Peculiar Properties of Lattice-Based Encryption

Chris Peikert Georgia Institute of Technology

Public Key Cryptography and the Geometry of Numbers

7 May 2010

Talk Agenda

Encryption schemes with special features:

Talk Agenda

Encryption schemes with special features:

1 "(Bi-)Deniability"

Talk Agenda

Encryption schemes with special features:

1 "(Bi-)Deniability"

2 "Circular" Security

Part 1: Deniable Encryption

A. O'Neill, C. Peikert (2010)
 "Bideniable Public-Key Encryption"

What We Want

1 Bob gets Alice's intended message, but ...

What We Want

1 Bob gets Alice's intended message, but ...

What We Want

1 Bob gets Alice's intended message, but ...

2 Fake coins & keys 'look as if' another message was encrypted!

Applications of Deniability

1 <u>Anti-coercion</u>: 'off the record' communication (journalists, lawyers, whistle-blowers), 1984

Applications of Deniability

 Anti-coercion: 'off the record' communication (journalists, lawyers, whistle-blowers), 1984

2 Voting: can reveal any candidate, so can't 'sell' vote (?)

Applications of Deniability

 Anti-coercion: 'off the record' communication (journalists, lawyers, whistle-blowers), 1984

2 Voting: can reveal any candidate, so can't 'sell' vote (?)

3 Secure protocols tolerating adaptive break-ins [CFGN'96]

State of the Art

Theory [CanettiDworkNaorOstrovsky'97]

- Sender-deniable encryption scheme
- Receiver-deniability by adding interaction & switching roles
- Bi-deniability by interaction w/ 3rd parties (one must remain uncoerced)

State of the Art

Theory [CanettiDworkNaorOstrovsky'97]

- Sender-deniable encryption scheme
- Receiver-deniability by adding interaction & switching roles
- Bi-deniability by interaction w/ 3rd parties (one must remain uncoerced)

Practice: TrueCrypt, Rubberhose, ...

Limited deniability: "move along, no message here..."

Plausible for *storage*, but not so much for *communication*.

This Work

1 Bi-deniable encryption: sender & receiver *simultaneously* coercible

This Work

- 1 Bi-deniable encryption: sender & receiver *simultaneously* coercible
 - * A true public-key scheme: non-interactive, no 3rd parties
 - ★ Uses special properties of lattices [Ajtai'96,Regev'05,GPV'08,...]
 - Has large keys ... but this is inherent [Nielsen'02]

This Work

- 1 Bi-deniable encryption: sender & receiver *simultaneously* coercible
 - * A true public-key scheme: non-interactive, no 3rd parties
 - Uses special properties of lattices [Ajtai'96,Regev'05,GPV'08,...]
 - Has large keys ... but this is inherent [Nielsen'02]
- 2 "Plan-ahead" bi-deniability with short keys
 - Bounded number of alternative messages, decided in advance

Public description *pk* with secret 'trapdoor' *sk*.

Public description *pk* with secret 'trapdoor' *sk*.

Properties

- **1** Given only *pk*,
 - * Can efficiently sample from P (and from U, trivially).
 - * *P*-sample is pseudorandom: 'looks like' a *U*-sample...
 - \star ... so it can be 'faked' as a U-sample.

Public description *pk* with secret 'trapdoor' *sk*.

Properties

- Given only *pk*,
 - * Can efficiently sample from P (and from U, trivially).
 - * *P*-sample is pseudorandom: 'looks like' a *U*-sample...
 - \star ... so it can be 'faked' as a U-sample.
- **2** Given sk, can easily distinguish **P** from **U**.

Public description *pk* with secret 'trapdoor' *sk*.

Properties

- Given only *pk*,
 - * Can efficiently sample from P (and from U, trivially).
 - * *P*-sample is pseudorandom: 'looks like' a *U*-sample...
 - \star ... so it can be 'faked' as a U-sample.
- **2** Given sk, can easily distinguish **P** from **U**.

Many instantiations: trapdoor perms (RSA), DDH, lattices, ...

