Lattice-Based Cryptography:
 Ring-Based Primitives and Open Problems

Chris Peikert
Georgia Institute of Technology

crypt@b-it 2013

SIS [Ajtai'96,...] and LWE [Regev'05] SIS LWE
find short $\mathbf{z} \neq \mathbf{0}$ s.t. $\mathbf{A z}=\mathbf{0} \quad\left(\mathbf{A}, \mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}\right)$ vs. $\left(\mathbf{A}, \mathrm{b}^{t}\right)$

SIS [Ajtai'96,...] and LWE [Regev'05] SIS LWE
find short $\mathbf{z} \neq \mathbf{0}$ s.t. $\mathbf{A z}=\mathbf{0} \quad\left(\mathbf{A}, \mathrm{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathrm{e}^{t}\right)$ vs. $\left(\mathbf{A}, \mathrm{b}^{t}\right)$

- 'Computational' (search) problem a la factoring, CDH

SIS [Ajtai'96,...] and LWE [Regev'05]

SIS

find short $\mathbf{z} \neq \mathbf{0}$ s.t. $\mathbf{A z}=\mathbf{0}$

- 'Computational' (search) problem a la factoring, CDH

LWE

$\left(\mathrm{A}, \mathrm{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathrm{e}^{t}\right)$ vs. $\left(\mathrm{A}, \mathrm{b}^{t}\right)$

- 'Decisional' problem a la QR, DCR, DDH

SIS [Ajtai'96,...] and LWE [Regev'05]

SIS

find short $\mathbf{z} \neq \mathbf{0}$ s.t. $\mathbf{A z}=\mathbf{0}$

- 'Computational' (search) problem a la factoring, CDH

LWE

$\left(\mathbf{A}, \mathrm{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathrm{e}^{t}\right)$ vs. $\left(\mathrm{A}, \mathrm{b}^{t}\right)$

- 'Decisional' problem a la QR, DCR, DDH
- Many valid solutions z

SIS [Ajtai'96,...] and LWE [Regev'05]

SIS

find short $\mathbf{z} \neq \mathbf{0}$ s.t. $\mathbf{A z}=\mathbf{0}$

- 'Computational' (search) problem a la factoring, CDH
- Many valid solutions z

LWE

$\left(\mathbf{A}, \mathrm{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathrm{e}^{t}\right)$ vs. $\left(\mathrm{A}, \mathrm{b}^{t}\right)$

- 'Decisional' problem a la QR, DCR, DDH
- Unique solution s, e

SIS [Ajtai'96,...] and LWE [Regev'05]

SIS

find short $\mathbf{z} \neq \mathbf{0}$ s.t. $\mathbf{A z}=\mathbf{0}$

- 'Computational' (search) problem a la factoring, CDH
- Many valid solutions z
- Applications: OWF / CRHF, signatures, ID schemes

> ‘minicrypt'

LWE

$$
\left(\mathbf{A}, \mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}\right) \text { vs. }\left(\mathbf{A}, \mathbf{b}^{t}\right)
$$

- 'Decisional' problem a la QR, DCR, DDH
- Unique solution s,e

SIS [Ajtai'96,...] and LWE [Regev'05]

SIS

find short $\mathbf{z} \neq \mathbf{0}$ s.t. $\mathbf{A z}=\mathbf{0}$

- 'Computational' (search) problem a la factoring, CDH
- Many valid solutions z
- Applications: OWF / CRHF, signatures, ID schemes

> 'minicrypt'

LWE

$\left(\mathbf{A}, \mathrm{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}\right)$ vs. $\left(\mathbf{A}, \mathrm{b}^{t}\right)$

- 'Decisional' problem a la QR, DCR, DDH
- Unique solution \mathbf{s}, e
- Applications: PKE, OT, ID-based encryption, FHE, ...
'CRYPTOMANIA'

SIS/LWE are Efficient (... sort of)

- Each pseudorandom scalar b requires an n-dim inner product

$$
\left(-\mathrm{s}^{t}-\right)\left(\begin{array}{l}
\mid \\
\mathrm{a} \\
\mid
\end{array}\right)+e=b \in \mathbb{Z}_{q}
$$

SIS/LWE are Efficient (... sort of)

- Each pseudorandom scalar b requires an n-dim inner product
$\left(-\mathrm{s}^{t}-\right)\left(\begin{array}{l}\mid \\ \mathrm{a} \\ \mid\end{array}\right)+e=b \in \mathbb{Z}_{q}$
- Can amortize each a over many secrets s_{i}, but still $\tilde{O}(n)$ work per scalar b.

