Lattice-Based Cryptography: Constructing Trapdoors and More Applications

> Chris Peikert Georgia Institute of Technology

> > crypt@b-it 2013

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \operatorname{poly}(n)$, $m = \Omega(n \log q)$.

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \mathsf{poly}(n)$, $m = \Omega(n \log q)$.

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q \in \mathbb{Z}_q^n$ ("short" \mathbf{x} , surjective)

CRHF if SIS hard [Ajtai'96,...]

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \operatorname{poly}(n)$, $m = \Omega(n \log q)$.

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q \in \mathbb{Z}_q^n$ ("short" \mathbf{x} , surjective) $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^{t}\mathbf{A} + \mathbf{e}^{t} \mod q \in \mathbb{Z}_{q}^{m}$ ("short" **e**, injective)

CRHF if SIS hard [Ajtai'96,...]

OWF if LWE hard [Regev'05,P'09]

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \operatorname{poly}(n)$, $m = \Omega(n \log q)$.

CRHF if SIS hard [Ajtai'96,...]

OWF if LWE hard [Regev'05,P'09]

• Lattice interpretation: $\Lambda^{\perp}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{Z}^m : f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = \mathbf{0} \mod q\}$

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \operatorname{poly}(n)$, $m = \Omega(n \log q)$.

 $\begin{array}{c|c} f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q \in \mathbb{Z}_q^n \\ (\text{``short''} \ \mathbf{x}, \text{ surjective}) \end{array} & g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \mod q \in \mathbb{Z}_q^m \\ (\text{``short''} \ \mathbf{e}, \text{ injective}) \end{array}$

CRHF if SIS hard [Ajtai'96,...]

OWF if LWE hard [Regev'05,P'09]

► Lattice interpretation: $\Lambda_{\mathbf{u}}^{\perp}(\mathbf{A}) = {\mathbf{x} \in \mathbb{Z}^m : f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = \mathbf{u} \mod q}$

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \operatorname{poly}(n)$, $m = \Omega(n \log q)$.

CRHF if SIS hard [Ajtai'96,...]

OWF if LWE hard [Regev'05,P'09]

► f_A , g_A in forward direction yield CRHFs, CPA security (w/FHE!) ... but not much else.

• Many cryptographic applications need to invert f_A and/or g_A .

• Many cryptographic applications need to invert f_A and/or g_A .

Invert $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^{t}\mathbf{A} + \mathbf{e}^{t}$: find the unique preimage \mathbf{s} (equivalently, \mathbf{e})

Many cryptographic applications need to invert f_A and/or g_A.

Invert $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}') = \mathbf{A}\mathbf{x}'$: sample random $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$ with prob $\propto \exp(-\|\mathbf{x}\|^2/s^2)$. Invert $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^{t}\mathbf{A} + \mathbf{e}^{t}$: find the unique preimage \mathbf{s} (equivalently, \mathbf{e})

Many cryptographic applications need to invert f_A and/or g_A.

Invert $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}') = \mathbf{A}\mathbf{x}'$: sample random $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$ with prob $\propto \exp(-\|\mathbf{x}\|^2/s^2)$. Invert $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$: find the unique preimage \mathbf{s} (equivalently, \mathbf{e})

• How? Use a "strong trapdoor" for A: a short basis of $\Lambda^{\perp}(A)$ [Babai'86,GGH'97,Klein'01,GPV'08,P'10]

Canonical App: [GPV'08] Signatures

▶ $pk = \mathbf{A}$, $sk = \text{short basis for } \mathbf{A}$, random oracle $H: \{0, 1\}^* \to \mathbb{Z}_q^n$.

Canonical App: [GPV'08] Signatures

▶ $pk = \mathbf{A}, sk = \text{short basis for } \mathbf{A}, \text{ random oracle } H : \{0, 1\}^* \to \mathbb{Z}_q^n.$

Sign(msg): let $\mathbf{u} = H(msg)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$.

Canonical App: [GPV'08] Signatures

▶ $pk = \mathbf{A}, sk = \text{short basis for } \mathbf{A}, \text{ random oracle } H : \{0, 1\}^* \to \mathbb{Z}_q^n.$

- Sign(msg): let $\mathbf{u} = H(msg)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$.
- Verify (msg, \mathbf{x}) : check $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = H(msg)$ and \mathbf{x} short enough.

Canonical App: [GPV'08] Signatures

▶ $pk = \mathbf{A}$, $sk = \text{short basis for } \mathbf{A}$, random oracle $H : \{0, 1\}^* \to \mathbb{Z}_q^n$.

- Sign(msg): let $\mathbf{u} = H(msg)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$.
- Verify (msg, \mathbf{x}) : check $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = H(msg)$ and \mathbf{x} short enough.
- Security: finding short enough preimages in f_A must be hard.

Canonical App: [GPV'08] Signatures

▶ $pk = \mathbf{A}, sk = \text{short basis for } \mathbf{A}, \text{ random oracle } H \colon \{0, 1\}^* \to \mathbb{Z}_q^n.$

- Sign(msg): let $\mathbf{u} = H(msg)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$.
- Verify (msg, \mathbf{x}) : check $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = H(msg)$ and \mathbf{x} short enough.
- Security: finding short enough preimages in f_A must be hard.

Other "Black-Box" Applications of f^{-1} , g^{-1}

- Standard Model (no RO) signatures [CHKP'10,R'10,B'10]
- SM CCA-secure encryption [PW'08,P'09]
- SM (Hierarchical) IBE [GPV'08,CHKP'10,ABB'10a,ABB'10b]
- Many more: OT, NISZK, homom enc/sigs, deniable enc, func enc, ... [PVW'08,PV'08,GHV'10,GKV'10,BF'10a,BF'10b,OPW'11,AFV'11,ABVVW'11,...]

Canonical App: [GPV'08] Signatures

▶ $pk = \mathbf{A}$, $sk = \text{short basis for } \mathbf{A}$, random oracle $H : \{0, 1\}^* \to \mathbb{Z}_q^n$.

- Sign(msg): let $\mathbf{u} = H(msg)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$.
- Verify (msg, \mathbf{x}) : check $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = H(msg)$ and \mathbf{x} short enough.
- Security: finding short enough preimages in f_A must be hard.

Some Drawbacks...

✗ Generating A w/ short basis is complicated and slow [Ajtai'99,AP'09]

Canonical App: [GPV'08] Signatures

▶ $pk = \mathbf{A}$, $sk = \text{short basis for } \mathbf{A}$, random oracle $H : \{0, 1\}^* \to \mathbb{Z}_q^n$.