Normal:
$$Enc(0) = UU$$
 $Enc(1) = UP$
Deniable: $Enc(0) = PP$ $Enc(1) = UP$

Deniability

✓ Alice can fake: $PP \rightarrow UP \rightarrow UU$

Deniability

✓ Alice can fake: $PP \rightarrow UP \rightarrow UU$

X What about Bob?? His *sk* reveals the true nature of the samples!

Properties

1 Each *pk* has many *sk*, each inducing a *slightly different P*-test.

Properties

1 Each *pk* has many *sk*, each inducing a *slightly different P*-test.

Properties

1 Each *pk* has many *sk*, each inducing a *slightly different P*-test.

2 Most *sk* classify a given *P*-sample correctly.

Properties

- **1** Each *pk* has many *sk*, each inducing a *slightly different P*-test.
- 2 Most *sk* classify a given *P*-sample correctly.
- Can generate *pk* with a faking key: given *fk* and a *P*-sample *x*, can find a 'proper-looking' *sk* that classifies *x* as a *U*-sample.

Properties

- **1** Each *pk* has many *sk*, each inducing a *slightly different P*-test.
- 2 Most *sk* classify a given *P*-sample correctly.
- Can generate *pk* with a faking key: given *fk* and a *P*-sample *x*, can find a 'proper-looking' *sk* that classifies *x* as a *U*-sample.
- \Rightarrow Bob can also fake $P \rightarrow U!$

Basic Translucency

- ▶ pk = parity check **A** of lattice $\mathcal{L}^{\perp}(\mathbf{A})$.
- ▶ $sk = \text{Gaussian (short) vector } \mathbf{r} \in \mathcal{L}^{\perp}$. (I.e., $\mathbf{Ar} = \mathbf{0} \in \mathbb{Z}_q^n$.)

Basic Translucency

- ▶ pk = parity check **A** of lattice $\mathcal{L}^{\perp}(\mathbf{A})$.
- ▶ $sk = \text{Gaussian (short) vector } \mathbf{r} \in \mathcal{L}^{\perp}$. (I.e., $\mathbf{Ar} = \mathbf{0} \in \mathbb{Z}_q^n$.)
- U-sample = uniform x in \mathbb{Z}_q^m . Then $\langle \mathbf{r}, \mathbf{x} \rangle$ is uniform mod q.

Basic Translucency

- ▶ pk = parity check **A** of lattice $\mathcal{L}^{\perp}(\mathbf{A})$.
- ▶ $sk = \text{Gaussian (short) vector } \mathbf{r} \in \mathcal{L}^{\perp}$. (l.e., $\mathbf{Ar} = \mathbf{0} \in \mathbb{Z}_q^n$.)
- U-sample = uniform \mathbf{x} in \mathbb{Z}_q^m . Then $\langle \mathbf{r}, \mathbf{x} \rangle$ is uniform mod q.
- *P*-sample = $\mathbf{x} = \mathbf{A}^t \mathbf{s} + \mathbf{e}$ (LWE). Then $\langle \mathbf{r}, \mathbf{x} \rangle \approx 0 \mod q$.

Receiver Faking

Faking key = short *basis* of \mathcal{L}^{\perp} (a la [GPV'08,...])

Receiver Faking

- Faking key = short *basis* of \mathcal{L}^{\perp} (a la [GPV'08,...])
- ► Given *P*-sample **x**, choose fake $\mathbf{r} \in \mathcal{L}^{\perp}$ correlated with **x**'s error. Then $\langle \mathbf{r}, \mathbf{x} \rangle$ is uniform mod $q \Rightarrow \mathbf{x}$ is classified as a *U*-sample.

Lattice-Based Bi-Translucent Set

Security (in a nutshell)

Fake r depends heavily on x. Why would it 'look like' a 'normal' r?

Lattice-Based Bi-Translucent Set

Security (in a nutshell)

- Fake r depends heavily on x. Why would it 'look like' a 'normal' r?
- Alternative experiment: choose Gaussian r (as normal), then let x = LWE + Gauss · r. This (r, x) has the same* joint distrib!

Lattice-Based Bi-Translucent Set

Security (in a nutshell)

- Fake r depends heavily on x. Why would it 'look like' a 'normal' r?
- Alternative experiment: choose Gaussian r (as normal), then let x = LWE + Gauss · r. This (r, x) has the same* joint distrib!
- Finally, replace LWE with uniform \Rightarrow normal r and U-sample x.