SIS/LWE are Efficient (... sort of)

- Each pseudorandom scalar b requires an n-dim inner product
$\left(-s^{t}-\right)\left(\begin{array}{l}\mid \\ \mathrm{a} \\ \mid\end{array}\right)+e=b \in \mathbb{Z}_{q}$
- Can amortize each a over many secrets s_{i}, but still $\tilde{O}(n)$ work per scalar b.
- Crypto functions have rather large key sizes: $\Omega\left(n^{2}\right)$ bits

$$
p k=\underbrace{\left(\begin{array}{lll}
\cdots & \mathbf{A} & \cdots
\end{array}\right)}_{m \approx n \log q}
$$

SIS/LWE are Efficient (... sort of)

- Each pseudorandom scalar b requires an n-dim inner product
$\left(-s^{t}-\right)\left(\begin{array}{l}\mid \\ \mathrm{a} \\ \mid\end{array}\right)+e=b \in \mathbb{Z}_{q}$
- Can amortize each a over many secrets s_{i}, but still $\tilde{O}(n)$ work per scalar b.
- Crypto functions have rather large key sizes: $\Omega\left(n^{2}\right)$ bits

$$
p k=\underbrace{\left(\begin{array}{lll}
\cdots & \mathbf{A} & \cdots
\end{array}\right)}_{m \approx n \log q}
$$

- Can fix A for all users, but still $\tilde{\Omega}\left(n^{2}\right)$ time to evaluate functions.

Wishful Thinking. . .

$$
\begin{aligned}
\left(\begin{array}{c}
\mid \\
\mathbf{a}_{1} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{1} \\
\mid
\end{array}\right)+\cdots+\left(\begin{array}{c}
\mid \\
\mathrm{a}_{m} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{m} \\
\mid
\end{array}\right) & =\left(\begin{array}{l}
\mid \\
\mathrm{u} \\
\mid
\end{array}\right) \in \mathbb{Z}_{q}^{n} \\
\left(\begin{array}{l}
\mid \\
\mathrm{s} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{a}_{1} \\
\mid
\end{array}\right)+\left(\begin{array}{c}
\mid \\
\mathrm{e} \\
\mid
\end{array}\right) & =\left(\begin{array}{l}
\mid \\
\mathrm{b} \\
\mid
\end{array}\right) \in \mathbb{Z}_{q}^{n}
\end{aligned}
$$

- SIS: n-dimensional \mathbf{x}_{i}, and $m \approx \log q$

Wishful Thinking. . .

$$
\begin{aligned}
\left(\begin{array}{c}
\mid \\
\mathrm{a}_{1} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{1} \\
\mid
\end{array}\right)+\cdots+\left(\begin{array}{c}
\mid \\
\mathrm{a}_{m} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{m} \\
\mid
\end{array}\right) & =\left(\begin{array}{l}
\mid \\
\mathrm{u} \\
\mid
\end{array}\right) \in \mathbb{Z}_{q}^{n} \\
\left(\begin{array}{l}
\mid \\
\mathrm{s} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathrm{a}_{1} \\
\mid
\end{array}\right)+\left(\begin{array}{c}
\mid \\
\mathrm{e} \\
\mid
\end{array}\right) & =\left(\begin{array}{l}
\mid \\
\mathrm{b} \\
\mid
\end{array}\right) \in \mathbb{Z}_{q}^{n}
\end{aligned}
$$

- SIS: n-dimensional \mathbf{x}_{i}, and $m \approx \log q$
- LWE: each \star operation yields n pseudorandom scalars

Wishful Thinking. . .

$$
\begin{aligned}
\left(\begin{array}{c}
\mid \\
\mathrm{a}_{1} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathrm{x}_{1} \\
\mid
\end{array}\right)+\cdots+\left(\begin{array}{c}
\mid \\
\mathrm{a}_{m} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{m} \\
\mid
\end{array}\right) & =\left(\begin{array}{l}
\mid \\
\mathrm{u} \\
\mid
\end{array}\right) \in \mathbb{Z}_{q}^{n} \\
\left(\begin{array}{l}
\mid \\
\mathrm{s} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathrm{a}_{1} \\
\mid
\end{array}\right)+\left(\begin{array}{c}
\mid \\
\mathrm{e} \\
\mid
\end{array}\right) & =\left(\begin{array}{l}
\mid \\
\mathrm{b} \\
\mid
\end{array}\right) \in \mathbb{Z}_{q}^{n}
\end{aligned}
$$

- SIS: n-dimensional \mathbf{x}_{i}, and $m \approx \log q$
- LWE: each \star operation yields n pseudorandom scalars

Key Question

- How to define ' \star ' so SIS and LWE are fast and secure?

