 = O2[ζ4] O2-basis B′4 = {1, ζ4}

ζ22 = 1 O2 = Z[ζ2] = Z Z-basis B′2 = {1}

I “Product” Z-basis of Ok:

Bk := B′k ·Bk/2 = B′k ·B′k/2 · · ·B
′
2 = {1, ζ, ζ2, . . . , ζk/2−1}.

9 / 21

Algebra: Cyclotomic Towers and Product Bases

I Let ζ = ζk have order k, a power of 2. Its min. poly: ζk/2 + 1 = 0.

So Ok = Z[ζ] ∼= Z[X]/(Xk/2 + 1) has Z-basis {1, ζ, ζ2, . . . , ζk/2−1}.

I Tower of quadratic extensions Ok/Ok/2/ · · · /O4/Z:

ζ2k = ζk/2 Ok = Ok/2[ζk] Ok/2-basis B′k = {1, ζk}

ζ28 = ζ4 O8 = O4[ζ8] O4-basis B′8 = {1, ζ8}

ζ24 = ζ2 O4 = O2[ζ4] O2-basis B′4 = {1, ζ4}

ζ22 = 1 O2 = Z[ζ2] = Z Z-basis B′2 = {1}

I “Product” Z-basis of Ok:

Bk := B′k ·Bk/2 = B′k ·B′k/2 · · ·B
′
2 = {1, ζ, ζ2, . . . , ζk/2−1}.

9 / 21

Algebra: Cyclotomic Towers and Product Bases

I Let ζ = ζk have order k, a power of 2. Its min. poly: ζk/2 + 1 = 0.

So Ok = Z[ζ] ∼= Z[X]/(Xk/2 + 1) has Z-basis {1, ζ, ζ2, . . . , ζk/2−1}.

I Tower of quadratic extensions Ok/Ok/2/ · · · /O4/Z:

ζ2k = ζk/2 Ok = Ok/2[ζk] Ok/2-basis B′k = {1, ζk}

ζ28 = ζ4 O8 = O4[ζ8] O4-basis B′8 = {1, ζ8}

ζ24 = ζ2 O4 = O2[ζ4] O2-basis B′4 = {1, ζ4}

ζ22 = 1 O2 = Z[ζ2] = Z Z-basis B′2 = {1}

I “Product” Z-basis of Ok:

Bk := B′k ·Bk/2 = B′k ·B′k/2 · · ·B
′
2 = {1, ζ, ζ2, . . . , ζk/2−1}.

9 / 21

Algebra: Cyclotomic Towers and Product Bases

I Let ζ = ζk have order k, a power of 2. Its min. poly: ζk/2 + 1 = 0.

So Ok = Z[ζ] ∼= Z[X]/(Xk/2 + 1) has Z-basis {1, ζ, ζ2, . . . , ζk/2−1}.

I Tower of quadratic extensions Ok/Ok/2/ · · · /O4/Z:

ζ2k = ζk/2 Ok = Ok/2[ζk] Ok/2-basis B′k = {1, ζk}

ζ28 = ζ4 O8 = O4[ζ8] O4-basis B′8 = {1, ζ8}

ζ24 = ζ2 O4 = O2[ζ4] O2-basis B′4 = {1, ζ4}

ζ22 = 1 O2 = Z[ζ2] = Z Z-basis B′2 = {1}

I “Product” Z-basis of Ok:

Bk := B′k ·Bk/2 = B′k ·B′k/2 · · ·B
′
2 = {1, ζ, ζ2, . . . , ζk/2−1}.

9 / 21

Algebra: The Trace

I Tower of quadratic extensions Ok/Ok/2/ · · · /O4/Z, where ζ2i = ζi/2.

I Oi has exactly two automorphisms that fix Oi/2: ζi 7→ ± ζi.

The trace function Tr: Oi → Oi/2 simply sums these automorphisms.

I Let v = v0 · 1 + v1 · ζi ∈ Oi for v0, v1 ∈ Oi/2.

Then Tr(v) = 2 · v0. So Tr(Oi) = 2 · Oi/2.

I More generally, TrOi/Oi′
sums the automorphisms of Oi that fix Oi′ .

Key facts:

F TrOi/Oi′′
= TrOi′/Oi′′

◦ TrOi/Oi′

⇒ TrOi/Oi′
(Oi) = deg(Oi/Oi′) · Oi′ .

⇒ TrOi/Z(v) = i
2 · v0, where v0 ∈ Z is the coeff of ζ0i = 1.

10 / 21

Algebra: The Trace

I Tower of quadratic extensions Ok/Ok/2/ · · · /O4/Z, where ζ2i = ζi/2.

I Oi has exactly two automorphisms that fix Oi/2: ζi 7→ ± ζi.

The trace function Tr: Oi → Oi/2 simply sums these automorphisms.

I Let v = v0 · 1 + v1 · ζi ∈ Oi for v0, v1 ∈ Oi/2.

Then Tr(v) = 2 · v0. So Tr(Oi) = 2 · Oi/2.

I More generally, TrOi/Oi′
sums the automorphisms of Oi that fix Oi′ .

Key facts:

F TrOi/Oi′′
= TrOi′/Oi′′

◦ TrOi/Oi′

⇒ TrOi/Oi′
(Oi) = deg(Oi/Oi′) · Oi′ .

⇒ TrOi/Z(v) = i
2 · v0, where v0 ∈ Z is the coeff of ζ0i = 1.

10 / 21

Algebra: The Trace

I Tower of quadratic extensions Ok/Ok/2/ · · · /O4/Z, where ζ2i = ζi/2.

I Oi has exactly two automorphisms that fix Oi/2: ζi 7→ ± ζi.

The trace function Tr: Oi → Oi/2 simply sums these automorphisms.

I Let v = v0 · 1 + v1 · ζi ∈ Oi for v0, v1 ∈ Oi/2.

Then Tr(v) = 2 · v0. So Tr(Oi) = 2 · Oi/2.

I More generally, TrOi/Oi′
sums the automorphisms of Oi that fix Oi′ .

Key facts:

F TrOi/Oi′′
= TrOi′/Oi′′

◦ TrOi/Oi′

⇒ TrOi/Oi′
(Oi) = deg(Oi/Oi′) · Oi′ .

⇒ TrOi/Z(v) = i
2 · v0, where v0 ∈ Z is the coeff of ζ0i = 1.

10 / 21

Algebra: The Trace

I Tower of quadratic extensions Ok/Ok/2/ · · · /O4/Z, where ζ2i = ζi/2.

I Oi has exactly two automorphisms that fix Oi/2: ζi 7→ ± ζi.

The trace function Tr: Oi → Oi/2 simply sums these automorphisms.

