Lattice-Based Cryptography: Trapdoors, Discrete Gaussians, and Applications

> Chris Peikert Georgia Institute of Technology

> > crypt@b-it 2013

Agenda

1 "Strong trapdoors" for lattices

2 Discrete Gaussians, sampling, and "preimage sampleable" functions

3 Applications: signatures, ID-based encryption (in RO model)

(Images courtesy xkcd.org)

(public)

(Images courtesy xkcd.org)

• Public function f generated with secret 'trapdoor' f^{-1}

- ▶ Public function f generated with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...] (TDP)

- Public function f generated with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...] (TDP)

- Public function f generated with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...] (TDP)

- Public function f generated with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...] (TDP)

▶ 'Hash and sign:' pk = f, $sk = f^{-1}$. Sign(msg) = $f^{-1}(H(msg))$.

- Public function f generated with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...] (TDP)

- ▶ 'Hash and sign:' pk = f, $sk = f^{-1}$. Sign(msg) = $f^{-1}(H(msg))$.
- Candidate TDPs: [RSA'78,Rabin'79,Paillier'99] ('general assumption')
 All rely on hardness of factoring:
 - ✗ Complex: 2048-bit exponentiation
 - X Broken by quantum algorithms [Shor'97]

- ▶ Public function f generated with secret 'trapdoor' f^{-1}
- New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

- Public function f generated with secret 'trapdoor' f^{-1}
- New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

- Public function f generated with secret 'trapdoor' f^{-1}
- New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

- Public function f generated with secret 'trapdoor' f^{-1}
- New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

▶ 'Hash and sign:' pk = f, $sk = f^{-1}$. Sign(msg) = $f^{-1}(H(msg))$.

- Public function f generated with secret 'trapdoor' f^{-1}
- New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

- ▶ 'Hash and sign:' pk = f, $sk = f^{-1}$. Sign(msg) = $f^{-1}(H(msg))$.
- Still secure! Can generate (x, y) in two equivalent ways:

• Key idea: pk = "bad" basis **B** for \mathcal{L} , sk = "short" trapdoor basis **S**

- Key idea: pk = "bad" basis **B** for \mathcal{L} , sk = "short" trapdoor basis **S**
- ▶ Sign: H(msg) = c + L; get short $x \in c + L$ via round-off [Babai'86]

- Key idea: pk = "bad" basis **B** for \mathcal{L} , sk = "short" trapdoor basis **S**
- ▶ Sign: $H(\mathsf{msg}) = \mathbf{c} + \mathcal{L}$; get short $\mathbf{x} \in \mathbf{c} + \mathcal{L}$ via round-off [Babai'86]
- ▶ Verify(msg, x) check $x \in H(msg) = c + L$, and x short enough

- Key idea: pk = "bad" basis **B** for \mathcal{L} , sk = "short" trapdoor basis **S**
- ▶ Sign: $H(\mathsf{msg}) = \mathbf{c} + \mathcal{L}$; get short $\mathbf{x} \in \mathbf{c} + \mathcal{L}$ via round-off [Babai'86]
- ▶ Verify(msg, x) check $x \in H(msg) = c + L$, and x short enough

- Key idea: pk = "bad" basis **B** for \mathcal{L} , sk = "short" trapdoor basis **S**
- ▶ Sign: $H(\mathsf{msg}) = \mathbf{c} + \mathcal{L}$; get short $\mathbf{x} \in \mathbf{c} + \mathcal{L}$ via round-off [Babai'86]
- ▶ Verify(msg, x) check $x \in H(msg) = c + L$, and x short enough

- Key idea: pk = "bad" basis **B** for \mathcal{L} , sk = "short" trapdoor basis **S**
- ▶ Sign: $H(\mathsf{msg}) = \mathbf{c} + \mathcal{L}$; get short $\mathbf{x} \in \mathbf{c} + \mathcal{L}$ via round-off [Babai'86]
- ▶ Verify(msg, x) check $x \in H(msg) = c + L$, and x short enough

- Key idea: pk = "bad" basis **B** for \mathcal{L} , sk = "short" trapdoor basis **S**
- ▶ Sign: $H(\mathsf{msg}) = \mathbf{c} + \mathcal{L}$; get short $\mathbf{x} \in \mathbf{c} + \mathcal{L}$ via round-off [Babai'86]
- ▶ Verify(msg, x) check $x \in H(msg) = c + L$, and x short enough

Technical Issues

Generating "hard" lattice together with short basis (tomorrow)

- Key idea: pk = "bad" basis **B** for \mathcal{L} , sk = "short" trapdoor basis **S**
- ▶ Sign: $H(\mathsf{msg}) = \mathbf{c} + \mathcal{L}$; get short $\mathbf{x} \in \mathbf{c} + \mathcal{L}$ via round-off [Babai'86]
- ▶ Verify(msg, x) check $x \in H(msg) = c + L$, and x short enough

