Peculiar Properties of Lattice-Based Encryption

Chris Peikert
Georgia Institute of Technology

Public Key Cryptography and the Geometry of Numbers

7 May 2010

Talk Agenda

Encryption schemes with special features:

Talk Agenda

Encryption schemes with special features:

(1) "(Bi-)Deniability"

Talk Agenda

Encryption schemes with special features:
(1) "(Bi-)Deniability"

(2) "Circular" Security

Part 1:

Deniable Encryption

- A. O'Neill, C. Peikert (2010)
"Bideniable Public-Key Encryption"

Deniable Encryption

Deniable Encryption

Deniable Encryption

What We Want

(1) Bob gets Alice's intended message, but ...

Deniable Encryption

What We Want

(1) Bob gets Alice's intended message, but ...

Deniable Encryption

What We Want

(1) Bob gets Alice's intended message, but ...
(2) Fake coins \& keys 'look as if' another message was encrypted!

Applications of Deniability

(1) Anti-coercion: 'off the record' communication (journalists, lawyers, whistle-blowers), 1984

Applications of Deniability

(1) Anti-coercion: 'off the record' communication (journalists, lawyers, whistle-blowers), 1984
(2) Voting: can reveal any candidate, so can't 'sell' vote (?)

Applications of Deniability

(1) Anti-coercion: 'off the record' communication (journalists, lawyers, whistle-blowers), 1984
(2 Voting: can reveal any candidate, so can't 'sell' vote (?)
(3) Secure protocols tolerating adaptive break-ins [CFGN'96]

State of the Art

Theory [CanettiDworkNaorOstrovsky'97]

- Sender-deniable encryption scheme
- Receiver-deniability by adding interaction \& switching roles
- Bi-deniability by interaction w/ 3rd parties (one must remain uncoerced)

State of the Art

Theory [CanettiDworkNaorOstrovsky'97]

- Sender-deniable encryption scheme
- Receiver-deniability by adding interaction \& switching roles
- Bi-deniability by interaction w/ 3rd parties (one must remain uncoerced)

Practice: TrueCrypt, Rubberhose, ...

- Limited deniability: "move along, no message here..." Plausible for storage, but not so much for communication.

This Work

(1) Bi-deniable encryption: sender \& receiver simultaneously coercible

This Work

(1) Bi-deniable encryption: sender \& receiver simultaneously coercible
^ A true public-key scheme: non-interactive, no 3rd parties

* Uses special properties of lattices [Ajtai'96,Regev'05,GPV'08,...]
* Has large keys . . . but this is inherent [Nielsen'02]

This Work

(1) Bi-deniable encryption: sender \& receiver simultaneously coercible

* A true public-key scheme: non-interactive, no 3rd parties
» Uses special properties of lattices [Ajtai'96,Regev'05,GPV'08,...]
* Has large keys . . . but this is inherent [Nielsen'02]
(2) "Plan-ahead" bi-deniability with short keys
* Bounded number of alternative messages, decided in advance

A Core Tool: Translucent Sets [cono'97]

$$
\{0,1\}^{k}=U
$$

 secret 'trapdoor' sk.

A Core Tool: Translucent Sets [cono'97]

$$
\{0,1\}^{k}=U
$$

Public description $p k$ with secret 'trapdoor' sk.

Properties

(1) Given only $p k$,
\star Can efficiently sample from P (and from U, trivially).

* P-sample is pseudorandom: 'looks like’ a U-sample...
* ... so it can be 'faked' as a U-sample.

A Core Tool: Translucent Sets [cono'97]

$$
\{0,1\}^{k}=U
$$

Public description $p k$ with secret 'trapdoor' sk.

Properties

(1) Given only $p k$,
\star Can efficiently sample from P (and from U, trivially).

* P-sample is pseudorandom: 'looks like' a U-sample...
* ... so it can be 'faked' as a U-sample.
(2) Given $s k$, can easily distinguish P from U.

A Core Tool: Translucent Sets [cono'97]

$$
\{0,1\}^{k}=U
$$

Public description $p k$ with secret 'trapdoor' sk.

Properties

(1) Given only $p k$,
\star Can efficiently sample from P (and from U, trivially).

* P-sample is pseudorandom: 'looks like' a U-sample...
* ... so it can be 'faked' as a U-sample.
(2) Given $s k$, can easily distinguish P from U.
- Many instantiations: trapdoor perms (RSA), DDH, lattices, ...