I Let v = v0 · 1 + v1 · ζi ∈ Oi for v0, v1 ∈ Oi/2.

Then Tr(v) = 2 · v0. So Tr(Oi) = 2 · Oi/2.

I More generally, TrOi/Oi′
sums the automorphisms of Oi that fix Oi′ .

Key facts:

F TrOi/Oi′′
= TrOi′/Oi′′

◦ TrOi/Oi′

⇒ TrOi/Oi′
(Oi) = deg(Oi/Oi′) · Oi′ .

⇒ TrOi/Z(v) = i
2 · v0, where v0 ∈ Z is the coeff of ζ0i = 1.

10 / 21

Algebra: The Trace

I Tower of quadratic extensions Ok/Ok/2/ · · · /O4/Z, where ζ2i = ζi/2.

I Oi has exactly two automorphisms that fix Oi/2: ζi 7→ ± ζi.

The trace function Tr: Oi → Oi/2 simply sums these automorphisms.

I Let v = v0 · 1 + v1 · ζi ∈ Oi for v0, v1 ∈ Oi/2.

Then Tr(v) = 2 · v0. So Tr(Oi) = 2 · Oi/2.

I More generally, TrOi/Oi′
sums the automorphisms of Oi that fix Oi′ .

Key facts:

F TrOi/Oi′′
= TrOi′/Oi′′

◦ TrOi/Oi′

⇒ TrOi/Oi′
(Oi) = deg(Oi/Oi′) · Oi′ .

⇒ TrOi/Z(v) = i
2 · v0, where v0 ∈ Z is the coeff of ζ0i = 1.

10 / 21

Algebra: The Trace

I Tower of quadratic extensions Ok/Ok/2/ · · · /O4/Z, where ζ2i = ζi/2.

I Oi has exactly two automorphisms that fix Oi/2: ζi 7→ ± ζi.

The trace function Tr: Oi → Oi/2 simply sums these automorphisms.

I Let v = v0 · 1 + v1 · ζi ∈ Oi for v0, v1 ∈ Oi/2.

Then Tr(v) = 2 · v0. So Tr(Oi) = 2 · Oi/2.

I More generally, TrOi/Oi′
sums the automorphisms of Oi that fix Oi′ .

Key facts:

F TrOi/Oi′′
= TrOi′/Oi′′

◦ TrOi/Oi′

⇒ TrOi/Oi′
(Oi) = deg(Oi/Oi′) · Oi′ .

⇒ TrOi/Z(v) = i
2 · v0, where v0 ∈ Z is the coeff of ζ0i = 1.

10 / 21

Algebra: The Trace

I Tower of quadratic extensions Ok/Ok/2/ · · · /O4/Z, where ζ2i = ζi/2.

I Oi has exactly two automorphisms that fix Oi/2: ζi 7→ ± ζi.

The trace function Tr: Oi → Oi/2 simply sums these automorphisms.

I Let v = v0 · 1 + v1 · ζi ∈ Oi for v0, v1 ∈ Oi/2.

Then Tr(v) = 2 · v0. So Tr(Oi) = 2 · Oi/2.

I More generally, TrOi/Oi′
sums the automorphisms of Oi that fix Oi′ .

Key facts:

F TrOi/Oi′′
= TrOi′/Oi′′

◦ TrOi/Oi′

⇒ TrOi/Oi′
(Oi) = deg(Oi/Oi′) · Oi′ .

⇒ TrOi/Z(v) = i
2 · v0, where v0 ∈ Z is the coeff of ζ0i = 1.

10 / 21

Bootstrapping Unpacked Ciphertexts: Overview

Recall: R = Ok, and v = c0 + c1 · s ≈ q
2µ ∈ Rq for message µ ∈ Z2 ⊆ R2.

1 Prepare:
F View c as a “noiseless” encryption of plaintext

v = q
q · v + 0 = c0 + c1 · s ∈ Rq.

Plaintext ring is now Rq, not R2!

F (Switch to larger ciphertext modulus Q� q and ring R̃ ⊇ R, to
support upcoming homomorphic operations.)

2 Extract “constant term” v0 ∈ Zq of v: homomorphically evaluate

TrR/Z(v)

deg(R/Z)
= v0 ≈ q

2 · µ ∈ Zq.

Fast, increases noise rate by only ≈
√
k factor.

3 Round: homomorphically evaluate bv0e = µ ∈ Z2.

Uses algebraic procedure of depth lg(q/2) & size lg2(q/2) [GHS’12b]

?? Now have an encryption of bv0e = µ. Done!

11 / 21

Bootstrapping Unpacked Ciphertexts: Overview

Recall: R = Ok, and v = c0 + c1 · s ≈ q
2µ ∈ Rq for message µ ∈ Z2 ⊆ R2.

1 Prepare:
F View c as a “noiseless” encryption of plaintext

v = q
q · v + 0 = c0 + c1 · s ∈ Rq.

Plaintext ring is now Rq, not R2!

F (Switch to larger ciphertext modulus Q� q and ring R̃ ⊇ R, to
support upcoming homomorphic operations.)

2 Extract “constant term” v0 ∈ Zq of v: homomorphically evaluate

TrR/Z(v)

deg(R/Z)
= v0 ≈ q

2 · µ ∈ Zq.

Fast, increases noise rate by only ≈
√
k factor.

3 Round: homomorphically evaluate bv0e = µ ∈ Z2.

Uses algebraic procedure of depth lg(q/2) & size lg2(q/2) [GHS’12b]

?? Now have an encryption of bv0e = µ. Done!

11 / 21

Bootstrapping Unpacked Ciphertexts: Overview

Recall: R = Ok, and v = c0 + c1 · s ≈ q
2µ ∈ Rq for message µ ∈ Z2 ⊆ R2.

1 Prepare:
F View c as a “noiseless” encryption of plaintext

v = q
q · v + 0 = c0 + c1 · s ∈ Rq.

Plaintext ring is now Rq, not R2!

F (Switch to larger ciphertext modulus Q� q and ring R̃ ⊇ R, to
support upcoming homomorphic operations.)

2 Extract “constant term” v0 ∈ Zq of v: homomorphically evaluate

TrR/Z(v)

deg(R/Z)
= v0 ≈ q

2 · µ ∈ Zq.

Fast, increases noise rate by only ≈
√
k factor.

3 Round: homomorphically evaluate bv0e = µ ∈ Z2.

Uses algebraic procedure of depth lg(q/2) & size lg2(q/2) [GHS’12b]

?? Now have an encryption of bv0e = µ. Done!

11 / 21

Bootstrapping Unpacked Ciphertexts: Overview

Recall: R = Ok, and v = c0 + c1 · s ≈ q
2µ ∈ Rq for message µ ∈ Z2 ⊆ R2.

