Lattice-Based Cryptography:
 Trapdoors, Discrete Gaussians, and Applications

Chris Peikert
Georgia Institute of Technology

crypt@b-it 2013

Agenda

(1) "Strong trapdoors" for lattices
(2) Discrete Gaussians, sampling, and "preimage sampleable" functions
(3) Applications: signatures, ID-based encryption (in RO model)

Digital Signatures

Digital Signatures

Digital Signatures

Digital Signatures

Central Tool: Trapdoor Functions

- Public function f generated with secret 'trapdoor' f^{-1}

Central Tool: Trapdoor Functions

- Public function f generated with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...] (TDP)

Central Tool: Trapdoor Functions

- Public function f generated with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...] (TDP)

Central Tool: Trapdoor Functions

- Public function f generated with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...] (TDP)

Central Tool: Trapdoor Functions

- Public function f generated with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...] (TDP)

- 'Hash and sign:' $p k=f, s k=f^{-1} . \quad \operatorname{Sign}(\mathrm{msg})=f^{-1}(H(\mathrm{msg}))$.

Central Tool: Trapdoor Functions

- Public function f generated with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...] (TDP)

- 'Hash and sign:' $p k=f, s k=f^{-1} . \quad \operatorname{Sign}(\mathrm{msg})=f^{-1}(H(\mathrm{msg}))$.
- Candidate TDPs: [RSA'78,Rabin'79,Paillier'99]
('general assumption')
All rely on hardness of factoring:
x Complex: 2048-bit exponentiation
x Broken by quantum algorithms [Shor'97]

Central Tool: Trapdoor Functions

- Public function f generated with secret 'trapdoor' f^{-1}
- New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

Central Tool: Trapdoor Functions

- Public function f generated with secret 'trapdoor' f^{-1}
- New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

Central Tool: Trapdoor Functions

- Public function f generated with secret 'trapdoor' f^{-1}
- New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

Central Tool: Trapdoor Functions

- Public function f generated with secret 'trapdoor' f^{-1}
- New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

- 'Hash and sign:' $p k=f, s k=f^{-1} . \quad \operatorname{Sign}(\mathrm{msg})=f^{-1}(H(\mathrm{msg}))$.

Central Tool: Trapdoor Functions

- Public function f generated with secret 'trapdoor' f^{-1}
- New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

- 'Hash and sign:' $p k=f, s k=f^{-1} . \quad \operatorname{Sign}(\mathrm{msg})=f^{-1}(H(\mathrm{msg}))$.
- Still secure! Can generate (x, y) in two equivalent ways:

Candidate Signature Scheme [GGH'96]

- Key idea: $p k=$ "bad" basis \mathbf{B} for $\mathcal{L}, s k=$ "short" trapdoor basis \mathbf{S}

Candidate Signature Scheme [GGH'96]

- Key idea: $p k=$ "bad" basis \mathbf{B} for $\mathcal{L}, s k=$ "short" trapdoor basis \mathbf{S}
- Sign: $H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$; get short $\mathbf{x} \in \mathbf{c}+\mathcal{L}$ via round-off [Babai'86]

Candidate Signature Scheme [GGH'96]

- Key idea: $p k=$ "bad" basis \mathbf{B} for $\mathcal{L}, s k=$ "short" trapdoor basis \mathbf{S}
- Sign: $H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$; get short $\mathbf{x} \in \mathbf{c}+\mathcal{L}$ via round-off [Babai'86]
- Verify $(\mathrm{msg}, \mathbf{x})$ check $\mathbf{x} \in H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$, and \mathbf{x} short enough

Candidate Signature Scheme [GGH'96]

- Key idea: $p k=$ "bad" basis \mathbf{B} for $\mathcal{L}, s k=$ "short" trapdoor basis \mathbf{S}
- Sign: $H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$; get short $\mathbf{x} \in \mathbf{c}+\mathcal{L}$ via round-off [Babai'86]
- Verify $(\mathrm{msg}, \mathbf{x})$ check $\mathbf{x} \in H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$, and \mathbf{x} short enough

Candidate Signature Scheme [GGH'96]

- Key idea: $p k=$ "bad" basis \mathbf{B} for $\mathcal{L}, s k=$ "short" trapdoor basis \mathbf{S}
- Sign: $H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$; get short $\mathbf{x} \in \mathbf{c}+\mathcal{L}$ via round-off [Babai'86]
- Verify $(\mathrm{msg}, \mathbf{x})$ check $\mathbf{x} \in H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$, and \mathbf{x} short enough

Candidate Signature Scheme [GGH'96]

- Key idea: $p k=$ "bad" basis \mathbf{B} for $\mathcal{L}, s k=$ "short" trapdoor basis \mathbf{S}
- Sign: $H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$; get short $\mathbf{x} \in \mathbf{c}+\mathcal{L}$ via round-off [Babai'86]
- Verify $(\mathrm{msg}, \mathbf{x})$ check $\mathbf{x} \in H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$, and \mathbf{x} short enough

Candidate Signature Scheme [GGH'96]

- Key idea: $p k=$ "bad" basis \mathbf{B} for $\mathcal{L}, s k=$ "short" trapdoor basis \mathbf{S}
- Sign: $H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$; get short $\mathbf{x} \in \mathbf{c}+\mathcal{L}$ via round-off [Babai'86]
- Verify $(\mathrm{msg}, \mathbf{x})$ check $\mathbf{x} \in H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$, and \mathbf{x} short enough

Technical Issues

(1) Generating "hard" lattice together with short basis (tomorrow)

Candidate Signature Scheme [GGH'96]

- Key idea: $p k=$ "bad" basis \mathbf{B} for $\mathcal{L}, s k=$ "short" trapdoor basis \mathbf{S}
- Sign: $H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$; get short $\mathbf{x} \in \mathbf{c}+\mathcal{L}$ via round-off [Babai'86]
- Verify $(\mathrm{msg}, \mathbf{x})$ check $\mathbf{x} \in H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$, and \mathbf{x} short enough

Technical Issues

(1) Generating "hard" lattice together with short basis (tomorrow)
(2) Signing algorithm leaks secret basis!