Translucence for Deniability [CDNO'97]

Translucence for Deniability [CDNO'97]

l

$$
\begin{array}{ll}
\text { Normal: } \operatorname{Enc}(0)=U U & \operatorname{Enc}(1)=U P \\
\hline \text { Deniable: } \operatorname{Enc}(0)=P P & \operatorname{Enc}(1)=U P
\end{array}
$$

Translucence for Deniability [CDNO'97]

Normal: $\operatorname{Enc}(0)=U U \quad \operatorname{Enc}(1)=U P$
Deniable: $\operatorname{Enc}(0)=P P \quad \operatorname{Enc}(1)=U P$

Deniability

\checkmark Alice can fake: $P P \rightarrow U P \rightarrow U U$

Translucence for Deniability [cDNo'97]

Deniability

\checkmark Alice can fake: $P P \rightarrow U P \rightarrow U U$
x What about Bob?? His $s k$ reveals the true nature of the samples!

Our Contribution: Bi-Translucent Sets

Properties

(1) Each $p k$ has many $s k$, each inducing a slightly different P-test.

Our Contribution: Bi-Translucent Sets

Properties

(1) Each $p k$ has many $s k$, each inducing a slightly different P-test.

Our Contribution: Bi-Translucent Sets

Properties

(1) Each $p k$ has many $s k$, each inducing a slightly different P-test.
(2) Most $s k$ classify a given P-sample correctly.

Our Contribution: Bi-Translucent Sets

Properties

(1) Each $p k$ has many $s k$, each inducing a slightly different P-test.
(2) Most $s k$ classify a given P-sample correctly.
(3) Can generate $p k$ with a faking key: given $f k$ and a P-sample x, can find a 'proper-looking' sk that classifies x as a U-sample.

Our Contribution: Bi-Translucent Sets

Properties

(1) Each $p k$ has many $s k$, each inducing a slightly different P-test.
(2) Most $s k$ classify a given P-sample correctly.
(3) Can generate $p k$ with a faking key: given $f k$ and a P-sample x, can find a 'proper-looking' sk that classifies x as a U-sample.
\Rightarrow Bob can also fake $P \rightarrow U$!

Lattice-Based Bi-Translucent Set

Primal $\mathcal{L}^{\perp}(\mathbf{A})$
-

Lattice-Based Bi-Translucent Set

Primal $\mathcal{L}^{\perp}(\mathbf{A})$
-

Lattice-Based Bi-Translucent Set

Primal $\mathcal{L}^{\perp}(\mathbf{A})$

Dual $\mathcal{L}(\mathbf{A})$

Lattice-Based Bi-Translucent Set

Primal $\mathcal{L}^{\perp}(\mathbf{A})$
-

Receiver Faking

- Faking key $=$ short basis of $\mathcal{L}^{\perp} \quad$ (a la [GPV'08,...])

Lattice-Based Bi-Translucent Set

Primal $\mathcal{L}^{\perp}(\mathbf{A})$
-

Dual $\mathcal{L}(\mathbf{A})$

Receiver Faking

- Faking key $=$ short basis of $\mathcal{L}^{\perp} \quad$ (a la [GPV'08,...])
- Given P-sample x , choose fake $\mathrm{r} \in \mathcal{L}^{\perp}$ correlated with x's error. Then $\langle\mathbf{r}, \mathbf{x}\rangle$ is uniform $\bmod q \Rightarrow \mathbf{x}$ is classified as a U-sample.

Lattice-Based Bi-Translucent Set

Primal $\mathcal{L}^{\perp}(\mathbf{A})$

Dual $\mathcal{L}(\mathbf{A})$

-
-

Security (in a nutshell)

- Fake \mathbf{r} depends heavily on \mathbf{x}. Why would it 'look like' a 'normal' \mathbf{r} ?

Lattice-Based Bi-Translucent Set

Primal $\mathcal{L}^{\perp}(\mathbf{A})$
-

Dual $\mathcal{L}(\mathbf{A})$

Security (in a nutshell)

- Fake \mathbf{r} depends heavily on \mathbf{x}. Why would it 'look like' a 'normal' \mathbf{r} ?
- Alternative experiment: choose Gaussian \mathbf{r} (as normal), then let $\mathbf{x}=$ LWE + Gauss $\cdot \mathbf{r}$. This (\mathbf{r}, \mathbf{x}) has the same* joint distrib!