- Sign(msg): let $\mathbf{u} = H(msg)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$.
- Verify (msg, \mathbf{x}) : check $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = H(msg)$ and \mathbf{x} short enough.
- Security: finding short enough preimages in f_A must be hard.

Some Drawbacks...

- K Generating A w/ short basis is complicated and slow [Ajtai'99,AP'09]
- X Known inversion algorithms trade quality for efficiency

Canonical App: [GPV'08] Signatures

▶ $pk = \mathbf{A}$, $sk = \text{short basis for } \mathbf{A}$, random oracle $H : \{0, 1\}^* \to \mathbb{Z}_q^n$.

- Sign(msg): let $\mathbf{u} = H(msg)$ and output Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$.
- Verify (msg, \mathbf{x}) : check $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = H(msg)$ and \mathbf{x} short enough.
- Security: finding short enough preimages in f_A must be hard.

Some Drawbacks...

K Generating A w/ short basis is complicated and slow [Ajtai'99,AP'09]

X Known inversion algorithms trade quality for efficiency

_		tight, <mark>iterative, fp</mark>	looser, parallel, offline	
-	$g_{\mathbf{A}}^{-1}$	[Babai'86]	[Babai'86]	
	$f_{\mathbf{A}}^{-1}$	[Klein'01,GPV'08]	[P'10]	

"Strong" trapdoor generation and inversion algorithms:

"Strong" trapdoor generation and inversion algorithms:

- * Generation: one matrix mult. No HNF or inversion (cf. [A'99,AP'09])
- ***** Inversion of $f_{\mathbf{A}}$, $g_{\mathbf{A}}$: practical, parallel, & mostly offline
- No more efficiency-vs-quality tradeoff

"Strong" trapdoor generation and inversion algorithms:

- * Generation: one matrix mult. No HNF or inversion (cf. [A'99,AP'09])
- \star Inversion of $f_{\mathbf{A}}$, $g_{\mathbf{A}}$: practical, parallel, & mostly offline
- * No more efficiency-vs-quality tradeoff
- \checkmark Tighter parameters m and s
 - Asymptotically optimal with small constant factors

"Strong" trapdoor generation and inversion algorithms:

- * Generation: one matrix mult. No HNF or inversion (cf. [A'99,AP'09])
- * Inversion of f_A , g_A : practical, parallel, & mostly offline
- * No more efficiency-vs-quality tradeoff
- \checkmark Tighter parameters m and s
 - ★ Asymptotically optimal with small constant factors
- New kind of trapdoor not a basis! (But just as powerful.)

"Strong" trapdoor generation and inversion algorithms:

- * Generation: one matrix mult. No HNF or inversion (cf. [A'99,AP'09])
- * Inversion of f_A , g_A : practical, parallel, & mostly offline
- No more efficiency-vs-quality tradeoff
- \checkmark Tighter parameters m and s
 - ★ Asymptotically optimal with small constant factors
- ✓ <u>New kind of trapdoor</u> not a basis! (But just as powerful.)
- ✓ More efficient applications: CCA, (H)IBE in standard model

Overview of Methods

Design a fixed, public lattice defined by "gadget" matrix G.
Design fast, parallel, offline algorithms for f_G⁻¹, g_G⁻¹.

Overview of Methods

Design a fixed, public lattice defined by "gadget" matrix G.
Design fast, parallel, offline algorithms for f_G⁻¹, g_G⁻¹.

2 Randomize $G \leftrightarrow A$ via a "nice" unimodular transformation. (The transformation is the trapdoor!)

Overview of Methods

Design a fixed, public lattice defined by "gadget" matrix G.
Design fast, parallel, offline algorithms for f_G⁻¹, g_G⁻¹.

2 Randomize $\mathbf{G} \leftrightarrow \mathbf{A}$ via a "nice" unimodular transformation. (The transformation is the trapdoor!)

3 Reduce f_A^{-1} , g_A^{-1} to f_G^{-1} , g_G^{-1} plus pre-/post-processing.

▶ Let $q = 2^k$. Define 1-by-k "parity check" vector

$$\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}.$$

• Let $q = 2^k$. Define 1-by-k "parity check" vector

$$\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}.$$

• To invert LWE function $g_g \colon \mathbb{Z}_q \times \mathbb{Z}^k \to \mathbb{Z}_q^k$:

 $s \cdot \mathbf{g} + \mathbf{e} = \begin{bmatrix} s + \mathbf{e}_0 & 2s + \mathbf{e}_1 & \cdots & 2^{k-1}s + \mathbf{e}_{k-1} \end{bmatrix} \mod q.$

• Let $q = 2^k$. Define 1-by-k "parity check" vector

$$\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}.$$

• To invert LWE function $g_g \colon \mathbb{Z}_q \times \mathbb{Z}^k \to \mathbb{Z}_q^k$:

 $s \cdot \mathbf{g} + \mathbf{e} = \begin{bmatrix} s + \mathbf{e_0} & 2s + \mathbf{e_1} & \cdots & 2^{k-1}s + \mathbf{e_{k-1}} \end{bmatrix} \mod q.$

★ Get lsb(s) from $2^{k-1}s + e_{k-1}$. Then get next bit of s, etc. Works exactly when every $e_i \in [-\frac{q}{4}, \frac{q}{4})$.

• Let $q = 2^k$. Define 1-by-k "parity check" vector

$$\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}.$$

• To invert LWE function $g_g \colon \mathbb{Z}_q \times \mathbb{Z}^k \to \mathbb{Z}_q^k$:

 $s \cdot \mathbf{g} + \mathbf{e} = \begin{bmatrix} s + \mathbf{e_0} & 2s + \mathbf{e_1} & \cdots & 2^{k-1}s + \mathbf{e_{k-1}} \end{bmatrix} \mod q.$

- ★ Get lsb(s) from $2^{k-1}s + e_{k-1}$. Then get next bit of s, etc. Works exactly when every $e_i \in [-\frac{q}{4}, \frac{q}{4}]$.
- * OR round entries and look up in table.

• Let $q = 2^k$. Define 1-by-k "parity check" vector

$$\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}.$$

• To invert LWE function $g_g \colon \mathbb{Z}_q \times \mathbb{Z}^k \to \mathbb{Z}_q^k$:

 $s \cdot \mathbf{g} + \mathbf{e} = \begin{bmatrix} s + \mathbf{e_0} & 2s + \mathbf{e_1} & \cdots & 2^{k-1}s + \mathbf{e_{k-1}} \end{bmatrix} \mod q.$

- ★ Get lsb(s) from $2^{k-1}s + e_{k-1}$. Then get next bit of s, etc. Works exactly when every $e_i \in [-\frac{q}{4}, \frac{q}{4}]$.
- * OR round entries and look up in table.