Closing Thoughts on Deniability

- Faking sk requires 'oblivious' misclassification (of P as U)
- Bi-deniability from other cryptographic assumptions?
- Full deniability, without alternative algorithms?

Part 2:

Circular-Secure Encryption

 B. Applebaum, D. Cash, C. Peikert, A. Sahai (CRYPTO 2009)
 "Fast Cryptographic Primitives and Circular-Secure Encryption Based on Hard Learning Problems"

"Semantic security" [GM'02] only guarantees security for messages that the adversary can itself generate.

- "Semantic security" [GM'02] only guarantees security for messages that the *adversary can itself generate*.
 - ★ \mathcal{F} -KDM security: adversary also gets $Enc_{pk}(f(sk))$ for any $f \in \mathcal{F}$
 - ★ Clique security: adversary gets Enc_{pki}(f(sk_j)) for any i, j

- "Semantic security" [GM'02] only guarantees security for messages that the *adversary can itself generate*.
 - ★ \mathcal{F} -KDM security: adversary also gets $Enc_{pk}(f(sk))$ for any $f \in \mathcal{F}$
 - ★ Clique security: adversary gets Enc_{pki}(f(sk_j)) for any i, j
- Applications: formal analysis [ABHS'05], disk encryption, anonymity systems [CL'01], fully homomorphic encryption [G'09]

- "Semantic security" [GM'02] only guarantees security for messages that the *adversary can itself generate*.
 - ★ \mathcal{F} -KDM security: adversary also gets $Enc_{pk}(f(sk))$ for any $f \in \mathcal{F}$
 - ★ Clique security: adversary gets Enc_{pki}(f(sk_j)) for any i, j
- Applications: formal analysis [ABHS'05], disk encryption, anonymity systems [CL'01], fully homomorphic encryption [G'09]
- Some (semantically secure) schemes are actually circular-*insecure* [ABBC'10,GH'10]

[Boneh-Halevi-Hamburg-Ostrovsky'08]

Based on decisional Diffie-Hellman (DDH) assumption

[Boneh-Halevi-Hamburg-Ostrovsky'08]

Based on decisional Diffie-Hellman (DDH) assumption

Our Scheme [Applebaum-Cash-P-Sahai'09]

Based on Learning With Errors (LWE) assumption [Regev'05]

[Boneh-Halevi-Hamburg-Ostrovsky'08]

- Based on decisional Diffie-Hellman (DDH) assumption
- Security: Clique & KDM for affine functions

Our Scheme [Applebaum-Cash-P-Sahai'09]

- Based on Learning With Errors (LWE) assumption [Regev'05]
- Security: same. Follows general [BHHO'08] approach.

[Boneh-Halevi-Hamburg-Ostrovsky'08]

- Based on decisional Diffie-Hellman (DDH) assumption
- Security: Clique & KDM for affine functions
- Large computation & communication. For k-bit message:

Public key	Enc Time	Ciphertext
k^2 group elts	k expon	$\geq k$ group elts
\Downarrow	\Downarrow	\Downarrow
k^3 bits	k^4 bit ops	$\geq k^2$ bits

Our Scheme [Applebaum-Cash-P-Sahai'09]

- Based on Learning With Errors (LWE) assumption [Regev'05]
- Security: same. Follows general [BHHO'08] approach.

[Boneh-Halevi-Hamburg-Ostrovsky'08]

- Based on decisional Diffie-Hellman (DDH) assumption
- Security: Clique & KDM for affine functions
- Large computation & communication. For k-bit message:

Public key	Enc Time	Ciphertext
k^2 group elts	k expon	$\geq k$ group elts
\Downarrow	\Downarrow	\Downarrow
k^3 bits	k^4 bit ops	$\geq k^2$ bits

Our Scheme [Applebaum-Cash-P-Sahai'09]

- Based on Learning With Errors (LWE) assumption [Regev'05]
- Security: same. Follows general [BHHO'08] approach.
- Efficiency: comes 'for free*' with existing schemes! [R'05,PVW'08]