Lattice-Based Bi-Translucent Set

Primal $\mathcal{L}^{\perp}(\mathbf{A})$
-

Dual $\mathcal{L}(\mathbf{A})$

Security (in a nutshell)

- Fake \mathbf{r} depends heavily on \mathbf{x}. Why would it 'look like’ a 'normal' \mathbf{r} ?
- Alternative experiment: choose Gaussian r (as normal), then let $\mathbf{x}=$ LWE + Gauss $\cdot \mathbf{r}$. This (\mathbf{r}, \mathbf{x}) has the same* joint distrib!
- Finally, replace LWE with uniform \Rightarrow normal \mathbf{r} and U-sample \mathbf{x}.

Closing Thoughts on Deniability

- Faking $s k$ requires 'oblivious’ misclassification (of P as U)
- Bi-deniability from other cryptographic assumptions?
- Full deniability, without alternative algorithms?

Part 2:

Circular-Secure Encryption

- B. Applebaum, D. Cash, C. Peikert, A. Sahai (CRYPTO 2009)
"Fast Cryptographic Primitives and Circular-Secure Encryption Based on Hard Learning Problems"

Circular / "Clique" / Key-Dependent Security

Circular / "Clique" / Key-Dependent Security

- "Semantic security" [GM'02] only guarantees security for messages that the adversary can itself generate.

Circular / "Clique" / Key-Dependent Security

- "Semantic security" [GM'02] only guarantees security for messages that the adversary can itself generate.
$\star \mathcal{F}$-KDM security: adversary also gets $\operatorname{Enc}_{p k}(f(s k))$ for any $f \in \mathcal{F}$
\star Clique security: adversary gets $\operatorname{Enc}_{p k_{i}}\left(f\left(s k_{j}\right)\right)$ for any i, j

Circular / "Clique" / Key-Dependent Security

- "Semantic security" [GM'02] only guarantees security for messages that the adversary can itself generate.
$\star \mathcal{F}$-KDM security: adversary also gets $\operatorname{Enc}_{p k}(f(s k))$ for any $f \in \mathcal{F}$
* Clique security: adversary gets $\operatorname{Enc}_{p k_{i}}\left(f\left(s k_{j}\right)\right)$ for any i, j
- Applications: formal analysis [ABHS'05], disk encryption, anonymity systems [CL'01], fully homomorphic encryption [G'09]

Circular / "Clique" / Key-Dependent Security

- "Semantic security" [GM'02] only guarantees security for messages that the adversary can itself generate.
$\star \mathcal{F}$-KDM security: adversary also gets $\operatorname{Enc}_{p k}(f(s k))$ for any $f \in \mathcal{F}$
\star Clique security: adversary gets $\operatorname{Enc}_{p k_{i}}\left(f\left(s k_{j}\right)\right)$ for any i, j
- Applications: formal analysis [ABHS'05], disk encryption, anonymity systems [CL'01], fully homomorphic encryption [G'09]
- Some (semantically secure) schemes are actually circular-insecure [ABBC'10,GH'10]

Solutions

[Boneh-Halevi-Hamburg-Ostrovsky'08]

- Based on decisional Diffie-Hellman (DDH) assumption

Solutions

[Boneh-Halevi-Hamburg-Ostrovsky'08]

- Based on decisional Diffie-Hellman (DDH) assumption

Our Scheme [Applebaum-Cash-P-Sahai'09]

- Based on Learning With Errors (LWE) assumption [Regev'05]

Solutions

[Boneh-Halevi-Hamburg-Ostrovsky'08]

- Based on decisional Diffie-Hellman (DDH) assumption
- Security: Clique \& KDM for affine functions

Our Scheme [Applebaum-Cash-P-Sahai'09]

- Based on Learning With Errors (LWE) assumption [Regev'05]
- Security: same. Follows general [BHHO'08] approach.

Solutions

[Boneh-Halevi-Hamburg-Ostrovsky'08]

- Based on decisional Diffie-Hellman (DDH) assumption
- Security: Clique \& KDM for affine functions
- Large computation \& communication. For k-bit message:

Public key	Enc Time	Ciphertext
k^{2} group elts	k expon	$\geq k$ group elts
\Downarrow	\Downarrow	\Downarrow
k^{3} bits	k^{4} bit ops	$\geq k^{2}$ bits

Our Scheme [Applebaum-Cash-P-Sahai'09]

- Based on Learning With Errors (LWE) assumption [Regev'05]
- Security: same. Follows general [BHHO'08] approach.