• To sample Gaussian preimage for $u = f_g(\mathbf{x}) := \langle \mathbf{g}, \mathbf{x} \rangle$:

• Let $q = 2^k$. Define 1-by-k "parity check" vector

$$\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}.$$

• To invert LWE function $g_g \colon \mathbb{Z}_q \times \mathbb{Z}^k \to \mathbb{Z}_q^k$:

 $s \cdot \mathbf{g} + \mathbf{e} = \begin{bmatrix} s + \mathbf{e_0} & 2s + \mathbf{e_1} & \cdots & 2^{k-1}s + \mathbf{e_{k-1}} \end{bmatrix} \mod q.$

- ★ Get lsb(s) from $2^{k-1}s + e_{k-1}$. Then get next bit of s, etc. Works exactly when every $e_i \in [-\frac{q}{4}, \frac{q}{4}]$.
- * OR round entries and look up in table.
- To sample Gaussian preimage for $u = f_g(\mathbf{x}) := \langle \mathbf{g}, \mathbf{x} \rangle$:

* For $i \leftarrow 0, \ldots, k-1$: choose $x_i \leftarrow (2\mathbb{Z}+u)$, let $u \leftarrow (u-x_i)/2 \in \mathbb{Z}$.

• Let $q = 2^k$. Define 1-by-k "parity check" vector

$$\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}.$$

• To invert LWE function $g_g \colon \mathbb{Z}_q \times \mathbb{Z}^k \to \mathbb{Z}_q^k$:

 $s \cdot \mathbf{g} + \mathbf{e} = \begin{bmatrix} s + \mathbf{e_0} & 2s + \mathbf{e_1} & \cdots & 2^{k-1}s + \mathbf{e_{k-1}} \end{bmatrix} \mod q.$

- ★ Get lsb(s) from $2^{k-1}s + e_{k-1}$. Then get next bit of s, etc. Works exactly when every $e_i \in [-\frac{q}{4}, \frac{q}{4})$.
- * OR round entries and look up in table.
- To sample Gaussian preimage for $u = f_g(\mathbf{x}) := \langle \mathbf{g}, \mathbf{x} \rangle$:

* For $i \leftarrow 0, \ldots, k-1$: choose $x_i \leftarrow (2\mathbb{Z}+u)$, let $u \leftarrow (u-x_i)/2 \in \mathbb{Z}$.

* <u>OR</u> presample many $\mathbf{x} \leftarrow \mathbb{Z}^k$ and store in q 'buckets' $f_{\mathbf{g}}(\mathbf{x})$ for later.

• Another view: for $\mathbf{g} = \begin{bmatrix} 1 & 2 & \cdots & 2^{k-1} \end{bmatrix}$ the lattice $\Lambda^{\perp}(\mathbf{g})$ has basis

$$\mathbf{S} = \begin{bmatrix} 2 & & & \\ -1 & 2 & & \\ & -1 & \ddots & \\ & & & 2 \\ & & & -1 & 2 \end{bmatrix} \in \mathbb{Z}^{k \times k}, \quad \text{with } \tilde{\mathbf{S}} = 2 \cdot \mathbf{I}_k.$$

• Another view: for $\mathbf{g} = \begin{bmatrix} 1 & 2 & \cdots & 2^{k-1} \end{bmatrix}$ the lattice $\Lambda^{\perp}(\mathbf{g})$ has basis

$$\mathbf{S} = \begin{bmatrix} 2 & & & \\ -1 & 2 & & \\ & -1 & \ddots & \\ & & & 2 \\ & & & -1 & 2 \end{bmatrix} \in \mathbb{Z}^{k \times k}, \quad \text{with } \tilde{\mathbf{S}} = 2 \cdot \mathbf{I}_k.$$

The iterative inversion algorithms for f_g , g_g are special cases of the (randomized) "nearest-plane" algorithm [Babai'86,Klein'01,GPV'08].
Step 1: Gadget G and Inversion Algorithms

• Another view: for $\mathbf{g} = \begin{bmatrix} 1 & 2 & \cdots & 2^{k-1} \end{bmatrix}$ the lattice $\Lambda^{\perp}(\mathbf{g})$ has basis

$$\mathbf{S} = \begin{bmatrix} 2 & & & \\ -1 & 2 & & \\ & -1 & \ddots & \\ & & & 2 \\ & & & -1 & 2 \end{bmatrix} \in \mathbb{Z}^{k \times k}, \quad \text{with } \tilde{\mathbf{S}} = 2 \cdot \mathbf{I}_k.$$

The iterative inversion algorithms for $f_{\rm g}$, $g_{\rm g}$ are special cases of the (randomized) "nearest-plane" algorithm [Babai'86,Klein'01,GPV'08].

Step 1: Gadget G and Inversion Algorithms

• Another view: for $\mathbf{g} = \begin{bmatrix} 1 & 2 & \cdots & 2^{k-1} \end{bmatrix}$ the lattice $\Lambda^{\perp}(\mathbf{g})$ has basis

$$\mathbf{S} = \begin{bmatrix} 2 & & & \\ -1 & 2 & & \\ & -1 & \ddots & \\ & & & 2 \\ & & & -1 & 2 \end{bmatrix} \in \mathbb{Z}^{k \times k}, \quad \text{with } \tilde{\mathbf{S}} = 2 \cdot \mathbf{I}_k.$$

The iterative inversion algorithms for $f_{\rm g}$, $g_{\rm g}$ are special cases of the (randomized) "nearest-plane" algorithm [Babai'86,Klein'01,GPV'08].

• Define
$$\mathbf{G} = \mathbf{I}_n \otimes \mathbf{g} = \begin{bmatrix} \cdots \mathbf{g} \cdots & & \\ & \ddots \mathbf{g} \cdots & \\ & & \ddots & \\ & & \ddots & \\ & & & \ddots \mathbf{g} \cdots \end{bmatrix} \in \mathbb{Z}_q^{n \times nk}.$$

Now $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$ reduce to n parallel (and offline) calls to $f_{\mathbf{g}}^{-1}$, $g_{\mathbf{g}}^{-1}$.

Step 1: Gadget G and Inversion Algorithms

• Another view: for $\mathbf{g} = \begin{bmatrix} 1 & 2 & \cdots & 2^{k-1} \end{bmatrix}$ the lattice $\Lambda^{\perp}(\mathbf{g})$ has basis

$$\mathbf{S} = \begin{bmatrix} 2 & & & \\ -1 & 2 & & \\ & -1 & \ddots & \\ & & & 2 \\ & & & -1 & 2 \end{bmatrix} \in \mathbb{Z}^{k \times k}, \quad \text{with } \tilde{\mathbf{S}} = 2 \cdot \mathbf{I}_k.$$

The iterative inversion algorithms for $f_{\rm g}$, $g_{\rm g}$ are special cases of the (randomized) "nearest-plane" algorithm [Babai'86,Klein'01,GPV'08].