* Total break after 100s-1000s of signatures [NguyenRegev'06]

Candidate Signature Scheme [GGH'96]

- Key idea: $p k=$ "bad" basis \mathbf{B} for $\mathcal{L}, s k=$ "short" trapdoor basis \mathbf{S}
- Sign: $H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$; get short $\mathbf{x} \in \mathbf{c}+\mathcal{L}$ via round-off [Babai'86]
- Verify $(\mathrm{msg}, \mathbf{x})$ check $\mathbf{x} \in H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$, and \mathbf{x} short enough

Technical Issues

(1) Generating "hard" lattice together with short basis (tomorrow)
(2) Signing algorithm leaks secret basis!

* Total break after 100s-1000s of signatures [NguyenRegev'06]

Candidate Signature Scheme [GGH'96]

- Key idea: $p k=$ "bad" basis \mathbf{B} for $\mathcal{L}, s k=$ "short" trapdoor basis \mathbf{S}
- Sign: $H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$; get short $\mathbf{x} \in \mathbf{c}+\mathcal{L}$ via round-off [Babai'86]
- Verify $(\mathrm{msg}, \mathbf{x})$ check $\mathbf{x} \in H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$, and \mathbf{x} short enough

Technical Issues

(1) Generating "hard" lattice together with short basis (tomorrow)
(2) Signing algorithm leaks secret basis!

* Total break after 100s-1000s of signatures [NguyenRegev'06]

Candidate Signature Scheme [GGH'96]

- Key idea: $p k=$ "bad" basis \mathbf{B} for $\mathcal{L}, s k=$ "short" trapdoor basis \mathbf{S}
- Sign: $H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$; get short $\mathbf{x} \in \mathbf{c}+\mathcal{L}$ via round-off [Babai'86]
- Verify $(\mathrm{msg}, \mathbf{x})$ check $\mathbf{x} \in H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$, and \mathbf{x} short enough

Technical Issues

(1) Generating "hard" lattice together with short basis (tomorrow)
(2) Signing algorithm leaks secret basis!

* Total break after 100s-1000s of signatures [NguyenRegev'06]

Candidate Signature Scheme [GGH'96]

- Key idea: $p k=$ "bad" basis \mathbf{B} for $\mathcal{L}, s k=$ "short" trapdoor basis \mathbf{S}
- Sign: $H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$; get short $\mathbf{x} \in \mathbf{c}+\mathcal{L}$ via round-off [Babai'86]
- Verify $(\mathrm{msg}, \mathbf{x})$ check $\mathbf{x} \in H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$, and \mathbf{x} short enough

Technical Issues

(1) Generating "hard" lattice together with short basis (tomorrow)
(2) Signing algorithm leaks secret basis!

* Total break after 100s-1000s of signatures [NguyenRegev'06]

Candidate Signature Scheme [GGH'96]

- Key idea: $p k=$ "bad" basis \mathbf{B} for $\mathcal{L}, s k=$ "short" trapdoor basis \mathbf{S}
- Sign: $H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$; get short $\mathbf{x} \in \mathbf{c}+\mathcal{L}$ via round-off [Babai'86]
- Verify $(\mathrm{msg}, \mathbf{x})$ check $\mathbf{x} \in H(\mathrm{msg})=\mathbf{c}+\mathcal{L}$, and \mathbf{x} short enough

Technical Issues

(1) Generating "hard" lattice together with short basis (tomorrow)
(2) Signing algorithm leaks secret basis!

* Total break after 100s-1000s of signatures [NguyenRegev'06]

Key Concept: Blurring a Lattice [Regev'03,MR'04]

Key Concept: Blurring a Lattice [Regev'03,MR'04]

Key Concept: Blurring a Lattice [Regev'03,MR'04]

Key Concept: Blurring a Lattice [Regev'03,MR'04]

Question: How much blur makes it uniform?

Gaussians

Gaußians

Gaußians

- The 1-dim Gaussian function: (pdf of normal dist w/ std dev $1 / \sqrt{2 \pi}$)

$$
\rho(x) \triangleq \exp \left(-\pi \cdot x^{2}\right)
$$

Also define $\rho_{s}(x) \triangleq \rho(x / s)=\exp \left(-\pi \cdot(x / s)^{2}\right)$.

Gaußians

- The 1-dim Gaussian function:

$$
\rho(x) \triangleq \exp \left(-\pi \cdot x^{2}\right)
$$

Also define $\rho_{s}(x) \triangleq \rho(x / s)=\exp \left(-\pi \cdot(x / s)^{2}\right)$.

- Sum of Gaussians centered at lattice points:

$$
f_{s}(c)=\sum_{z \in \mathbb{Z}} \rho_{s}(c-z)=\rho_{s}(c+\mathbb{Z})
$$

Gaußians

- The 1-dim Gaussian function:

$$
\rho(x) \triangleq \exp \left(-\pi \cdot x^{2}\right)
$$

Also define $\rho_{s}(x) \triangleq \rho(x / s)=\exp \left(-\pi \cdot(x / s)^{2}\right)$.

- Sum of Gaussians centered at lattice points:

$$
f_{s}(c)=\sum_{z \in \mathbb{Z}} \rho_{s}(c-z)=\rho_{s}(c+\mathbb{Z})
$$

- Fact: $\rho_{s}(c+\mathbb{Z}) \in\left[1 \pm \frac{\varepsilon}{1-\varepsilon}\right] \cdot s$ for all $c \in \mathbb{R}$, where $\varepsilon \leq 2 \exp \left(-\pi s^{2}\right)$.

Gaußians

- The 1-dim Gaussian function:

$$
\rho(x) \triangleq \exp \left(-\pi \cdot x^{2}\right)
$$

Also define $\rho_{s}(x) \triangleq \rho(x / s)=\exp \left(-\pi \cdot(x / s)^{2}\right)$.

- Sum of Gaussians centered at lattice points:

$$
f_{s}(c)=\sum_{z \in \mathbb{Z}} \rho_{s}(c-z)=\rho_{s}(c+\mathbb{Z})
$$

- Fact: $\rho_{s}(c+\mathbb{Z}) \in\left[1 \pm \frac{\varepsilon}{1-\varepsilon}\right] \cdot s$ for all $c \in \mathbb{R}$, where $\varepsilon \leq 2 \exp \left(-\pi s^{2}\right)$.

