Practical Bootstrapping in Quasilinear Time

Jacob Alperin-Sheriff Chris Peikert

School of Computer Science Georgia Tech

> UC San Diego 29 April 2013

Fully Homomorphic Encryption [RAD'78,Gen'09]

FHE lets you do this:

$$\mu \longrightarrow \boxed{\mathsf{Eval}\left(f \ , \ \mu\right)} \longrightarrow \boxed{f(\mu)}$$

where $|f(\mu)|$ and decryption time don't depend on |f|. A cryptographic "holy grail" with tons of applications.

Fully Homomorphic Encryption [RAD'78,Gen'09]

FHE lets you do this:

$$\mu \longrightarrow \boxed{\mathsf{Eval}\left(f \ , \ \mu\right)} \longrightarrow \boxed{f(\mu)}$$

where $|f(\mu)|$ and decryption time don't depend on |f|.

A cryptographic "holy grail" with tons of applications.

Naturally occurring schemes are "somewhat homomorphic" (SHE): they can only evaluate functions of an *a priori* bounded depth.

$$\mu \to \boxed{\mathsf{Eval}\left(f,\mu\right)} \to \boxed{f(\mu)} \to \boxed{\mathsf{Eval}\left(g,f(\mu)\right)} \to \boxed{g(f(\mu))}$$

$$\boxed{sk} \longrightarrow \boxed{\mathsf{Eval}\left(f(x) = \mathsf{Dec}_x(\underline{\mu}), \underline{sk}\right)} \longrightarrow \underline{\mu}$$

$$sk \longrightarrow \boxed{\mathsf{Eval}\left(f(x) = \mathsf{Dec}_x(\underline{\mu}), sk\right)} \longrightarrow \underline{\mu}$$

- * The only known way of obtaining unbounded FHE.
- **\star** Goal: Efficiency! Minimize depth d and size s of decryption "circuit."
- ★ Best SHEs [BGV'12] can evaluate in time $\tilde{O}(d \cdot s \cdot \lambda)$.

$$sk \longrightarrow \boxed{\mathsf{Eval}\left(f(x) = \mathsf{Dec}_x(\underline{\mu}), \underline{sk}\right)} \longrightarrow \underline{\mu}$$

- * The only known way of obtaining unbounded FHE.
- \star Goal: Efficiency! Minimize depth d and size s of decryption "circuit."
- ★ Best SHEs [BGV'12] can evaluate in time $\tilde{O}(d \cdot s \cdot \lambda)$.
- Intensive study, many techniques [G'09,GH'11a,GH'11b,GHS'12b], but still very inefficient – the main bottleneck in FHE, by far.

$$sk \longrightarrow \boxed{\mathsf{Eval}\left(f(x) = \mathsf{Dec}_x(\underline{\mu}), \underline{sk}\right)} \longrightarrow \underline{\mu}$$

- * The only known way of obtaining unbounded FHE.
- **\star** Goal: Efficiency! Minimize depth d and size s of decryption "circuit."
- ★ Best SHEs [BGV'12] can evaluate in time $\tilde{O}(d \cdot s \cdot \lambda)$.
- Intensive study, many techniques [G'09,GH'11a,GH'11b,GHS'12b], but still very inefficient – the main bottleneck in FHE, by far.
- The asymptotically most efficient methods on "packed" ciphertexts [GHS'12a,GHS'12b] are very complex, and appear practically worse than asymptotically slower methods.

Milestones in Bootstrapping [Gen'09]: $\tilde{O}(\lambda^4)$ runtime

[Gen'09]: $ilde{O}(\lambda^4)$ runtime

[BGV'12]: $\tilde{O}(\lambda^2)$ runtime, or $\tilde{O}(\lambda)$ amortized over λ ciphertexts

[Gen'09]: $\tilde{O}(\lambda^4)$ runtime

[BGV'12]: $\tilde{O}(\lambda^2)$ runtime, or $\tilde{O}(\lambda)$ amortized over λ ciphertexts Mainly via improved SHE homomorphic capacity. Amortized method requires "exotic" plaintext rings, emulating \mathbb{Z}_2 arithmetic in \mathbb{Z}_p .

[Gen'09]: $\tilde{O}(\lambda^4)$ runtime

 $[\mathsf{BGV'12}]: \ \tilde{O}(\lambda^2) \ \text{runtime, or} \ \tilde{O}(\lambda) \ \text{amortized over} \ \lambda \ \text{ciphertexts} \\ \text{Mainly via improved SHE homomorphic capacity.} \\ \text{Amortized method requires "exotic" plaintext rings, emulating} \ \mathbb{Z}_2 \ \text{arithmetic in} \ \mathbb{Z}_p. \end{aligned}$

[GHS'12b]: $\tilde{O}(\lambda)$ runtime, for "packed" plaintexts. Declare victory?

[Gen'09]: $\tilde{O}(\lambda^4)$ runtime

[BGV'12]: $\tilde{O}(\lambda^2)$ runtime, or $\tilde{O}(\lambda)$ amortized over λ ciphertexts Mainly via improved SHE homomorphic capacity. Amortized method requires "exotic" plaintext rings,

emulating \mathbb{Z}_2 arithmetic in \mathbb{Z}_p .

[GHS'12b]: $\tilde{O}(\lambda)$ runtime, for "packed" plaintexts. Declare victory?

[Gen'09]: $\tilde{O}(\lambda^4)$ runtime

 $[\mathsf{BGV'12}]: \ \tilde{O}(\lambda^2) \ \text{runtime, or} \ \tilde{O}(\lambda) \ \text{amortized over} \ \lambda \ \text{ciphertexts} \\ Mainly \ \text{via improved SHE homomorphic capacity.} \\ Amortized \ \text{method requires "exotic" plaintext rings,} \end{cases}$

emulating \mathbb{Z}_2 arithmetic in \mathbb{Z}_p .

[GHS'12b]: $\tilde{O}(\lambda)$ runtime, for "packed" plaintexts. Declare victory?

X Log-depth mod- $\Phi_m(X)$ circuit is complex, w/large hidden constants.

[Gen'09]: $\tilde{O}(\lambda^4)$ runtime

 $[\mathsf{BGV'12}]:\ \tilde{O}(\lambda^2) \text{ runtime, or } \tilde{O}(\lambda) \text{ amortized over } \lambda \text{ ciphertexts} \\ \text{Mainly via improved SHE homomorphic capacity.} \\ \text{Amortized method requires "exotic" plaintext rings,} \end{cases}$

emulating \mathbb{Z}_2 arithmetic in \mathbb{Z}_p .

[GHS'12b]: $\tilde{O}(\lambda)$ runtime, for "packed" plaintexts. Declare victory?

X Log-depth mod- $\Phi_m(X)$ circuit is complex, w/large hidden constants. XX [GHS'12a] compiler is very complex, w/large polylog overhead factor.

- **1** For "unpacked" (single-bit) plaintexts:
 - ✓ Extremely simple!
 - ✔ Uses only power-of-2 cyclotomic rings (fast, easy to implement).

- **1** For "unpacked" (single-bit) plaintexts:
 - ✓ Extremely simple!
 - ✔ Uses only power-of-2 cyclotomic rings (fast, easy to implement).
 - * Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.

- **1** For "unpacked" (single-bit) plaintexts:
 - ✓ Extremely simple!
 - ✔ Uses only power-of-2 cyclotomic rings (fast, easy to implement).
 - * Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.
- **2** For "packed" (many-bit) plaintexts:

- **1** For "unpacked" (single-bit) plaintexts:
 - ✓ Extremely simple!
 - ✔ Uses only power-of-2 cyclotomic rings (fast, easy to implement).
 - * Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.
- 2 For "packed" (many-bit) plaintexts:
 - Based on a substantial enhancement of "ring-switching" [GHPS'12] to non-subrings.