- Generating "hard" lattice together with short basis (tomorrow)
- 2 Signing algorithm leaks secret basis!
 - * Total break after 100s-1000s of signatures [NguyenRegev'06]

- Key idea: pk = "bad" basis **B** for \mathcal{L} , sk = "short" trapdoor basis **S**
- ▶ Sign: $H(\mathsf{msg}) = \mathbf{c} + \mathcal{L}$; get short $\mathbf{x} \in \mathbf{c} + \mathcal{L}$ via round-off [Babai'86]
- ▶ Verify(msg, x) check $x \in H(msg) = c + L$, and x short enough

- Generating "hard" lattice together with short basis (tomorrow)
- 2 Signing algorithm leaks secret basis!
 - * Total break after 100s-1000s of signatures [NguyenRegev'06]

- Key idea: pk = "bad" basis **B** for \mathcal{L} , sk = "short" trapdoor basis **S**
- ▶ Sign: $H(\mathsf{msg}) = \mathbf{c} + \mathcal{L}$; get short $\mathbf{x} \in \mathbf{c} + \mathcal{L}$ via round-off [Babai'86]
- ▶ Verify(msg, x) check $x \in H(msg) = c + L$, and x short enough

- Generating "hard" lattice together with short basis (tomorrow)
- 2 Signing algorithm leaks secret basis!
 - * Total break after 100s-1000s of signatures [NguyenRegev'06]

- Key idea: pk = "bad" basis **B** for \mathcal{L} , sk = "short" trapdoor basis **S**
- ▶ Sign: $H(\mathsf{msg}) = \mathbf{c} + \mathcal{L}$; get short $\mathbf{x} \in \mathbf{c} + \mathcal{L}$ via round-off [Babai'86]
- ▶ Verify(msg, x) check $x \in H(msg) = c + L$, and x short enough

- Generating "hard" lattice together with short basis (tomorrow)
- 2 Signing algorithm leaks secret basis!
 - * Total break after 100s-1000s of signatures [NguyenRegev'06]

- Key idea: pk = "bad" basis **B** for \mathcal{L} , sk = "short" trapdoor basis **S**
- ▶ Sign: $H(\mathsf{msg}) = \mathbf{c} + \mathcal{L}$; get short $\mathbf{x} \in \mathbf{c} + \mathcal{L}$ via round-off [Babai'86]
- ▶ Verify(msg, x) check $x \in H(msg) = c + L$, and x short enough

- Generating "hard" lattice together with short basis (tomorrow)
- 2 Signing algorithm leaks secret basis!
 - Total break after 100s-1000s of signatures [NguyenRegev'06]

- Key idea: pk = "bad" basis **B** for \mathcal{L} , sk = "short" trapdoor basis **S**
- ▶ Sign: $H(\mathsf{msg}) = \mathbf{c} + \mathcal{L}$; get short $\mathbf{x} \in \mathbf{c} + \mathcal{L}$ via round-off [Babai'86]
- ▶ Verify(msg, x) check $x \in H(msg) = c + L$, and x short enough

- Generating "hard" lattice together with short basis (tomorrow)
- 2 Signing algorithm leaks secret basis!
 - * Total break after 100s-1000s of signatures [NguyenRegev'06]

Question: How much blur makes it uniform?

Gaussians

Gaußians

The 1-dim Gaussian function: (pdf of normal dist w/ std dev $1/\sqrt{2\pi}$) $\rho(x) \stackrel{\Delta}{=} \exp(-\pi \cdot x^2).$

Also define $\rho_s(x) \stackrel{\Delta}{=} \rho(x/s) = \exp(-\pi \cdot (x/s)^2).$

The 1-dim Gaussian function: (pdf of normal dist w/ std dev $1/\sqrt{2\pi}$)

$$\rho(x) \stackrel{\Delta}{=} \exp(-\pi \cdot x^2).$$

Also define $\rho_s(x) \stackrel{\Delta}{=} \rho(x/s) = \exp(-\pi \cdot (x/s)^2).$

Sum of Gaussians centered at lattice points:

$$f_s(c) = \sum_{z \in \mathbb{Z}} \rho_s(c-z) = \rho_s(c+\mathbb{Z}).$$

• The 1-dim Gaussian function: (pdf of normal dist w/ std dev $1/\sqrt{2\pi}$) $\rho(x) \stackrel{\Delta}{=} \exp(-\pi \cdot x^2).$

Also define $\rho_s(x) \stackrel{\Delta}{=} \rho(x/s) = \exp(-\pi \cdot (x/s)^2).$

Sum of Gaussians centered at lattice points:

$$f_s(c) = \sum_{z \in \mathbb{Z}} \rho_s(c-z) = \rho_s(c+\mathbb{Z}).$$

• The 1-dim Gaussian function: (pdf of normal dist w/ std dev $1/\sqrt{2\pi}$) $ho(x) \stackrel{\Delta}{=} \exp(-\pi \cdot x^2).$