Solutions

[Boneh-Halevi-Hamburg-Ostrovsky'08]

- Based on decisional Diffie-Hellman (DDH) assumption
- Security: Clique \& KDM for affine functions
- Large computation \& communication. For k-bit message:

Public key	Enc Time	Ciphertext
k^{2} group elts	k expon	$\geq k$ group elts
\Downarrow	\Downarrow	\Downarrow
k^{3} bits	k^{4} bit ops	$\geq k^{2}$ bits

Our Scheme [Applebaum-Cash-P-Sahai'09]

- Based on Learning With Errors (LWE) assumption [Regev'05]
- Security: same. Follows general [BHHO'08] approach.
- Efficiency: comes 'for free*' with existing schemes! [R'05,PVW'08]

Public key	Enc Time	Ciphertext
$\sim k^{2}$ bits	$\sim k^{2}$ ops	$\sim k$ bits

Regev’s Cryptosystem

- Decision LWE problem: distinguish samples

$$
\left(\mathbf{a}_{i}, b_{i}=\left\langle\mathbf{a}_{i}, \mathbf{s}\right\rangle+e_{i}\right) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q} \quad \text { from } \quad \text { uniform }\left(\mathbf{a}_{i}, b_{i}\right)
$$

Regev’s Cryptosystem

- Decision LWE problem: distinguish samples

$$
\left(\mathbf{a}_{i}, b_{i}=\left\langle\mathbf{a}_{i}, \mathbf{s}\right\rangle+e_{i}\right) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q} \quad \text { from } \quad \text { uniform }\left(\mathbf{a}_{i}, b_{i}\right)
$$

The Scheme

- Keys: $s k=\mathbf{s} \leftarrow \mathbb{Z}_{q}^{n}$,

$$
p k=\left(\begin{array}{c}
\vdots \\
\mathbf{A}^{t} \\
\vdots
\end{array}\right),\left(\begin{array}{c}
\vdots \\
\mathbf{b} \\
\vdots
\end{array}\right)=\mathbf{A}^{t} \mathbf{s}+\mathbf{e}
$$

Regev’s Cryptosystem

- Decision LWE problem: distinguish samples

$$
\left(\mathbf{a}_{i}, b_{i}=\left\langle\mathbf{a}_{i}, \mathbf{s}\right\rangle+e_{i}\right) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q} \quad \text { from } \quad \text { uniform }\left(\mathbf{a}_{i}, b_{i}\right)
$$

The Scheme

- Keys: $s k=\mathbf{s} \leftarrow \mathbb{Z}_{q}^{n}$,

$$
p k=\left(\begin{array}{c}
\vdots \\
\mathbf{A}^{t} \\
\vdots
\end{array}\right) \quad, \quad\left(\begin{array}{c}
\vdots \\
\mathbf{b} \\
\vdots
\end{array}\right)=\mathbf{A}^{t} \mathbf{s}+\mathbf{e}
$$

- Encrypt: Let $(\mathbf{u}=\mathbf{A r}, v=\langle\mathbf{b}, \mathbf{r}\rangle)$ for $\mathbf{r} \leftarrow\{0,1\}^{m}$.

For message $\mu \in \mathbb{Z}_{p}$ (where $p \ll q$), ciphertext $=\left(\mathbf{u}, v+\mu \cdot\left\lfloor\frac{q}{p}\right\rfloor\right)$.

Regev’s Cryptosystem

- Decision LWE problem: distinguish samples

$$
\left(\mathbf{a}_{i}, b_{i}=\left\langle\mathbf{a}_{i}, \mathbf{s}\right\rangle+e_{i}\right) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q} \quad \text { from } \quad \text { uniform }\left(\mathbf{a}_{i}, b_{i}\right)
$$

The Scheme

- Keys: $s k=\mathbf{s} \leftarrow \mathbb{Z}_{q}^{n}$,

$$
p k=\left(\begin{array}{c}
\vdots \\
\mathbf{A}^{t} \\
\vdots
\end{array}\right) \quad, \quad\left(\begin{array}{c}
\vdots \\
\mathbf{b} \\
\vdots
\end{array}\right)=\mathbf{A}^{t} \mathbf{s}+\mathbf{e}
$$

- Encrypt: Let $(\mathbf{u}=\mathbf{A r}, v=\langle\mathbf{b}, \mathbf{r}\rangle)$ for $\mathbf{r} \leftarrow\{0,1\}^{m}$.

For message $\mu \in \mathbb{Z}_{p}$ (where $\left.p \ll q\right)$, ciphertext $=\left(\mathbf{u}, v+\mu \cdot\left\lfloor\frac{q}{p}\right\rfloor\right)$.

- Decrypt $\left(\mathbf{u}, v^{\prime}\right):$ find the $\mu \in \mathbb{Z}_{p}$ such that $v^{\prime}-\langle\mathbf{u}, \mathbf{s}\rangle \approx \mu \cdot\left\lfloor\frac{q}{p}\right\rfloor$.