- **1** For "unpacked" (single-bit) plaintexts:
 - ✓ Extremely simple!
 - ✓ Uses only power-of-2 cyclotomic rings (fast, easy to implement).
 - * Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.
- 2 For "packed" (many-bit) plaintexts:
 - Based on a substantial enhancement of "ring-switching" [GHPS'12] to non-subrings.
 - ✓ Appears quite practical, avoids both main inefficiencies of [GHS'12b]: no homomorphic reduction modulo $Φ_m(X)$, no generic compilation.

- **1** For "unpacked" (single-bit) plaintexts:
 - ✓ Extremely simple!
 - ✔ Uses only power-of-2 cyclotomic rings (fast, easy to implement).
 - * Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.
- 2 For "packed" (many-bit) plaintexts:
 - ★ Based on a substantial enhancement of "ring-switching" [GHPS'12] to non-subrings.
 - ✓ Appears quite practical, avoids both main inefficiencies of [GHS'12b]: no homomorphic reduction modulo $\Phi_m(X)$, no generic compilation.
 - ✓ Special purpose, completely algebraic description no "circuits."

- **1** For "unpacked" (single-bit) plaintexts:
 - ✓ Extremely simple!
 - ✔ Uses only power-of-2 cyclotomic rings (fast, easy to implement).
 - * Cf. [BGV'12]: $\tilde{O}(\lambda)$ amortized across λ ciphertexts, exotic rings.
- 2 For "packed" (many-bit) plaintexts:
 - ★ Based on a substantial enhancement of "ring-switching" [GHPS'12] to non-subrings.
 - ✓ Appears quite practical, avoids both main inefficiencies of [GHS'12b]: no homomorphic reduction modulo $\Phi_m(X)$, no generic compilation.
 - ✓ Special purpose, completely algebraic description no "circuits."
 - Completely decouples the algebraic structure of SHE plaintext ring from that needed for bootstrapping.

• Let $R = \mathbb{Z}[X]/(X^{k/2}+1)$, for k a power of 2. (The kth cyclotomic ring.)

• Let $R = \mathbb{Z}[X]/(X^{k/2} + 1)$, for k a power of 2. (The kth cyclotomic ring.) Let $R_q = R/qR = \mathbb{Z}_q[X]/(X^{k/2} + 1)$ for any integer q.

- Let $R = \mathbb{Z}[X]/(X^{k/2} + 1)$, for k a power of 2. (The kth cyclotomic ring.) Let $R_q = R/qR = \mathbb{Z}_q[X]/(X^{k/2} + 1)$ for any integer q.
- Plaintext ring is R_2 , ciphertext ring is R_q for $q \gg 2$. Can assume $k, q = \tilde{O}(\lambda)$ by ring- and modulus-switching.

- ▶ Let $R = \mathbb{Z}[X]/(X^{k/2} + 1)$, for k a power of 2. (The kth cyclotomic ring.) Let $R_q = R/qR = \mathbb{Z}_q[X]/(X^{k/2} + 1)$ for any integer q.
- Plaintext ring is R₂, ciphertext ring is R_q for q ≫ 2.
 Can assume k, q = Õ(λ) by ring- and modulus-switching.
- Ciphertext $c = (c_0, c_1) \in R_q^2$ encrypting $\mu \in R_2$ under $s \in R$ satisfies

$$v = c_0 + c_1 \cdot s \approx \frac{q}{2}\mu \pmod{qR}.$$

- ▶ Let $R = \mathbb{Z}[X]/(X^{k/2} + 1)$, for k a power of 2. (The kth cyclotomic ring.) Let $R_q = R/qR = \mathbb{Z}_q[X]/(X^{k/2} + 1)$ for any integer q.
- Plaintext ring is R₂, ciphertext ring is R_q for q ≫ 2.
 Can assume k, q = Õ(λ) by ring- and modulus-switching.
- Ciphertext $c = (c_0, c_1) \in R_q^2$ encrypting $\mu \in R_2$ under $s \in R$ satisfies

$$v = c_0 + c_1 \cdot s \approx \frac{q}{2}\mu \pmod{qR}.$$

Define the decryption function

$$\mathsf{Dec}_s(c) := \lfloor v \rceil = \mu \in R_2,$$

where "rounding" $\lfloor \cdot \rceil \colon \mathbb{Z}_q \to \mathbb{Z}_2$ is applied to coeffs of v = v(X).

- ▶ Let $R = \mathbb{Z}[X]/(X^{k/2} + 1)$, for k a power of 2. (The kth cyclotomic ring.) Let $R_q = R/qR = \mathbb{Z}_q[X]/(X^{k/2} + 1)$ for any integer q.
- Plaintext ring is R_2 , ciphertext ring is R_q for $q \gg 2$. Can assume $k, q = \tilde{O}(\lambda)$ by ring- and modulus-switching.
- Ciphertext $c = (c_0, c_1) \in R_q^2$ encrypting $\mu \in R_2$ under $s \in R$ satisfies

$$v = c_0 + c_1 \cdot s \approx \frac{q}{2}\mu \pmod{qR}.$$

Define the decryption function

$$\mathsf{Dec}_s(c) := \lfloor v \rceil = \mu \in R_2,$$

where "rounding" $\lfloor \cdot \rceil \colon \mathbb{Z}_q \to \mathbb{Z}_2$ is applied to coeffs of v = v(X).

• "Unpacked" plaintext $\mu \in \mathbb{Z}_2 \subseteq R_2$, i.e., just a constant polynomial.

- ▶ Let $R = \mathbb{Z}[X]/(X^{k/2} + 1)$, for k a power of 2. (The kth cyclotomic ring.) Let $R_q = R/qR = \mathbb{Z}_q[X]/(X^{k/2} + 1)$ for any integer q.
- Plaintext ring is R_2 , ciphertext ring is R_q for $q \gg 2$. Can assume $k, q = \tilde{O}(\lambda)$ by ring- and modulus-switching.
- Ciphertext $c = (c_0, c_1) \in R_q^2$ encrypting $\mu \in R_2$ under $s \in R$ satisfies

$$v = c_0 + c_1 \cdot s \approx \frac{q}{2}\mu \pmod{qR}.$$

Define the decryption function

$$\mathsf{Dec}_s(c) := \lfloor v \rceil = \mu \in R_2,$$

where "rounding" $\lfloor \cdot \rceil \colon \mathbb{Z}_q \to \mathbb{Z}_2$ is applied to coeffs of v = v(X).

• "Unpacked" plaintext $\mu \in \mathbb{Z}_2 \subseteq R_2$, i.e., just a constant polynomial. "Packed" plaintext uses more of R_2 , e.g., multiple "slots" [SV'11]. Warm-Up: Bootstrapping Unpacked Ciphertexts

Bootstrapping Unpacked Ciphertexts: Main Idea

1 Isolate message-carrying coefficient v_0 of v(X) by homomorphically "tracing down" a tower of cyclotomic rings $\mathcal{O}_{2k}/\mathcal{O}_k/\cdots/\mathcal{O}_4/\mathbb{Z}$.

(Trace = sum of the two automorphisms of $\mathcal{O}_{2i}/\mathcal{O}_{i}$.)