Also define $\rho_s(x) \stackrel{\Delta}{=} \rho(x/s) = \exp(-\pi \cdot (x/s)^2).$

Sum of Gaussians centered at lattice points:

$$f_s(c) = \sum_{z \in \mathbb{Z}} \rho_s(c-z) = \rho_s(c+\mathbb{Z}).$$

• The 1-dim Gaussian function: (pdf of normal dist w/ std dev $1/\sqrt{2\pi}$) $\rho(x) \stackrel{\Delta}{=} \exp(-\pi \cdot x^2).$

Also define $\rho_s(x) \stackrel{\Delta}{=} \rho(x/s) = \exp(-\pi \cdot (x/s)^2).$

Sum of Gaussians centered at lattice points:

$$f_s(c) = \sum_{z \in \mathbb{Z}} \rho_s(c-z) = \rho_s(c+\mathbb{Z}).$$

• The 1-dim Gaussian function: (pdf of normal dist w/ std dev $1/\sqrt{2\pi}$) $\rho(x) \stackrel{\Delta}{=} \exp(-\pi \cdot x^2).$

Also define $\rho_s(x) \stackrel{\Delta}{=} \rho(x/s) = \exp(-\pi \cdot (x/s)^2).$

Sum of Gaussians centered at lattice points:

$$f_s(c) = \sum_{z \in \mathbb{Z}} \rho_s(c-z) = \rho_s(c+\mathbb{Z}).$$

► The *n*-dim Gaussian: $\rho(\mathbf{x}) \stackrel{\Delta}{=} \exp(-\pi \cdot ||\mathbf{x}||^2) = \rho(x_1) \cdots \rho(x_n)$. Clearly, it is rotationally invariant.

► The *n*-dim Gaussian: $\rho(\mathbf{x}) \stackrel{\Delta}{=} \exp(-\pi \cdot ||\mathbf{x}||^2) = \rho(x_1) \cdots \rho(x_n)$. Clearly, it is rotationally invariant.

► <u>Fact</u>: Suppose \mathcal{L} has a basis \mathbf{B} with $M = \max_{i} \|\tilde{\mathbf{b}}_{i}\|$. Then $\rho_{s}(\mathbf{c} + \mathcal{L}) \in [1 \pm \varepsilon] \cdot s^{n}$ for all $\mathbf{c} \in \mathbb{R}^{n}$, where $\varepsilon \leq 2n \cdot \exp(-\pi(s/M)^{2})$.

• The *n*-dim Gaussian: $\rho(\mathbf{x}) \stackrel{\Delta}{=} \exp(-\pi \cdot \|\mathbf{x}\|^2) = \rho(x_1) \cdots \rho(x_n)$. Clearly, it is rotationally invariant.

► <u>Fact</u>: Suppose \mathcal{L} has a basis **B** with $M = \max_{i} \|\tilde{\mathbf{b}}_{i}\|$. Then $\rho_{s}(\mathbf{c} + \mathcal{L}) \in [1 \pm \varepsilon] \cdot s^{n}$ for all $\mathbf{c} \in \mathbb{R}^{n}$, where $\varepsilon \leq 2n \cdot \exp(-\pi (s/M)^{2})$. So $s \approx M \sqrt{\log n}$ suffices for near-uniformity.

- The *n*-dim Gaussian: $\rho(\mathbf{x}) \stackrel{\Delta}{=} \exp(-\pi \cdot \|\mathbf{x}\|^2) = \rho(x_1) \cdots \rho(x_n)$. Clearly, it is rotationally invariant.
- Fact: Suppose \mathcal{L} has a basis \mathbf{B} with $M = \max_{i} \|\tilde{\mathbf{b}}_{i}\|$. Then $\rho_{s}(\mathbf{c} + \mathcal{L}) \in [1 \pm \varepsilon] \cdot s^{n}$ for all $\mathbf{c} \in \mathbb{R}^{n}$, where $\varepsilon \leq 2n \cdot \exp(-\pi (s/M)^{2})$. So $s \approx M \sqrt{\log n}$ suffices for near-uniformity.

- The *n*-dim Gaussian: $\rho(\mathbf{x}) \stackrel{\Delta}{=} \exp(-\pi \cdot \|\mathbf{x}\|^2) = \rho(x_1) \cdots \rho(x_n)$. Clearly, it is rotationally invariant.
- Fact: Suppose \mathcal{L} has a basis \mathbf{B} with $M = \max_{i} \|\tilde{\mathbf{b}}_{i}\|$. Then $\rho_{s}(\mathbf{c} + \mathcal{L}) \in [1 \pm \varepsilon] \cdot s^{n}$ for all $\mathbf{c} \in \mathbb{R}^{n}$, where $\varepsilon \leq 2n \cdot \exp(-\pi (s/M)^{2})$. So $s \approx M\sqrt{\log n}$ suffices for near-uniformity.