Gaußians

- The 1-dim Gaussian function:

$$
\rho(x) \triangleq \exp \left(-\pi \cdot x^{2}\right)
$$

Also define $\rho_{s}(x) \triangleq \rho(x / s)=\exp \left(-\pi \cdot(x / s)^{2}\right)$.

- Sum of Gaussians centered at lattice points:

$$
f_{s}(c)=\sum_{z \in \mathbb{Z}} \rho_{s}(c-z)=\rho_{s}(c+\mathbb{Z})
$$

- Fact: $\rho_{s}(c+\mathbb{Z}) \in\left[1 \pm \frac{\varepsilon}{1-\varepsilon}\right] \cdot s$ for all $c \in \mathbb{R}$, where $\varepsilon \leq 2 \exp \left(-\pi s^{2}\right)$.

$$
\begin{aligned}
& \text { 2- } \\
& 1.5 \text { - } \\
& \text { ? } \\
& 0.5 \text { - }
\end{aligned}
$$

Gaußians

- The 1-dim Gaussian function:

$$
\rho(x) \triangleq \exp \left(-\pi \cdot x^{2}\right)
$$

Also define $\rho_{s}(x) \triangleq \rho(x / s)=\exp \left(-\pi \cdot(x / s)^{2}\right)$.

- Sum of Gaussians centered at lattice points:

$$
f_{s}(c)=\sum_{z \in \mathbb{Z}} \rho_{s}(c-z)=\rho_{s}(c+\mathbb{Z})
$$

- Fact: $\rho_{s}(c+\mathbb{Z}) \in\left[1 \pm \frac{\varepsilon}{1-\varepsilon}\right] \cdot s$ for all $c \in \mathbb{R}$, where $\varepsilon \leq 2 \exp \left(-\pi s^{2}\right)$.

$$
\begin{aligned}
& \text { • ' ' } \\
& 1.5 \text { - } \\
& 1 \text { - } \\
& \text { 0.5- }
\end{aligned}
$$

n-dimensional Gaussians

- The n-dim Gaussian: $\rho(\mathbf{x}) \triangleq \exp \left(-\pi \cdot\|\mathbf{x}\|^{2}\right)=\rho\left(x_{1}\right) \cdots \rho\left(x_{n}\right)$.

Clearly, it is rotationally invariant.

n-dimensional Gaussians

- The n-dim Gaussian: $\rho(\mathbf{x}) \triangleq \exp \left(-\pi \cdot\|\mathbf{x}\|^{2}\right)=\rho\left(x_{1}\right) \cdots \rho\left(x_{n}\right)$. Clearly, it is rotationally invariant.
- Fact: Suppose \mathcal{L} has a basis \mathbf{B} with $M=\max _{i}\left\|\tilde{\mathbf{b}}_{i}\right\|$. Then

$$
\rho_{s}(\mathbf{c}+\mathcal{L}) \in[1 \pm \varepsilon] \cdot s^{n}
$$

for all $\mathbf{c} \in \mathbb{R}^{n}$, where $\varepsilon \leq 2 n \cdot \exp \left(-\pi(s / M)^{2}\right)$.

n-dimensional Gaussians

- The n-dim Gaussian: $\rho(\mathbf{x}) \triangleq \exp \left(-\pi \cdot\|\mathbf{x}\|^{2}\right)=\rho\left(x_{1}\right) \cdots \rho\left(x_{n}\right)$.

Clearly, it is rotationally invariant.

- Fact: Suppose \mathcal{L} has a basis \mathbf{B} with $M=\max _{i}\left\|\tilde{\mathbf{b}}_{i}\right\|$. Then

$$
\rho_{s}(\mathbf{c}+\mathcal{L}) \in[1 \pm \varepsilon] \cdot s^{n}
$$

for all $\mathbf{c} \in \mathbb{R}^{n}$, where $\varepsilon \leq 2 n \cdot \exp \left(-\pi(s / M)^{2}\right)$.
So $s \approx M \sqrt{\log n}$ suffices for near-uniformity.

n-dimensional Gaussians

- The n-dim Gaussian: $\rho(\mathbf{x}) \triangleq \exp \left(-\pi \cdot\|\mathbf{x}\|^{2}\right)=\rho\left(x_{1}\right) \cdots \rho\left(x_{n}\right)$.

Clearly, it is rotationally invariant.

- Fact: Suppose \mathcal{L} has a basis \mathbf{B} with $M=\max _{i}\left\|\tilde{\mathbf{b}}_{i}\right\|$. Then

$$
\rho_{s}(\mathbf{c}+\mathcal{L}) \in[1 \pm \varepsilon] \cdot s^{n}
$$

for all $\mathbf{c} \in \mathbb{R}^{n}$, where $\varepsilon \leq 2 n \cdot \exp \left(-\pi(s / M)^{2}\right)$.
So $s \approx M \sqrt{\log n}$ suffices for near-uniformity.

n-dimensional Gaussians

- The n-dim Gaussian: $\rho(\mathbf{x}) \triangleq \exp \left(-\pi \cdot\|\mathbf{x}\|^{2}\right)=\rho\left(x_{1}\right) \cdots \rho\left(x_{n}\right)$.

Clearly, it is rotationally invariant.

- Fact: Suppose \mathcal{L} has a basis \mathbf{B} with $M=\max _{i}\left\|\tilde{\mathbf{b}}_{i}\right\|$. Then

$$
\rho_{s}(\mathbf{c}+\mathcal{L}) \in[1 \pm \varepsilon] \cdot s^{n}
$$

for all $\mathbf{c} \in \mathbb{R}^{n}$, where $\varepsilon \leq 2 n \cdot \exp \left(-\pi(s / M)^{2}\right)$.
So $s \approx M \sqrt{\log n}$ suffices for near-uniformity.

n-dimensional Gaussians

- The n-dim Gaussian: $\rho(\mathbf{x}) \triangleq \exp \left(-\pi \cdot\|\mathbf{x}\|^{2}\right)=\rho\left(x_{1}\right) \cdots \rho\left(x_{n}\right)$.

Clearly, it is rotationally invariant.