1 Define semi-random $[\bar{\mathbf{A}} | \mathbf{G}]$ for uniform $\bar{\mathbf{A}} \in \mathbb{Z}_q^{n \times \bar{m}}$.

Note: $f_{[\bar{\mathbf{A}}|\mathbf{G}]}^{-1}$, $g_{[\bar{\mathbf{A}}|\mathbf{G}]}^{-1}$ easily reduce to $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$ [CHKP'10].

1 Define semi-random $[\bar{\mathbf{A}} \mid \mathbf{G}]$ for uniform $\bar{\mathbf{A}} \in \mathbb{Z}_q^{n \times \bar{m}}$.

Note: $f_{[\bar{\mathbf{A}}|\mathbf{G}]}^{-1}$, $g_{[\bar{\mathbf{A}}|\mathbf{G}]}^{-1}$ easily reduce to $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$ [CHKP'10].

2 Choose "short" (Gaussian) $\mathbf{R} \leftarrow \mathbb{Z}^{\bar{m} \times n \log q}$ and let

1 Define semi-random $[\bar{\mathbf{A}} \mid \mathbf{G}]$ for uniform $\bar{\mathbf{A}} \in \mathbb{Z}_q^{n \times \bar{m}}$.

Note: $f_{[\bar{\mathbf{A}}|\mathbf{G}]}^{-1}$, $g_{[\bar{\mathbf{A}}|\mathbf{G}]}^{-1}$ easily reduce to $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$ [CHKP'10].

2 Choose "short" (Gaussian) $\mathbf{R} \leftarrow \mathbb{Z}^{\bar{m} \times n \log q}$ and let

* A is uniform if $[\bar{A} | \bar{A}R]$ is: leftover hash lemma for $\bar{m} \approx n \log q$.

1 Define semi-random $[\bar{\mathbf{A}} \mid \mathbf{G}]$ for uniform $\bar{\mathbf{A}} \in \mathbb{Z}_q^{n \times \bar{m}}$.

Note: $f_{[\bar{A}|G]}^{-1}$, $g_{[\bar{A}|G]}^{-1}$ easily reduce to f_{G}^{-1} , g_{G}^{-1} [CHKP'10].

2 Choose "short" (Gaussian) $\mathbf{R} \leftarrow \mathbb{Z}^{\bar{m} \times n \log q}$ and let

$$\mathbf{A} := [\bar{\mathbf{A}} \mid \mathbf{G}] \underbrace{ \begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix} }_{\text{unimodular}} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$$

* A is uniform if $[\bar{A} \mid \bar{A}R]$ is: leftover hash lemma for $\bar{m} \approx n \log q$.

(With G = 0, we get the "key trick" constructing A with a "weak" trapdoor of ≥ 1 short vector, but not a full basis.)

1 Define semi-random $[\bar{\mathbf{A}} \mid \mathbf{G}]$ for uniform $\bar{\mathbf{A}} \in \mathbb{Z}_q^{n \times \bar{m}}$.

Note: $f_{[\bar{A}|G]}^{-1}$, $g_{[\bar{A}|G]}^{-1}$ easily reduce to f_{G}^{-1} , g_{G}^{-1} [CHKP'10].

2 Choose "short" (Gaussian) $\mathbf{R} \leftarrow \mathbb{Z}^{\bar{m} \times n \log q}$ and let

$$\mathbf{A} := [\bar{\mathbf{A}} \mid \mathbf{G}] \underbrace{ \begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix} }_{\text{unimodular}} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$$

* A is uniform if $[\bar{A} \mid \bar{A}R]$ is: leftover hash lemma for $\bar{m} \approx n \log q$.

(With G = 0, we get the "key trick" constructing A with a "weak" trapdoor of ≥ 1 short vector, but not a full basis.)

* $[\mathbf{I} | \bar{\mathbf{A}} | -(\bar{\mathbf{A}}\mathbf{R}_1 + \mathbf{R}_2)]$ is pseudorandom (under LWE) for $\bar{m} = n$.

• We constructed $\mathbf{A} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$

• We constructed
$$\mathbf{A} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$$

Definition

• R is a trapdoor for A with tag $\mathbf{H} \in \mathbb{Z}_q^{n \times n}$ (H invertible) if $\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{H} \cdot \mathbf{G}.$

• We constructed
$$\mathbf{A} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$$

Definition

▶ **R** is a trapdoor for **A** with tag $\mathbf{H} \in \mathbb{Z}_q^{n imes n}$ (**H** invertible) if

$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{H} \cdot \mathbf{G}.$$

• The quality of \mathbf{R} is $s_1(\mathbf{R}) := \max_{\|\mathbf{u}\|=1} \|\mathbf{Ru}\|.$

(smaller is better.)

• We constructed
$$\mathbf{A} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$$

Definition

▶ **R** is a trapdoor for **A** with tag $\mathbf{H} \in \mathbb{Z}_q^{n imes n}$ (**H** invertible) if

$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{H} \cdot \mathbf{G}.$$

- ► The quality of \mathbf{R} is $s_1(\mathbf{R}) := \max_{\|\mathbf{u}\|=1} \|\mathbf{R}\mathbf{u}\|.$ (smaller is better.)
- Fact: $s_1(\mathbf{R}) \approx (\sqrt{\mathsf{rows}} + \sqrt{\mathsf{cols}}) \cdot r$ for Gaussian entries w/ std dev r.

• We constructed
$$\mathbf{A} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$$

Definition

▶ **R** is a trapdoor for **A** with tag $\mathbf{H} \in \mathbb{Z}_q^{n imes n}$ (**H** invertible) if

$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{H} \cdot \mathbf{G}.$$

- ► The quality of \mathbf{R} is $s_1(\mathbf{R}) := \max_{\|\mathbf{u}\|=1} \|\mathbf{R}\mathbf{u}\|.$ (smaller is better.)
- Fact: $s_1(\mathbf{R}) \approx (\sqrt{\mathsf{rows}} + \sqrt{\mathsf{cols}}) \cdot r$ for Gaussian entries w/ std dev r.
- Note: **R** is a trapdoor for $\mathbf{A} [\mathbf{0} \mid \mathbf{H}' \cdot \mathbf{G}] \text{ w/tag } (\mathbf{H} \mathbf{H}')$ [ABB'10].