- ► The *n*-dim Gaussian: $\rho(\mathbf{x}) \stackrel{\Delta}{=} \exp(-\pi \cdot ||\mathbf{x}||^2) = \rho(x_1) \cdots \rho(x_n)$. Clearly, it is rotationally invariant.
- Fact: Suppose \mathcal{L} has a basis \mathbf{B} with $M = \max_{i} \|\tilde{\mathbf{b}}_{i}\|$. Then $\rho_{s}(\mathbf{c} + \mathcal{L}) \in [1 \pm \varepsilon] \cdot s^{n}$ for all $\mathbf{c} \in \mathbb{R}^{n}$, where $\varepsilon \leq 2n \cdot \exp(-\pi (s/M)^{2})$. So $s \approx M\sqrt{\log n}$ suffices for near-uniformity.

- ► The *n*-dim Gaussian: $\rho(\mathbf{x}) \stackrel{\Delta}{=} \exp(-\pi \cdot ||\mathbf{x}||^2) = \rho(x_1) \cdots \rho(x_n)$. Clearly, it is rotationally invariant.
- <u>Fact</u>: Suppose \mathcal{L} has a basis **B** with $M = \max_{i} \|\tilde{\mathbf{b}}_{i}\|$. Then $\rho_{s}(\mathbf{c} + \mathcal{L}) \in [1 \pm \varepsilon] \cdot s^{n}$ for all $\mathbf{c} \in \mathbb{R}^{n}$, where $\varepsilon \leq 2n \cdot \exp(-\pi (s/M)^{2})$. So $s \approx M\sqrt{\log n}$ suffices for near-uniformity.

 \blacktriangleright Define the discrete Gaussian distribution over coset $c+\mathcal{L}$ as

$$D_{\mathbf{c}+\mathcal{L},s}(\mathbf{x}) = \frac{\rho_s(\mathbf{x})}{\rho_s(\mathbf{c}+\mathcal{L})} \text{ for all } \mathbf{x} \in \mathbf{c} + \mathcal{L}.$$

▶ Define the discrete Gaussian distribution over coset c + L as

$$D_{\mathbf{c}+\mathcal{L},s}(\mathbf{x}) = rac{
ho_s(\mathbf{x})}{
ho_s(\mathbf{c}+\mathcal{L})} ext{ for all } \mathbf{x} \in \mathbf{c}+\mathcal{L}.$$

Consider the following experiment:

1 Choose $\mathbf{x} \in \mathbb{Z}^n$ from $D_{\mathbb{Z}^n,s}$.

▶ Define the discrete Gaussian distribution over coset c + L as

$$D_{\mathbf{c}+\mathcal{L},s}(\mathbf{x}) = rac{
ho_s(\mathbf{x})}{
ho_s(\mathbf{c}+\mathcal{L})}$$
 for all $\mathbf{x} \in \mathbf{c} + \mathcal{L}$.

Consider the following experiment:

1 Choose
$$\mathbf{x} \in \mathbb{Z}^n$$
 from $D_{\mathbb{Z}^n,s}$.

2 Reveal coset $\mathbf{x} + \mathcal{L}$. (e.g., as $\bar{\mathbf{x}} = \mathbf{x} \mod \mathbf{B}$ for some basis **B**)

• Define the discrete Gaussian distribution over coset $\mathbf{c} + \mathcal{L}$ as

$$D_{\mathbf{c}+\mathcal{L},s}(\mathbf{x}) = rac{
ho_s(\mathbf{x})}{
ho_s(\mathbf{c}+\mathcal{L})} ext{ for all } \mathbf{x} \in \mathbf{c}+\mathcal{L}.$$

Consider the following experiment:

1 Choose $\mathbf{x} \in \mathbb{Z}^n$ from $D_{\mathbb{Z}^n,s}$.

2 Reveal coset $\mathbf{x} + \mathcal{L}$. (e.g., as $\bar{\mathbf{x}} = \mathbf{x} \mod \mathbf{B}$ for some basis \mathbf{B})

Immediate facts:

• Define the discrete Gaussian distribution over coset $\mathbf{c} + \mathcal{L}$ as

$$D_{\mathbf{c}+\mathcal{L},s}(\mathbf{x}) = rac{
ho_s(\mathbf{x})}{
ho_s(\mathbf{c}+\mathcal{L})} ext{ for all } \mathbf{x} \in \mathbf{c}+\mathcal{L}.$$

Consider the following experiment:

1 Choose $\mathbf{x} \in \mathbb{Z}^n$ from $D_{\mathbb{Z}^n,s}$.

2 Reveal coset $\mathbf{x} + \mathcal{L}$. (e.g., as $\bar{\mathbf{x}} = \mathbf{x} \mod \mathbf{B}$ for some basis \mathbf{B})

Immediate facts:

1 Every coset $\mathbf{c} + \mathcal{L}$ is equally^{*} likely: we get uniform dist over \mathbb{Z}^n/\mathcal{L} .

• Define the discrete Gaussian distribution over coset $\mathbf{c} + \mathcal{L}$ as

$$D_{\mathbf{c}+\mathcal{L},s}(\mathbf{x}) = rac{
ho_s(\mathbf{x})}{
ho_s(\mathbf{c}+\mathcal{L})} ext{ for all } \mathbf{x} \in \mathbf{c}+\mathcal{L}.$$

Consider the following experiment:

1 Choose $\mathbf{x} \in \mathbb{Z}^n$ from $D_{\mathbb{Z}^n,s}$.

2 Reveal coset $\mathbf{x} + \mathcal{L}$. (e.g., as $\bar{\mathbf{x}} = \mathbf{x} \mod \mathbf{B}$ for some basis \mathbf{B})

Immediate facts:

- **1** Every coset $\mathbf{c} + \mathcal{L}$ is equally^{*} likely: we get uniform dist over \mathbb{Z}^n/\mathcal{L} .
- **2** Given that $\mathbf{x} \in \mathbf{c} + \mathcal{L}$, it has conditional distribution $D_{\mathbf{c}+\mathcal{L},s}$.

'Hard' description of *L* specifies *f*.
 Concretely: SIS matrix A defines *f*_A.

- 'Hard' description of L specifies f.
 Concretely: SIS matrix A defines f_A.
- ► $f(\mathbf{x}) = \mathbf{x} \mod \mathcal{L}$ for Gaussian $\mathbf{x} \leftarrow D_{\mathbb{Z}^{m,s}}$. Concretely: $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = \mathbf{u} \in \mathbb{Z}_{q}^{n}$.

- 'Hard' description of L specifies f.
 Concretely: SIS matrix A defines f_A.
- ► $f(\mathbf{x}) = \mathbf{x} \mod \mathcal{L}$ for Gaussian $\mathbf{x} \leftarrow D_{\mathbb{Z}^m,s}$. Concretely: $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = \mathbf{u} \in \mathbb{Z}_q^n$.
- lnverting $f_{\mathbf{A}} \Leftrightarrow$ decoding unif syndrome **u** \Leftrightarrow solving SIS.

- 'Hard' description of L specifies f.
 Concretely: SIS matrix A defines f_A.
- ► $f(\mathbf{x}) = \mathbf{x} \mod \mathcal{L}$ for Gaussian $\mathbf{x} \leftarrow D_{\mathbb{Z}^m,s}$. Concretely: $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = \mathbf{u} \in \mathbb{Z}_q^n$.
- lnverting $f_{\mathbf{A}} \Leftrightarrow$ decoding unif syndrome **u** \Leftrightarrow solving SIS.

• Given **u**, conditional distrib. of **x** is the discrete Gaussian $D_{\mathcal{L}_{u}^{\perp}(\mathbf{A}),s}$.

- Sample $D_{\mathcal{L}_{\mathbf{u}}^{\perp}(\mathbf{A}),s}$ given any short enough basis **S**: $\max \|\tilde{\mathbf{s}}_{i}\| \leq s$.
 - * Unlike [GGH'96], output leaks nothing about S! (the bound s is public)

- Sample $D_{\mathcal{L}_{\mathbf{u}}^{\perp}(\mathbf{A}),s}$ given any short enough basis **S**: $\max \|\tilde{\mathbf{s}}_i\| \leq s$.
 - * Unlike [GGH'96], output leaks nothing about S! (the bound s is public)
- "Nearest-plane" algorithm with randomized rounding [Klein'00,GPV'08]

- Sample $D_{\mathcal{L}_{\mathbf{u}}^{\perp}(\mathbf{A}),s}$ given any short enough basis **S**: $\max \|\tilde{\mathbf{s}}_{i}\| \leq s$.
 - ***** Unlike [GGH'96], output leaks nothing about S! (the bound s is public)
- "Nearest-plane" algorithm with randomized rounding [Klein'00,GPV'08]

- Sample $D_{\mathcal{L}_{\mathbf{u}}^{\perp}(\mathbf{A}),s}$ given any short enough basis **S**: $\max \|\tilde{\mathbf{s}}_{i}\| \leq s$.
 - ★ Unlike [GGH'96], output leaks nothing about S! (the bound *s* is public)
- "Nearest-plane" algorithm with randomized rounding [Klein'00,GPV'08]

- Sample $D_{\mathcal{L}_{\mathbf{u}}^{\perp}(\mathbf{A}),s}$ given any short enough basis **S**: $\max \|\tilde{\mathbf{s}}_{i}\| \leq s$.
 - ★ Unlike [GGH'96], output leaks nothing about S! (the bound *s* is public)
- "Nearest-plane" algorithm with randomized rounding [Klein'00,GPV'08]

- Sample $D_{\mathcal{L}_{\mathbf{u}}^{\perp}(\mathbf{A}),s}$ given any short enough basis **S**: $\max \|\tilde{\mathbf{s}}_{i}\| \leq s$.
 - ***** Unlike [GGH'96], output leaks nothing about S! (the bound s is public)
- "Nearest-plane" algorithm with randomized rounding [Klein'00,GPV'08]

Proof idea: ρ_s((c + L) ∩ plane) depends only on dist(0, plane); essentially no dependence on shift within plane

Fast-Forward 17 Years...