- Fact: Suppose \mathcal{L} has a basis \mathbf{B} with $M=\max _{i}\left\|\tilde{\mathbf{b}}_{i}\right\|$. Then

$$
\rho_{s}(\mathbf{c}+\mathcal{L}) \in[1 \pm \varepsilon] \cdot s^{n}
$$

for all $\mathbf{c} \in \mathbb{R}^{n}$, where $\varepsilon \leq 2 n \cdot \exp \left(-\pi(s / M)^{2}\right)$.
So $s \approx M \sqrt{\log n}$ suffices for near-uniformity.

n-dimensional Gaussians

- The n-dim Gaussian: $\rho(\mathbf{x}) \triangleq \exp \left(-\pi \cdot\|\mathbf{x}\|^{2}\right)=\rho\left(x_{1}\right) \cdots \rho\left(x_{n}\right)$.

Clearly, it is rotationally invariant.

- Fact: Suppose \mathcal{L} has a basis \mathbf{B} with $M=\max _{i}\left\|\tilde{\mathbf{b}}_{i}\right\|$. Then

$$
\rho_{s}(\mathbf{c}+\mathcal{L}) \in[1 \pm \varepsilon] \cdot s^{n}
$$

for all $\mathbf{c} \in \mathbb{R}^{n}$, where $\varepsilon \leq 2 n \cdot \exp \left(-\pi(s / M)^{2}\right)$.
So $s \approx M \sqrt{\log n}$ suffices for near-uniformity.

Discrete Gaussians

- Define the discrete Gaussian distribution over coset $\mathbf{c}+\mathcal{L}$ as

$$
D_{\mathbf{c}+\mathcal{L}, s}(\mathbf{x})=\frac{\rho_{s}(\mathbf{x})}{\rho_{s}(\mathbf{c}+\mathcal{L})} \text { for all } \mathbf{x} \in \mathbf{c}+\mathcal{L}
$$

Discrete Gaussians

- Define the discrete Gaussian distribution over coset $\mathbf{c}+\mathcal{L}$ as

$$
D_{\mathbf{c}+\mathcal{L}, s}(\mathbf{x})=\frac{\rho_{s}(\mathbf{x})}{\rho_{s}(\mathbf{c}+\mathcal{L})} \text { for all } \mathbf{x} \in \mathbf{c}+\mathcal{L}
$$

- Consider the following experiment:
(1) Choose $\mathbf{x} \in \mathbb{Z}^{n}$ from $D_{\mathbb{Z}^{n}, s}$.

Discrete Gaussians

- Define the discrete Gaussian distribution over coset $\mathbf{c}+\mathcal{L}$ as

$$
D_{\mathbf{c}+\mathcal{L}, s}(\mathbf{x})=\frac{\rho_{s}(\mathbf{x})}{\rho_{s}(\mathbf{c}+\mathcal{L})} \text { for all } \mathbf{x} \in \mathbf{c}+\mathcal{L}
$$

- Consider the following experiment:
(1) Choose $\mathbf{x} \in \mathbb{Z}^{n}$ from $D_{\mathbb{Z}^{n}, s}$.
(2) Reveal coset $\mathbf{x}+\mathcal{L}$.
(e.g., as $\overline{\mathbf{x}}=\mathbf{x} \bmod \mathbf{B}$ for some basis \mathbf{B})

Discrete Gaussians

- Define the discrete Gaussian distribution over coset $\mathbf{c}+\mathcal{L}$ as

$$
D_{\mathbf{c}+\mathcal{L}, s}(\mathbf{x})=\frac{\rho_{s}(\mathbf{x})}{\rho_{s}(\mathbf{c}+\mathcal{L})} \text { for all } \mathbf{x} \in \mathbf{c}+\mathcal{L} .
$$

- Consider the following experiment:
(1) Choose $\mathbf{x} \in \mathbb{Z}^{n}$ from $D_{\mathbb{Z}^{n}, s}$.
(2) Reveal coset $\mathbf{x}+\mathcal{L}$. (e.g., as $\overline{\mathrm{x}}=\mathrm{x} \bmod \mathrm{B}$ for some basis B$)$

Immediate facts:

Discrete Gaussians

- Define the discrete Gaussian distribution over coset $\mathbf{c}+\mathcal{L}$ as

$$
D_{\mathbf{c}+\mathcal{L}, s}(\mathbf{x})=\frac{\rho_{s}(\mathbf{x})}{\rho_{s}(\mathbf{c}+\mathcal{L})} \text { for all } \mathbf{x} \in \mathbf{c}+\mathcal{L}
$$

- Consider the following experiment:
(1) Choose $\mathbf{x} \in \mathbb{Z}^{n}$ from $D_{\mathbb{Z}^{n}, s}$.
(2) Reveal coset $\mathbf{x}+\mathcal{L}$.

Immediate facts:
(1) Every coset $\mathbf{c}+\mathcal{L}$ is equally* likely: we get uniform dist over $\mathbb{Z}^{n} / \mathcal{L}$.

Discrete Gaussians

- Define the discrete Gaussian distribution over coset $\mathbf{c}+\mathcal{L}$ as

$$
D_{\mathbf{c}+\mathcal{L}, s}(\mathbf{x})=\frac{\rho_{s}(\mathbf{x})}{\rho_{s}(\mathbf{c}+\mathcal{L})} \text { for all } \mathbf{x} \in \mathbf{c}+\mathcal{L}
$$

- Consider the following experiment:
(1) Choose $\mathbf{x} \in \mathbb{Z}^{n}$ from $D_{\mathbb{Z}^{n}, s}$.
(2) Reveal coset $\mathrm{x}+\mathcal{L}$.

Immediate facts:
(1) Every coset $\mathbf{c}+\mathcal{L}$ is equally* likely: we get uniform dist over $\mathbb{Z}^{n} / \mathcal{L}$.
(2) Given that $\mathbf{x} \in \mathbf{c}+\mathcal{L}$, it has conditional distribution $D_{\mathbf{c}+\mathcal{L}, s}$.

Preimage Sampleable TDF: Evaluation

- 'Hard' description of \mathcal{L} specifies f. Concretely: SIS matrix \mathbf{A} defines $f_{\mathbf{A}}$.