Bootstrapping Unpacked Ciphertexts: Main Idea

 Isolate message-carrying coefficient v₀ of v(X) by homomorphically "tracing down" a tower of cyclotomic rings O_{2k}/O_k/.../O₄/ℤ. (Trace = sum of the two automorphisms of O_{2i}/O_i.)

$$\begin{array}{cccc} v_{0} + v_{1}X + v_{2}X^{2} + \cdots + v_{k-1}X^{k-1} & \mathbb{Z}_{q}[X]/(X^{k}+1) \\ & & & | \\ v_{0} + 0X + v_{2}X^{2} + \cdots + 0X^{k-1} & \mathbb{Z}_{q}[X^{2}]/(X^{k}+1) \\ & & & \vdots \\ v_{0} + v_{k/4}X^{k/4} + \cdots + v_{3k/4}X^{3k/4} & \mathbb{Z}_{q}[X^{k/4}]/(X^{k}+1) \\ & & & | \\ v_{0} + v_{k/2}X^{k/2} & \mathbb{Z}_{q}[X^{k/2}]/(X^{k}+1) \\ & & & | \\ v_{0} & \mathbb{Z}_{q} \end{array}$$

Bootstrapping Unpacked Ciphertexts: Main Idea

 Isolate message-carrying coefficient v₀ of v(X) by homomorphically "tracing down" a tower of cyclotomic rings O_{2k}/O_k/.../O₄/ℤ. (Trace = sum of the two automorphisms of O_{2i}/O_i.)

$$\begin{array}{cccc} v_{0} + v_{1}X + v_{2}X^{2} + \cdots + v_{k-1}X^{k-1} & \mathbb{Z}_{q}[X]/(X^{k}+1) \\ & & & | \\ v_{0} + 0X + v_{2}X^{2} + \cdots + 0X^{k-1} & \mathbb{Z}_{q}[X^{2}]/(X^{k}+1) \\ & & & \vdots \\ v_{0} + v_{k/4}X^{k/4} + \cdots + v_{3k/4}X^{3k/4} & \mathbb{Z}_{q}[X^{k/4}]/(X^{k}+1) \\ & & & | \\ v_{0} & \mathbb{Z}_{q}[X^{k/2}]/(X^{k}+1) \\ & & & | \\ v_{0} & \mathbb{Z}_{q} \end{array}$$

2 Homomorphically "round" $v_0 \in \mathbb{Z}_q$ to the message bit $\lfloor \frac{2}{q} \cdot v_0 \rceil \in \mathbb{Z}_2$.

Algebra: Cyclotomic Towers and Product Bases

• Let $\zeta = \zeta_k$ have order k, a power of 2. Its min. poly: $\zeta^{k/2} + 1 = 0$.

Algebra: Cyclotomic Towers and Product Bases

• Let $\zeta = \zeta_k$ have order k, a power of 2. Its min. poly: $\zeta^{k/2} + 1 = 0$. So $\mathcal{O}_k = \mathbb{Z}[\zeta] \cong \mathbb{Z}[X]/(X^{k/2} + 1)$ has \mathbb{Z} -basis $\{1, \zeta, \zeta^2, \dots, \zeta^{k/2-1}\}$.

Algebra: Cyclotomic Towers and Product Bases

- Let $\zeta = \zeta_k$ have order k, a power of 2. Its min. poly: $\zeta^{k/2} + 1 = 0$. So $\mathcal{O}_k = \mathbb{Z}[\zeta] \cong \mathbb{Z}[X]/(X^{k/2} + 1)$ has \mathbb{Z} -basis $\{1, \zeta, \zeta^2, \dots, \zeta^{k/2-1}\}$.
- Tower of quadratic extensions $\mathcal{O}_k/\mathcal{O}_{k/2}/\cdots/\mathcal{O}_4/\mathbb{Z}$:
Algebra: Cyclotomic Towers and Product Bases

- Let $\zeta = \zeta_k$ have order k, a power of 2. Its min. poly: $\zeta^{k/2} + 1 = 0$. So $\mathcal{O}_k = \mathbb{Z}[\zeta] \cong \mathbb{Z}[X]/(X^{k/2} + 1)$ has \mathbb{Z} -basis $\{1, \zeta, \zeta^2, \dots, \zeta^{k/2-1}\}$.
- Tower of quadratic extensions $\mathcal{O}_k/\mathcal{O}_{k/2}/\cdots/\mathcal{O}_4/\mathbb{Z}$:

$$\begin{split} \zeta_k^2 &= \zeta_{k/2} & \mathcal{O}_k = \mathcal{O}_{k/2}[\zeta_k] & \mathcal{O}_{k/2}\text{-basis } B'_k = \{1,\zeta_k\} \\ & \vdots \\ \zeta_8^2 &= \zeta_4 & \mathcal{O}_8 = \mathcal{O}_4[\zeta_8] & \mathcal{O}_4\text{-basis } B'_8 = \{1,\zeta_8\} \\ & & | \\ \zeta_4^2 &= \zeta_2 & \mathcal{O}_4 = \mathcal{O}_2[\zeta_4] & \mathcal{O}_2\text{-basis } B'_4 = \{1,\zeta_4\} \\ & & | \\ \zeta_2^2 &= 1 & \mathcal{O}_2 = \mathbb{Z}[\zeta_2] = \mathbb{Z} & \mathbb{Z}\text{-basis } B'_2 = \{1\} \end{split}$$

Algebra: Cyclotomic Towers and Product Bases

- Let $\zeta = \zeta_k$ have order k, a power of 2. Its min. poly: $\zeta^{k/2} + 1 = 0$. So $\mathcal{O}_k = \mathbb{Z}[\zeta] \cong \mathbb{Z}[X]/(X^{k/2} + 1)$ has \mathbb{Z} -basis $\{1, \zeta, \zeta^2, \dots, \zeta^{k/2-1}\}$.
- Tower of quadratic extensions $\mathcal{O}_k/\mathcal{O}_{k/2}/\cdots/\mathcal{O}_4/\mathbb{Z}$:

$$\begin{split} \zeta_k^2 &= \zeta_{k/2} & \mathcal{O}_k = \mathcal{O}_{k/2}[\zeta_k] & \mathcal{O}_{k/2}\text{-basis } B'_k = \{1,\zeta_k\} \\ & \vdots \\ \zeta_8^2 &= \zeta_4 & \mathcal{O}_8 = \mathcal{O}_4[\zeta_8] & \mathcal{O}_4\text{-basis } B'_8 = \{1,\zeta_8\} \\ & & | \\ \zeta_4^2 &= \zeta_2 & \mathcal{O}_4 = \mathcal{O}_2[\zeta_4] & \mathcal{O}_2\text{-basis } B'_4 = \{1,\zeta_4\} \\ & & | \\ \zeta_2^2 &= 1 & \mathcal{O}_2 = \mathbb{Z}[\zeta_2] = \mathbb{Z} & \mathbb{Z}\text{-basis } B'_2 = \{1\} \end{split}$$

• "Product" \mathbb{Z} -basis of \mathcal{O}_k :

 $B_k := B'_k \cdot B_{k/2} = B'_k \cdot B'_{k/2} \cdots B'_2 = \{1, \zeta, \zeta^2, \dots, \zeta^{k/2-1}\}.$

• Tower of quadratic extensions $\mathcal{O}_k/\mathcal{O}_{k/2}/\cdots/\mathcal{O}_4/\mathbb{Z}$, where $\zeta_i^2 = \zeta_{i/2}$.

- Tower of quadratic extensions $\mathcal{O}_k/\mathcal{O}_{k/2}/\cdots/\mathcal{O}_4/\mathbb{Z}$, where $\zeta_i^2 = \zeta_{i/2}$.
- \mathcal{O}_i has exactly two automorphisms that fix $\mathcal{O}_{i/2}$: $\zeta_i \mapsto \pm \zeta_i$.

The trace function $\operatorname{Tr}: \mathcal{O}_i \to \mathcal{O}_{i/2}$ simply sums these automorphisms.

- Tower of quadratic extensions $\mathcal{O}_k/\mathcal{O}_{k/2}/\cdots/\mathcal{O}_4/\mathbb{Z}$, where $\zeta_i^2 = \zeta_{i/2}$.
- \mathcal{O}_i has exactly two automorphisms that fix $\mathcal{O}_{i/2}$: $\zeta_i \mapsto \pm \zeta_i$. The trace function $\operatorname{Tr}: \mathcal{O}_i \to \mathcal{O}_{i/2}$ simply sums these automorphisms.

• Let $v = v_0 \cdot 1 + v_1 \cdot \zeta_i \in \mathcal{O}_i$ for $v_0, v_1 \in \mathcal{O}_{i/2}$. Then $\operatorname{Tr}(v) = 2 \cdot v_0$. So $\operatorname{Tr}(\mathcal{O}_i) = 2 \cdot \mathcal{O}_{i/2}$.