 [BonehFranklin'01,...]: first IBE construction, using "new math" (elliptic curves w/ bilinear pairings)

Fast-Forward 17 Years...

- [BonehFranklin'01,...]: first IBE construction, using "new math" (elliptic curves w/ bilinear pairings)
- **2** [Cocks'01,BGH'07]: quadratic residuosity mod N = pq [GM'82]

Fast-Forward 17 Years...

- [BonehFranklin'01,...]: first IBE construction, using "new math" (elliptic curves w/ bilinear pairings)
- 2 [Cocks'01,BGH'07]: quadratic residuosity mod N = pq [GM'82]
- 3 [GPV'08]: lattices!

$$\underbrace{\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})}_{\longrightarrow}$$

(public key)

ID-Based Encryption

• Generating trapdoors (A with short basis or equivalent)

- Generating trapdoors (A with short basis or equivalent)
- Removing the random oracle from signatures & IBE

- Generating trapdoors (A with short basis or equivalent)
- Removing the random oracle from signatures & IBE
- More surprising applications

- Generating trapdoors (A with short basis or equivalent)
- Removing the random oracle from signatures & IBE
- More surprising applications

Selected bibliography for this talk:

- MR'04 D. Micciancio and O. Regev, "Worst-Case to Average-Case Reductions Based on Gaussian Measures," FOCS'04 / SICOMP'07.
- GPV'08 C. Gentry, C. Peikert, V. Vaikuntanathan, "Trapdoors for Hard Lattices and New Cryptographic Constructions," STOC'08.
 - P'10 C. Peikert, "An Efficient and Parallel Gaussian Sampler for Lattices," Crypto'10.

Bonus Material:

A Better Discrete Gaussian Sampling Algorithm

Good News, and Bad News...

✓ Tight: std dev $s \approx \max \|\tilde{\mathbf{s}}_i\| = \max$ dist between adjacent planes

Good News, and Bad News...

✓ Tight: std dev $s ≈ \max \|\tilde{\mathbf{s}}_i\| = \max$ dist between adjacent planes

X Not efficient: runtime = $\Omega(n^3)$, high-precision arithmetic

Good News, and Bad News...

- ✓ Tight: std dev $s ≈ \max \|\tilde{\mathbf{s}}_i\| = \max$ dist between adjacent planes
- **X** Not efficient: runtime = $\Omega(n^3)$, high-precision arithmetic
- \checkmark Inherently sequential: n adaptive iterations

Good News, and Bad News...

- ✓ Tight: std dev $s ≈ \max \|\tilde{\mathbf{s}}_i\| = \max$ dist between adjacent planes
- **X** Not efficient: runtime = $\Omega(n^3)$, high-precision arithmetic
- \checkmark Inherently sequential: n adaptive iterations

X No efficiency improvement in the ring setting [NTRU'98,M'02,...]

Good News, and Bad News...

- ✓ Tight: std dev $s ≈ \max \|\tilde{\mathbf{s}}_i\| = \max$ dist between adjacent planes
- **X** Not efficient: runtime = $\Omega(n^3)$, high-precision arithmetic
- \checkmark Inherently sequential: n adaptive iterations
- X No efficiency improvement in the ring setting [NTRU'98,M'02,...]

A Different Sampling Algorithm [P'10]

• Simple & efficient: n^2 online adds and mults (mod q)

Good News, and Bad News...

- ✓ Tight: std dev $s ≈ \max \|\tilde{\mathbf{s}}_i\| = \max$ dist between adjacent planes
- **X** Not efficient: runtime = $\Omega(n^3)$, high-precision arithmetic
- \checkmark Inherently sequential: n adaptive iterations
- X No efficiency improvement in the ring setting [NTRU'98,M'02,...]

A Different Sampling Algorithm [P'10]

Simple & efficient: n² online adds and mults (mod q)
 Even better: Õ(n) time in the ring setting

Good News, and Bad News...

- ✓ Tight: std dev $s ≈ \max \|\tilde{\mathbf{s}}_i\| = \max$ dist between adjacent planes
- **×** Not efficient: runtime = $\Omega(n^3)$, high-precision arithmetic
- \checkmark Inherently sequential: n adaptive iterations
- X No efficiency improvement in the ring setting [NTRU'98,M'02,...]

A Different Sampling Algorithm [P'10]

- Simple & efficient: n² online adds and mults (mod q)
 Even better: Õ(n) time in the ring setting
- ▶ Fully parallel: n^2/P operations on any $P \le n^2$ processors

Good News, and Bad News...