1 Prepare:
F View c as a “noiseless” encryption of plaintext

v = q
q · v + 0 = c0 + c1 · s ∈ Rq.

Plaintext ring is now Rq, not R2!

F (Switch to larger ciphertext modulus Q� q and ring R̃ ⊇ R, to
support upcoming homomorphic operations.)

2 Extract “constant term” v0 ∈ Zq of v: homomorphically evaluate

TrR/Z(v)

deg(R/Z)
= v0 ≈ q

2 · µ ∈ Zq.

Fast, increases noise rate by only ≈
√
k factor.

3 Round: homomorphically evaluate bv0e = µ ∈ Z2.

Uses algebraic procedure of depth lg(q/2) & size lg2(q/2) [GHS’12b]

?? Now have an encryption of bv0e = µ. Done!

11 / 21

Bootstrapping Unpacked Ciphertexts: Overview

Recall: R = Ok, and v = c0 + c1 · s ≈ q
2µ ∈ Rq for message µ ∈ Z2 ⊆ R2.

1 Prepare:
F View c as a “noiseless” encryption of plaintext

v = q
q · v + 0 = c0 + c1 · s ∈ Rq.

Plaintext ring is now Rq, not R2!

F (Switch to larger ciphertext modulus Q� q and ring R̃ ⊇ R, to
support upcoming homomorphic operations.)

2 Extract “constant term” v0 ∈ Zq of v: homomorphically evaluate

TrR/Z(v)

deg(R/Z)
= v0 ≈ q

2 · µ ∈ Zq.

Fast, increases noise rate by only ≈
√
k factor.

3 Round: homomorphically evaluate bv0e = µ ∈ Z2.

Uses algebraic procedure of depth lg(q/2) & size lg2(q/2) [GHS’12b]

?? Now have an encryption of bv0e = µ. Done!

11 / 21

Bootstrapping Unpacked Ciphertexts: Overview

Recall: R = Ok, and v = c0 + c1 · s ≈ q
2µ ∈ Rq for message µ ∈ Z2 ⊆ R2.

1 Prepare:
F View c as a “noiseless” encryption of plaintext

v = q
q · v + 0 = c0 + c1 · s ∈ Rq.

Plaintext ring is now Rq, not R2!

F (Switch to larger ciphertext modulus Q� q and ring R̃ ⊇ R, to
support upcoming homomorphic operations.)

2 Extract “constant term” v0 ∈ Zq of v: homomorphically evaluate

TrR/Z(v)

deg(R/Z)
= v0 ≈ q

2 · µ ∈ Zq.

Fast, increases noise rate by only ≈
√
k factor.

3 Round: homomorphically evaluate bv0e = µ ∈ Z2.

Uses algebraic procedure of depth lg(q/2) & size lg2(q/2) [GHS’12b]

?? Now have an encryption of bv0e = µ. Done!

11 / 21

Evaluating TraceR/Z Homomorphically

?? Use “ring switching” [GHPS’12] ?

4 Computes TrR/R′ homomorphically, by taking TrR/R′ of ciphertext.

7 Requires hardness of ring-LWE in R′ . . . but here R′ = Z.

?? Directly apply all automorphisms τ of R/Z to ciphertext, then sum?

τ(c0) + τ(c1) · τ(s) = τ(v)
key-switch

=⇒ c′0 + c′1 · s ≈ τ(v)

7 k/2 automorphisms & key-switches: quadratic work & space

4 Iteratively “trace down” R = Ok → Ok/2 → · · · → Z.

F Only need to apply the two automorphisms of each Oi/Oi/2.
F Total lg(k) automorphisms & key-switches ⇒ Õ(k) work.

Detail #1: ciphertexts are over R̃ ⊇ R, so use automorphisms of R̃ that coincide
with those of Oi/Oi/2.

Detail #2: each Tr(Oi) = 2Oi/2, so lift to plaintext modulus 2q, then halve result.

12 / 21

Evaluating TraceR/Z Homomorphically

?? Use “ring switching” [GHPS’12] ?

4 Computes TrR/R′ homomorphically, by taking TrR/R′ of ciphertext.

7 Requires hardness of ring-LWE in R′ . . . but here R′ = Z.

?? Directly apply all automorphisms τ of R/Z to ciphertext, then sum?

τ(c0) + τ(c1) · τ(s) = τ(v)
key-switch

=⇒ c′0 + c′1 · s ≈ τ(v)

7 k/2 automorphisms & key-switches: quadratic work & space

4 Iteratively “trace down” R = Ok → Ok/2 → · · · → Z.

F Only need to apply the two automorphisms of each Oi/Oi/2.
F Total lg(k) automorphisms & key-switches ⇒ Õ(k) work.

Detail #1: ciphertexts are over R̃ ⊇ R, so use automorphisms of R̃ that coincide
with those of Oi/Oi/2.

Detail #2: each Tr(Oi) = 2Oi/2, so lift to plaintext modulus 2q, then halve result.

12 / 21

Evaluating TraceR/Z Homomorphically

?? Use “ring switching” [GHPS’12] ?

4 Computes TrR/R′ homomorphically, by taking TrR/R′ of ciphertext.

7 Requires hardness of ring-LWE in R′ . . . but here R′ = Z.

?? Directly apply all automorphisms τ of R/Z to ciphertext, then sum?

τ(c0) + τ(c1) · τ(s) = τ(v)
key-switch

=⇒ c′0 + c′1 · s ≈ τ(v)

7 k/2 automorphisms & key-switches: quadratic work & space

4 Iteratively “trace down” R = Ok → Ok/2 → · · · → Z.

F Only need to apply the two automorphisms of each Oi/Oi/2.
F Total lg(k) automorphisms & key-switches ⇒ Õ(k) work.

Detail #1: ciphertexts are over R̃ ⊇ R, so use automorphisms of R̃ that coincide
with those of Oi/Oi/2.

Detail #2: each Tr(Oi) = 2Oi/2, so lift to plaintext modulus 2q, then halve result.

12 / 21

Evaluating TraceR/Z Homomorphically

?? Use “ring switching” [GHPS’12] ?

4 Computes TrR/R′ homomorphically, by taking TrR/R′ of ciphertext.

7 Requires hardness of ring-LWE in R′ . . . but here R′ = Z.

?? Directly apply all automorphisms τ of R/Z to ciphertext, then sum?

τ(c0) + τ(c1) · τ(s) = τ(v)
key-switch

=⇒ c′0 + c′1 · s ≈ τ(v)

7 k/2 automorphisms & key-switches: quadratic work & space

4 Iteratively “trace down” R = Ok → Ok/2 → · · · → Z.

F Only need to apply the two automorphisms of each Oi/Oi/2.
F Total lg(k) automorphisms & key-switches ⇒ Õ(k) work.