- Tower of quadratic extensions $\mathcal{O}_k/\mathcal{O}_{k/2}/\cdots/\mathcal{O}_4/\mathbb{Z}$, where $\zeta_i^2 = \zeta_{i/2}$.
- \mathcal{O}_i has exactly two automorphisms that fix $\mathcal{O}_{i/2}$: $\zeta_i \mapsto \pm \zeta_i$. The trace function $\operatorname{Tr}: \mathcal{O}_i \to \mathcal{O}_{i/2}$ simply sums these automorphisms.

• Let
$$v = v_0 \cdot 1 + v_1 \cdot \zeta_i \in \mathcal{O}_i$$
 for $v_0, v_1 \in \mathcal{O}_{i/2}$.
Then $\operatorname{Tr}(v) = 2 \cdot v_0$. So $\operatorname{Tr}(\mathcal{O}_i) = 2 \cdot \mathcal{O}_{i/2}$.

More generally, Tr_{O_i/O_i} sums the automorphisms of O_i that fix O_i. Key facts:

- Tower of quadratic extensions $\mathcal{O}_k/\mathcal{O}_{k/2}/\cdots/\mathcal{O}_4/\mathbb{Z}$, where $\zeta_i^2 = \zeta_{i/2}$.
- \mathcal{O}_i has exactly two automorphisms that fix $\mathcal{O}_{i/2}$: $\zeta_i \mapsto \pm \zeta_i$. The trace function $\operatorname{Tr}: \mathcal{O}_i \to \mathcal{O}_{i/2}$ simply sums these automorphisms.

• Let
$$v = v_0 \cdot 1 + v_1 \cdot \zeta_i \in \mathcal{O}_i$$
 for $v_0, v_1 \in \mathcal{O}_{i/2}$.
Then $\operatorname{Tr}(v) = 2 \cdot v_0$. So $\operatorname{Tr}(\mathcal{O}_i) = 2 \cdot \mathcal{O}_{i/2}$.

More generally, Tr_{O_i/O_i} sums the automorphisms of O_i that fix O_i. Key facts:

$$\star \operatorname{Tr}_{\mathcal{O}_i/\mathcal{O}_{i''}} = \operatorname{Tr}_{\mathcal{O}_{i'}/\mathcal{O}_{i''}} \circ \operatorname{Tr}_{\mathcal{O}_i/\mathcal{O}_{i'}}$$

- Tower of quadratic extensions $\mathcal{O}_k/\mathcal{O}_{k/2}/\cdots/\mathcal{O}_4/\mathbb{Z}$, where $\zeta_i^2 = \zeta_{i/2}$.
- \mathcal{O}_i has exactly two automorphisms that fix $\mathcal{O}_{i/2}$: $\zeta_i \mapsto \pm \zeta_i$. The trace function $\operatorname{Tr}: \mathcal{O}_i \to \mathcal{O}_{i/2}$ simply sums these automorphisms.

• Let
$$v = v_0 \cdot 1 + v_1 \cdot \zeta_i \in \mathcal{O}_i$$
 for $v_0, v_1 \in \mathcal{O}_{i/2}$.
Then $\operatorname{Tr}(v) = 2 \cdot v_0$. So $\operatorname{Tr}(\mathcal{O}_i) = 2 \cdot \mathcal{O}_{i/2}$.

More generally, Tr_{O_i/O_i} sums the automorphisms of O_i that fix O_i. Key facts:

$$\star \operatorname{Tr}_{\mathcal{O}_i/\mathcal{O}_{i''}} = \operatorname{Tr}_{\mathcal{O}_{i'}/\mathcal{O}_{i''}} \circ \operatorname{Tr}_{\mathcal{O}_i/\mathcal{O}_{i'}}$$

 $\Rightarrow \operatorname{Tr}_{\mathcal{O}_i/\mathcal{O}_{i'}}(\mathcal{O}_i) = \operatorname{deg}(\mathcal{O}_i/\mathcal{O}_{i'}) \cdot \mathcal{O}_{i'}.$

- Tower of quadratic extensions $\mathcal{O}_k/\mathcal{O}_{k/2}/\cdots/\mathcal{O}_4/\mathbb{Z}$, where $\zeta_i^2 = \zeta_{i/2}$.
- \mathcal{O}_i has exactly two automorphisms that fix $\mathcal{O}_{i/2}$: $\zeta_i \mapsto \pm \zeta_i$. The trace function $\operatorname{Tr}: \mathcal{O}_i \to \mathcal{O}_{i/2}$ simply sums these automorphisms.

► Let
$$v = v_0 \cdot 1 + v_1 \cdot \zeta_i \in \mathcal{O}_i$$
 for $v_0, v_1 \in \mathcal{O}_{i/2}$.
Then $\operatorname{Tr}(v) = 2 \cdot v_0$. So $\operatorname{Tr}(\mathcal{O}_i) = 2 \cdot \mathcal{O}_{i/2}$.

More generally, Tr_{O_i/O_i}, sums the automorphisms of O_i that fix O_i. Key facts:

$$\star \operatorname{Tr}_{\mathcal{O}_i/\mathcal{O}_{i''}} = \operatorname{Tr}_{\mathcal{O}_{i'}/\mathcal{O}_{i''}} \circ \operatorname{Tr}_{\mathcal{O}_i/\mathcal{O}_{i'}}$$

$$\Rightarrow \operatorname{Tr}_{\mathcal{O}_i/\mathcal{O}_{i'}}(\mathcal{O}_i) = \operatorname{deg}(\mathcal{O}_i/\mathcal{O}_{i'}) \cdot \mathcal{O}_{i'}.$$

 $\Rightarrow \operatorname{Tr}_{\mathcal{O}_i/\mathbb{Z}}(v) = \frac{i}{2} \cdot v_0, \text{ where } v_0 \in \mathbb{Z} \text{ is the coeff of } \zeta_i^0 = 1.$

Recall: $R = \mathcal{O}_k$, and $v = c_0 + c_1 \cdot s \approx \frac{q}{2}\mu \in R_q$ for message $\mu \in \mathbb{Z}_2 \subseteq R_2$.

Recall: $R = \mathcal{O}_k$, and $v = c_0 + c_1 \cdot s \approx \frac{q}{2}\mu \in R_q$ for message $\mu \in \mathbb{Z}_2 \subseteq R_2$. **1** Prepare:

 \star View c as a "noiseless" encryption of plaintext

$$\mathbf{v} = \frac{q}{q} \cdot \mathbf{v} + 0 = c_0 + c_1 \cdot \mathbf{s} \in \mathbf{R}_q.$$

Plaintext ring is now R_q , not R_2 !

Recall: $R = \mathcal{O}_k$, and $v = c_0 + c_1 \cdot s \approx \frac{q}{2}\mu \in R_q$ for message $\mu \in \mathbb{Z}_2 \subseteq R_2$. **1** Prepare:

 \star View c as a "noiseless" encryption of plaintext

$$v = \frac{q}{q} \cdot v + 0 = c_0 + c_1 \cdot s \in R_q.$$

Plaintext ring is now R_q , not R_2 !

* (Switch to larger ciphertext modulus $Q \gg q$ and ring $\tilde{R} \supseteq R$, to support upcoming homomorphic operations.)

Recall: $R = \mathcal{O}_k$, and $v = c_0 + c_1 \cdot s \approx \frac{q}{2}\mu \in R_q$ for message $\mu \in \mathbb{Z}_2 \subseteq R_2$.

1 Prepare:

 \star View c as a "noiseless" encryption of plaintext

$$v = \frac{q}{q} \cdot v + 0 = c_0 + c_1 \cdot s \in R_q.$$

Plaintext ring is now R_q , not R_2 !

★ (Switch to larger ciphertext modulus $Q \gg q$ and ring $\tilde{R} \supseteq R$, to support upcoming homomorphic operations.)