- ✓ Tight: std dev $s ≈ \max \|\tilde{\mathbf{s}}_i\| = \max$ dist between adjacent planes
- **X** Not efficient: runtime = $\Omega(n^3)$, high-precision arithmetic
- \checkmark Inherently sequential: n adaptive iterations
- X No efficiency improvement in the ring setting [NTRU'98,M'02,...]

A Different Sampling Algorithm [P'10]

- Simple & efficient: n² online adds and mults (mod q)
 Even better: Õ(n) time in the ring setting
- ▶ Fully parallel: n^2/P operations on any $P \le n^2$ processors
- High quality: same* Gaussian std dev as nearest-plane alg *in cryptographic applications

▶ [Babai'86] "round-off:" $\mathbf{c} \mapsto \mathbf{S} \cdot \mathsf{frac}(\mathbf{S}^{-1} \cdot \mathbf{c})$. (Fast & parallel!)

- ▶ [Babai'86] "round-off:" $\mathbf{c} \mapsto \mathbf{S} \cdot \mathsf{frac}(\mathbf{S}^{-1} \cdot \mathbf{c})$. (Fast & parallel!)
- Deterministic round-off is insecure [NR'06] ...

▶ [Babai'86] "round-off:" $\mathbf{c} \mapsto \mathbf{S} \cdot \mathsf{frac}(\mathbf{S}^{-1} \cdot \mathbf{c})_{\$}$. (Fast & parallel!)

Deterministic round-off is insecure [NR'06] ...

... but what about randomized rounding?

▶ [Babai'86] "round-off:" $\mathbf{c} \mapsto \mathbf{S} \cdot \mathsf{frac}(\mathbf{S}^{-1} \cdot \mathbf{c})_{\$}$. (Fast & parallel!)

Deterministic round-off is insecure [NR'06] ...

... but what about randomized rounding?

▶ [Babai'86] "round-off:" $\mathbf{c} \mapsto \mathbf{S} \cdot \mathsf{frac}(\mathbf{S}^{-1} \cdot \mathbf{c})_{\$}$. (Fast & parallel!)

Deterministic round-off is insecure [NR'06] ...

... but what about randomized rounding?

Non-spherical discrete Gaussian: has covariance

$$\Sigma := \mathbb{E}_{\mathbf{x}} \big[\mathbf{x} \cdot \mathbf{x}^t \big] \approx \mathbf{S} \cdot \mathbf{S}^t.$$

▶ [Babai'86] "round-off:" $\mathbf{c} \mapsto \mathbf{S} \cdot \mathsf{frac}(\mathbf{S}^{-1} \cdot \mathbf{c})_{\$}$. (Fast & parallel!)

Deterministic round-off is insecure [NR'06] ...

... but what about randomized rounding?

Non-spherical discrete Gaussian: has covariance

$$\Sigma := \mathbb{E}_{\mathbf{x}} \big[\mathbf{x} \cdot \mathbf{x}^t \big] \approx \mathbf{S} \cdot \mathbf{S}^t.$$

Covariance can be measured — and it leaks S! (up to rotation)

1 Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ .

(pos def means: $\mathbf{u}^t \Sigma \mathbf{u} > 0$ for all unit \mathbf{u} .)

1 Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ .

(pos def means: $\mathbf{u}^t \Sigma \mathbf{u} > 0$ for all unit \mathbf{u} .)

Spherical Gaussian \leftrightarrow covariance s^2 **I**.

1 Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ .

(pos def means: $\mathbf{u}^t \Sigma \mathbf{u} > 0$ for all unit \mathbf{u} .)

Spherical Gaussian \leftrightarrow covariance $s^2 \mathbf{I}$.

2 Convolution of Gaussians:

1 Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ .

(pos def means: $\mathbf{u}^t \Sigma \mathbf{u} > 0$ for all unit \mathbf{u} .)

Spherical Gaussian \leftrightarrow covariance $s^2 \mathbf{I}$.

2 Convolution of Gaussians:

3 Given Σ_1 , how small can s be? For $\Sigma_2 := s^2 \mathbf{I} - \Sigma_1$,

1 Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ .

(pos def means: $\mathbf{u}^t \Sigma \mathbf{u} > 0$ for all unit \mathbf{u} .)

Spherical Gaussian \leftrightarrow covariance $s^2 \mathbf{I}$.

2 Convolution of Gaussians:

 $\Sigma_{1} + \Sigma_{2} = \Sigma = s^{2} \mathbf{I}$ **3** Given Σ_{1} , how small can s be? For $\Sigma_{2} := s^{2} \mathbf{I} - \Sigma_{1}$, $\mathbf{u}^{t} \Sigma_{2} \mathbf{u} = s^{2} - \mathbf{u}^{t} \Sigma_{1} \mathbf{u} > 0 \iff s^{2} > \max \lambda_{i}(\Sigma_{1})$

1 Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ .

(pos def means: $\mathbf{u}^t \Sigma \mathbf{u} > 0$ for all unit \mathbf{u} .)

Spherical Gaussian \leftrightarrow covariance $s^2 \mathbf{I}$.

2 Convolution of Gaussians:

 $\Sigma_1 + \Sigma_2 = \Sigma = s^2 \mathbf{I}$

3 Given Σ_1 , how small can s be? For $\Sigma_2 := s^2 \mathbf{I} - \Sigma_1$,

$$\mathbf{u}^t \Sigma_2 \mathbf{u} = s^2 - \mathbf{u}^t \Sigma_1 \mathbf{u} > 0 \quad \Longleftrightarrow \quad s^2 > \max \lambda_i(\Sigma_1)$$

For $\Sigma_1 = \mathbf{S} \mathbf{S}^t$, can use any $s > s_1(\mathbf{S}) := \max \text{ singular val of } \mathbf{S}$.

• Given basis **S**, coset $\mathcal{L} + \mathbf{c}$, and std dev $s > s_1(\mathbf{S})$,

Given basis S, coset L + c, and std dev s > s₁(S),
 Generate perturbation p with covariance Σ₂ := s² I - Σ₁ > 0

• Given basis S, coset $\mathcal{L} + \mathbf{c}$, and std dev $s > s_1(\mathbf{S})$,

() Generate perturbation \mathbf{p} with covariance $\Sigma_2 := s^2 \mathbf{I} - \Sigma_1 > 0$

2 Randomly round-off \mathbf{p} to $\mathcal{L} + \mathbf{c}$: return $\mathbf{S} \cdot \mathsf{frac}(\mathbf{S}^{-1} \cdot (\mathbf{c} + \mathbf{p}))_{\$}$

- Given basis S, coset $\mathcal{L} + \mathbf{c}$, and std dev $s > s_1(\mathbf{S})$,
 - **(**) Generate perturbation \mathbf{p} with covariance $\Sigma_2 := s^2 \mathbf{I} \Sigma_1 > 0$
 - 2 Randomly round-off p to $\mathcal{L}+c:$ return $\mathbf{S}\cdot\mathsf{frac}(\mathbf{S}^{-1}\cdot(\mathbf{c}+p))_\$$

Convolution* Theorem

Algorithm generates a spherical discrete Gaussian over $\mathcal{L}+\mathbf{c}.$

- Given basis S, coset $\mathcal{L} + \mathbf{c}$, and std dev $s > s_1(\mathbf{S})$,
 - **(**) Generate perturbation \mathbf{p} with covariance $\Sigma_2 := s^2 \mathbf{I} \Sigma_1 > 0$
 - 2 Randomly round-off p to $\mathcal{L}+c:$ return $\mathbf{S}\cdot\mathsf{frac}(\mathbf{S}^{-1}\cdot(\mathbf{c}+p))_\$$

Convolution* Theorem

Algorithm generates a spherical discrete Gaussian over $\mathcal{L} + c$.

(*technically not a convolution, since step 2 depends on step 1.)

• Given basis **S**, coset $\mathcal{L} + \mathbf{c}$, and std dev $s > s_1(\mathbf{S})$,

- **(**) Generate perturbation \mathbf{p} with covariance $\Sigma_2 := s^2 \mathbf{I} \Sigma_1 > 0$
- **2** Randomly round-off p to $\mathcal{L} + c$: return $\mathbf{S} \cdot \mathsf{frac}(\mathbf{S}^{-1} \cdot (\mathbf{c} + \mathbf{p}))_{\$}$

Optimizations

Precompute perturbations offline

- Given basis **S**, coset $\mathcal{L} + \mathbf{c}$, and std dev $s > s_1(\mathbf{S})$,
 - **(**) Generate perturbation \mathbf{p} with covariance $\Sigma_2 := s^2 \mathbf{I} \Sigma_1 > 0$
 - 2 Randomly round-off p to $\mathcal{L} + c$: return $\mathbf{S} \cdot \mathsf{frac}(\mathbf{S}^{-1} \cdot (\mathbf{c} + \mathbf{p}))_{\$}$

Optimizations

- Precompute perturbations offline
- **2** Batch multi-sample using fast matrix multiplication

- Given basis S, coset $\mathcal{L} + \mathbf{c}$, and std dev $s > s_1(\mathbf{S})$,
 - **(**) Generate perturbation \mathbf{p} with covariance $\Sigma_2 := s^2 \mathbf{I} \Sigma_1 > 0$
 - 2 Randomly round-off p to $\mathcal{L}+c:$ return $\mathbf{S}\cdot\mathsf{frac}(\mathbf{S}^{-1}\cdot(\mathbf{c}+p))_\$$

Optimizations

- Precompute perturbations offline
- 2 Batch multi-sample using fast matrix multiplication
- Over the second seco