Wishful Thinking. . .

$$
\begin{aligned}
\left(\begin{array}{c}
\mid \\
\mathbf{a}_{1} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{1} \\
\mid
\end{array}\right)+\cdots+\left(\begin{array}{c}
\mid \\
\mathbf{a}_{m} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{m} \\
\mid
\end{array}\right) & =\left(\begin{array}{l}
\mid \\
\mathbf{u} \\
\mid
\end{array}\right) \in \mathbb{Z}_{q}^{n} \\
\left(\begin{array}{l}
\mid \\
\mathbf{s} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{a}_{1} \\
\mid
\end{array}\right)+\left(\begin{array}{c}
\mid \\
\mathbf{e} \\
\mid
\end{array}\right) & =\left(\begin{array}{l}
\mid \\
\mathbf{b} \\
\mid
\end{array}\right) \in \mathbb{Z}_{q}^{n}
\end{aligned}
$$

- SIS: n-dimensional \mathbf{x}_{i}, and $m \approx \log q$
- LWE: each \star operation yields n pseudorandom scalars

Key Question

- How to define ' \star ' so SIS and LWE are fast and secure?
- Careful: coordinate-wise multiplication is not secure!

Wishful Thinking. . .

$$
\begin{aligned}
\left(\begin{array}{c}
\mid \\
\mathbf{a}_{1} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{1} \\
\mid
\end{array}\right)+\cdots+\left(\begin{array}{c}
\mid \\
\mathbf{a}_{m} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{m} \\
\mid
\end{array}\right) & =\left(\begin{array}{l}
\mid \\
\mathbf{u} \\
\mid
\end{array}\right) \in \mathbb{Z}_{q}^{n} \\
\left(\begin{array}{l}
\mid \\
\mathbf{s} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{a}_{1} \\
\mid
\end{array}\right)+\left(\begin{array}{c}
\mid \\
\mathbf{e} \\
\mid
\end{array}\right) & =\left(\begin{array}{l}
\mid \\
\mathbf{b} \\
\mid
\end{array}\right) \in \mathbb{Z}_{q}^{n}
\end{aligned}
$$

- SIS: n-dimensional \mathbf{x}_{i}, and $m \approx \log q$
- LWE: each \star operation yields n pseudorandom scalars

Key Question

- How to define ' \star ' so SIS and LWE are fast and secure?
- Careful: coordinate-wise multiplication is not secure!
- Answer: multiplication in a suitable polynomial ring.

A First Attempt

- Define $R:=\mathbb{Z}[X] /\left(X^{n}-1\right)$ and $R_{q}:=R / q R=\mathbb{Z}_{q}[X] /\left(X^{n}-1\right)$, as in NTRU [HPS'98]

A First Attempt

- Define $R:=\mathbb{Z}[X] /\left(X^{n}-1\right)$ and $R_{q}:=R / q R=\mathbb{Z}_{q}[X] /\left(X^{n}-1\right)$, as in NTRU [HPS'98]
- Multiplication \star in $R\left(\right.$ or $\left.R_{q}\right)$ is "cyclic convolution:"

$$
a(X) \cdot b(X) \leftrightarrow\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right) \star\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n-1}
\end{array}\right)=\underbrace{\left(\begin{array}{cccc}
a_{0} & a_{n-1} & \cdots & a_{1} \\
a_{1} & a_{0} & \cdots & a_{2} \\
& \cdots & & \vdots \\
a_{n-1} & a_{n-2} & \cdots & a_{0}
\end{array}\right)}_{\operatorname{rot}(\mathbf{a})}\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n-1}
\end{array}\right)
$$

A First Attempt

- Define $R:=\mathbb{Z}[X] /\left(X^{n}-1\right)$ and $R_{q}:=R / q R=\mathbb{Z}_{q}[X] /\left(X^{n}-1\right)$, as in NTRU [HPS'98]
- Multiplication \star in R (or R_{q}) is "cyclic convolution:"

$$
a(X) \cdot b(X) \leftrightarrow\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right) \star\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n-1}
\end{array}\right)=\underbrace{\left(\begin{array}{cccc}
a_{0} & a_{n-1} & \cdots & a_{1} \\
a_{1} & a_{0} & \cdots & a_{2} \\
& \cdots & & \vdots \\
a_{n-1} & a_{n-2} & \cdots & a_{0}
\end{array}\right)}_{\operatorname{rot}(\mathbf{a})}\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n-1}
\end{array}\right)
$$

There are sub-quadratic algorithms for computing \star (later).