Regev’s Cryptosystem

- Decision LWE problem: distinguish samples

$$
\left(\mathbf{a}_{i}, b_{i}=\left\langle\mathbf{a}_{i}, \mathbf{s}\right\rangle+e_{i}\right) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q} \quad \text { from } \quad \text { uniform }\left(\mathbf{a}_{i}, b_{i}\right)
$$

The Scheme

- Keys: $s k=\mathbf{s} \leftarrow \mathbb{Z}_{q}^{n}$,

$$
p k=\left(\begin{array}{c}
\vdots \\
\mathbf{A}^{t} \\
\vdots
\end{array}\right) \quad, \quad\left(\begin{array}{c}
\vdots \\
\mathbf{b} \\
\vdots
\end{array}\right)=\mathbf{A}^{t} \mathbf{s}+\mathbf{e}
$$

- Encrypt: Let $(\mathbf{u}=\mathbf{A r}, v=\langle\mathbf{b}, \mathbf{r}\rangle)$ for $\mathbf{r} \leftarrow\{0,1\}^{m}$.

For message $\mu \in \mathbb{Z}_{p}$ (where $p \ll q$), ciphertext $=\left(\mathbf{u}, v+\mu \cdot\left\lfloor\frac{q}{p}\right\rfloor\right)$.

- Decrypt $\left(\mathbf{u}, v^{\prime}\right):$ find the $\mu \in \mathbb{Z}_{p}$ such that $v^{\prime}-\langle\mathbf{u}, \mathbf{s}\rangle \approx \mu \cdot\left\lfloor\frac{q}{p}\right\rfloor$.
- Security proof: uniform $p k=(\mathbf{A}, \mathbf{b}) \Longrightarrow$ uniform ciphertext (\mathbf{u}, v).

Self-Reference?

An Observation

- With $(\mathbf{u}=\mathbf{A r}, v=\langle\mathbf{b}, \mathbf{r}\rangle)$, the ciphertext $\left(\mathbf{u}^{\prime}=\mathbf{u}-\left\lfloor\frac{q}{p}\right\rfloor \cdot \mathbf{e}_{1}, v\right)$ decrypts as $v-\left\langle\mathbf{u}^{\prime}, \mathbf{s}\right\rangle \approx\left(s_{1} \bmod p\right) \cdot\left\lfloor\frac{q}{p}\right\rfloor . \quad$ (Or any affine fct of \mathbf{s}.)

Self-Reference ?

An Observation

- With $(\mathbf{u}=\mathbf{A r}, v=\langle\mathbf{b}, \mathbf{r}\rangle)$, the ciphertext $\left(\mathbf{u}^{\prime}=\mathbf{u}-\left\lfloor\frac{q}{p}\right\rfloor \cdot \mathbf{e}_{1}, v\right)$ decrypts as $v-\left\langle\mathbf{u}^{\prime}, \mathbf{s}\right\rangle \approx\left(s_{1} \bmod p\right) \cdot\left\lfloor\frac{q}{p}\right\rfloor$.
- But: is $\left(\mathbf{u}^{\prime}, v\right)$ distributed the same as $\left(\mathbf{u}, v^{\prime}\right) \leftarrow \operatorname{Enc}\left(s_{1} \bmod p\right)$? And does $s_{1} \in \mathbb{Z}_{q}$ 'fit' into the message space \mathbb{Z}_{p} ?

Self-Reference?

An Observation

- With $(\mathbf{u}=\mathbf{A r}, v=\langle\mathbf{b}, \mathbf{r}\rangle)$, the ciphertext $\left(\mathbf{u}^{\prime}=\mathbf{u}-\left\lfloor\frac{q}{p}\right\rfloor \cdot \mathbf{e}_{1}, v\right)$ decrypts as $v-\left\langle\mathbf{u}^{\prime}, \mathbf{s}\right\rangle \approx\left(s_{1} \bmod p\right) \cdot\left\lfloor\frac{q}{p}\right\rfloor$.
- But: is $\left(\mathbf{u}^{\prime}, v\right)$ distributed the same as $\left(\mathbf{u}, \nu^{\prime}\right) \leftarrow \operatorname{Enc}\left(s_{1} \bmod p\right)$? No! And does $s_{1} \in \mathbb{Z}_{q}$ 'fit' into the message space \mathbb{Z}_{p} ?

Also no!

Self-Reference!