Preimage Sampleable TDF: Evaluation

- 'Hard' description of \mathcal{L} specifies f. Concretely: SIS matrix \mathbf{A} defines $f_{\mathbf{A}}$.
- $f(\mathbf{x})=\mathbf{x} \bmod \mathcal{L}$ for Gaussian $\mathbf{x} \leftarrow D_{\mathbb{Z}^{m}, s}$. Concretely: $f_{\mathbf{A}}(\mathbf{x})=\mathbf{A} \mathbf{x}=\mathbf{u} \in \mathbb{Z}_{q}^{n}$.

Preimage Sampleable TDF: Evaluation

- 'Hard' description of \mathcal{L} specifies f. Concretely: SIS matrix \mathbf{A} defines $f_{\mathbf{A}}$.
- $f(\mathbf{x})=\mathbf{x} \bmod \mathcal{L}$ for Gaussian $\mathbf{x} \leftarrow D_{\mathbb{Z}^{m}, s}$. Concretely: $f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x}=\mathbf{u} \in \mathbb{Z}_{q}^{n}$.
- Inverting $f_{\mathbf{A}} \Leftrightarrow$ decoding unif syndrome \mathbf{u} \Leftrightarrow solving SIS.

Preimage Sampleable TDF: Evaluation

- 'Hard' description of \mathcal{L} specifies f. Concretely: SIS matrix \mathbf{A} defines $f_{\mathbf{A}}$.
- $f(\mathbf{x})=\mathbf{x} \bmod \mathcal{L}$ for Gaussian $\mathbf{x} \leftarrow D_{\mathbb{Z}^{m}, s}$. Concretely: $f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x}=\mathbf{u} \in \mathbb{Z}_{q}^{n}$.
- Inverting $f_{\mathbf{A}} \Leftrightarrow$ decoding unif syndrome u \Leftrightarrow solving SIS.

- Given \mathbf{u}, conditional distrib. of \mathbf{x} is the discrete Gaussian $D_{\mathcal{L}_{\frac{\mathbf{u}}{}}^{\perp}(\mathbf{A}), s}$

Preimage Sampling: Method \#1

- Sample $D_{\mathcal{L} \frac{\perp}{\mathbf{u}}(\mathbf{A}), s}$ given any short enough basis $\mathbf{S}: \max \left\|\tilde{\mathbf{s}}_{i}\right\| \leq s$.
* Unlike [GGH'96], output leaks nothing about S!
(the bound s is public)

Preimage Sampling: Method \#1

- Sample $D_{\mathcal{L}_{\frac{\mathbf{u}}{}}^{\perp}(\mathbf{A}), s}$ given any short enough basis $\mathbf{S}: \max \left\|\tilde{\mathbf{s}}_{i}\right\| \leq s$.
* Unlike [GGH'96], output leaks nothing about S!
(the bound s is public)
- "Nearest-plane" algorithm with randomized rounding [Klein'00,GPV'08]

- $\operatorname{coset} \dot{\mathcal{L}}_{\mathbf{u}}^{\perp}(\mathbf{A})$

Preimage Sampling: Method \#1

- Sample $D_{\mathcal{L}_{\frac{\mathbf{u}}{}(\mathbf{A}), s}}$ given any short enough basis $\mathbf{S}: \max \left\|\tilde{\mathbf{s}}_{i}\right\| \leq s$.
« Unlike [GGH'96], output leaks nothing about \mathbf{S} ! (the bound s is public)
- "Nearest-plane" algorithm with randomized rounding [Klein'00,GPV'08]

Preimage Sampling: Method \#1

- Sample $D_{\mathcal{L}_{\frac{\mathbf{u}}{}(\mathbf{A}), s}}$ given any short enough basis $\mathbf{S}: \max \left\|\tilde{\mathbf{s}}_{i}\right\| \leq s$.
« Unlike [GGH'96], output leaks nothing about \mathbf{S} ! (the bound s is public)
- "Nearest-plane" algorithm with randomized rounding [Klein'00,GPV'08]

Preimage Sampling: Method \#1

- Sample $D_{\mathcal{L}_{\frac{\mathbf{u}}{}(\mathbf{A}), s}}$ given any short enough basis $\mathbf{S}: \max \left\|\tilde{\mathbf{s}}_{i}\right\| \leq s$.
« Unlike [GGH'96], output leaks nothing about \mathbf{S} ! (the bound s is public)
- "Nearest-plane" algorithm with randomized rounding [Klein'00,GPV'08]

Preimage Sampling: Method \#1

- Sample $D_{\mathcal{L}_{\frac{\mathbf{u}}{}}^{\perp}(\mathbf{A}), s}$ given any short enough basis $\mathbf{S}: \max \left\|\tilde{\mathbf{s}}_{i}\right\| \leq s$.

夫 Unlike [GGH'96], output leaks nothing about \mathbf{S} ! (the bound s is public)

- "Nearest-plane" algorithm with randomized rounding [Klein'00,GPV'08]

- Proof idea: $\rho_{s}((\mathbf{c}+\mathcal{L}) \cap$ plane $)$ depends only on $\operatorname{dist}(\mathbf{0}$, plane $)$; essentially no dependence on shift within plane

Identity-Based Encryption

- Proposed by [Shamir'84]: could this exist?

Identity-Based Encryption

- Proposed by [Shamir'84]: could this exist?

Identity-Based Encryption

- Proposed by [Shamir'84]: could this exist?

Identity-Based Encryption

- Proposed by [Shamir'84]: could this exist?

Fast-Forward 17 Years. . .

(1) [BonehFranklin'01,...]: first IBE construction, using "new math" (elliptic curves w/ bilinear pairings)

Fast-Forward 17 Years...

(1) [BonehFranklin'01,...]: first IBE construction, using "new math" (elliptic curves w/ bilinear pairings)

2 [Cocks'01,BGH'07]: quadratic residuosity $\bmod N=p q$ [GM'82]

Fast-Forward 17 Years...

(1) [BonehFranklin'01,...]: first IBE construction, using "new math" (elliptic curves w/ bilinear pairings)
(2) [Cocks'01,BGH'07]: quadratic residuosity mod $N=p q$ [GM'82]
(3) [GPV'08]: lattices!