Detail #1: ciphertexts are over R̃ ⊇ R, so use automorphisms of R̃ that coincide
with those of Oi/Oi/2.

Detail #2: each Tr(Oi) = 2Oi/2, so lift to plaintext modulus 2q, then halve result.

12 / 21

Evaluating TraceR/Z Homomorphically

?? Use “ring switching” [GHPS’12] ?

4 Computes TrR/R′ homomorphically, by taking TrR/R′ of ciphertext.

7 Requires hardness of ring-LWE in R′ . . . but here R′ = Z.

?? Directly apply all automorphisms τ of R/Z to ciphertext, then sum?

τ(c0) + τ(c1) · τ(s) = τ(v)
key-switch

=⇒ c′0 + c′1 · s ≈ τ(v)

7 k/2 automorphisms & key-switches: quadratic work & space

4 Iteratively “trace down” R = Ok → Ok/2 → · · · → Z.

F Only need to apply the two automorphisms of each Oi/Oi/2.
F Total lg(k) automorphisms & key-switches ⇒ Õ(k) work.

Detail #1: ciphertexts are over R̃ ⊇ R, so use automorphisms of R̃ that coincide
with those of Oi/Oi/2.

Detail #2: each Tr(Oi) = 2Oi/2, so lift to plaintext modulus 2q, then halve result.

12 / 21

Evaluating TraceR/Z Homomorphically

?? Use “ring switching” [GHPS’12] ?

4 Computes TrR/R′ homomorphically, by taking TrR/R′ of ciphertext.

7 Requires hardness of ring-LWE in R′ . . . but here R′ = Z.

?? Directly apply all automorphisms τ of R/Z to ciphertext, then sum?

τ(c0) + τ(c1) · τ(s) = τ(v)
key-switch

=⇒ c′0 + c′1 · s ≈ τ(v)

7 k/2 automorphisms & key-switches: quadratic work & space

4 Iteratively “trace down” R = Ok → Ok/2 → · · · → Z.

F Only need to apply the two automorphisms of each Oi/Oi/2.
F Total lg(k) automorphisms & key-switches ⇒ Õ(k) work.

Detail #1: ciphertexts are over R̃ ⊇ R, so use automorphisms of R̃ that coincide
with those of Oi/Oi/2.

Detail #2: each Tr(Oi) = 2Oi/2, so lift to plaintext modulus 2q, then halve result.

12 / 21

Evaluating TraceR/Z Homomorphically

?? Use “ring switching” [GHPS’12] ?

4 Computes TrR/R′ homomorphically, by taking TrR/R′ of ciphertext.

7 Requires hardness of ring-LWE in R′ . . . but here R′ = Z.

?? Directly apply all automorphisms τ of R/Z to ciphertext, then sum?

τ(c0) + τ(c1) · τ(s) = τ(v)
key-switch

=⇒ c′0 + c′1 · s ≈ τ(v)

7 k/2 automorphisms & key-switches: quadratic work & space

4 Iteratively “trace down” R = Ok → Ok/2 → · · · → Z.

F Only need to apply the two automorphisms of each Oi/Oi/2.
F Total lg(k) automorphisms & key-switches ⇒ Õ(k) work.

Detail #1: ciphertexts are over R̃ ⊇ R, so use automorphisms of R̃ that coincide
with those of Oi/Oi/2.

Detail #2: each Tr(Oi) = 2Oi/2, so lift to plaintext modulus 2q, then halve result.

12 / 21

Evaluating TraceR/Z Homomorphically

?? Use “ring switching” [GHPS’12] ?

4 Computes TrR/R′ homomorphically, by taking TrR/R′ of ciphertext.

7 Requires hardness of ring-LWE in R′ . . . but here R′ = Z.

?? Directly apply all automorphisms τ of R/Z to ciphertext, then sum?

τ(c0) + τ(c1) · τ(s) = τ(v)
key-switch

=⇒ c′0 + c′1 · s ≈ τ(v)

7 k/2 automorphisms & key-switches: quadratic work & space

4 Iteratively “trace down” R = Ok → Ok/2 → · · · → Z.

F Only need to apply the two automorphisms of each Oi/Oi/2.
F Total lg(k) automorphisms & key-switches ⇒ Õ(k) work.

Detail #1: ciphertexts are over R̃ ⊇ R, so use automorphisms of R̃ that coincide
with those of Oi/Oi/2.

Detail #2: each Tr(Oi) = 2Oi/2, so lift to plaintext modulus 2q, then halve result.

12 / 21

Main Result:
Bootstrapping Packed Ciphertexts

13 / 21

Bootstrapping Packed Ciphertexts: Overview

1 Prepare: as before, view c as a “noiseless” encryption of plaintext

v = c0 + c1 · s =
∑
j

vj · bj ∈ Rq.

Recall: µ = bve =
∑

jbvje · bj ∈ R2 (where bj = ζj).

2 Homomorphically map coeffs vj to “Zq-slots” of certain ring Sq:∑
vj · bj ∈ Rq 7−→

∑
vj · cj ∈ Sq.

(Change of basis, analogous to homomorphic DFT.)

3 Batch-round: homom’ly apply b·e on all Zq-slots at once [SV’11]:∑
vj · cj ∈ Sq 7−→

∑
bvje · cj ∈ S2.

4 Homomorphically reverse-map Z2-slots back to B-coeffs:∑
bvje · cj ∈ S2 7−→

∑
bvje · bj = µ ∈ R2.

(Akin to homomorphic DFT−1.)

14 / 21

Bootstrapping Packed Ciphertexts: Overview

1 Prepare: as before, view c as a “noiseless” encryption of plaintext

v = c0 + c1 · s =
∑
j

vj · bj ∈ Rq.

Recall: µ = bve =
∑

jbvje · bj ∈ R2 (where bj = ζj).

2 Homomorphically map coeffs vj to “Zq-slots” of certain ring Sq:∑
vj · bj ∈ Rq 7−→

∑
vj · cj ∈ Sq.

(Change of basis, analogous to homomorphic DFT.)

3 Batch-round: homom’ly apply b·e on all Zq-slots at once [SV’11]:∑
vj · cj ∈ Sq 7−→

∑
bvje · cj ∈ S2.

4 Homomorphically reverse-map Z2-slots back to B-coeffs:∑
bvje · cj ∈ S2 7−→

∑
bvje · bj = µ ∈ R2.

(Akin to homomorphic DFT−1.)

14 / 21

Bootstrapping Packed Ciphertexts: Overview

1 Prepare: as before, view c as a “noiseless” encryption of plaintext

v = c0 + c1 · s =
∑
j

vj · bj ∈ Rq.