An Observation

- With $(\mathbf{u}=\mathbf{A r}, v=\langle\mathbf{b}, \mathbf{r}\rangle)$, the ciphertext $\left(\mathbf{u}^{\prime}=\mathbf{u}-\left\lfloor\frac{q}{p}\right\rfloor \cdot \mathbf{e}_{1}, v\right)$ decrypts as $v-\left\langle\mathbf{u}^{\prime}, \mathbf{s}\right\rangle \approx\left(s_{1} \bmod p\right) \cdot\left\lfloor\frac{q}{p}\right\rfloor$.
- But: is $\left(\mathbf{u}^{\prime}, v\right)$ distributed the same as $\left(\mathbf{u}, v^{\prime}\right) \leftarrow \operatorname{Enc}\left(s_{1} \bmod p\right)$? No! And does $s_{1} \in \mathbb{Z}_{q}$ 'fit' into the message space \mathbb{Z}_{p} ?

Also no!

Modifying the Scheme

(1) Use $q=p^{2}$ for divisibility. (Need new search/decision reduction for LWE.)

Self-Reference!

An Observation

- With $(\mathbf{u}=\mathbf{A r}, v=\langle\mathbf{b}, \mathbf{r}\rangle)$, the ciphertext $\left(\mathbf{u}^{\prime}=\mathbf{u}-\left\lfloor\frac{q}{p}\right\rfloor \cdot \mathbf{e}_{1}, v\right)$ decrypts as $v-\left\langle\mathbf{u}^{\prime}, \mathbf{s}\right\rangle \approx\left(s_{1} \bmod p\right) \cdot\left\lfloor\frac{q}{p}\right\rfloor$.
- But: is $\left(\mathbf{u}^{\prime}, v\right)$ distributed the same as $\left(\mathbf{u}, v^{\prime}\right) \leftarrow \operatorname{Enc}\left(s_{1} \bmod p\right)$? No! And does $s_{1} \in \mathbb{Z}_{q}$ 'fit' into the message space \mathbb{Z}_{p} ?

Also no!

Modifying the Scheme

(1) Use $q=p^{2}$ for divisibility.
(2) Give (\mathbf{u}, v) a 'nice' distrib: use $\mathbf{r} \leftarrow$ Gaussian $\left(\mathbb{Z}^{m}\right)$.

Then (\mathbf{u}, v) is itself an $\mathrm{LWE}_{\mathbf{s}}$ sample*. [R'05,GPV'08]

Self-Reference!

An Observation

- With $(\mathbf{u}=\mathbf{A r}, v=\langle\mathbf{b}, \mathbf{r}\rangle)$, the ciphertext $\left(\mathbf{u}^{\prime}=\mathbf{u}-\left\lfloor\frac{q}{p}\right\rfloor \cdot \mathbf{e}_{1}, v\right)$ decrypts as $v-\left\langle\mathbf{u}^{\prime}, \mathbf{s}\right\rangle \approx\left(s_{1} \bmod p\right) \cdot\left\lfloor\frac{q}{p}\right\rfloor$.
- But: is $\left(\mathbf{u}^{\prime}, v\right)$ distributed the same as $\left(\mathbf{u}, v^{\prime}\right) \leftarrow \operatorname{Enc}\left(s_{1} \bmod p\right)$? No! And does $s_{1} \in \mathbb{Z}_{q}$ 'fit' into the message space \mathbb{Z}_{p} ?

Also no!

Modifying the Scheme

(1) Use $q=p^{2}$ for divisibility.
(2) Give (\mathbf{u}, v) a 'nice' distrib: use $\mathbf{r} \leftarrow$ Gaussian $\left(\mathbb{Z}^{m}\right)$.

Then (\mathbf{u}, v) is itself an $\mathrm{LWE}_{\mathbf{s}}$ sample*. [R'05,GPV'08]
(And for security, (\mathbf{u}, v) is still uniform* when (\mathbf{A}, \mathbf{b}) is uniform.)

Self-Reference!

An Observation

- With $(\mathbf{u}=\mathbf{A r}, v=\langle\mathbf{b}, \mathbf{r}\rangle)$, the ciphertext $\left(\mathbf{u}^{\prime}=\mathbf{u}-\left\lfloor\frac{q}{p}\right\rfloor \cdot \mathbf{e}_{1}, v\right)$ decrypts as $v-\left\langle\mathbf{u}^{\prime}, \mathbf{s}\right\rangle \approx\left(s_{1} \bmod p\right) \cdot\left\lfloor\frac{q}{p}\right\rfloor$.
- But: is $\left(\mathbf{u}^{\prime}, v\right)$ distributed the same as $\left(\mathbf{u}, v^{\prime}\right) \leftarrow \operatorname{Enc}\left(s_{1} \bmod p\right)$? No! And does $s_{1} \in \mathbb{Z}_{q}$ 'fit' into the message space \mathbb{Z}_{p} ?