A First Attempt

- Define $R:=\mathbb{Z}[X] /\left(X^{n}-1\right)$ and $R_{q}:=R / q R=\mathbb{Z}_{q}[X] /\left(X^{n}-1\right)$, as in NTRU [HPS'98]
- Multiplication \star in $R\left(\right.$ or $\left.R_{q}\right)$ is "cyclic convolution:"

$$
a(X) \cdot b(X) \leftrightarrow\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right) \star\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n-1}
\end{array}\right)=\underbrace{\left(\begin{array}{cccc}
a_{0} & a_{n-1} & \cdots & a_{1} \\
a_{1} & a_{0} & \cdots & a_{2} \\
& \cdots & & \vdots \\
a_{n-1} & a_{n-2} & \cdots & a_{0}
\end{array}\right)}_{\operatorname{rot}(\mathbf{a})}\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n-1}
\end{array}\right)
$$

There are sub-quadratic algorithms for computing \star (later).

- For 'short' $\mathbf{x}_{i} \in R$, is this ring-SIS function one-way? Coll. resistant?

$$
\left(\begin{array}{c}
\mid \\
\mathbf{a}_{1} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{1} \\
\mid
\end{array}\right)+\cdots+\left(\begin{array}{c}
\mid \\
\mathbf{a}_{m} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{m} \\
\mid
\end{array}\right)=\left(\begin{array}{l}
\mid \\
\mathbf{u} \\
\mid
\end{array}\right) \in R_{q}
$$

A First Attempt, Continued

- For 'short' $\mathbf{x}_{i} \in R$, is this 'ring-SIS' function one-way? Coll. resistant?

$$
\left(\begin{array}{c}
\mid \\
\mathbf{a}_{1} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{1} \\
\mid
\end{array}\right)+\cdots+\left(\begin{array}{c}
\mid \\
\mathbf{a}_{m} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{m} \\
\mid
\end{array}\right)=\left(\begin{array}{l}
\mid \\
\mathbf{u} \\
\mid
\end{array}\right) \in R_{q}
$$

A First Attempt, Continued

- For 'short' $\mathbf{x}_{i} \in R$, is this 'ring-SIS' function one-way? Coll. resistant?

$$
\left(\begin{array}{c}
\mid \\
\mathbf{a}_{1} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{1} \\
\mid
\end{array}\right)+\cdots+\left(\begin{array}{c}
\mid \\
\mathbf{a}_{m} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{m} \\
\mid
\end{array}\right)=\left(\begin{array}{l}
\mid \\
\mathbf{u} \\
\mid
\end{array}\right) \in R_{q}
$$

- [Micciancio'02]: the function is one-way, if SVP ${ }_{\gamma}$ on ideal lattices in $R=\mathbb{Z}[X] /\left(X^{n}-1\right)$ is hard in the worst case.

A First Attempt, Continued

- For 'short' $\mathbf{x}_{i} \in R$, is this 'ring-SIS' function one-way? Coll. resistant?

$$
\left(\begin{array}{c}
\mid \\
\mathbf{a}_{1} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{1} \\
\mid
\end{array}\right)+\cdots+\left(\begin{array}{c}
\mid \\
\mathbf{a}_{m} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{m} \\
\mid
\end{array}\right)=\left(\begin{array}{l}
\mid \\
\mathbf{u} \\
\mid
\end{array}\right) \in R_{q}
$$

- [Micciancio'02]: the function is one-way, if SVP ${ }_{\gamma}$ on ideal lattices in $R=\mathbb{Z}[X] /\left(X^{n}-1\right)$ is hard in the worst case.
- [PR'06,LM'06]: the function is not collision resistant!