Recall: µ = bve =
∑

jbvje · bj ∈ R2 (where bj = ζj).

2 Homomorphically map coeffs vj to “Zq-slots” of certain ring Sq:∑
vj · bj ∈ Rq 7−→

∑
vj · cj ∈ Sq.

(Change of basis, analogous to homomorphic DFT.)

3 Batch-round: homom’ly apply b·e on all Zq-slots at once [SV’11]:∑
vj · cj ∈ Sq 7−→

∑
bvje · cj ∈ S2.

4 Homomorphically reverse-map Z2-slots back to B-coeffs:∑
bvje · cj ∈ S2 7−→

∑
bvje · bj = µ ∈ R2.

(Akin to homomorphic DFT−1.)

14 / 21

Bootstrapping Packed Ciphertexts: Overview

1 Prepare: as before, view c as a “noiseless” encryption of plaintext

v = c0 + c1 · s =
∑
j

vj · bj ∈ Rq.

Recall: µ = bve =
∑

jbvje · bj ∈ R2 (where bj = ζj).

2 Homomorphically map coeffs vj to “Zq-slots” of certain ring Sq:∑
vj · bj ∈ Rq 7−→

∑
vj · cj ∈ Sq.

(Change of basis, analogous to homomorphic DFT.)

3 Batch-round: homom’ly apply b·e on all Zq-slots at once [SV’11]:∑
vj · cj ∈ Sq 7−→

∑
bvje · cj ∈ S2.

4 Homomorphically reverse-map Z2-slots back to B-coeffs:∑
bvje · cj ∈ S2 7−→

∑
bvje · bj = µ ∈ R2.

(Akin to homomorphic DFT−1.)
14 / 21

Algebra: Slots and CRT Sets

I Let 1 = `0|`1|`2| · · · (all odd), and S(i) = O`i = Z[ζ`i].

Identifying ζ
`i/`i−1

`i
= ζ`i−1

, we get a tower S(i)/S(i−1)/ · · · /Z.

I In S = S(i), 2 factors into distinct prime ideals, like so:

2

p1

p1,1 p1,2 p1,3

p2

p2,1 p2,2 p2,3

Z = O1

S(1) = O7

S(2) = O91

I By Chinese Rem Thm, S2 ∼=
⊕

j (S/pj) via natural homomorphism.

“CRT set:” C = {cj} ⊂ S s.t. cj = 1 (mod pj), = 0 (mod p6=j).

Mapping vj ∈ Z2 7→ vj · cj ∈ S2 embeds Z2 into jth “slot” of S2.

I Can factor Ci = C ′i · Ci−1: let c′k = 1 (mod p?,k), = 0 (mod p?,6=k).

I Similarly for Sq ∼=
⊕

j (S/plg qj).

15 / 21

Algebra: Slots and CRT Sets

I Let 1 = `0|`1|`2| · · · (all odd), and S(i) = O`i = Z[ζ`i].

Identifying ζ
`i/`i−1

`i
= ζ`i−1

, we get a tower S(i)/S(i−1)/ · · · /Z.

I In S = S(i), 2 factors into distinct prime ideals, like so:

2

p1

p1,1 p1,2 p1,3

p2

p2,1 p2,2 p2,3

Z = O1

S(1) = O7

S(2) = O91

I By Chinese Rem Thm, S2 ∼=
⊕

j (S/pj) via natural homomorphism.

“CRT set:” C = {cj} ⊂ S s.t. cj = 1 (mod pj), = 0 (mod p6=j).

Mapping vj ∈ Z2 7→ vj · cj ∈ S2 embeds Z2 into jth “slot” of S2.

I Can factor Ci = C ′i · Ci−1: let c′k = 1 (mod p?,k), = 0 (mod p?,6=k).

I Similarly for Sq ∼=
⊕

j (S/plg qj).

15 / 21

Algebra: Slots and CRT Sets

I Let 1 = `0|`1|`2| · · · (all odd), and S(i) = O`i = Z[ζ`i].

Identifying ζ
`i/`i−1

`i
= ζ`i−1

, we get a tower S(i)/S(i−1)/ · · · /Z.

I In S = S(i), 2 factors into distinct prime ideals, like so:

2

p1

p1,1 p1,2 p1,3

p2

p2,1 p2,2 p2,3

Z = O1

S(1) = O7

S(2) = O91

I By Chinese Rem Thm, S2 ∼=
⊕

j (S/pj) via natural homomorphism.

“CRT set:” C = {cj} ⊂ S s.t. cj = 1 (mod pj), = 0 (mod p6=j).

Mapping vj ∈ Z2 7→ vj · cj ∈ S2 embeds Z2 into jth “slot” of S2.

I Can factor Ci = C ′i · Ci−1: let c′k = 1 (mod p?,k), = 0 (mod p?,6=k).

I Similarly for Sq ∼=
⊕

j (S/plg qj).

15 / 21

Algebra: Slots and CRT Sets

I Let 1 = `0|`1|`2| · · · (all odd), and S(i) = O`i = Z[ζ`i].

Identifying ζ
`i/`i−1

`i
= ζ`i−1

, we get a tower S(i)/S(i−1)/ · · · /Z.

I In S = S(i), 2 factors into distinct prime ideals, like so:

2

p1

p1,1 p1,2 p1,3

p2

p2,1 p2,2 p2,3

Z = O1

S(1) = O7

S(2) = O91

I By Chinese Rem Thm, S2 ∼=
⊕

j (S/pj) via natural homomorphism.

“CRT set:” C = {cj} ⊂ S s.t. cj = 1 (mod pj), = 0 (mod p6=j).

Mapping vj ∈ Z2 7→ vj · cj ∈ S2 embeds Z2 into jth “slot” of S2.

I Can factor Ci = C ′i · Ci−1: let c′k = 1 (mod p?,k), = 0 (mod p?,6=k).

I Similarly for Sq ∼=
⊕

j (S/plg qj).

15 / 21

Algebra: Slots and CRT Sets

I Let 1 = `0|`1|`2| · · · (all odd), and S(i) = O`i = Z[ζ`i].

Identifying ζ
`i/`i−1

`i
= ζ`i−1

, we get a tower S(i)/S(i−1)/ · · · /Z.

I In S = S(i), 2 factors into distinct prime ideals, like so:

2

p1

p1,1 p1,2 p1,3

p2

p2,1 p2,2 p2,3

Z = O1

S(1) = O7

S(2) = O91

I By Chinese Rem Thm, S2 ∼=
⊕

j (S/pj) via natural homomorphism.

“CRT set:” C = {cj} ⊂ S s.t. cj = 1 (mod pj), = 0 (mod p6=j).