Recall: ‘Dual’ LWE Cryptosystem

$\bigcap_{x} x$ Gauss

$\hat{\wedge}$

Recall: ‘Dual’ LWE Cryptosystem

$\bigwedge^{0} \leftarrow$ Gauss

$$
\xrightarrow[\text { (public key) }]{\mathbf{u}=\mathbf{A} \mathbf{x}=f_{\mathbf{A}}(\mathbf{x})}
$$

Recall: ‘Dual' LWE Cryptosystem

$\xrightarrow[\text { (public key) }]{\mathbf{u}=\mathbf{A} \mathbf{x}=f_{\mathbf{A}}(\mathbf{x})}$
$\underset{\text { (ciphertext 'preamble') }}{\mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}}$

Recall: ‘Dual’ LWE Cryptosystem

$$
\begin{gathered}
\underset{\text { (public key) }}{\mathbf{u}=\mathbf{A} \mathbf{x}=f_{\mathbf{A}}(\mathbf{x})} \\
\stackrel{\mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}}{\text { (ciphertext 'preamble') }} \\
b^{\prime}=\mathbf{s}^{t} \mathbf{u}+e^{\prime}+\mathbf{b i t} \cdot \frac{q}{2} \\
\stackrel{\text { ('payload') }}{\longleftarrow}
\end{gathered}
$$

Recall: ‘Dual’ LWE Cryptosystem

$$
\xrightarrow[\text { (public key) }]{\mathbf{u}=\mathbf{A} \mathbf{x}=f_{\mathbf{A}}(\mathbf{x})}
$$

$$
\frac{\mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}}{\text { (ciphertext 'preamble') }}
$$

$$
b^{\prime}=\mathbf{s}^{t} \mathbf{u}+e^{\prime}+\text { bit } \cdot \frac{q}{2}
$$

Recall: ‘Dual' LWE Cryptosystem

$$
\xrightarrow[\text { (public key) }]{\mathbf{u}=\mathbf{A} \mathbf{x}=f_{\mathbf{A}}(\mathbf{x})}
$$

$$
\frac{\mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}}{\text { (ciphertext 'preamble') }}
$$

丐? (A, u, b, b')

Recall: ‘Dual' LWE Cryptosystem

$$
\xrightarrow[\text { (public key) }]{\mathbf{u}=\mathbf{A} \mathbf{x}=f_{\mathbf{A}}(\mathbf{x})}
$$

$$
\frac{\mathbf{b}^{t}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}}{\text { (ciphertext 'preamble') }}
$$

序? (A, u, b, $\left.b^{\prime}\right)$

ID-Based Encryption

s, e

$$
\mathbf{u}=H(\text { "Alice" })
$$

('identity' public key)
$\stackrel{\mathbf{b}=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}}{\text { (ciphertext preamble) }}$
$b^{\prime}-\mathbf{b}^{t} \mathbf{x} \approx \operatorname{bit} \cdot \frac{q}{2}$
$b^{\prime} \underset{\text { ('payload') }^{=} \mathbf{s}^{t} \mathbf{u}+e^{\prime}+\text { bit } \cdot \frac{q}{2}}{\longleftarrow}$

Tomorrow. . .

- Generating trapdoors (A with short basis or equivalent)

Tomorrow. . .

- Generating trapdoors (A with short basis or equivalent)
- Removing the random oracle from signatures \& IBE

Tomorrow. . .

- Generating trapdoors (A with short basis or equivalent)
- Removing the random oracle from signatures \& IBE
- More surprising applications

Tomorrow. . .

- Generating trapdoors (A with short basis or equivalent)
- Removing the random oracle from signatures \& IBE
- More surprising applications

Selected bibliography for this talk:
MR'04 D. Micciancio and O. Regev, "Worst-Case to Average-Case Reductions Based on Gaussian Measures," FOCS'04 / SICOMP'07.

GPV'08 C. Gentry, C. Peikert, V. Vaikuntanathan, "Trapdoors for Hard Lattices and New Cryptographic Constructions," STOC'08.

P'10 C. Peikert, "An Efficient and Parallel Gaussian Sampler for Lattices," Crypto'10.

Bonus Material:

A Better
Discrete Gaussian Sampling Algorithm

Performance of Nearest-Plane Sampling Algorithm?

Good News, and Bad News...

\checkmark Tight: std $\operatorname{dev} s \approx \max \left\|\tilde{\mathbf{s}}_{i}\right\|=$ max dist between adjacent planes

Performance of Nearest-Plane Sampling Algorithm?

Good News, and Bad News. . .

\checkmark Tight: std $\operatorname{dev} s \approx \max \left\|\tilde{\mathbf{s}}_{i}\right\|=$ max dist between adjacent planes
X Not efficient: runtime $=\Omega\left(n^{3}\right)$, high-precision arithmetic

Performance of Nearest-Plane Sampling Algorithm?

Good News, and Bad News...

\checkmark Tight: std $\operatorname{dev} s \approx \max \left\|\tilde{\mathbf{s}}_{i}\right\|=$ max dist between adjacent planes
\times Not efficient: runtime $=\Omega\left(n^{3}\right)$, high-precision arithmetic
x Inherently sequential: n adaptive iterations

Performance of Nearest-Plane Sampling Algorithm?

Good News, and Bad News...

\checkmark Tight: std $\operatorname{dev} s \approx \max \left\|\tilde{\mathbf{s}}_{i}\right\|=$ max dist between adjacent planes
\times Not efficient: runtime $=\Omega\left(n^{3}\right)$, high-precision arithmetic
X Inherently sequential: n adaptive iterations
X No efficiency improvement in the ring setting [NTRU'98,M'02,...]

Performance of Nearest-Plane Sampling Algorithm?

Good News, and Bad News...

\checkmark Tight: std $\operatorname{dev} s \approx \max \left\|\tilde{\mathbf{s}}_{i}\right\|=$ max dist between adjacent planes
X Not efficient: runtime $=\Omega\left(n^{3}\right)$, high-precision arithmetic
X Inherently sequential: n adaptive iterations
X No efficiency improvement in the ring setting [NTRU'98,M'02,...]

A Different Sampling Algorithm [P'10]

- Simple \& efficient: n^{2} online adds and mults $(\bmod q)$

Performance of Nearest-Plane Sampling Algorithm?

Good News, and Bad News...