A First Attempt, Continued

- For 'short' $\mathbf{x}_{i} \in R$, is this 'ring-SIS' function one-way? Coll. resistant?

$$
\left(\begin{array}{c}
\mid \\
\mathbf{a}_{1} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{1} \\
\mid
\end{array}\right)+\cdots+\left(\begin{array}{c}
\mid \\
\mathbf{a}_{m} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{m} \\
\mid
\end{array}\right)=\left(\begin{array}{l}
\mid \\
\mathbf{u} \\
\mid
\end{array}\right) \in R_{q}
$$

- [Micciancio'02]: the function is one-way, if SVP $_{\gamma}$ on ideal lattices in $R=\mathbb{Z}[X] /\left(X^{n}-1\right)$ is hard in the worst case.
- [PR'06,LM'06]: the function is not collision resistant!
\star With prob $1 / q$, we have $a(1)=a_{0}+a_{1}+\cdots+a_{n-1}=0 \in \mathbb{Z}_{q}$.

A First Attempt, Continued

- For 'short' $\mathbf{x}_{i} \in R$, is this 'ring-SIS' function one-way? Coll. resistant?

$$
\left(\begin{array}{c}
\mid \\
\mathbf{a}_{1} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{1} \\
\mid
\end{array}\right)+\cdots+\left(\begin{array}{c}
\mid \\
\mathbf{a}_{m} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{m} \\
\mid
\end{array}\right)=\left(\begin{array}{l}
\mid \\
\mathbf{u} \\
\mid
\end{array}\right) \in R_{q}
$$

- [Micciancio'02]: the function is one-way, if SVP $_{\gamma}$ on ideal lattices in $R=\mathbb{Z}[X] /\left(X^{n}-1\right)$ is hard in the worst case.
- [PR'06,LM'06]: the function is not collision resistant!
\star With prob $1 / q$, we have $a(1)=a_{0}+a_{1}+\cdots+a_{n-1}=0 \in \mathbb{Z}_{q}$.
\star Then for $\mathbf{x}=\mathbf{1}$, we have $\mathbf{a} \star \mathbf{x}=\operatorname{rot}(\mathbf{a}) \cdot \mathbf{x}=\mathbf{0} \in R_{q}$.

A First Attempt, Continued

- For 'short' $\mathbf{x}_{i} \in R$, is this 'ring-SIS' function one-way? Coll. resistant?

$$
\left(\begin{array}{c}
\mid \\
\mathbf{a}_{1} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{1} \\
\mid
\end{array}\right)+\cdots+\left(\begin{array}{c}
\mid \\
\mathbf{a}_{m} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{m} \\
\mid
\end{array}\right)=\left(\begin{array}{l}
\mid \\
\mathbf{u} \\
\mid
\end{array}\right) \in R_{q}
$$

- [Micciancio'02]: the function is one-way, if SVP $_{\gamma}$ on ideal lattices in $R=\mathbb{Z}[X] /\left(X^{n}-1\right)$ is hard in the worst case.
- [PR'06,LM'06]: the function is not collision resistant!
\star With prob $1 / q$, we have $a(1)=a_{0}+a_{1}+\cdots+a_{n-1}=0 \in \mathbb{Z}_{q}$.
\star Then for $\mathbf{x}=\mathbf{1}$, we have $\mathbf{a} \star \mathbf{x}=\operatorname{rot}(\mathbf{a}) \cdot \mathbf{x}=\mathbf{0} \in R_{q}$.
* Algebraically,

$$
(X-1) \mid a(X) \Rightarrow a(X)\left(1+X+\cdots+X^{n-1}\right)=0 \bmod \left(X^{n}-1\right) .
$$

A First Attempt, Continued

- For 'short' $\mathbf{x}_{i} \in R$, is this 'ring-SIS' function one-way? Coll. resistant?

$$
\left(\begin{array}{c}
\mid \\
\mathbf{a}_{1} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{1} \\
\mid
\end{array}\right)+\cdots+\left(\begin{array}{c}
\mid \\
\mathbf{a}_{m} \\
\mid
\end{array}\right) \star\left(\begin{array}{c}
\mid \\
\mathbf{x}_{m} \\
\mid
\end{array}\right)=\left(\begin{array}{l}
\mid \\
\mathbf{u} \\
\mid
\end{array}\right) \in R_{q}
$$

- [Micciancio'02]: the function is one-way, if SVP $_{\gamma}$ on ideal lattices in $R=\mathbb{Z}[X] /\left(X^{n}-1\right)$ is hard in the worst case.
- [PR'06,LM'06]: the function is not collision resistant!
\star With prob $1 / q$, we have $a(1)=a_{0}+a_{1}+\cdots+a_{n-1}=0 \in \mathbb{Z}_{q}$.
\star Then for $\mathbf{x}=\mathbf{1}$, we have $\mathbf{a} \star \mathbf{x}=\operatorname{rot}(\mathbf{a}) \cdot \mathbf{x}=\mathbf{0} \in R_{q}$.
* Algebraically,

$$
(X-1) \mid a(X) \Rightarrow a(X)\left(1+X+\cdots+X^{n-1}\right)=0 \bmod \left(X^{n}-1\right) .
$$

- Main problem: $R=\mathbb{Z}[X] /\left(X^{n}-1\right)$ is not an integral domain, because $X^{n}-1$ is reducible.