Mapping vj ∈ Z2 7→ vj · cj ∈ S2 embeds Z2 into jth “slot” of S2.

I Can factor Ci = C ′i · Ci−1: let c′k = 1 (mod p?,k), = 0 (mod p?,6=k).

I Similarly for Sq ∼=
⊕

j (S/plg qj).

15 / 21

Algebra: Slots and CRT Sets

I Let 1 = `0|`1|`2| · · · (all odd), and S(i) = O`i = Z[ζ`i].

Identifying ζ
`i/`i−1

`i
= ζ`i−1

, we get a tower S(i)/S(i−1)/ · · · /Z.

I In S = S(i), 2 factors into distinct prime ideals, like so:

2

p1

p1,1 p1,2 p1,3

p2

p2,1 p2,2 p2,3

Z = O1

S(1) = O7

S(2) = O91

I By Chinese Rem Thm, S2 ∼=
⊕

j (S/pj) via natural homomorphism.

“CRT set:” C = {cj} ⊂ S s.t. cj = 1 (mod pj), = 0 (mod p6=j).

Mapping vj ∈ Z2 7→ vj · cj ∈ S2 embeds Z2 into jth “slot” of S2.

I Can factor Ci = C ′i · Ci−1: let c′k = 1 (mod p?,k), = 0 (mod p?,6=k).

I Similarly for Sq ∼=
⊕

j (S/plg qj).

15 / 21

Mapping Coeffs to Slots: Overview

I Choose S so that Sq has ≥ deg(R/Z) Zq-slots, via:

(vj) ∈ Zk/2
q 7−→

∑
vj · cj mod q

for an appropriate CRT set C = {cj} ⊂ S of size k/2.

I Our goal: homomorphically map
∑
vj · bj ∈ Rq 7−→

∑
vj · cj ∈ Sq.

Equivalently, evaluate the Z-linear∗ map L : R→ S defined by

L(bj) = cj .

∗Z-linear: L(b+ b′) = L(b) + L(b′), L(v · b) = v · L(b) for any b, b′ ∈ R, v ∈ Z.

I Ring-switching [GHPS’12] lets us eval any R′-linear map L : R→ R′

. . . but only for a subring R′ ⊆ R.

Goal for Remainder of Talk
I Extend ring-switching to (efficiently) handle Z-linear maps L : R→ S.

16 / 21

Mapping Coeffs to Slots: Overview

I Choose S so that Sq has ≥ deg(R/Z) Zq-slots, via:

(vj) ∈ Zk/2
q 7−→

∑
vj · cj mod q

for an appropriate CRT set C = {cj} ⊂ S of size k/2.

I Our goal: homomorphically map
∑
vj · bj ∈ Rq 7−→

∑
vj · cj ∈ Sq.

Equivalently, evaluate the Z-linear∗ map L : R→ S defined by

L(bj) = cj .

∗Z-linear: L(b+ b′) = L(b) + L(b′), L(v · b) = v · L(b) for any b, b′ ∈ R, v ∈ Z.

I Ring-switching [GHPS’12] lets us eval any R′-linear map L : R→ R′

. . . but only for a subring R′ ⊆ R.

Goal for Remainder of Talk
I Extend ring-switching to (efficiently) handle Z-linear maps L : R→ S.

16 / 21

Mapping Coeffs to Slots: Overview

I Choose S so that Sq has ≥ deg(R/Z) Zq-slots, via:

(vj) ∈ Zk/2
q 7−→

∑
vj · cj mod q

for an appropriate CRT set C = {cj} ⊂ S of size k/2.

I Our goal: homomorphically map
∑
vj · bj ∈ Rq 7−→

∑
vj · cj ∈ Sq.

Equivalently, evaluate the Z-linear∗ map L : R→ S defined by

L(bj) = cj .

∗Z-linear: L(b+ b′) = L(b) + L(b′), L(v · b) = v · L(b) for any b, b′ ∈ R, v ∈ Z.

I Ring-switching [GHPS’12] lets us eval any R′-linear map L : R→ R′

. . . but only for a subring R′ ⊆ R.

Goal for Remainder of Talk
I Extend ring-switching to (efficiently) handle Z-linear maps L : R→ S.

16 / 21

Mapping Coeffs to Slots: Overview

I Choose S so that Sq has ≥ deg(R/Z) Zq-slots, via:

(vj) ∈ Zk/2
q 7−→

∑
vj · cj mod q

for an appropriate CRT set C = {cj} ⊂ S of size k/2.

I Our goal: homomorphically map
∑
vj · bj ∈ Rq 7−→

∑
vj · cj ∈ Sq.

Equivalently, evaluate the Z-linear∗ map L : R→ S defined by

L(bj) = cj .

∗Z-linear: L(b+ b′) = L(b) + L(b′), L(v · b) = v · L(b) for any b, b′ ∈ R, v ∈ Z.

I Ring-switching [GHPS’12] lets us eval any R′-linear map L : R→ R′

. . . but only for a subring R′ ⊆ R.

Goal for Remainder of Talk
I Extend ring-switching to (efficiently) handle Z-linear maps L : R→ S.

16 / 21

Mapping Coeffs to Slots: Overview

I Choose S so that Sq has ≥ deg(R/Z) Zq-slots, via:

(vj) ∈ Zk/2
q 7−→

∑
vj · cj mod q

for an appropriate CRT set C = {cj} ⊂ S of size k/2.

I Our goal: homomorphically map
∑
vj · bj ∈ Rq 7−→

∑
vj · cj ∈ Sq.

Equivalently, evaluate the Z-linear∗ map L : R→ S defined by

L(bj) = cj .

∗Z-linear: L(b+ b′) = L(b) + L(b′), L(v · b) = v · L(b) for any b, b′ ∈ R, v ∈ Z.

I Ring-switching [GHPS’12] lets us eval any R′-linear map L : R→ R′

. . . but only for a subring R′ ⊆ R.

Goal for Remainder of Talk
I Extend ring-switching to (efficiently) handle Z-linear maps L : R→ S.

16 / 21

Mapping Coeffs to Slots: Overview

I Choose S so that Sq has ≥ deg(R/Z) Zq-slots, via:

(vj) ∈ Zk/2
q 7−→

∑
vj · cj mod q

for an appropriate CRT set C = {cj} ⊂ S of size k/2.

I Our goal: homomorphically map
∑
vj · bj ∈ Rq 7−→

∑
vj · cj ∈ Sq.

Equivalently, evaluate the Z-linear∗ map L : R→ S defined by

L(bj) = cj .

∗Z-linear: L(b+ b′) = L(b) + L(b′), L(v · b) = v · L(b) for any b, b′ ∈ R, v ∈ Z.