\checkmark Tight: std dev $s \approx \max \left\|\tilde{\mathbf{s}}_{i}\right\|=$ max dist between adjacent planes
\times Not efficient: runtime $=\Omega\left(n^{3}\right)$, high-precision arithmetic
X Inherently sequential: n adaptive iterations
X No efficiency improvement in the ring setting [NTRU'98,M'02,...]

A Different Sampling Algorithm [P'10]

- Simple \& efficient: n^{2} online adds and mults $(\bmod q)$ Even better: $\tilde{O}(n)$ time in the ring setting

Performance of Nearest-Plane Sampling Algorithm?

Good News, and Bad News...

\checkmark Tight: std $\operatorname{dev} s \approx \max \left\|\tilde{\mathbf{s}}_{i}\right\|=$ max dist between adjacent planes
\times Not efficient: runtime $=\Omega\left(n^{3}\right)$, high-precision arithmetic
X Inherently sequential: n adaptive iterations
X No efficiency improvement in the ring setting [NTRU'98,M'02,...]

A Different Sampling Algorithm [P'10]

- Simple \& efficient: n^{2} online adds and mults $(\bmod q)$ Even better: $\tilde{O}(n)$ time in the ring setting
- Fully parallel: n^{2} / P operations on any $P \leq n^{2}$ processors

Performance of Nearest-Plane Sampling Algorithm?

Good News, and Bad News...

\checkmark Tight: std dev $s \approx \max \left\|\tilde{\mathbf{s}}_{i}\right\|=$ max dist between adjacent planes
\times Not efficient: runtime $=\Omega\left(n^{3}\right)$, high-precision arithmetic
X Inherently sequential: n adaptive iterations
X No efficiency improvement in the ring setting [NTRU'98,M'02,...]

A Different Sampling Algorithm [P'10]

- Simple \& efficient: n^{2} online adds and mults $(\bmod q)$

Even better: $\tilde{O}(n)$ time in the ring setting

- Fully parallel: n^{2} / P operations on any $P \leq n^{2}$ processors
- High quality: same* Gaussian std dev as nearest-plane alg *in cryptographic applications

A First Attempt

- [Babai'86] "round-off:" $\mathbf{c} \mapsto \mathbf{S} \cdot \operatorname{frac}\left(\mathbf{S}^{-1} \cdot \mathbf{c}\right)$. (Fast \& parallel!)

A First Attempt

- [Babai'86] "round-off:" $\mathbf{c} \mapsto \mathbf{S} \cdot \operatorname{frac}\left(\mathbf{S}^{-1} \cdot \mathbf{c}\right)$. (Fast \& parallel!)
- Deterministic round-off is insecure [NR'06] ...

A First Attempt

- [Babai'86] "round-off:" $\mathbf{c} \mapsto \mathbf{S} \cdot \operatorname{frac}\left(\mathbf{S}^{-1} \cdot \mathbf{c}\right)_{\$} . \quad$ (Fast \& parallel!)
- Deterministic round-off is insecure [NR'06] ...
... but what about randomized rounding?

A First Attempt

- [Babai'86] "round-off:" $\mathbf{c} \mapsto \mathbf{S} \cdot \operatorname{frac}\left(\mathbf{S}^{-1} \cdot \mathbf{c}\right)_{\$}$.
(Fast \& parallel!)
- Deterministic round-off is insecure [NR'06] ...
... but what about randomized rounding?

A First Attempt

- [Babai'86] "round-off:" $\mathbf{c} \mapsto \mathbf{S} \cdot \operatorname{frac}\left(\mathbf{S}^{-1} \cdot \mathbf{c}\right)_{\$}$.
- Deterministic round-off is insecure [NR'06] ...
... but what about randomized rounding?

- Non-spherical discrete Gaussian: has covariance

$$
\Sigma:=\mathbb{E}_{\mathbf{x}}\left[\mathbf{x} \cdot \mathbf{x}^{t}\right] \approx \mathbf{S} \cdot \mathbf{S}^{t}
$$

A First Attempt

- [Babai'86] "round-off:" $\mathbf{c} \mapsto \mathbf{S} \cdot \operatorname{frac}\left(\mathbf{S}^{-1} \cdot \mathbf{c}\right)_{\$}$.
- Deterministic round-off is insecure [NR'06] ...
... but what about randomized rounding?

- Non-spherical discrete Gaussian: has covariance

$$
\Sigma:=\mathbb{E}_{\mathbf{x}}\left[\mathbf{x} \cdot \mathbf{x}^{t}\right] \approx \mathbf{S} \cdot \mathbf{S}^{t}
$$

Covariance can be measured - and it leaks \mathbf{S} ! (up to rotation)

Inspiration: Some Facts About Gaussians

(1) Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ. (pos def means: $\mathbf{u}^{t} \Sigma \mathbf{u}>0$ for all unit \mathbf{u}.)

Inspiration: Some Facts About Gaussians

(1) Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ. (pos def means: $\mathbf{u}^{t} \Sigma \mathbf{u}>0$ for all unit \mathbf{u}.)
Spherical Gaussian \leftrightarrow covariance $s^{2} \mathbf{I}$.

Inspiration: Some Facts About Gaussians

(1) Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ. (pos def means: $\mathbf{u}^{t} \Sigma \mathbf{u}>0$ for all unit \mathbf{u}.)
Spherical Gaussian \leftrightarrow covariance $s^{2} \mathbf{I}$.
(2) Convolution of Gaussians:

Inspiration: Some Facts About Gaussians

(1) Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ. (pos def means: $\mathbf{u}^{t} \Sigma \mathbf{u}>0$ for all unit \mathbf{u}.)
Spherical Gaussian \leftrightarrow covariance $s^{2} \mathbf{I}$.
(2) Convolution of Gaussians:

(3) Given Σ_{1}, how small can s be? For $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}$,

Inspiration: Some Facts About Gaussians

(1) Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ. (pos def means: $\mathbf{u}^{t} \Sigma \mathbf{u}>0$ for all unit \mathbf{u}.)
Spherical Gaussian \leftrightarrow covariance $s^{2} \mathbf{I}$.
(2) Convolution of Gaussians:

(3) Given Σ_{1}, how small can s be? For $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}$,

$$
\mathbf{u}^{t} \Sigma_{2} \mathbf{u}=s^{2}-\mathbf{u}^{t} \Sigma_{1} \mathbf{u}>0 \Longleftrightarrow s^{2}>\max \lambda_{i}\left(\Sigma_{1}\right)
$$