• We constructed
$$\mathbf{A} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$$

Definition

▶ **R** is a trapdoor for **A** with tag $\mathbf{H} \in \mathbb{Z}_q^{n imes n}$ (**H** invertible) if

$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{H} \cdot \mathbf{G}.$$

- The quality of \mathbf{R} is $s_1(\mathbf{R}) := \max_{\|\mathbf{u}\|=1} \|\mathbf{R}\mathbf{u}\|$. (smaller is better.)
- Fact: $s_1(\mathbf{R}) \approx (\sqrt{\mathsf{rows}} + \sqrt{\mathsf{cols}}) \cdot r$ for Gaussian entries w/ std dev r.
- ▶ Note: **R** is a trapdoor for $\mathbf{A} [\mathbf{0} | \mathbf{H'} \cdot \mathbf{G}] \text{ w/tag } (\mathbf{H} \mathbf{H'})$ [ABB'10].

Relating New and Old Trapdoors

Given a basis \mathbf{S} for $\Lambda^{\perp}(\mathbf{G})$ and a trapdoor \mathbf{R} for \mathbf{A} , we can efficiently construct a basis $\mathbf{S}_{\mathbf{A}}$ for $\Lambda^{\perp}(\mathbf{A})$ where $\|\tilde{\mathbf{S}}_{\mathbf{A}}\| \leq (s_1(\mathbf{R}) + 1) \cdot \|\tilde{\mathbf{S}}\|$.

• We constructed
$$\mathbf{A} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$$

Definition

▶ **R** is a trapdoor for **A** with tag $\mathbf{H} \in \mathbb{Z}_q^{n imes n}$ (**H** invertible) if

$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{H} \cdot \mathbf{G}.$$

- The quality of \mathbf{R} is $s_1(\mathbf{R}) := \max_{\|\mathbf{u}\|=1} \|\mathbf{R}\mathbf{u}\|$. (smaller is better.)
- Fact: $s_1(\mathbf{R}) \approx (\sqrt{\mathsf{rows}} + \sqrt{\mathsf{cols}}) \cdot r$ for Gaussian entries w/ std dev r.
- ▶ Note: **R** is a trapdoor for $\mathbf{A} [\mathbf{0} | \mathbf{H'} \cdot \mathbf{G}] \text{ w/tag } (\mathbf{H} \mathbf{H'})$ [ABB'10].

Relating New and Old Trapdoors

Given a basis \mathbf{S} for $\Lambda^{\perp}(\mathbf{G})$ and a trapdoor \mathbf{R} for \mathbf{A} , we can efficiently construct a basis $\mathbf{S}_{\mathbf{A}}$ for $\Lambda^{\perp}(\mathbf{A})$ where $\|\tilde{\mathbf{S}}_{\mathbf{A}}\| \leq (s_1(\mathbf{R}) + 1) \cdot \|\tilde{\mathbf{S}}\|$. (But we'll never need to.)

Suppose **R** is a trapdoor for **A** (w/tag $\mathbf{H} = \mathbf{I}$): $\mathbf{A}\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$.

Suppose **R** is a trapdoor for **A** (w/tag $\mathbf{H} = \mathbf{I}$): $\mathbf{A}\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$.

Inverting LWE Function

Given $\mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$, recover \mathbf{s} from

$$\mathbf{b}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{s}^t \mathbf{G} + \mathbf{e}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}.$$

Works if each entry of $\mathbf{e}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}$ in $[-\frac{q}{4}, \frac{q}{4}) \Leftarrow \|\mathbf{e}\| < q/(4s_1(\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}))$.

Suppose **R** is a trapdoor for **A** (w/tag $\mathbf{H} = \mathbf{I}$): $\mathbf{A}\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$.

Inverting LWE Function

Given $\mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$, recover \mathbf{s} from

$$\mathbf{b}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{s}^t \mathbf{G} + \mathbf{e}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}.$$

Works if each entry of $\mathbf{e}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}$ in $[-\frac{q}{4}, \frac{q}{4}) \Leftarrow \|\mathbf{e}\| < q/(4s_1(\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}))$.

Sampling Gaussian Preimages

Given u, sample $\mathbf{z} \leftarrow f_{\mathbf{G}}^{-1}(\mathbf{u})$ and output $\mathbf{x} = \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \mathbf{z} \in f_{\mathbf{A}}^{-1}(\mathbf{u})$?

• We have
$$\mathbf{A}\mathbf{x} = \mathbf{G}\mathbf{z} = \mathbf{u}$$
 as desired.

Suppose **R** is a trapdoor for **A** (w/tag $\mathbf{H} = \mathbf{I}$): $\mathbf{A}\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$.

Inverting LWE Function

Given $\mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$, recover \mathbf{s} from

$$\mathbf{b}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{s}^t \mathbf{G} + \mathbf{e}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}.$$

Works if each entry of $\mathbf{e}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}$ in $[-\frac{q}{4}, \frac{q}{4}) \Leftarrow \|\mathbf{e}\| < q/(4s_1(\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}))$.

Sampling Gaussian Preimages

Given u, sample $\mathbf{z} \leftarrow f_{\mathbf{G}}^{-1}(\mathbf{u})$ and output $\mathbf{x} = \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \mathbf{z} \in f_{\mathbf{A}}^{-1}(\mathbf{u})$?

- We have Ax = Gz = u as desired.
- <u>Problem</u>: $\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \mathbf{z}$ is non-spherical Gaussian, leaks \mathbf{R} !

Suppose **R** is a trapdoor for **A** (w/tag $\mathbf{H} = \mathbf{I}$): $\mathbf{A}\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$.

Inverting LWE Function

Given $\mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$, recover \mathbf{s} from

$$\mathbf{b}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{s}^t \mathbf{G} + \mathbf{e}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}.$$

Works if each entry of $\mathbf{e}^t \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}$ in $[-\frac{q}{4}, \frac{q}{4}) \Leftarrow \|\mathbf{e}\| < q/(4s_1(\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix}))$.

Sampling Gaussian Preimages

Given u, sample $\mathbf{z} \leftarrow f_{\mathbf{G}}^{-1}(\mathbf{u})$ and output $\mathbf{x} = \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \mathbf{z} \in f_{\mathbf{A}}^{-1}(\mathbf{u})$?

- We have Ax = Gz = u as desired.
- <u>Problem</u>: $\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \mathbf{z}$ is non-spherical Gaussian, leaks \mathbf{R} !
- Solution: use offline 'perturbation' [P'10] to get spherical Gaussian w/ std dev $\approx s_1(\mathbf{R})$: output $\mathbf{x} = \mathbf{p} + \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \mathbf{z}$.