Public keyEnc TimeCiphertext $\sim k^2$ bits $\sim k^2$ ops $\sim k$ bits

Decision LWE problem: distinguish samples

$$(\mathbf{a}_i, \mathbf{b}_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$$
 from uniform $(\mathbf{a}_i, \mathbf{b}_i)$

Decision LWE problem: distinguish samples

$$(\mathbf{a}_i, \mathbf{b}_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$$
 from uniform $(\mathbf{a}_i, \mathbf{b}_i)$

The Scheme

Decision LWE problem: distinguish samples

$$(\mathbf{a}_i, \mathbf{b}_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$$
 from uniform $(\mathbf{a}_i, \mathbf{b}_i)$

The Scheme

• Keys:
$$sk = \mathbf{s} \leftarrow \mathbb{Z}_q^n$$
,

► Encrypt: Let $(\mathbf{u} = \mathbf{Ar}, \mathbf{v} = \langle \mathbf{b}, \mathbf{r} \rangle)$ for $\mathbf{r} \leftarrow \{0, 1\}^m$. For message $\mu \in \mathbb{Z}_p$ (where $p \ll q$), ciphertext = $(\mathbf{u}, \mathbf{v} + \mu \cdot \lfloor \frac{q}{p} \rfloor)$.

Decision LWE problem: distinguish samples

$$(\mathbf{a}_i, \mathbf{b}_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$$
 from uniform $(\mathbf{a}_i, \mathbf{b}_i)$

The Scheme

• Keys:
$$sk = \mathbf{s} \leftarrow \mathbb{Z}_q^n$$
,

- ► Encrypt: Let $(\mathbf{u} = \mathbf{Ar}, \mathbf{v} = \langle \mathbf{b}, \mathbf{r} \rangle)$ for $\mathbf{r} \leftarrow \{0, 1\}^m$. For message $\mu \in \mathbb{Z}_p$ (where $p \ll q$), ciphertext = $(\mathbf{u}, \mathbf{v} + \mu \cdot \lfloor \frac{q}{p} \rfloor)$.
- Decrypt $(\mathbf{u}, \mathbf{v}')$: find the $\mu \in \mathbb{Z}_p$ such that $\mathbf{v}' \langle \mathbf{u}, \mathbf{s} \rangle \approx \mu \cdot \lfloor \frac{q}{p} \rfloor$.

Decision LWE problem: distinguish samples

$$(\mathbf{a}_i, \mathbf{b}_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$$
 from uniform $(\mathbf{a}_i, \mathbf{b}_i)$

The Scheme

• Keys:
$$sk = \mathbf{s} \leftarrow \mathbb{Z}_q^n$$

- ► Encrypt: Let $(\mathbf{u} = \mathbf{Ar}, \mathbf{v} = \langle \mathbf{b}, \mathbf{r} \rangle)$ for $\mathbf{r} \leftarrow \{0, 1\}^m$. For message $\mu \in \mathbb{Z}_p$ (where $p \ll q$), ciphertext = $(\mathbf{u}, \mathbf{v} + \mu \cdot \lfloor \frac{q}{p} \rfloor)$.
- Decrypt $(\mathbf{u}, \mathbf{v}')$: find the $\mu \in \mathbb{Z}_p$ such that $\mathbf{v}' \langle \mathbf{u}, \mathbf{s} \rangle \approx \mu \cdot \lfloor \frac{q}{p} \rfloor$.

Security proof: uniform $pk = (\mathbf{A}, \mathbf{b}) \Longrightarrow$ uniform ciphertext (\mathbf{u}, \mathbf{v}) .

An Observation

► With $(\mathbf{u} = \mathbf{Ar}, \mathbf{v} = \langle \mathbf{b}, \mathbf{r} \rangle)$, the ciphertext $(\mathbf{u}' = \mathbf{u} - \lfloor \frac{q}{p} \rfloor \cdot \mathbf{e}_1, \mathbf{v})$ decrypts as $\mathbf{v} - \langle \mathbf{u}', \mathbf{s} \rangle \approx (s_1 \mod p) \cdot \lfloor \frac{q}{p} \rfloor$. (Or any affine fct of *s*.)