Inspiration: Some Facts About Gaussians

(1) Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ. (pos def means: $\mathbf{u}^{t} \Sigma \mathbf{u}>0$ for all unit \mathbf{u}.)
Spherical Gaussian \leftrightarrow covariance $s^{2} \mathbf{I}$.
(2) Convolution of Gaussians:

(3) Given Σ_{1}, how small can s be? For $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}$,

$$
\mathbf{u}^{t} \Sigma_{2} \mathbf{u}=s^{2}-\mathbf{u}^{t} \Sigma_{1} \mathbf{u}>0 \Longleftrightarrow s^{2}>\max \lambda_{i}\left(\Sigma_{1}\right)
$$

For $\Sigma_{1}=\mathbf{S} \mathbf{S}^{t}$, can use any $s>s_{1}(\mathbf{S}):=\max$ singular val of \mathbf{S}.

'Convolution' Sampling Algorithm [P'10]

- Given basis \mathbf{S}, coset $\mathcal{L}+\mathbf{c}$, and std $\operatorname{dev} s>s_{1}(\mathbf{S})$,

$$
\Sigma_{1}=\mathbf{S} \mathbf{S}^{t}
$$

'Convolution' Sampling Algorithm [P'10]

- Given basis \mathbf{S}, coset $\mathcal{L}+\mathbf{c}$, and std $\operatorname{dev} s>s_{1}(\mathbf{S})$,
(1) Generate perturbation \mathbf{p} with covariance $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}>0$
$\Sigma_{1}=\mathbf{S} \mathbf{S}^{t}$
Σ_{2}

'Convolution' Sampling Algorithm [P'10]

- Given basis \mathbf{S}, coset $\mathcal{L}+\mathbf{c}$, and std $\operatorname{dev} s>s_{1}(\mathbf{S})$,
(1) Generate perturbation \mathbf{p} with covariance $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}>0$
(2) Randomly round-off \mathbf{p} to $\mathcal{L}+\mathbf{c}$: return $\mathbf{S} \cdot \operatorname{frac}\left(\mathbf{S}^{-1} \cdot(\mathbf{c}+\mathbf{p})\right)_{\S}$

$$
\Sigma_{1}=\mathbf{S} \mathbf{S}^{t}
$$

$$
\Sigma_{2}
$$

'Convolution' Sampling Algorithm [P'10]

- Given basis \mathbf{S}, coset $\mathcal{L}+\mathbf{c}$, and std $\operatorname{dev} s>s_{1}(\mathbf{S})$,
(1) Generate perturbation \mathbf{p} with covariance $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}>0$
(2) Randomly round-off \mathbf{p} to $\mathcal{L}+\mathbf{c}$: return $\mathbf{S} \cdot \operatorname{frac}\left(\mathbf{S}^{-1} \cdot(\mathbf{c}+\mathbf{p})\right)_{\S}$

$$
\Sigma_{1}=\mathbf{S} \mathbf{S}^{t}
$$

$$
\Sigma_{2}
$$

Convolution* Theorem

Algorithm generates a spherical discrete Gaussian over $\mathcal{L}+\mathbf{c}$.

'Convolution' Sampling Algorithm [P'10]

- Given basis \mathbf{S}, coset $\mathcal{L}+\mathbf{c}$, and std $\operatorname{dev} s>s_{1}(\mathbf{S})$,
(1) Generate perturbation \mathbf{p} with covariance $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}>0$
(2) Randomly round-off \mathbf{p} to $\mathcal{L}+\mathbf{c}$: return $\mathbf{S} \cdot \operatorname{frac}\left(\mathbf{S}^{-1} \cdot(\mathbf{c}+\mathbf{p})\right)_{\S}$

$$
\Sigma_{1}=\mathbf{S} \mathbf{S}^{t}
$$

Convolution* Theorem

Algorithm generates a spherical discrete Gaussian over $\mathcal{L}+\mathbf{c}$.
(*technically not a convolution, since step 2 depends on step 1.)

'Convolution' Sampling Algorithm [P'10]

- Given basis \mathbf{S}, coset $\mathcal{L}+\mathbf{c}$, and std $\operatorname{dev} s>s_{1}(\mathbf{S})$,
(1) Generate perturbation \mathbf{p} with covariance $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}>0$
(2) Randomly round-off \mathbf{p} to $\mathcal{L}+\mathbf{c}$: return $\mathbf{S} \cdot \operatorname{frac}\left(\mathbf{S}^{-1} \cdot(\mathbf{c}+\mathbf{p})\right)_{\S}$

Optimizations

(1) Precompute perturbations offline

'Convolution' Sampling Algorithm [P'10]

- Given basis \mathbf{S}, coset $\mathcal{L}+\mathbf{c}$, and std $\operatorname{dev} s>s_{1}(\mathbf{S})$,
(1) Generate perturbation \mathbf{p} with covariance $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}>0$
(2) Randomly round-off \mathbf{p} to $\mathcal{L}+\mathbf{c}$: return $\mathbf{S} \cdot \operatorname{frac}\left(\mathbf{S}^{-1} \cdot(\mathbf{c}+\mathbf{p})\right)_{\S}$

Optimizations

(1) Precompute perturbations offline
(2) Batch multi-sample using fast matrix multiplication

'Convolution' Sampling Algorithm [P'10]

- Given basis \mathbf{S}, coset $\mathcal{L}+\mathbf{c}$, and std $\operatorname{dev} s>s_{1}(\mathbf{S})$,
(1) Generate perturbation \mathbf{p} with covariance $\Sigma_{2}:=s^{2} \mathbf{I}-\Sigma_{1}>0$
(2) Randomly round-off \mathbf{p} to $\mathcal{L}+\mathbf{c}$: return $\mathbf{S} \cdot \operatorname{frac}\left(\mathbf{S}^{-1} \cdot(\mathbf{c}+\mathbf{p})\right)_{\S}$

$$
\Sigma_{1}=\mathbf{S} \mathbf{S}^{t}
$$

Optimizations

(1) Precompute perturbations offline
(2) Batch multi-sample using fast matrix multiplication
(3) More tricks \& simplifications for SIS lattices (tomorrow)