A Better Construction

- $R:=\mathbb{Z}[X] /\left(X^{n}+1\right)$ and $R_{q}=R / q R$, for $n=2^{k}$ and $q=1 \bmod 2 n$.

A Better Construction

- $R:=\mathbb{Z}[X] /\left(X^{n}+1\right)$ and $R_{q}=R / q R$, for $n=2^{k}$ and $q=1 \bmod 2 n$. ($X^{n}+1$ is irreducible over \mathbb{Z}, but "splits completely" over \mathbb{Z}_{q}.)

A Better Construction

- $R:=\mathbb{Z}[X] /\left(X^{n}+1\right)$ and $R_{q}=R / q R$, for $n=2^{k}$ and $q=1 \bmod 2 n$. ($X^{n}+1$ is irreducible over \mathbb{Z}, but "splits completely" over \mathbb{Z}_{q}.)
- Multiplication \star in $R\left(\right.$ or $\left.R_{q}\right)$ is "anti-cyclic convolution"

$$
\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right) \star\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n-1}
\end{array}\right)=\left(\begin{array}{cccc}
a_{0} & -a_{n-1} & \cdots & -a_{1} \\
a_{1} & a_{0} & \cdots & -a_{2} \\
& \cdots & & \vdots \\
a_{n-1} & a_{n-2} & \cdots & a_{0}
\end{array}\right)\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n-1}
\end{array}\right)
$$

A Better Construction

- $R:=\mathbb{Z}[X] /\left(X^{n}+1\right)$ and $R_{q}=R / q R$, for $n=2^{k}$ and $q=1 \bmod 2 n$. ($X^{n}+1$ is irreducible over \mathbb{Z}, but "splits completely" over \mathbb{Z}_{q}.)
- Multiplication \star in $R\left(\right.$ or $\left.R_{q}\right)$ is "anti-cyclic convolution"

$$
\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right) \star\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n-1}
\end{array}\right)=\left(\begin{array}{cccc}
a_{0} & -a_{n-1} & \cdots & -a_{1} \\
a_{1} & a_{0} & \cdots & -a_{2} \\
& \cdots & & \vdots \\
a_{n-1} & a_{n-2} & \cdots & a_{0}
\end{array}\right)\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n-1}
\end{array}\right)
$$

- Multiplication in $O(n \log n)$ time: use "FFT" over \mathbb{Z}_{q}

A Better Construction

- $R:=\mathbb{Z}[X] /\left(X^{n}+1\right)$ and $R_{q}=R / q R$, for $n=2^{k}$ and $q=1 \bmod 2 n$. ($X^{n}+1$ is irreducible over \mathbb{Z}, but "splits completely" over \mathbb{Z}_{q}.)
- Multiplication \star in R (or R_{q}) is "anti-cyclic convolution"

$$
\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right) \star\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n-1}
\end{array}\right)=\left(\begin{array}{cccc}
a_{0} & -a_{n-1} & \cdots & -a_{1} \\
a_{1} & a_{0} & \cdots & -a_{2} \\
& \cdots & & \vdots \\
a_{n-1} & a_{n-2} & \cdots & a_{0}
\end{array}\right)\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n-1}
\end{array}\right)
$$

- Multiplication in $O(n \log n)$ time: use "FFT" over \mathbb{Z}_{q}

Theorem [PR'06,LM'06]

- The ring-SIS function is collision resistant, if SVP_{γ} on ideal lattices in R is hard in the worst case.