A First Attempt

• Given u, sample $\mathbf{z} \leftarrow f_{\mathbf{G}}^{-1}(\mathbf{u})$ and output $\mathbf{x} = \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \mathbf{z} \in f_{\mathbf{A}}^{-1}(\mathbf{u})$?

A First Attempt

• Given \mathbf{u} , sample $\mathbf{z} \leftarrow f_{\mathbf{G}}^{-1}(\mathbf{u})$ and output $\mathbf{x} = \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \mathbf{z} \in f_{\mathbf{A}}^{-1}(\mathbf{u})$?

 \blacktriangleright $\mathbf{x}_1 = \mathbf{R}\mathbf{z}$ has a non-spherical Gaussian distribution of covariance

$$\Sigma := \mathbb{E}_{\mathbf{x}} \big[\mathbf{x} \cdot \mathbf{x}^t \big] = \mathbb{E}_{\mathbf{z}} \big[\mathbf{R} \cdot \mathbf{z} \mathbf{z}^t \cdot \mathbf{R}^t \big] \approx s^2 \cdot \mathbf{R} \mathbf{R}^t.$$

A First Attempt

▶ Given \mathbf{u} , sample $\mathbf{z} \leftarrow f_{\mathbf{G}}^{-1}(\mathbf{u})$ and output $\mathbf{x} = \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \mathbf{z} \in f_{\mathbf{A}}^{-1}(\mathbf{u})$?

 \blacktriangleright $\mathbf{x}_1 = \mathbf{R}\mathbf{z}$ has a non-spherical Gaussian distribution of covariance

$$\Sigma := \mathbb{E}_{\mathbf{x}} \big[\mathbf{x} \cdot \mathbf{x}^t \big] = \mathbb{E}_{\mathbf{z}} \big[\mathbf{R} \cdot \mathbf{z} \mathbf{z}^t \cdot \mathbf{R}^t \big] \approx s^2 \cdot \mathbf{R} \mathbf{R}^t.$$

Covariance can be measured — and it leaks $\mathbf{R}!$ (up to rotation)

1 Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ .

(pos def means: $\mathbf{u}^t \Sigma \mathbf{u} > 0$ for all unit \mathbf{u} .)

1 Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ .

(pos def means: $\mathbf{u}^t \Sigma \mathbf{u} > 0$ for all unit \mathbf{u} .)

Spherical Gaussian \leftrightarrow covariance s^2 **I**.

1 Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ .

(pos def means: $\mathbf{u}^t \Sigma \mathbf{u} > 0$ for all unit \mathbf{u} .)

Spherical Gaussian \leftrightarrow covariance $s^2 \mathbf{I}$.

2 Convolution of Gaussians:

1 Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ .

(pos def means: $\mathbf{u}^t \Sigma \mathbf{u} > 0$ for all unit \mathbf{u} .)

Spherical Gaussian \leftrightarrow covariance $s^2 \mathbf{I}$.

2 Convolution of Gaussians:

3 Given Σ_1 , how small can s be? For $\Sigma_2 := s^2 \mathbf{I} - \Sigma_1$,

1 Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ .

(pos def means: $\mathbf{u}^t \Sigma \mathbf{u} > 0$ for all unit \mathbf{u} .)

Spherical Gaussian \leftrightarrow covariance $s^2 \mathbf{I}$.

2 Convolution of Gaussians:

 $\Sigma_{1} + \Sigma_{2} = \Sigma = s^{2} \mathbf{I}$ **3** Given Σ_{1} , how small can s be? For $\Sigma_{2} := s^{2} \mathbf{I} - \Sigma_{1}$, $\mathbf{u}^{t} \Sigma_{2} \mathbf{u} = s^{2} - \mathbf{u}^{t} \Sigma_{1} \mathbf{u} > 0 \iff s^{2} > \max \lambda_{i}(\Sigma_{1})$

1 Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ .

(pos def means: $\mathbf{u}^t \Sigma \mathbf{u} > 0$ for all unit \mathbf{u} .)

Spherical Gaussian \leftrightarrow covariance $s^2 \mathbf{I}$.

2 Convolution of Gaussians:

 $\Sigma_1 + \Sigma_2 = \Sigma = s^2 \mathbf{I}$

3 Given Σ_1 , how small can s be? For $\Sigma_2 := s^2 \mathbf{I} - \Sigma_1$,

$$\mathbf{u}^t \Sigma_2 \mathbf{u} = s^2 - \mathbf{u}^t \Sigma_1 \mathbf{u} > 0 \quad \Longleftrightarrow \quad s^2 > \max \lambda_i(\Sigma_1)$$

For $\Sigma_1 = \mathbf{R} \mathbf{R}^t$, can use any $s > s_1(\mathbf{R}) := \max \text{ singular val of } \mathbf{R}$.

• Given trapdoor \mathbf{R} of \mathbf{A} , syndrome \mathbf{u} , and std dev $s > s_1(\mathbf{R})$,

• Given trapdoor \mathbf{R} of \mathbf{A} , syndrome \mathbf{u} , and std dev $s > s_1(\mathbf{R})$,

() Generate perturbation \mathbf{p} with covariance $\Sigma_2 := s^2 \mathbf{I} - \mathbf{R} \mathbf{R}^t > 0$.

 $(s^2 \mathbf{I} - \mathbf{R} \mathbf{R}^t)$

- Given trapdoor ${f R}$ of ${f A}$, syndrome ${f u}$, and std dev $s>s_1({f R})$,
 - **1** Generate perturbation \mathbf{p} with covariance $\Sigma_2 := s^2 \mathbf{I} \mathbf{R}\mathbf{R}^t > 0$.
 - **2** Sample spherical \mathbf{z} s.t. $\mathbf{G}\mathbf{z} = \mathbf{u} \mathbf{A}\mathbf{p}$.

- Given trapdoor \mathbf{R} of \mathbf{A} , syndrome \mathbf{u} , and std dev $s > s_1(\mathbf{R})$,
 - **1** Generate perturbation \mathbf{p} with covariance $\Sigma_2 := s^2 \mathbf{I} \mathbf{R}\mathbf{R}^t > 0$.
 - **2** Sample spherical \mathbf{z} s.t. $\mathbf{G}\mathbf{z} = \mathbf{u} \mathbf{A}\mathbf{p}$.
 - $\label{eq:output} \textbf{3} \ \mbox{Output} \ \mathbf{x} = \mathbf{p} + \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \mathbf{z}. \qquad (\mbox{Note:} \ \mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{p} + \mathbf{G}\mathbf{z} = \mathbf{u}.)$

Convolution* Theorem

Algorithm generates a spherical discrete Gaussian over $\mathcal{L}_{\mathbf{u}}^{\perp}(\mathbf{A})$.