2 Extract "constant term" $v_0 \in \mathbb{Z}_q$ of v: homomorphically evaluate

$$\frac{\operatorname{Tr}_{R/\mathbb{Z}}(v)}{\operatorname{deg}(R/\mathbb{Z})} = v_0 \approx \frac{q}{2} \cdot \mu \in \mathbb{Z}_q.$$

Fast, increases noise rate by only $\approx \sqrt{k}$ factor.

Recall: $R = \mathcal{O}_k$, and $v = c_0 + c_1 \cdot s \approx \frac{q}{2}\mu \in R_q$ for message $\mu \in \mathbb{Z}_2 \subseteq R_2$.

1 Prepare:

 \star View c as a "noiseless" encryption of plaintext

$$v = \frac{q}{q} \cdot v + 0 = c_0 + c_1 \cdot s \in R_q.$$

Plaintext ring is now R_q , not R_2 !

★ (Switch to larger ciphertext modulus $Q \gg q$ and ring $\tilde{R} \supseteq R$, to support upcoming homomorphic operations.)

2 Extract "constant term" $v_0 \in \mathbb{Z}_q$ of v: homomorphically evaluate

$$\frac{\operatorname{Tr}_{R/\mathbb{Z}}(v)}{\operatorname{deg}(R/\mathbb{Z})} = v_0 \approx \frac{q}{2} \cdot \mu \in \mathbb{Z}_q.$$

Fast, increases noise rate by only $\approx \sqrt{k}$ factor.

8 Round: homomorphically evaluate [v₀] = µ ∈ Z₂.
 Uses algebraic procedure of depth lg(q/2) & size lg²(q/2) [GHS'12b]

Recall: $R = \mathcal{O}_k$, and $v = c_0 + c_1 \cdot s \approx \frac{q}{2}\mu \in R_q$ for message $\mu \in \mathbb{Z}_2 \subseteq R_2$.

1 Prepare:

 \star View c as a "noiseless" encryption of plaintext

$$v = \frac{q}{q} \cdot v + 0 = c_0 + c_1 \cdot s \in R_q.$$

Plaintext ring is now R_q , not R_2 !

★ (Switch to larger ciphertext modulus $Q \gg q$ and ring $\tilde{R} \supseteq R$, to support upcoming homomorphic operations.)

2 Extract "constant term" $v_0 \in \mathbb{Z}_q$ of v: homomorphically evaluate

$$\frac{\operatorname{Tr}_{R/\mathbb{Z}}(v)}{\operatorname{deg}(R/\mathbb{Z})} = v_0 \approx \frac{q}{2} \cdot \mu \in \mathbb{Z}_q.$$

Fast, increases noise rate by only $\approx \sqrt{k}$ factor.

8 Round: homomorphically evaluate ⌊v₀⌉ = μ ∈ ℤ₂.
Uses algebraic procedure of depth lg(q/2) & size lg²(q/2) [GHS'12b]
★★ Now have an encryption of ⌊v₀⌉ = μ. Done!

- ?? Use "ring switching" [GHPS'12] ?
 - ✓ Computes $Tr_{R/R'}$ homomorphically, by taking $Tr_{R/R'}$ of ciphertext.

Evaluating $\operatorname{Trace}_{R/\mathbb{Z}}$ Homomorphically

- ?? Use "ring switching" [GHPS'12] ?
 - ✓ Computes $Tr_{R/R'}$ homomorphically, by taking $Tr_{R/R'}$ of ciphertext.
 - **X** Requires hardness of ring-LWE in $R' \dots$ but here $R' = \mathbb{Z}$.

- ?? Use "ring switching" [GHPS'12] ?
 - \checkmark Computes $\mathrm{Tr}_{R/R'}$ homomorphically, by taking $\mathrm{Tr}_{R/R'}$ of ciphertext.
 - × Requires hardness of ring-LWE in R' ... but here $R' = \mathbb{Z}$.

?? Directly apply all automorphisms au of R/\mathbb{Z} to ciphertext, then sum?

$$\tau(c_0) + \tau(c_1) \cdot \tau(s) = \tau(v) \quad \stackrel{\text{key-switch}}{\Longrightarrow} \quad c_0' + c_1' \cdot s \approx \tau(v)$$

- ?? Use "ring switching" [GHPS'12] ?
 - ✓ Computes $\operatorname{Tr}_{R/R'}$ homomorphically, by taking $\operatorname{Tr}_{R/R'}$ of ciphertext.
 - × Requires hardness of ring-LWE in R' ... but here $R' = \mathbb{Z}$.

?? Directly apply all automorphisms au of R/\mathbb{Z} to ciphertext, then sum?

$$\tau(c_0) + \tau(c_1) \cdot \tau(s) = \tau(v) \quad \stackrel{\text{key-switch}}{\Longrightarrow} \quad c_0' + c_1' \cdot s \approx \tau(v)$$

 $\pmb{\times}\ k/2$ automorphisms & key-switches: quadratic work & space

- ?? Use "ring switching" [GHPS'12] ?
 - ✓ Computes $\operatorname{Tr}_{R/R'}$ homomorphically, by taking $\operatorname{Tr}_{R/R'}$ of ciphertext.
 - × Requires hardness of ring-LWE in R' ... but here $R' = \mathbb{Z}$.

?? Directly apply all automorphisms au of R/\mathbb{Z} to ciphertext, then sum?

$$\tau(c_0) + \tau(c_1) \cdot \tau(s) = \tau(v) \quad \stackrel{\text{key-switch}}{\Longrightarrow} \quad c_0' + c_1' \cdot s \approx \tau(v)$$

 $\bigstar k/2$ automorphisms & key-switches: quadratic work & space

✓ Iteratively "trace down" $R = O_k \to O_{k/2} \to \cdots \to \mathbb{Z}$.

- ?? Use "ring switching" [GHPS'12] ?
 - ✓ Computes $\operatorname{Tr}_{R/R'}$ homomorphically, by taking $\operatorname{Tr}_{R/R'}$ of ciphertext.
 - × Requires hardness of ring-LWE in R' ... but here $R' = \mathbb{Z}$.
- ?? Directly apply all automorphisms au of R/\mathbb{Z} to ciphertext, then sum?

$$\tau(c_0) + \tau(c_1) \cdot \tau(s) = \tau(v) \quad \stackrel{\text{key-switch}}{\Longrightarrow} \quad c_0' + c_1' \cdot s \approx \tau(v)$$

- $\bigstar k/2$ automorphisms & key-switches: quadratic work & space
- ✓ Iteratively "trace down" $R = O_k \to O_{k/2} \to \cdots \to \mathbb{Z}$.
 - * Only need to apply the two automorphisms of each $\mathcal{O}_i/\mathcal{O}_{i/2}$.
 - ★ Total lg(k) automorphisms & key-switches $\Rightarrow \tilde{O}(k)$ work.

- ?? Use "ring switching" [GHPS'12] ?
 - ✓ Computes $Tr_{R/R'}$ homomorphically, by taking $Tr_{R/R'}$ of ciphertext.
 - × Requires hardness of ring-LWE in R' ... but here $R' = \mathbb{Z}$.
- ?? Directly apply all automorphisms au of R/\mathbb{Z} to ciphertext, then sum?

$$\tau(c_0) + \tau(c_1) \cdot \tau(s) = \tau(v) \quad \stackrel{\text{key-switch}}{\Longrightarrow} \quad c_0' + c_1' \cdot s \approx \tau(v)$$

- $\pmb{\times}\ k/2$ automorphisms & key-switches: quadratic work & space
- ✓ Iteratively "trace down" $R = O_k \to O_{k/2} \to \cdots \to \mathbb{Z}$.
 - * Only need to apply the two automorphisms of each $\mathcal{O}_i/\mathcal{O}_{i/2}$.
 - ★ Total lg(k) automorphisms & key-switches $\Rightarrow \tilde{O}(k)$ work.
- Detail #1: ciphertexts are over $\tilde{R} \supseteq R$, so use automorphisms of \tilde{R} that coincide with those of $\mathcal{O}_i/\mathcal{O}_{i/2}$.