I Ring-switching [GHPS’12] lets us eval any R′-linear map L : R→ R′

. . . but only for a subring R′ ⊆ R.

Goal for Remainder of Talk
I Extend ring-switching to (efficiently) handle Z-linear maps L : R→ S.

16 / 21

Algebra: Combining Cyclotomic Rings

I Let R = Ok, S = O`. Let d = gcd(k, `) and m = lcm(k, `).

R

T = R+ S = Om

E = R ∩ S = Od

S

(“compositum”)

I Compositum T as a tensor product of R,S, where ⊗ is E-bilinear:

T ∼= (R/E)⊗ (S/E) :=
{∑

ei,j(ri ⊗ sj) : ei,j ∈ E, ri ∈ R, sj ∈ S
}
.

Easy Lemma

I For any E-linear L : R→ S, there is an S-linear L̄ : T → S that
agrees with L on R.

I Proof: define L̄ by L̄(r ⊗ s) = L(r) · s ∈ S.

17 / 21

Algebra: Combining Cyclotomic Rings

I Let R = Ok, S = O`. Let d = gcd(k, `) and m = lcm(k, `).

R

T = R+ S = Om

E = R ∩ S = Od

S

(“compositum”)

I Compositum T as a tensor product of R,S, where ⊗ is E-bilinear:

T ∼= (R/E)⊗ (S/E) :=
{∑

ei,j(ri ⊗ sj) : ei,j ∈ E, ri ∈ R, sj ∈ S
}
.

Easy Lemma

I For any E-linear L : R→ S, there is an S-linear L̄ : T → S that
agrees with L on R.

I Proof: define L̄ by L̄(r ⊗ s) = L(r) · s ∈ S.

17 / 21

Algebra: Combining Cyclotomic Rings

I Let R = Ok, S = O`. Let d = gcd(k, `) and m = lcm(k, `).

R

T = R+ S = Om

E = R ∩ S = Od

S

(“compositum”)

I Compositum T as a tensor product of R,S, where ⊗ is E-bilinear:

T ∼= (R/E)⊗ (S/E) :=
{∑

ei,j(ri ⊗ sj) : ei,j ∈ E, ri ∈ R, sj ∈ S
}
.

Easy Lemma

I For any E-linear L : R→ S, there is an S-linear L̄ : T → S that
agrees with L on R.

I Proof: define L̄ by L̄(r ⊗ s) = L(r) · s ∈ S.

17 / 21

Algebra: Combining Cyclotomic Rings

I Let R = Ok, S = O`. Let d = gcd(k, `) and m = lcm(k, `).

R

T = R+ S = Om

E = R ∩ S = Od

S

(“compositum”)

I Compositum T as a tensor product of R,S, where ⊗ is E-bilinear:

T ∼= (R/E)⊗ (S/E) :=
{∑

ei,j(ri ⊗ sj) : ei,j ∈ E, ri ∈ R, sj ∈ S
}
.

Easy Lemma

I For any E-linear L : R→ S, there is an S-linear L̄ : T → S that
agrees with L on R.

I Proof: define L̄ by L̄(r ⊗ s) = L(r) · s ∈ S.

17 / 21

Algebra: Combining Cyclotomic Rings

I Let R = Ok, S = O`. Let d = gcd(k, `) and m = lcm(k, `).

R

T = R+ S = Om

E = R ∩ S = Od

S

(“compositum”)

I Compositum T as a tensor product of R,S, where ⊗ is E-bilinear:

T ∼= (R/E)⊗ (S/E) :=
{∑

ei,j(ri ⊗ sj) : ei,j ∈ E, ri ∈ R, sj ∈ S
}
.

Easy Lemma

I For any E-linear L : R→ S, there is an S-linear L̄ : T → S that
agrees with L on R.

I Proof: define L̄ by L̄(r ⊗ s) = L(r) · s ∈ S.

17 / 21

Enhanced Ring-Switching: First Attempt

I Let R = Ok, S = O` be s.t. gcd(k, `) = 1, lcm(k, `) = k`.

R

T = Ok`

E = Z

S

em
bed L̄

L

(induced)

I To homom’ly eval. Z-linear L : R→ S on an encryption of v ∈ Rq,

1 Trivially embed ciphertext R→ T (still encrypts v).

2 Homomorphically apply S-linear L̄ : T → S using ring-switching.

4 We now have an encryption of L̄(v) = L(v) !

77 Problem: degree of T is quadratic, therefore so is runtime & space.
This is inherent if we treat L as a generic Z-linear map!

18 / 21

Enhanced Ring-Switching: First Attempt

I Let R = Ok, S = O` be s.t. gcd(k, `) = 1, lcm(k, `) = k`.

R

T = Ok`

E = Z

S

em
bed L̄

L

(induced)

I To homom’ly eval. Z-linear L : R→ S on an encryption of v ∈ Rq,

1 Trivially embed ciphertext R→ T (still encrypts v).

2 Homomorphically apply S-linear L̄ : T → S using ring-switching.

4 We now have an encryption of L̄(v) = L(v) !

77 Problem: degree of T is quadratic, therefore so is runtime & space.
This is inherent if we treat L as a generic Z-linear map!

18 / 21

Enhanced Ring-Switching: First Attempt

I Let R = Ok, S = O` be s.t. gcd(k, `) = 1, lcm(k, `) = k`.

R

T = Ok`

E = Z

S

em
bed L̄

L

(induced)

I To homom’ly eval. Z-linear L : R→ S on an encryption of v ∈ Rq,

1 Trivially embed ciphertext R→ T (still encrypts v).

2 Homomorphically apply S-linear L̄ : T → S using ring-switching.

4 We now have an encryption of L̄(v) = L(v) !

77 Problem: degree of T is quadratic, therefore so is runtime & space.
This is inherent if we treat L as a generic Z-linear map!

18 / 21

Enhanced Ring-Switching: First Attempt

I Let R = Ok, S = O` be s.t. gcd(k, `) = 1, lcm(k, `) = k`.

R

T = Ok`

E = Z

S

em
bed L̄

L

(induced)

I To homom’ly eval. Z-linear L : R→ S on an encryption of v ∈ Rq,

1 Trivially embed ciphertext R→ T (still encrypts v).

2 Homomorphically apply S-linear L̄ : T → S using ring-switching.

4 We now have an encryption of L̄(v) = L(v) !

77 Problem: degree of T is quadratic, therefore so is runtime & space.

This is inherent if we treat L as a generic Z-linear map!

18 / 21

Enhanced Ring-Switching: First Attempt

I Let R = Ok, S = O` be s.t. gcd(k, `) = 1, lcm(k, `) = k`.