An Observation

- ► With $(\mathbf{u} = \mathbf{Ar}, \mathbf{v} = \langle \mathbf{b}, \mathbf{r} \rangle)$, the ciphertext $(\mathbf{u}' = \mathbf{u} \lfloor \frac{q}{p} \rfloor \cdot \mathbf{e}_1, \mathbf{v})$ decrypts as $\mathbf{v} - \langle \mathbf{u}', \mathbf{s} \rangle \approx (s_1 \mod p) \cdot \lfloor \frac{q}{p} \rfloor$.
- ► But: is (u', v) distributed the same as (u, v') ← Enc(s₁ mod p)? And does s₁ ∈ Z_q 'fit' into the message space Z_p?

An Observation

- ► With $(\mathbf{u} = \mathbf{Ar}, \mathbf{v} = \langle \mathbf{b}, \mathbf{r} \rangle)$, the ciphertext $(\mathbf{u}' = \mathbf{u} \lfloor \frac{q}{p} \rfloor \cdot \mathbf{e}_1, \mathbf{v})$ decrypts as $\mathbf{v} - \langle \mathbf{u}', \mathbf{s} \rangle \approx (s_1 \mod p) \cdot \lfloor \frac{q}{p} \rfloor$.
- ► But: is $(\mathbf{u}', \mathbf{v})$ distributed the same as $(\mathbf{u}, \mathbf{v}') \leftarrow \text{Enc}(s_1 \mod p)$? <u>No!</u> And does $s_1 \in \mathbb{Z}_q$ 'fit' into the message space \mathbb{Z}_p ? <u>Also no!</u>

An Observation

- ► With $(\mathbf{u} = \mathbf{Ar}, \mathbf{v} = \langle \mathbf{b}, \mathbf{r} \rangle)$, the ciphertext $(\mathbf{u}' = \mathbf{u} \lfloor \frac{q}{p} \rfloor \cdot \mathbf{e}_1, \mathbf{v})$ decrypts as $\mathbf{v} - \langle \mathbf{u}', \mathbf{s} \rangle \approx (s_1 \mod p) \cdot \lfloor \frac{q}{p} \rfloor$.
- ► But: is $(\mathbf{u}', \mathbf{v})$ distributed the same as $(\mathbf{u}, \mathbf{v}') \leftarrow \text{Enc}(s_1 \mod p)$? <u>No!</u> And does $s_1 \in \mathbb{Z}_q$ 'fit' into the message space \mathbb{Z}_p ? <u>Also no!</u>

Modifying the Scheme

1 Use $q = p^2$ for divisibility. (Need new search/decision reduction for LWE.)

An Observation

- ► With $(\mathbf{u} = \mathbf{Ar}, \mathbf{v} = \langle \mathbf{b}, \mathbf{r} \rangle)$, the ciphertext $(\mathbf{u}' = \mathbf{u} \lfloor \frac{q}{p} \rfloor \cdot \mathbf{e}_1, \mathbf{v})$ decrypts as $\mathbf{v} - \langle \mathbf{u}', \mathbf{s} \rangle \approx (s_1 \mod p) \cdot \lfloor \frac{q}{p} \rfloor$.
- ► But: is $(\mathbf{u}', \mathbf{v})$ distributed the same as $(\mathbf{u}, \mathbf{v}') \leftarrow \text{Enc}(s_1 \mod p)$? <u>No!</u> And does $s_1 \in \mathbb{Z}_q$ 'fit' into the message space \mathbb{Z}_p ? <u>Also no!</u>

Modifying the Scheme

- **1** Use $q = p^2$ for divisibility.
- **2** Give (\mathbf{u}, \mathbf{v}) a 'nice' distrib: use $\mathbf{r} \leftarrow \text{Gaussian}(\mathbb{Z}^m)$. Then (\mathbf{u}, \mathbf{v}) is *itself* an LWE_s sample^{*}. [R'05,GPV'08]

