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Abstract

Reed-Solomon error-correcting codes are ubiquitous across computer science and information theory,
with applications in cryptography, computational complexity, communication and storage systems, and
more. Most works on efficient error correction for these codes, like the celebrated Berlekamp—Welch
unique decoder and the (Guruswami—)Sudan list decoders, are focused on measuring error in the Hamming
metric, which simply counts the number of corrupted codeword symbols. However, for some applications,
other metrics that depend on the specific values of the errors may be more appropriate.

This work gives a polynomial-time algorithm that list decodes (generalized) Reed—Solomon codes
over prime fields in ¢, (semi)metrics, for any 0 < p < 2. Compared to prior algorithms for the Lee (¢1)
and Euclidean (¢2) metrics, ours decodes to arbitrarily large distances (for correspondingly small rates),
and has better distance-rate tradeoffs for all decoding distances above some moderate thresholds. We also
prove lower bounds on the #; and /5 minimum distances of a certain natural subclass of GRS codes, which
establishes that our list decoder is actually a unique decoder for many parameters of interest. Finally,
we analyze our algorithm’s performance under random Laplacian and Gaussian errors, and show that it
supports even larger rates than for corresponding amounts of worst-case error in ¢; and ¢, (respectively).

1 Introduction

Reed—Solomon codes [RS60] are among the most widely used families of error-correcting codes, with
applications across computer and communication sciences. Their many virtues include: a very simple
definition; the largest possible minimum distance as a function of rate; and efficient decodability from errors,
via either unique decoding up to half the minimum distance (see, e.g., [GRS19, Section 12.1]), or list decoding
up to the larger Johnson bound, via the celebrated works of Sudan [Sud97] and Gururswami—Sudan [GS98]
(see also [GRS19, Section 12.2]).

List decoding [Eli58, Woz58] is the task of finding all codewords that are within some desired distance of
a (potentially corrupted) received word. When this radius is more than half the code’s minimum distance,
there can potentially be more than one codeword within range (hence the name “list decoding™). Despite this
non-uniqueness, list decoding can suffice for many purposes (e.g., finding a nearest codeword within range),
and indeed, it has found numerous applications.

Most work on decoding Reed—Solomon codes has measured errors in the Hamming metric, which simply
counts the number of corrupted codeword symbols (regardless of how they are corrupted). However, there
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are many other natural metrics that depend on the specific values of the errors. Such metrics can be more
appropriate for settings where introducing a “large” error at a coordinate is more costly than a “small” error,
or where the communication channel might add some nonzero error to every coordinate. An example is a
channel that adds error according to a Gaussian or other fairly concentrated distribution. When the code
alphabet is Z, (the integers modulo ¢)—in particular, a prime field F,—one metric of frequent study is the
Lee metric, which is merely the /1 norm ||x||; = ), |x;] after lifting Z, to its distinguished representatives in
[—¢/2,q/2). Other natural, analogously defined choices include the Euclidean (¢) or other ¢, metrics.

We know of only a few prior works on efficiently decoding Reed—Solomon codes in metrics others than
Hamming. For the Lee (£1) metric, Roth and Siegel [RS94] gave an algorithm that uniquely decodes up to
half of (a lower bound on) the minimum distance; their algorithm works for certain subclasses of (generalized)
Reed-Solomon and BCH codes. In addition, Wu, Kuijper, and Udaya [WKUO03] gave a list-decoding algorithm
for ¢1, built around Guruswami—Sudan [GS98], that decodes to larger distances than in [RS94] for all small
enough rates. Finally, for the Euclidean (¢2) metric, Mook and Peikert [MP22] recently gave a list-decoding
algorithm that also uses [GS98] as a black box.

1.1 Contributions

This work gives a polynomial-time algorithm that list decodes any generalized Reed—Solomon (GRS) code
over a prime field in the ¢, (semi)metric for any 0 < p < 2; in particular, this includes the Lee (/1)
and Euclidean (¢3) metrics.! Our algorithm works for a broader range of parameters, and has a better
distance-rate tradeoff for all decoding distances above some moderate thresholds, than the prior algorithms
for /1 and ¢35 [RS94, WKUO3, MP22]; see below for elaboration and Figure 1 for a visual depiction. For
ease of comparison across the various works and /,, (semi)metrics, we use a suitably normalized version of
distance: for code length n, distance d corresponds to relative distance ¢ := d/ nl/p,

For p = 2, our algorithm can handle an arbitrarily large decoding distance, for a correspondingly small
enough rate: specifically, as § and the alphabet size grow, we can decode for rates rapidly approaching
1/(6v/2me). By contrast, the prior work [MP22] applies only for relative distance § < 1/4/2 ~ 0.7071
(i.e., ¢ distance less than y/n/2). In addition, our algorithm works for larger rates than the one in [MP22]
whenever § exceeds about 0.51797. (See Section 5.2 for a detailed comparison.) This is particularly interesting
since the rates obtained in [MP22] were shown to be optimal (in a certain sense) for § < 1/2, but not for
larger values.