R

T = Ok`

E = Z

S

em
bed L̄

L

(induced)

I To homom’ly eval. Z-linear L : R→ S on an encryption of v ∈ Rq,

1 Trivially embed ciphertext R→ T (still encrypts v).

2 Homomorphically apply S-linear L̄ : T → S using ring-switching.

4 We now have an encryption of L̄(v) = L(v) !

77 Problem: degree of T is quadratic, therefore so is runtime & space.

This is inherent if we treat L as a generic Z-linear map!

18 / 21

Enhanced Ring-Switching: First Attempt

I Let R = Ok, S = O` be s.t. gcd(k, `) = 1, lcm(k, `) = k`.

R

T = Ok`

E = Z

S

em
bed L̄

L

(induced)

I To homom’ly eval. Z-linear L : R→ S on an encryption of v ∈ Rq,

1 Trivially embed ciphertext R→ T (still encrypts v).

2 Homomorphically apply S-linear L̄ : T → S using ring-switching.

4 We now have an encryption of L̄(v) = L(v) !

77 Problem: degree of T is quadratic, therefore so is runtime & space.
This is inherent if we treat L as a generic Z-linear map!

18 / 21

Enhanced Ring-Switching, Efficiently

Key Ideas

I The Z-linear L : R→ S given by L(B) = C is “highly structured,”
because B,C are product sets.

I Gradually map B to C through a sequence of “hybrid rings” H(i),
via E(i)-linear functions that each send a factor of B to one of C.

I Ensure small compositums T (i) = H(i−1) +H(i) via large gcd’s:
replace prime factors of k with those of `, one at a time.

B ⊂ R = H(0)

T (1)

E(1)

H(1)

T (2)

E(2)

H(2) = S ⊃ C

em
bed

E(1)-linear

(induced)

em
bed

E(2)-linear

(induced)

19 / 21

Enhanced Ring-Switching, Efficiently

Key Ideas

I The Z-linear L : R→ S given by L(B) = C is “highly structured,”
because B,C are product sets.

I Gradually map B to C through a sequence of “hybrid rings” H(i),
via E(i)-linear functions that each send a factor of B to one of C.

I Ensure small compositums T (i) = H(i−1) +H(i) via large gcd’s:
replace prime factors of k with those of `, one at a time.

B ⊂ R = H(0)

T (1)

E(1)

H(1)

T (2)

E(2)

H(2) = S ⊃ C

em
bed

E(1)-linear

(induced)

em
bed

E(2)-linear

(induced)

19 / 21

Enhanced Ring-Switching, Efficiently

Key Ideas

I The Z-linear L : R→ S given by L(B) = C is “highly structured,”
because B,C are product sets.

I Gradually map B to C through a sequence of “hybrid rings” H(i),
via E(i)-linear functions that each send a factor of B to one of C.

I Ensure small compositums T (i) = H(i−1) +H(i) via large gcd’s:
replace prime factors of k with those of `, one at a time.

B ⊂ R = H(0)

T (1)

E(1)

H(1)

T (2)

E(2)

H(2) = S ⊃ C

em
bed

E(1)-linear

(induced)

em
bed

E(2)-linear

(induced)

19 / 21

Toy Example

I R = O8, basis B = B′8 ·B′4 = {1, ζ8} · {1, ζ4}.

I S = O7·13, CRT set C = C ′7 · C ′91 = {c1, c2} · {c′1, c′2, c′3}.

B′8 ·B′4
⊂ O8

O4

B′4 · C ′7
⊂ O4·7

O7

C ′7 · C ′91
⊂ O7·13fix B′4

B′8 → C ′7

fix C ′7

B′4 → C ′91

I In general, switch through ≤ log(deg(R/Z)) = log(λ) hybrid rings,
one for each prime factor of k.

20 / 21

Toy Example

I R = O8, basis B = B′8 ·B′4 = {1, ζ8} · {1, ζ4}.

I S = O7·13, CRT set C = C ′7 · C ′91 = {c1, c2} · {c′1, c′2, c′3}.

B′8 ·B′4
⊂ O8

O4

B′4 · C ′7
⊂ O4·7

O7

C ′7 · C ′91
⊂ O7·13fix B′4

B′8 → C ′7

fix C ′7

B′4 → C ′91

I In general, switch through ≤ log(deg(R/Z)) = log(λ) hybrid rings,
one for each prime factor of k.

20 / 21

Toy Example

I R = O8, basis B = B′8 ·B′4 = {1, ζ8} · {1, ζ4}.

I S = O7·13, CRT set C = C ′7 · C ′91 = {c1, c2} · {c′1, c′2, c′3}.

B′8 ·B′4
⊂ O8

O4

B′4 · C ′7
⊂ O4·7

O7

C ′7 · C ′91
⊂ O7·13fix B′4

B′8 → C ′7

fix C ′7

B′4 → C ′91

I In general, switch through ≤ log(deg(R/Z)) = log(λ) hybrid rings,
one for each prime factor of k.

20 / 21

Toy Example

I R = O8, basis B = B′8 ·B′4 = {1, ζ8} · {1, ζ4}.

I S = O7·13, CRT set C = C ′7 · C ′91 = {c1, c2} · {c′1, c′2, c′3}.

B′8 ·B′4
⊂ O8

O4

B′4 · C ′7
⊂ O4·7

O7

C ′7 · C ′91
⊂ O7·13fix B′4

B′8 → C ′7

fix C ′7

B′4 → C ′91

I In general, switch through ≤ log(deg(R/Z)) = log(λ) hybrid rings,
one for each prime factor of k.

20 / 21

Final Thoughts

I Gradually converting B to C via hybrid rings is roughly analogous to
a log-depth FFT butterfly network.

I Technique should also be useful for homomorphically evaluating other
signal-processing transforms having “sparse decompositions.”

I Practical implementation and evaluation are underway.

Thanks!

21 / 21

Final Thoughts

I Gradually converting B to C via hybrid rings is roughly analogous to
a log-depth FFT butterfly network.

I Technique should also be useful for homomorphically evaluating other
signal-processing transforms having “sparse decompositions.”

I Practical implementation and evaluation are underway.

Thanks!

21 / 21

Final Thoughts

I Gradually converting B to C via hybrid rings is roughly analogous to
a log-depth FFT butterfly network.

I Technique should also be useful for homomorphically evaluating other
signal-processing transforms having “sparse decompositions.”

I Practical implementation and evaluation are underway.

Thanks!

21 / 21

Final Thoughts

I Gradually converting B to C via hybrid rings is roughly analogous to
a log-depth FFT butterfly network.

I Technique should also be useful for homomorphically evaluating other
signal-processing transforms having “sparse decompositions.”

I Practical implementation and evaluation are underway.

Thanks!

21 / 21