An Observation

- ► With $(\mathbf{u} = \mathbf{Ar}, \mathbf{v} = \langle \mathbf{b}, \mathbf{r} \rangle)$, the ciphertext $(\mathbf{u}' = \mathbf{u} \lfloor \frac{q}{p} \rfloor \cdot \mathbf{e}_1, \mathbf{v})$ decrypts as $\mathbf{v} - \langle \mathbf{u}', \mathbf{s} \rangle \approx (s_1 \mod p) \cdot \lfloor \frac{q}{p} \rfloor$.
- ► But: is $(\mathbf{u}', \mathbf{v})$ distributed the same as $(\mathbf{u}, \mathbf{v}') \leftarrow \text{Enc}(s_1 \mod p)$? <u>No!</u> And does $s_1 \in \mathbb{Z}_q$ 'fit' into the message space \mathbb{Z}_p ? <u>Also no!</u>

Modifying the Scheme

- **1** Use $q = p^2$ for divisibility.
- Q Give (u, v) a 'nice' distrib: use r ← Gaussian(Z^m). Then (u, v) is *itself* an LWE_s sample*. [R'05,GPV'08] (And for security, (u, v) is still uniform* when (A, b) is uniform.)

An Observation

- ► With $(\mathbf{u} = \mathbf{Ar}, \mathbf{v} = \langle \mathbf{b}, \mathbf{r} \rangle)$, the ciphertext $(\mathbf{u}' = \mathbf{u} \lfloor \frac{q}{p} \rfloor \cdot \mathbf{e}_1, \mathbf{v})$ decrypts as $\mathbf{v} - \langle \mathbf{u}', \mathbf{s} \rangle \approx (s_1 \mod p) \cdot \lfloor \frac{q}{p} \rfloor$.
- ► But: is $(\mathbf{u}', \mathbf{v})$ distributed the same as $(\mathbf{u}, \mathbf{v}') \leftarrow \text{Enc}(s_1 \mod p)$? <u>No!</u> And does $s_1 \in \mathbb{Z}_q$ 'fit' into the message space \mathbb{Z}_p ? <u>Also no!</u>

Modifying the Scheme

- **1** Use $q = p^2$ for divisibility.
- **2** Give (\mathbf{u}, \mathbf{v}) a 'nice' distrib: use $\mathbf{r} \leftarrow \text{Gaussian}(\mathbb{Z}^m)$. Then (\mathbf{u}, \mathbf{v}) is *itself* an LWE_s sample*. [R'05,GPV'08] (And for security, (\mathbf{u}, \mathbf{v}) is still uniform* when (\mathbf{A}, \mathbf{b}) is uniform.)

3

Use a Gaussian secret s, so each $s_i \in (-\frac{p}{2}, \frac{p}{2})$: self-reference!

An Observation

- With $(\mathbf{u} = \mathbf{Ar}, \mathbf{v} = \langle \mathbf{b}, \mathbf{r} \rangle)$, the ciphertext $(\mathbf{u}' = \mathbf{u} \lfloor \frac{q}{n} \rfloor \cdot \mathbf{e}_1, \mathbf{v})$ decrypts as $\mathbf{v} - \langle \mathbf{u}', \mathbf{s} \rangle \approx (s_1 \mod p) \cdot |\frac{q}{p}|$.
- ▶ But: is $(\mathbf{u}', \mathbf{v})$ distributed the same as $(\mathbf{u}, \mathbf{v}') \leftarrow \text{Enc}(s_1 \mod p)$? No! And does $s_1 \in \mathbb{Z}_q$ 'fit' into the message space \mathbb{Z}_p ? Also no!

Modifying the Scheme

- **1** Use $q = p^2$ for divisibility.
- **2** Give (\mathbf{u}, \mathbf{v}) a 'nice' distrib: use $\mathbf{r} \leftarrow \text{Gaussian}(\mathbb{Z}^m)$. Then (\mathbf{u}, \mathbf{v}) is *itself* an LWE_s sample^{*}. [R'05,GPV'08] (And for security, (\mathbf{u}, v) is still uniform^{*} when (\mathbf{A}, \mathbf{b}) is uniform.)

3 Use a Gaussian secret s, so each $s_i \in (-\frac{p}{2}, \frac{p}{2})$: self-reference!

?? But is it secure to use such an s??