A Better Construction

- $R:=\mathbb{Z}[X] /\left(X^{n}+1\right)$ and $R_{q}=R / q R$, for $n=2^{k}$ and $q=1 \bmod 2 n$. ($X^{n}+1$ is irreducible over \mathbb{Z}, but "splits completely" over \mathbb{Z}_{q}.)
- Multiplication \star in R (or R_{q}) is "anti-cyclic convolution"

$$
\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right) \star\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n-1}
\end{array}\right)=\left(\begin{array}{cccc}
a_{0} & -a_{n-1} & \cdots & -a_{1} \\
a_{1} & a_{0} & \cdots & -a_{2} \\
& \cdots & & \vdots \\
a_{n-1} & a_{n-2} & \cdots & a_{0}
\end{array}\right)\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n-1}
\end{array}\right)
$$

- Multiplication in $O(n \log n)$ time: use "FFT" over \mathbb{Z}_{q}

Theorem [LPR'10]

- Ring-LWE is pseudorandom if SVP $_{\gamma}$ on ideal lattices in R is quantumly hard in the worst case.

A Few Words on Ideal Lattices

- Recall example ring $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for $n=2^{k}$.
- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under \star with R.

A Few Words on Ideal Lattices

- Recall example ring $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for $n=2^{k}$.
- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under \star with R.

To get ideal lattices, embed R and its ideals into \mathbb{Z}^{n}. How?

A Few Words on Ideal Lattices

- Recall example ring $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for $n=2^{k}$.
- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under \star with R.

To get ideal lattices, embed R and its ideals into \mathbb{Z}^{n}. How?

- 'Coefficient embedding' [HPS'98,M'02,PR'06,LM'06,G'09,...]:

$$
a(X)=a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1} \quad \leftrightarrow \quad\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{Z}^{n}
$$

A Few Words on Ideal Lattices

- Recall example ring $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for $n=2^{k}$.
- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under \star with R.

To get ideal lattices, embed R and its ideals into \mathbb{Z}^{n}. How?

- 'Coefficient embedding' [HPS'98,M'02,PR'06,LM'06,G'09,...]:

$$
a(X)=a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1} \quad \leftrightarrow \quad\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{Z}^{n}
$$

Addition + is coordinate-wise, but analyzing \star is cumbersome.

A Few Words on Ideal Lattices

- Recall example ring $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for $n=2^{k}$.
- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under \star with R.

To get ideal lattices, embed R and its ideals into \mathbb{Z}^{n}. How?

- 'Coefficient embedding' [HPS'98,M'02,PR'06,LM'06,G'09, ...]:

$$
a(X)=a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1} \quad \leftrightarrow \quad\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{Z}^{n}
$$

Addition + is coordinate-wise, but analyzing \star is cumbersome.
'Expansion factor' ϕ can bound $\|a \star b\| \leq \phi \cdot\|a\| \cdot\|b\|$, but is often loose, and doesn't help with distributions.

A Few Words on Ideal Lattices

- Recall example ring $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for $n=2^{k}$.
- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under \star with R.

To get ideal lattices, embed R and its ideals into \mathbb{C}^{n}. How?

- 'Coefficient embedding' [HPS'98,M'02,PR'06,LM'06,G'09, ...]:

$$
a(X)=a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1} \quad \leftrightarrow \quad\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{Z}^{n}
$$

Addition + is coordinate-wise, but analyzing \star is cumbersome.
'Expansion factor' ϕ can bound $\|a \star b\| \leq \phi \cdot\|a\| \cdot\|b\|$, but is often loose, and doesn't help with distributions.

- [Minkowski'1800s,...]: 'canonical embedding' σ. Let $\omega=\exp (\pi i / n)$:

$$
a(X) \quad \stackrel{\sigma}{\mapsto} \quad\left(a\left(\omega^{1}\right), a\left(\omega^{3}\right), \ldots, a\left(\omega^{2 n-1}\right)\right) \in \mathbb{C}^{n}
$$

A Few Words on Ideal Lattices

- Recall example ring $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for $n=2^{k}$.
- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under \star with R.

To get ideal lattices, embed R and its ideals into \mathbb{C}^{n}. How?

- 'Coefficient embedding' [HPS'98,M'02,PR'06,LM'06,G'09, ...]:

$$
a(X)=a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1} \quad \leftrightarrow \quad\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{Z}^{n}
$$

Addition + is coordinate-wise, but analyzing \star is cumbersome.
'Expansion factor' ϕ can bound $\|a \star b\| \leq \phi \cdot\|a\| \cdot\|b\|$, but is often loose, and doesn't help with distributions.