- Given trapdoor \mathbf{R} of \mathbf{A} , syndrome \mathbf{u} , and std dev $s > s_1(\mathbf{R})$,
 - **1** Generate perturbation \mathbf{p} with covariance $\Sigma_2 := s^2 \mathbf{I} \mathbf{R}\mathbf{R}^t > 0$.
 - **2** Sample spherical \mathbf{z} s.t. $\mathbf{G}\mathbf{z} = \mathbf{u} \mathbf{A}\mathbf{p}$.
 - $\label{eq:output} \textbf{S} \mbox{ Output } \mathbf{x} = \mathbf{p} + \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \mathbf{z}. \qquad (\mbox{Note: } \mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{p} + \mathbf{G}\mathbf{z} = \mathbf{u}.)$

Convolution^{*} Theorem

Algorithm generates a spherical discrete Gaussian over $\mathcal{L}_{\mathbf{u}}^{\perp}(\mathbf{A})$.

(*technically not a convolution, since step 2 depends on step 1.)

Application: Efficient IBE a la [ABB'10]

• Setup: choose $\mathbf{A} = [\bar{\mathbf{A}} \mid -\bar{\mathbf{A}}\mathbf{R}]$. Let $mpk = (\mathbf{A}, \mathbf{u})$, $msk = \mathbf{R}$. (A has trapdoor \mathbf{R} with tag 0.)

Application: Efficient IBE a la [ABB'10]

- <u>Setup</u>: choose A = [Ā | -ĀR]. Let mpk = (A, u), msk = R.
 (A has trapdoor R with tag 0.)
- Extract(\mathbf{R} , id): map $id \mapsto$ invertible $\mathbf{H}_{id} \in \mathbb{Z}_q^{n \times n}$. [DF'94,...,ABB'10] Using \mathbf{R} , choose $sk_{id} = \mathbf{x} \leftarrow f_{\mathbf{A}_{id}}^{-1}(\mathbf{u})$, where

 $\mathbf{A}_{id} = \mathbf{A} + [\mathbf{0} \mid \mathbf{H}_{id} \cdot \mathbf{G}] = [\bar{\mathbf{A}} \mid \mathbf{H}_{id} \cdot \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$
Application: Efficient IBE a la [ABB'10]

- <u>Setup</u>: choose A = [Ā | -ĀR]. Let mpk = (A, u), msk = R.
 (A has trapdoor R with tag 0.)
- Extract(\mathbf{R} , id): map $id \mapsto$ invertible $\mathbf{H}_{id} \in \mathbb{Z}_q^{n \times n}$. [DF'94,...,ABB'10] Using \mathbf{R} , choose $sk_{id} = \mathbf{x} \leftarrow f_{\mathbf{A}_{id}}^{-1}(\mathbf{u})$, where

$$\mathbf{A}_{id} = \mathbf{A} + [\mathbf{0} \mid \mathbf{H}_{id} \cdot \mathbf{G}] = [\bar{\mathbf{A}} \mid \mathbf{H}_{id} \cdot \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$$

Encrypt to A_{id}, decrypt using sk_{id} as in 'dual' system [GPV'08].

Application: Efficient IBE a la [ABB'10]

4

- <u>Setup</u>: choose A = [Ā | -ĀR]. Let mpk = (A, u), msk = R.
 (A has trapdoor R with tag 0.)
- Extract(\mathbf{R} , id): map $id \mapsto$ invertible $\mathbf{H}_{id} \in \mathbb{Z}_q^{n \times n}$. [DF'94,...,ABB'10] Using \mathbf{R} , choose $sk_{id} = \mathbf{x} \leftarrow f_{\mathbf{A}_{id}}^{-1}(\mathbf{u})$, where

$$\mathbf{A}_{id} = \mathbf{A} + [\mathbf{0} \mid \mathbf{H}_{id} \cdot \mathbf{G}] = [\bar{\mathbf{A}} \mid \mathbf{H}_{id} \cdot \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$$

- Encrypt to A_{id} , decrypt using sk_{id} as in 'dual' system [GPV'08].
- Security ("puncturing"): Given target id* (selective security), set up

$$\mathbf{A} = [ar{\mathbf{A}} \mid -\mathbf{H}_{id^*} \cdot \mathbf{G} - ar{\mathbf{A}}\mathbf{R}] \Longrightarrow \mathbf{A}_{id} = [ar{\mathbf{A}} \mid (\mathbf{H}_{id} - \mathbf{H}_{id^*})\mathbf{G} - ar{\mathbf{A}}\mathbf{R}]$$

* $\mathbf{H}_{id} - \mathbf{H}_{id^*}$ is invertible for all $id \neq id^*$, so can extract sk_{id} using \mathbf{R} . * $\mathbf{A}_{id^*} = [\bar{\mathbf{A}} \mid -\bar{\mathbf{A}}\mathbf{R}]$, so can embed an LWE challenge at id^* .

Suppose **R** is a trapdoor for **A**, i.e. $\mathbf{A}\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{H} \cdot \mathbf{G}$.

- Suppose **R** is a trapdoor for **A**, i.e. $\mathbf{A}\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{H} \cdot \mathbf{G}$.
- ► To delegate a trapdoor for an extension [A | A'] with tag H', just sample Gaussian R' s.t.

$$[\mathbf{A} \mid \mathbf{A}'] \begin{bmatrix} \mathbf{R}' \\ \mathbf{I} \end{bmatrix} = \mathbf{H}' \cdot \mathbf{G} \iff \mathbf{A}\mathbf{R}' = \mathbf{H}' \cdot \mathbf{G} - \mathbf{A}'.$$

- Suppose **R** is a trapdoor for **A**, i.e. $\mathbf{A}\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{H} \cdot \mathbf{G}$.
- ► To delegate a trapdoor for an extension [A | A'] with tag H', just sample Gaussian R' s.t.

$$[\mathbf{A} \mid \mathbf{A}'] \begin{bmatrix} \mathbf{R}' \\ \mathbf{I} \end{bmatrix} = \mathbf{H}' \cdot \mathbf{G} \iff \mathbf{A}\mathbf{R}' = \mathbf{H}' \cdot \mathbf{G} - \mathbf{A}'.$$

One-way: R' reveals nothing about R.
 Useful for HIBE & IB-TDFs [CHKP'10,ABB'10,BKPW'12].