Transform LWE_s (for arbitrary s) into LWE_e for Gaussian secret e: Given the source LWE_s of samples (a_i, b_i = (a_i, s) + e_i),

Transform LWE_s (for arbitrary s) into LWE_e for Gaussian secret e: Given the source LWE_s of samples (a_i, b_i = (a_i, s) + e_i),

1 Draw *n* samples $(\mathbf{A}, \mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e})$ so that \mathbf{A} is invertible mod *q*.

Transform LWE_s (for arbitrary s) into LWE_e for Gaussian secret e:
 Given the source LWE_s of samples (a_i, b_i = (a_i, s) + e_i),

1 Draw *n* samples $(\mathbf{A}, \mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e})$ so that \mathbf{A} is invertible mod *q*.

2 Draw and transform fresh samples:

$$\begin{aligned} (\mathbf{a}, b) &\mapsto (\mathbf{a}' = -\mathbf{A}^{-1}\mathbf{a} , b + \langle \mathbf{a}', \mathbf{b} \rangle) \\ &= (\mathbf{a}' , \langle \mathbf{a}, \mathbf{s} \rangle + e - \langle \mathbf{A}^{-1}\mathbf{a}, \mathbf{A}'\mathbf{s} \rangle + \langle \mathbf{a}', \mathbf{e} \rangle) \\ &= (\mathbf{a}' , \langle \mathbf{a}', \mathbf{e} \rangle + e). \end{aligned}$$

Transform LWE_s (for arbitrary s) into LWE_e for Gaussian secret e:
 Given the source LWE_s of samples (a_i, b_i = (a_i, s) + e_i),

1 Draw *n* samples $(\mathbf{A}, \mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e})$ so that \mathbf{A} is invertible mod *q*.

2 Draw and transform fresh samples:

$$\begin{aligned} (\mathbf{a}, b) &\mapsto (\mathbf{a}' = -\mathbf{A}^{-1}\mathbf{a} , b + \langle \mathbf{a}', \mathbf{b} \rangle) \\ &= (\mathbf{a}' , \langle \mathbf{a}, \mathbf{s} \rangle + e - \langle \mathbf{A}^{-1}\mathbf{a}, \mathbf{A}'\mathbf{s} \rangle + \langle \mathbf{a}', \mathbf{e} \rangle) \\ &= (\mathbf{a}' , \langle \mathbf{a}', \mathbf{e} \rangle + e). \end{aligned}$$

(Also maps uniform samples (\mathbf{a}, b) to uniform (\mathbf{a}', b')).

Transform LWE_s (for arbitrary s) into LWE_e for Gaussian secret e: Given the source LWE_s of samples (a_i, b_i = (a_i, s) + e_i),

1 Draw *n* samples $(\mathbf{A}, \mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e})$ so that \mathbf{A} is invertible mod *q*.

2 Draw and transform fresh samples:

$$\begin{aligned} \mathbf{(a,b)} &\mapsto & (\mathbf{a}' = -\mathbf{A}^{-1}\mathbf{a} \ , \ b + \langle \mathbf{a}', \mathbf{b} \rangle) \\ &= & (\mathbf{a}' \ , \ \langle \mathbf{a}, \mathbf{s} \rangle + e - \langle \mathbf{A}^{-1}\mathbf{a}, \mathbf{A}'\mathbf{s} \rangle + \langle \mathbf{a}', \mathbf{e} \rangle) \\ &= & (\mathbf{a}' \ , \ \langle \mathbf{a}', \mathbf{e} \rangle + e). \end{aligned}$$

(Also maps uniform samples (\mathbf{a}, b) to uniform (\mathbf{a}', b')).

Clique & Affine Security (Again, For Free)

- Repeating transform produces ind. sources LWE_{e1}, LWE_{e2}, ...
- Side effect: a *known affine relation* between *unknowns* s and e_i.
 This lets us create Enc_{pki}(affine(e_i)) for any *i*, *j*.

Final Words

- The simple, linear structure of lattice-based encryption allows for many enhancements.
- There is much more to be done!

Final Words

- The simple, linear structure of lattice-based encryption allows for many enhancements.
- There is much more to be done!

Thanks!