Modifying the Scheme

(1) Use $q=p^{2}$ for divisibility.
(2) Give ($\mathbf{u}, v)$ a 'nice' distrib: use $\mathbf{r} \leftarrow$ Gaussian $\left(\mathbb{Z}^{m}\right)$.

Then (\mathbf{u}, v) is itself an $\mathrm{LWE}_{\mathbf{s}}$ sample*. [R'05,GPV'08]
(And for security, (\mathbf{u}, v) is still uniform* when (\mathbf{A}, \mathbf{b}) is uniform.)
3 Use a Gaussian secret s, so each $s_{i} \in\left(-\frac{p}{2}, \frac{p}{2}\right)$: self-reference!

Self-Reference!

An Observation

- With $(\mathbf{u}=\mathbf{A r}, v=\langle\mathbf{b}, \mathbf{r}\rangle)$, the ciphertext $\left(\mathbf{u}^{\prime}=\mathbf{u}-\left\lfloor\frac{q}{p}\right\rfloor \cdot \mathbf{e}_{1}, v\right)$ decrypts as $v-\left\langle\mathbf{u}^{\prime}, \mathbf{s}\right\rangle \approx\left(s_{1} \bmod p\right) \cdot\left\lfloor\frac{q}{p}\right\rfloor$.
\rightarrow But: is $\left(\mathbf{u}^{\prime}, v\right)$ distributed the same as $\left(\mathbf{u}, v^{\prime}\right) \leftarrow \operatorname{Enc}\left(s_{1} \bmod p\right)$? No! And does $s_{1} \in \mathbb{Z}_{q}$ 'fit' into the message space \mathbb{Z}_{p} ?

Modifying the Scheme

(1) Use $q=p^{2}$ for divisibility.
(2) Give ($\mathbf{u}, v)$ a 'nice' distrib: use $\mathbf{r} \leftarrow$ Gaussian $\left(\mathbb{Z}^{m}\right)$.

Then (\mathbf{u}, v) is itself an $\mathrm{LWE}_{\mathbf{s}}$ sample*. [R'05,GPV'08]
(And for security, (\mathbf{u}, v) is still uniform* when (\mathbf{A}, \mathbf{b}) is uniform.)
3 Use a Gaussian secret s, so each $s_{i} \in\left(-\frac{p}{2}, \frac{p}{2}\right)$: self-reference! ?? But is it secure to use such an s??

LWE with Gaussian Secret

- Transform LWE $_{s}$ (for arbitrary s) into LWE $_{e}$ for Gaussian secret e: Given the source $\mathrm{LWE}_{\mathbf{s}}$ of samples $\left(\mathbf{a}_{i}, b_{i}=\left\langle\mathbf{a}_{i}, \mathbf{s}\right\rangle+e_{i}\right)$,

LWE with Gaussian Secret

- Transform LWE $_{s}$ (for arbitrary s) into LWE $_{e}$ for Gaussian secret e:

Given the source $\operatorname{LWE}_{\mathrm{s}}$ of samples $\left(\mathbf{a}_{i}, b_{i}=\left\langle\mathbf{a}_{i}, \mathbf{s}\right\rangle+e_{i}\right)$,
(1) Draw n samples $\left(\mathbf{A}, \mathbf{b}=\mathbf{A}^{t} \mathbf{s}+\mathbf{e}\right)$ so that \mathbf{A} is invertible $\bmod q$.

LWE with Gaussian Secret

- Transform $\mathrm{LWE}_{\mathrm{s}}$ (for arbitrary s) into $\mathrm{LWE}_{\mathrm{e}}$ for Gaussian secret e:

Given the source $\operatorname{LWE}_{\mathbf{s}}$ of samples $\left(\mathbf{a}_{i}, b_{i}=\left\langle\mathbf{a}_{i}, \mathbf{s}\right\rangle+e_{i}\right)$,
(1) Draw n samples $\left(\mathbf{A}, \mathbf{b}=\mathbf{A}^{t} \mathbf{s}+\mathbf{e}\right)$ so that \mathbf{A} is invertible $\bmod q$.
(2) Draw and transform fresh samples:

$$
\begin{aligned}
(\mathbf{a}, b) & \mapsto\left(\mathbf{a}^{\prime}=-\mathbf{A}^{-1} \mathbf{a}, b+\left\langle\mathbf{a}^{\prime}, \mathbf{b}\right\rangle\right) \\
& =\left(\mathbf{a}^{\prime},\langle\mathbf{a}, \mathbf{s}\rangle+e-\left\langle\mathbf{A}^{-1} \mathbf{a}, \mathbf{A}^{t} \mathbf{s}\right\rangle+\left\langle\mathbf{a}^{\prime}, \mathbf{e}\right\rangle\right) \\
& =\left(\mathbf{a}^{\prime},\left\langle\mathbf{a}^{\prime}, \mathbf{e}\right\rangle+e\right)
\end{aligned}
$$