- [Minkowski'1800s, . .]: 'canonical embedding' σ. Let $\omega=\exp (\pi i / n)$:

$$
a(X) \quad \stackrel{\sigma}{\mapsto} \quad\left(a\left(\omega^{1}\right), a\left(\omega^{3}\right), \ldots, a\left(\omega^{2 n-1}\right)\right) \in \mathbb{C}^{n}
$$

Both + and \star are coordinate-wise! Nice geometric behavior.

A Few Words on Ideal Lattices

- Recall example ring $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for $n=2^{k}$.
- An ideal $\mathcal{I} \subseteq R$ is closed under + and - , and under \star with R.

To get ideal lattices, embed R and its ideals into \mathbb{C}^{n}. How?

- 'Coefficient embedding' [HPS'98,M'02,PR'06,LM'06,G'09, ...]:

$$
a(X)=a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1} \quad \leftrightarrow \quad\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{Z}^{n}
$$

Addition + is coordinate-wise, but analyzing \star is cumbersome.
'Expansion factor' ϕ can bound $\|a \star b\| \leq \phi \cdot\|a\| \cdot\|b\|$, but is often loose, and doesn't help with distributions.

- [Minkowski'1800s, . .]: 'canonical embedding' σ. Let $\omega=\exp (\pi i / n)$:

$$
a(X) \quad \stackrel{\sigma}{\mapsto} \quad\left(a\left(\omega^{1}\right), a\left(\omega^{3}\right), \ldots, a\left(\omega^{2 n-1}\right)\right) \in \mathbb{C}^{n}
$$

Both + and \star are coordinate-wise! Nice geometric behavior.

- Lengths, Gaussians, etc. are all defined in terms of σ.

Some of My Favorite Open Problems

(1) Classical hardness of LWE, subsuming the quantum reduction of [Regev'05]: $q=\operatorname{poly}(n)$, based on GapSVP and SIVP

Some of My Favorite Open Problems

(1) Classical hardness of LWE, subsuming the quantum reduction of [Regev'05]: $q=\operatorname{poly}(n)$, based on GapSVP and SIVP
(2) Adaptive security for IBE, with good key sizes (e.g., $O(1) \mathrm{As}$). Adapt [Waters'09] from bilinear setting?

Some of My Favorite Open Problems

(1) Classical hardness of LWE, subsuming the quantum reduction of [Regev'05]: $q=\operatorname{poly}(n)$, based on GapSVP and SIVP
(2) Adaptive security for IBE, with good key sizes (e.g., $O(1) \mathrm{As}$). Adapt [Waters'09] from bilinear setting?
(3) Provable hardness for small parameters for related problems like Learning With Rounding and PRFs [BPR'12]

Some of My Favorite Open Problems

(1) Classical hardness of LWE, subsuming the quantum reduction of [Regev'05]: $q=\operatorname{poly}(n)$, based on GapSVP and SIVP
(2) Adaptive security for IBE, with good key sizes (e.g., $O(1) \mathrm{As}$). Adapt [Waters'09] from bilinear setting?
(3) Provable hardness for small parameters for related problems like Learning With Rounding and PRFs [BPR'12]
(4) Multilinear maps [GGH'12] from standard lattice assumptions (LWE)

Some of My Favorite Open Problems

(1) Classical hardness of LWE, subsuming the quantum reduction of [Regev'05]: $q=\operatorname{poly}(n)$, based on GapSVP and SIVP
(2) Adaptive security for IBE, with good key sizes (e.g., $O(1) \mathrm{As}$). Adapt [Waters'09] from bilinear setting?
(3) Provable hardness for small parameters for related problems like Learning With Rounding and PRFs [BPR'12]
(4) Multilinear maps [GGH'12] from standard lattice assumptions (LWE)
(5) Anything nontrivial about ideal lattices: attacks, hardness, applications, ...

Parting Thoughts

- You now have a solid foundation in the central concepts and techniques used in lattice-based cryptography.

Parting Thoughts

- You now have a solid foundation in the central concepts and techniques used in lattice-based cryptography.
- The field is vibrant: there are endless unanswered questions, and endless new discoveries to be made.

Parting Thoughts

- You now have a solid foundation in the central concepts and techniques used in lattice-based cryptography.
- The field is vibrant: there are endless unanswered questions, and endless new discoveries to be made.
- Enjoy the cryptography!

Parting Thoughts

- You now have a solid foundation in the central concepts and techniques used in lattice-based cryptography.
- The field is vibrant: there are endless unanswered questions, and endless new discoveries to be made.
- Enjoy the cryptography!

Thanks!