- Suppose **R** is a trapdoor for **A**, i.e. $\mathbf{A}\begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{H} \cdot \mathbf{G}$.
- ► To delegate a trapdoor for an extension [A | A'] with tag H', just sample Gaussian R' s.t.

$$[\mathbf{A} \mid \mathbf{A}'] \big[\begin{smallmatrix} \mathbf{R}' \\ \mathbf{I} \end{smallmatrix} \big] = \mathbf{H}' \cdot \mathbf{G} \iff \mathbf{A}\mathbf{R}' = \mathbf{H}' \cdot \mathbf{G} - \mathbf{A}'.$$

- One-way: R' reveals nothing about R.
 Useful for HIBE & IB-TDFs [CHKP'10,ABB'10,BKPW'12].
- Note: R' is only width(A) × width(G) = m × n log q.
 So size of R' grows only as O(m), not Ω(m²) like a basis does.
 Also computationally efficient: n log q samples, no HNF or ToBasis.

▶ <u>Setup</u>(*d*): choose $\mathbf{A}_0, \ldots, \mathbf{A}_d$ where $\mathbf{A}_{\varepsilon} = [\mathbf{A}_0 | \mathbf{A}_1]$ has trapdoor \mathbf{R}_{ε} for tag **0**. Let $msk = sk_{\varepsilon} = \mathbf{R}_{\varepsilon}$ and $mpk = \{\mathbf{A}_i\}$.

- ▶ <u>Setup</u>(*d*): choose $\mathbf{A}_0, \ldots, \mathbf{A}_d$ where $\mathbf{A}_{\varepsilon} = [\mathbf{A}_0 \mid \mathbf{A}_1]$ has trapdoor \mathbf{R}_{ε} for tag **0**. Let $msk = sk_{\varepsilon} = \mathbf{R}_{\varepsilon}$ and $mpk = {\mathbf{A}_i}$.
- ► <u>Extract</u>(*id*): map $id = (id_1, ..., id_t) \mapsto (\mathbf{H}_{id_1}, ..., \mathbf{H}_{id_t})$ (invertible). Let

$$\mathbf{A}_{id} = [\mathbf{A}_0 \mid \mathbf{A}_1 + \mathbf{H}_{id_1}\mathbf{G} \mid \cdots \mid \mathbf{A}_t + \mathbf{H}_{id_t}\mathbf{G} \mid \mathbf{A}_{t+1}].$$

- ▶ <u>Setup</u>(*d*): choose $\mathbf{A}_0, \ldots, \mathbf{A}_d$ where $\mathbf{A}_{\varepsilon} = [\mathbf{A}_0 \mid \mathbf{A}_1]$ has trapdoor \mathbf{R}_{ε} for tag **0**. Let $msk = sk_{\varepsilon} = \mathbf{R}_{\varepsilon}$ and $mpk = {\mathbf{A}_i}$.
- ► $\underline{\mathsf{Extract}}(id)$: map $id = (id_1, \dots, id_t) \mapsto (\mathbf{H}_{id_1}, \dots, \mathbf{H}_{id_t})$ (invertible). Let

$$\mathbf{A}_{id} = [\mathbf{A}_0 \mid \mathbf{A}_1 + \mathbf{H}_{id_1}\mathbf{G} \mid \cdots \mid \mathbf{A}_t + \mathbf{H}_{id_t}\mathbf{G} \mid \mathbf{A}_{t+1}].$$

Delegate sk_{id} = trapdoor \mathbf{R}_{id} for \mathbf{A}_{id} with tag **0**.

Using sk_{id} , can delegate any $sk_{id'}$ for any nontrivial extension id'.

- ▶ <u>Setup</u>(*d*): choose $\mathbf{A}_0, \ldots, \mathbf{A}_d$ where $\mathbf{A}_{\varepsilon} = [\mathbf{A}_0 \mid \mathbf{A}_1]$ has trapdoor \mathbf{R}_{ε} for tag **0**. Let $msk = sk_{\varepsilon} = \mathbf{R}_{\varepsilon}$ and $mpk = {\mathbf{A}_i}$.
- ► $\underline{\mathsf{Extract}}(id)$: map $id = (id_1, \dots, id_t) \mapsto (\mathbf{H}_{id_1}, \dots, \mathbf{H}_{id_t})$ (invertible). Let

$$\mathbf{A}_{id} = [\mathbf{A}_0 \mid \mathbf{A}_1 + \mathbf{H}_{id_1}\mathbf{G} \mid \cdots \mid \mathbf{A}_t + \mathbf{H}_{id_t}\mathbf{G} \mid \mathbf{A}_{t+1}].$$

Delegate sk_{id} = trapdoor \mathbf{R}_{id} for \mathbf{A}_{id} with tag **0**.

Using sk_{id} , can delegate any $sk_{id'}$ for any nontrivial extension id'.

Encrypt to \mathbf{A}_{id} , decrypt using \mathbf{R}_{id} as in [GPV'08].

- ▶ <u>Setup</u>(*d*): choose $\mathbf{A}_0, \ldots, \mathbf{A}_d$ where $\mathbf{A}_{\varepsilon} = [\mathbf{A}_0 \mid \mathbf{A}_1]$ has trapdoor \mathbf{R}_{ε} for tag **0**. Let $msk = sk_{\varepsilon} = \mathbf{R}_{\varepsilon}$ and $mpk = {\mathbf{A}_i}$.
- $\underline{\mathsf{Extract}}(id)$: map $id = (id_1, \dots, id_t) \mapsto (\mathbf{H}_{id_1}, \dots, \mathbf{H}_{id_t})$ (invertible). Let

$$\mathbf{A}_{id} = [\mathbf{A}_0 \mid \mathbf{A}_1 + \mathbf{H}_{id_1}\mathbf{G} \mid \cdots \mid \mathbf{A}_t + \mathbf{H}_{id_t}\mathbf{G} \mid \mathbf{A}_{t+1}].$$

Delegate sk_{id} = trapdoor \mathbf{R}_{id} for \mathbf{A}_{id} with tag **0**.

Using sk_{id} , can delegate any $sk_{id'}$ for any nontrivial extension id'.

- Encrypt to A_{id} , decrypt using R_{id} as in [GPV'08].
- Security ("puncturing"): Set up mpk, trapdoor **R** with tags = $-id^*$.

Conclusions

- A simple trapdoor that's easy to generate, use, and understand.
- Key sizes and algorithms for "strong" trapdoors are now realistic, with ring techniques (tomorrow)

Selected bibliography for this talk:

- CHKP'10 D. Cash, D. Hofheinz, E. Kiltz, C. Peikert, "Bonsai Trees, or How to Delegate a Lattice Basis," Eurocrypt'10 / J. Crypt'11.
 - ABB'10 S. Agrawal, D. Boneh, X. Boyen, "Efficient Lattice (H)IBE in the Standard Model," Eurocrypt'10.
 - MP'12 D. Micciancio, C. Peikert, "Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller," Eurocrypt'12.