- ?? Use "ring switching" [GHPS'12] ?
 - ✓ Computes $Tr_{R/R'}$ homomorphically, by taking $Tr_{R/R'}$ of ciphertext.
 - × Requires hardness of ring-LWE in R' ... but here $R' = \mathbb{Z}$.
- $\ref{eq:relation}$ Directly apply all automorphisms τ of R/\mathbb{Z} to ciphertext, then sum?

$$\tau(c_0) + \tau(c_1) \cdot \tau(s) = \tau(v) \quad \stackrel{\text{key-switch}}{\Longrightarrow} \quad c_0' + c_1' \cdot s \approx \tau(v)$$

- $\pmb{\times}\ k/2$ automorphisms & key-switches: quadratic work & space
- ✓ Iteratively "trace down" $R = O_k \to O_{k/2} \to \cdots \to \mathbb{Z}$.
 - * Only need to apply the two automorphisms of each $\mathcal{O}_i/\mathcal{O}_{i/2}$.
 - ★ Total lg(k) automorphisms & key-switches $\Rightarrow \tilde{O}(k)$ work.
- Detail #1: ciphertexts are over $\tilde{R} \supseteq R$, so use automorphisms of \tilde{R} that coincide with those of $\mathcal{O}_i/\mathcal{O}_{i/2}$.

Detail #2: each $Tr(\mathcal{O}_i) = 2\mathcal{O}_{i/2}$, so lift to plaintext modulus 2q, then halve result.

Main Result: Bootstrapping Packed Ciphertexts

1 Prepare: as before, view c as a "noiseless" encryption of plaintext

$$v = c_0 + c_1 \cdot s = \sum_j v_j \cdot b_j \in R_q.$$

Recall: $\mu = \lfloor v \rceil = \sum_{j} \lfloor v_{j} \rceil \cdot b_{j} \in R_{2}$ (where $b_{j} = \zeta^{j}$).

1 Prepare: as before, view c as a "noiseless" encryption of plaintext

$$v = c_0 + c_1 \cdot s = \sum_j v_j \cdot b_j \in R_q.$$

Recall: $\mu = \lfloor v \rceil = \sum_{j} \lfloor v_{j} \rceil \cdot b_{j} \in R_{2}$ (where $b_{j} = \zeta^{j}$).

2 Homomorphically map coeffs v_j to " \mathbb{Z}_q -slots" of certain ring S_q :

$$\sum v_j \cdot b_j \in R_q \quad \longmapsto \quad \sum v_j \cdot c_j \in S_q.$$

(Change of basis, analogous to homomorphic DFT.)

1 Prepare: as before, view c as a "noiseless" encryption of plaintext

$$v = c_0 + c_1 \cdot s = \sum_j v_j \cdot b_j \in R_q.$$

Recall: $\mu = \lfloor v \rceil = \sum_{j} \lfloor v_{j} \rceil \cdot b_{j} \in R_{2}$ (where $b_{j} = \zeta^{j}$).

2 Homomorphically map coeffs v_j to " \mathbb{Z}_q -slots" of certain ring S_q : $\sum v_j \cdot b_j \in R_q \quad \longmapsto \quad \sum v_j \cdot c_j \in S_q.$

(Change of basis, analogous to homomorphic DFT.)

3 Batch-round: homom'ly apply $\lfloor \cdot \rfloor$ on all \mathbb{Z}_q -slots at once [SV'11]:

$$\sum v_j \cdot c_j \in S_q \quad \longmapsto \quad \sum \lfloor v_j \rfloor \cdot c_j \in S_2.$$

1 Prepare: as before, view c as a "noiseless" encryption of plaintext

$$v = c_0 + c_1 \cdot s = \sum_j v_j \cdot b_j \in R_q.$$

Recall: $\mu = \lfloor v \rceil = \sum_{j} \lfloor v_{j} \rceil \cdot b_{j} \in R_{2}$ (where $b_{j} = \zeta^{j}$).

2 Homomorphically map coeffs v_j to " \mathbb{Z}_q -slots" of certain ring S_q : $\sum v_j \cdot b_j \in R_q \quad \longmapsto \quad \sum v_j \cdot c_j \in S_q.$

(Change of basis, analogous to homomorphic DFT.)

3 Batch-round: homom'ly apply $\lfloor \cdot \rceil$ on all \mathbb{Z}_q -slots at once [SV'11]:

$$\sum v_j \cdot c_j \in S_q \quad \longmapsto \quad \sum \lfloor v_j \rfloor \cdot c_j \in S_2.$$

4 Homomorphically reverse-map \mathbb{Z}_2 -slots back to *B*-coeffs:

$$\sum \lfloor v_j \rceil \cdot c_j \in S_2 \quad \longmapsto \quad \sum \lfloor v_j \rceil \cdot b_j = \mu \in R_2.$$

(Akin to homomorphic DFT^{-1} .)

► Let
$$1 = \ell_0 |\ell_1| \ell_2 | \cdots$$
 (all odd), and $S^{(i)} = \mathcal{O}_{\ell_i} = \mathbb{Z}[\zeta_{\ell_i}].$
Identifying $\zeta_{\ell_i}^{\ell_i/\ell_{i-1}} = \zeta_{\ell_{i-1}}$, we get a tower $S^{(i)}/S^{(i-1)}/\cdots/\mathbb{Z}.$

- ► Let $1 = \ell_0 |\ell_1| \ell_2 | \cdots$ (all odd), and $S^{(i)} = \mathcal{O}_{\ell_i} = \mathbb{Z}[\zeta_{\ell_i}].$ Identifying $\zeta_{\ell_i}^{\ell_i/\ell_{i-1}} = \zeta_{\ell_{i-1}}$, we get a tower $S^{(i)}/S^{(i-1)}/\cdots/\mathbb{Z}$.
- ln $S = S^{(i)}$, 2 factors into distinct prime ideals, like so:

- Let 1 = ℓ₀|ℓ₁|ℓ₂|··· (all odd), and S⁽ⁱ⁾ = O_{ℓi} = ℤ[ζ_{ℓi}]. Identifying ζ_{ℓi}^{ℓi/ℓi-1} = ζ_{ℓi-1}, we get a tower S⁽ⁱ⁾/S⁽ⁱ⁻¹⁾/···/ℤ.
 In S = S⁽ⁱ⁾, 2 factors into distinct prime ideals, like so: S⁽²⁾ = O₉₁ p_{1,1} p_{1,2} p_{1,3} p_{2,1} p_{2,2} p_{2,3} I S⁽¹⁾ = O₇ p₁ ℤ_ℓ = O₁
- ▶ By Chinese Rem Thm, $S_2 \cong \bigoplus_j (S/\mathfrak{p}_j)$ via natural homomorphism.

- ► Let $1 = \ell_0 |\ell_1| \ell_2 | \cdots$ (all odd), and $S^{(i)} = \mathcal{O}_{\ell_i} = \mathbb{Z}[\zeta_{\ell_i}].$ Identifying $\zeta_{\ell_i}^{\ell_i/\ell_{i-1}} = \zeta_{\ell_{i-1}}$, we get a tower $S^{(i)}/S^{(i-1)}/\cdots/\mathbb{Z}.$
- ln $S = S^{(i)}$, 2 factors into distinct prime ideals, like so:

▶ By Chinese Rem Thm, $S_2 \cong \bigoplus_j (S/\mathfrak{p}_j)$ via natural homomorphism. "CRT set:" $C = \{c_j\} \subset S$ s.t. $c_j = 1 \pmod{\mathfrak{p}_j}, = 0 \pmod{\mathfrak{p}_{\neq j}}$. Mapping $v_j \in \mathbb{Z}_2 \mapsto v_j \cdot c_j \in S_2$ embeds \mathbb{Z}_2 into *j*th "slot" of S_2 .