LWE with Gaussian Secret

- Transform $\mathrm{LWE}_{\mathrm{s}}$ (for arbitrary s) into $\mathrm{LWE}_{\mathrm{e}}$ for Gaussian secret e:

Given the source $\operatorname{LWE}_{\mathbf{s}}$ of samples $\left(\mathbf{a}_{i}, b_{i}=\left\langle\mathbf{a}_{i}, \mathbf{s}\right\rangle+e_{i}\right)$,
(1) Draw n samples $\left(\mathbf{A}, \mathbf{b}=\mathbf{A}^{t} \mathbf{s}+\mathbf{e}\right)$ so that \mathbf{A} is invertible $\bmod q$.
(2) Draw and transform fresh samples:

$$
\begin{aligned}
(\mathbf{a}, b) & \mapsto\left(\mathbf{a}^{\prime}=-\mathbf{A}^{-1} \mathbf{a}, b+\left\langle\mathbf{a}^{\prime}, \mathbf{b}\right\rangle\right) \\
& =\left(\mathbf{a}^{\prime},\langle\mathbf{a}, \mathbf{s}\rangle+e-\left\langle\mathbf{A}^{-1} \mathbf{a}, \mathbf{A}^{t} \mathbf{s}\right\rangle+\left\langle\mathbf{a}^{\prime}, \mathbf{e}\right\rangle\right) \\
& =\left(\mathbf{a}^{\prime},\left\langle\mathbf{a}^{\prime}, \mathbf{e}\right\rangle+e\right)
\end{aligned}
$$

(Also maps uniform samples (\mathbf{a}, b) to uniform ($\left.\mathbf{a}^{\prime}, b^{\prime}\right)$).

LWE with Gaussian Secret

- Transform LWE $_{s}$ (for arbitrary s) into LWE $_{e}$ for Gaussian secret e:

Given the source $\operatorname{LWE}_{\mathbf{s}}$ of samples $\left(\mathbf{a}_{i}, b_{i}=\left\langle\mathbf{a}_{i}, \mathbf{s}\right\rangle+e_{i}\right)$,
(1) Draw n samples $\left(\mathbf{A}, \mathbf{b}=\mathbf{A}^{t} \mathbf{s}+\mathbf{e}\right)$ so that \mathbf{A} is invertible $\bmod q$.
(2) Draw and transform fresh samples:

$$
\begin{aligned}
(\mathbf{a}, b) & \mapsto\left(\mathbf{a}^{\prime}=-\mathbf{A}^{-1} \mathbf{a}, b+\left\langle\mathbf{a}^{\prime}, \mathbf{b}\right\rangle\right) \\
& =\left(\mathbf{a}^{\prime},\langle\mathbf{a}, \mathbf{s}\rangle+e-\left\langle\mathbf{A}^{-1} \mathbf{a}, \mathbf{A}^{t} \mathbf{s}\right\rangle+\left\langle\mathbf{a}^{\prime}, \mathbf{e}\right\rangle\right) \\
& =\left(\mathbf{a}^{\prime},\left\langle\mathbf{a}^{\prime}, \mathbf{e}\right\rangle+e\right)
\end{aligned}
$$

(Also maps uniform samples (a,b) to uniform ($\left.\mathbf{a}^{\prime}, b^{\prime}\right)$).

Clique \& Affine Security (Again, For Free)

- Repeating transform produces ind. sources $\operatorname{LWE}_{\mathrm{e}_{1}}, \operatorname{LWE}_{\mathrm{e}_{2}}, \ldots$
- Side effect: a known affine relation between unknowns s and e_{i}. This lets us create $\mathrm{Enc}_{p k_{i}}\left(\right.$ affine $\left.\left(\mathbf{e}_{j}\right)\right)$ for any i, j.

Final Words

- The simple, linear structure of lattice-based encryption allows for many enhancements.
- There is much more to be done!

Final Words

- The simple, linear structure of lattice-based encryption allows for many enhancements.
- There is much more to be done!

Thanks!