- ► Let $1 = \ell_0 |\ell_1| \ell_2 | \cdots$ (all odd), and $S^{(i)} = \mathcal{O}_{\ell_i} = \mathbb{Z}[\zeta_{\ell_i}].$ Identifying $\zeta_{\ell_i}^{\ell_i/\ell_{i-1}} = \zeta_{\ell_{i-1}}$, we get a tower $S^{(i)}/S^{(i-1)}/\cdots/\mathbb{Z}$.
- ln $S = S^{(i)}$, 2 factors into distinct prime ideals, like so:

- By Chinese Rem Thm, S₂ ≅ ⊕_j (S/p_j) via natural homomorphism.
 "CRT set:" C = {c_j} ⊂ S s.t. c_j = 1 (mod p_j), = 0 (mod p_{≠j}).
 Mapping v_j ∈ Z₂ ↦ v_j · c_j ∈ S₂ embeds Z₂ into jth "slot" of S₂.
- ► Can factor $C_i = C'_i \cdot C_{i-1}$: let $c'_k = 1 \pmod{\mathfrak{p}_{\star,k}}$, $= 0 \pmod{\mathfrak{p}_{\star,\neq k}}$.

- ► Let $1 = \ell_0 |\ell_1| \ell_2 | \cdots$ (all odd), and $S^{(i)} = \mathcal{O}_{\ell_i} = \mathbb{Z}[\zeta_{\ell_i}].$ Identifying $\zeta_{\ell_i}^{\ell_i/\ell_{i-1}} = \zeta_{\ell_{i-1}}$, we get a tower $S^{(i)}/S^{(i-1)}/\cdots/\mathbb{Z}$.
- ln $S = S^{(i)}$, 2 factors into distinct prime ideals, like so:

- By Chinese Rem Thm, S₂ ≅ ⊕_j (S/p_j) via natural homomorphism.
 "CRT set:" C = {c_j} ⊂ S s.t. c_j = 1 (mod p_j), = 0 (mod p_{≠j}).
 Mapping v_j ∈ Z₂ ↦ v_j · c_j ∈ S₂ embeds Z₂ into jth "slot" of S₂.
- ► Can factor $C_i = C'_i \cdot C_{i-1}$: let $c'_k = 1 \pmod{\mathfrak{p}_{\star,k}}$, $= 0 \pmod{\mathfrak{p}_{\star,\neq k}}$.

• Similarly for
$$S_q \cong \bigoplus_j (S/\mathfrak{p}_j^{\lg q}).$$

Mapping Coeffs to Slots: Overview

• Choose S so that S_q has $\geq \deg(R/\mathbb{Z}) \mathbb{Z}_q$ -slots, via:

$$(v_j) \in \mathbb{Z}_q^{k/2} \longmapsto \sum v_j \cdot c_j \mod q$$

for an appropriate CRT set $C = \{c_j\} \subset S$ of size k/2.

Mapping Coeffs to Slots: Overview

• Choose S so that S_q has $\geq \deg(R/\mathbb{Z}) \mathbb{Z}_q$ -slots, via:

$$(v_j) \in \mathbb{Z}_q^{k/2} \longmapsto \sum v_j \cdot c_j \mod q$$

for an appropriate CRT set $C = \{c_j\} \subset S$ of size k/2.

▶ Our goal: homomorphically map $\sum v_j \cdot b_j \in R_q \longmapsto \sum v_j \cdot c_j \in S_q$.
• Choose S so that S_q has $\geq \deg(R/\mathbb{Z}) \mathbb{Z}_q$ -slots, via:

$$(v_j) \in \mathbb{Z}_q^{k/2} \longmapsto \sum v_j \cdot c_j \mod q$$

for an appropriate CRT set $C = \{c_j\} \subset S$ of size k/2.

▶ Our goal: homomorphically map $\sum v_j \cdot b_j \in R_q \longmapsto \sum v_j \cdot c_j \in S_q$. Equivalently, evaluate the Z-linear* map $L: R \to S$ defined by

$$L(\boldsymbol{b_j}) = \boldsymbol{c_j}.$$

*Z-linear:
$$L(b+b') = L(b) + L(b')$$
, $L(v \cdot b) = v \cdot L(b)$ for any $b, b' \in R, v \in \mathbb{Z}$.

• Choose S so that S_q has $\geq \deg(R/\mathbb{Z}) \mathbb{Z}_q$ -slots, via:

$$(v_j) \in \mathbb{Z}_q^{k/2} \longmapsto \sum v_j \cdot c_j \mod q$$

for an appropriate CRT set $C = \{c_j\} \subset S$ of size k/2.

• Our goal: homomorphically map $\sum v_j \cdot b_j \in R_q \longmapsto \sum v_j \cdot c_j \in S_q$. Equivalently, evaluate the \mathbb{Z} -linear* map $L \colon R \to S$ defined by

$$L(\boldsymbol{b_j}) = \boldsymbol{c_j}.$$

▶ Ring-switching [GHPS'12] lets us eval any R'-linear map $L \colon R \to R'$

*Z-linear:
$$L(b+b') = L(b) + L(b')$$
, $L(v \cdot b) = v \cdot L(b)$ for any $b, b' \in R, v \in \mathbb{Z}$.

• Choose S so that S_q has $\geq \deg(R/\mathbb{Z}) \mathbb{Z}_q$ -slots, via:

$$(v_j) \in \mathbb{Z}_q^{k/2} \longmapsto \sum v_j \cdot c_j \mod q$$

for an appropriate CRT set $C = \{c_j\} \subset S$ of size k/2.

• Our goal: homomorphically map $\sum v_j \cdot b_j \in R_q \longmapsto \sum v_j \cdot c_j \in S_q$. Equivalently, evaluate the \mathbb{Z} -linear* map $L \colon R \to S$ defined by

$$L(\mathbf{b}_{\mathbf{j}}) = \mathbf{c}_{\mathbf{j}}.$$

▶ Ring-switching [GHPS'12] lets us eval any R'-linear map $L : R \to R'$... but only for a subring $R' \subseteq R$.

*
$$\mathbb{Z}$$
-linear: $L(b+b') = L(b) + L(b')$, $L(v \cdot b) = v \cdot L(b)$ for any $b, b' \in R, v \in \mathbb{Z}$.

• Choose S so that S_q has $\geq \deg(R/\mathbb{Z}) \mathbb{Z}_q$ -slots, via:

$$(v_j) \in \mathbb{Z}_q^{k/2} \longmapsto \sum v_j \cdot c_j \mod q$$

for an appropriate CRT set $C = \{c_j\} \subset S$ of size k/2.

• Our goal: homomorphically map $\sum v_j \cdot b_j \in R_q \longmapsto \sum v_j \cdot c_j \in S_q$. Equivalently, evaluate the \mathbb{Z} -linear* map $L \colon R \to S$ defined by

$$L(\boldsymbol{b_j}) = \boldsymbol{c_j}.$$

▶ Ring-switching [GHPS'12] lets us eval any R'-linear map $L \colon R \to R'$... but only for a subring $R' \subseteq R$.

Goal for Remainder of Talk

Extend ring-switching to (efficiently) handle \mathbb{Z} -linear maps $L: \mathbb{R} \to S$.

16/21

*Z-linear:
$$L(b+b') = L(b) + L(b')$$
, $L(v \cdot b) = v \cdot L(b)$ for any $b, b' \in R, v \in \mathbb{Z}$.

▶ Let $R = O_k$, $S = O_\ell$. Let $d = \operatorname{gcd}(k, \ell)$ and $m = \operatorname{lcm}(k, \ell)$.

• Let $R = \mathcal{O}_k$, $S = \mathcal{O}_\ell$. Let $d = \operatorname{gcd}(k, \ell)$ and $m = \operatorname{lcm}(k, \ell)$.

• Let $R = \mathcal{O}_k$, $S = \mathcal{O}_{\ell}$. Let $d = \operatorname{gcd}(k, \ell)$ and $m = \operatorname{lcm}(k, \ell)$.

► Compositum *T* as a tensor product of *R*, *S*, where \otimes is *E*-bilinear: $T \cong (R/E) \otimes (S/E) := \left\{ \sum e_{i,j}(r_i \otimes s_j) : e_{i,j} \in E, r_i \in R, s_j \in S \right\}.$

▶ Let $R = \mathcal{O}_k$, $S = \mathcal{O}_{\ell}$. Let $d = \operatorname{gcd}(k, \ell)$ and $m = \operatorname{lcm}(k, \ell)$.

► Compositum *T* as a tensor product of *R*, *S*, where \otimes is *E*-bilinear: $T \cong (R/E) \otimes (S/E) := \left\{ \sum e_{i,j}(r_i \otimes s_j) : e_{i,j} \in E, r_i \in R, s_j \in S \right\}.$

Easy Lemma

For any *E*-linear $L: \mathbb{R} \to S$, there is an *S*-linear $\overline{L}: T \to S$ that agrees with *L* on *R*.

▶ Let $R = \mathcal{O}_k$, $S = \mathcal{O}_{\ell}$. Let $d = \operatorname{gcd}(k, \ell)$ and $m = \operatorname{lcm}(k, \ell)$.

► Compositum *T* as a tensor product of *R*, *S*, where \otimes is *E*-bilinear: $T \cong (R/E) \otimes (S/E) := \left\{ \sum e_{i,j}(r_i \otimes s_j) : e_{i,j} \in E, r_i \in R, s_j \in S \right\}.$

Easy Lemma

- For any *E*-linear $L: \mathbb{R} \to S$, there is an *S*-linear $\overline{L}: T \to S$ that agrees with *L* on *R*.
- Proof: define \overline{L} by $\overline{L}(r \otimes s) = L(r) \cdot s \in S$.

▶ Let $R = \mathcal{O}_k$, $S = \mathcal{O}_\ell$ be s.t. $gcd(k, \ell) = 1$, $lcm(k, \ell) = k\ell$.

• Let $R = \mathcal{O}_k$, $S = \mathcal{O}_\ell$ be s.t. $gcd(k, \ell) = 1$, $lcm(k, \ell) = k\ell$.

• Let $R = \mathcal{O}_k$, $S = \mathcal{O}_\ell$ be s.t. $gcd(k, \ell) = 1$, $lcm(k, \ell) = k\ell$.

▶ To homom'ly eval. \mathbb{Z} -linear $L: \mathbb{R} \to S$ on an encryption of $v \in R_q$,

• Let $R = \mathcal{O}_k$, $S = \mathcal{O}_\ell$ be s.t. $gcd(k, \ell) = 1$, $lcm(k, \ell) = k\ell$.

- ▶ To homom'ly eval. \mathbb{Z} -linear $L: \mathbb{R} \to S$ on an encryption of $v \in R_q$,
 - **1** Trivially embed ciphertext $R \rightarrow T$ (still encrypts v).
 - **2** Homomorphically apply S-linear $\overline{L}: T \to S$ using ring-switching.
 - ✓ We now have an encryption of $\overline{L}(v) = L(v)$!

• Let $R = \mathcal{O}_k$, $S = \mathcal{O}_\ell$ be s.t. $gcd(k, \ell) = 1$, $lcm(k, \ell) = k\ell$.

- ▶ To homom'ly eval. \mathbb{Z} -linear $L: \mathbb{R} \to S$ on an encryption of $v \in R_q$,
 - **1** Trivially embed ciphertext $R \rightarrow T$ (still encrypts v).
 - **2** Homomorphically apply S-linear $\overline{L}: T \to S$ using ring-switching.
 - ✓ We now have an encryption of $\overline{L}(v) = L(v)$!
- **XX** Problem: degree of T is quadratic, therefore so is runtime & space.

▶ Let $R = \mathcal{O}_k$, $S = \mathcal{O}_\ell$ be s.t. $gcd(k, \ell) = 1$, $lcm(k, \ell) = k\ell$.

- ▶ To homom'ly eval. \mathbb{Z} -linear $L: \mathbb{R} \to S$ on an encryption of $v \in R_q$,
 - **1** Trivially embed ciphertext $R \rightarrow T$ (still encrypts v).
 - **2** Homomorphically apply *S*-linear $\overline{L} \colon T \to S$ using ring-switching.
 - ✓ We now have an encryption of $\overline{L}(v) = L(v)$!
- **XX** Problem: degree of T is quadratic, therefore so is runtime & space. This is inherent if we treat L as a generic \mathbb{Z} -linear map!

Enhanced Ring-Switching, Efficiently

Key Ideas

The Z-linear L: R → S given by L(B) = C is "highly structured," because B, C are product sets.

Enhanced Ring-Switching, Efficiently

Key Ideas

- The Z-linear L: R → S given by L(B) = C is "highly structured," because B, C are product sets.
- ► Gradually map B to C through a sequence of "hybrid rings" H⁽ⁱ⁾, via E⁽ⁱ⁾-linear functions that each send a factor of B to one of C.

Enhanced Ring-Switching, Efficiently

Key Ideas

- The Z-linear L: R → S given by L(B) = C is "highly structured," because B, C are product sets.
- Gradually map B to C through a sequence of "hybrid rings" H⁽ⁱ⁾, via E⁽ⁱ⁾-linear functions that each send a factor of B to one of C.
- ► Ensure small compositums T⁽ⁱ⁾ = H⁽ⁱ⁻¹⁾ + H⁽ⁱ⁾ via large gcd's: replace prime factors of k with those of l, one at a time.

• $R = \mathcal{O}_8$, basis $B = B'_8 \cdot B'_4 = \{1, \zeta_8\} \cdot \{1, \zeta_4\}.$

- $R = \mathcal{O}_8$, basis $B = B'_8 \cdot B'_4 = \{1, \zeta_8\} \cdot \{1, \zeta_4\}.$
- $S = \mathcal{O}_{7,13}$, CRT set $C = C'_7 \cdot C'_{91} = \{c_1, c_2\} \cdot \{c'_1, c'_2, c'_3\}$.

- $R = \mathcal{O}_8$, basis $B = B'_8 \cdot B'_4 = \{1, \zeta_8\} \cdot \{1, \zeta_4\}.$
- ► $S = \mathcal{O}_{7 \cdot 13}$, CRT set $C = C'_7 \cdot C'_{91} = \{c_1, c_2\} \cdot \{c'_1, c'_2, c'_3\}$.

- $R = \mathcal{O}_8$, basis $B = B'_8 \cdot B'_4 = \{1, \zeta_8\} \cdot \{1, \zeta_4\}.$
- ► $S = \mathcal{O}_{7 \cdot 13}$, CRT set $C = C'_7 \cdot C'_{91} = \{c_1, c_2\} \cdot \{c'_1, c'_2, c'_3\}$.

In general, switch through ≤ log(deg(R/Z)) = log(λ) hybrid rings, one for each prime factor of k.

Gradually converting B to C via hybrid rings is roughly analogous to a log-depth FFT butterfly network.

- Gradually converting B to C via hybrid rings is roughly analogous to a log-depth FFT butterfly network.
- Technique should also be useful for homomorphically evaluating other signal-processing transforms having "sparse decompositions."

- Gradually converting B to C via hybrid rings is roughly analogous to a log-depth FFT butterfly network.
- Technique should also be useful for homomorphically evaluating other signal-processing transforms having "sparse decompositions."
- Practical implementation and evaluation are underway.

- Gradually converting B to C via hybrid rings is roughly analogous to a log-depth FFT butterfly network.
- Technique should also be useful for homomorphically evaluating other signal-processing transforms having "sparse decompositions."
- Practical implementation and evaluation are underway.

Thanks!