For p = 1, again our algorithm (like the one from [WKUO3]) can handle an arbitrarily large decoding
distance, whereas [RS94] is limited to relative distance d < 1 (i.e., ¢1 distance less than n). In addition,
our algorithm works for larger rates than those of [RS94, WKUO3] whenever the relative decoding distance
exceeds about 0.78988, and in general, as § and the alphabet size grow, we can decode for rates rapidly
approaching 1/(2ed). (See Section 6.2 for details.) Our algorithm is also qualitatively broader: it decodes
from continuous (real-valued) error, whereas the ones from [RS94, WKUO3] require discrete (integer) error.
While continuous error can be discretized by rounding, this can increase the relative distance from the
codeword by up to 1/2 in ¢, which significantly degrades the distance-rate tradeoffs of the prior works,
making them worse than ours for all distances.

We also give several useful supplementary results. By adapting an argument of [RS94], we prove lower
bounds on the ¢; and ¢ minimum distances for a certain natural subclass of GRS codes. These imply that for
many parameters of interest, our list-decoding algorithm outputs at most one codeword, i.e., it is actually a
unique decoder. (See Lemmas 6.4 and 5.7 and the discussions thereafter.) And in addition to worst-case errors

A semimetric is just a metric that does not necessarily satisfy the triangle inequality (which we will not need).
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Figure 1: Plots of the adjusted rate R*(®) as a function of the ¢, relative decoding distance 6 = d/ nl/p
or corresponding channel error width r = pt/r. ¢p - 0, for which our algorithm can list decode prime-field
GRS codes in the worst case (wc) or average case (ac), respectively, for p = 2 (left) and p = 1 (right). (For
simplicity, these plots assume a field size g > J,r.) For comparison, also shown are the corresponding
functions from the prior work on decoding GRS codes in these metrics: [MP22] is for list decoding in {2,
and [RS94, WKUO3] are respectively for unique and list decoding in the ¢ (Lee) metric, but only for discrete
(integer) error. Also shown are rate bounds Rﬁﬁzq for which decoding to ¢, relative distance J is guaranteed
to yield a unique codeword, for a certain natural subclass of GRS codes. (See Lemmas 6.4 and 5.7 and the
discussions thereafter.)

added by an adversarial channel, we also consider our algorithm’s performance under average-case errors
produced by “memoryless additive” channels. Such channels add independent identically distributed error,
drawn from some specified distribution, to each coordinate of the transmitted codeword. For Laplacian and
Gaussian errors (which roughly correspond to £1 and /5, respectively), we show that our algorithm supports
even larger rates than what we would get by merely applying concentration bounds on the error vector and
invoking our worst-case results.

1.2 Technical Overview

At the highest level, our algorithm for list decoding prime-field GRS codes in /,, follows the basic approach
of [MP22] for list decoding (G)RS codes in ¢2: we first translate the received word into a suitable weight (or
reliability) vector, then invoke a soft-decision list-decoding algorithm [GS98, GurO1, KV03] for GRS codes.
Informally, a weight vector specifies, for each coordinate of the received word and each symbol in the code
alphabet, a “confidence level” that the transmitted codeword had that symbol at that coordinate. Given such a
weight vector, a soft-decision decoding algorithm then finds all codewords that are sufficiently correlated
with it, as determined by the code rate. (For the formal definitions and theorem statement, see Definitions 3.1
and 3.2 and Theorem 3.3.)

For our purposes, the principal challenge is in mapping a received word to an appropriate weight vector
so that any codeword that is close enough to the received word (in the ¢, metric) has sufficient correlation
with the weight vector. The prior work [MP22] uses very simple weights: given a real received value r, only
its floor |r| and ceiling || receive positive weights, of 1 — (r — |r]) and 1 — ([r] — r), respectively. It
was shown that with these weights, the cited soft-decision algorithms decode up to any /5 relative distance
§ < 1/4/2 for any code rate up to 1 — 262. Moreover, for § < 1/2 it was shown that this rate is optimal
for those algorithms, i.e., no other weight assignment can work for a larger rate. However, [MP22] did not
consider larger decoding distances than these, nor other metrics.



In this work, to handle large decoding distances and other metrics, we use “smoother” weights, which
typically assign a positive weight to every alphabet symbol. Our overall approach (see Section 3) is quite
general, and is parameterized by a function f: R — [0, 1] satisfying mild hypotheses, primarily that its
Fourier transform f is non-negative (see Assumption 2.12). This function can be seen as defining a weight—or
a relative “likelihood,” in the case of a random channel—for every potential real-valued error.” For a
prime-order code alphabet F, = Z, := Z/qZ, and a received real value r € R/qZ, we assign weight
f(r—w+qZ) =3, (mod g f(€) to each alphabet symbol w € Z,. Since the elements of the coset
r — w + qZ are exactly those errors that would convert a transmitted symbol w to the received value 7, this
assignment captures the total weight of all such errors.

Our first main result, given in Theorem 3.5, lower bounds the correlation between the weight vector for a
received word r over R/¢Z and any (code)word c over Zg, by the ratio of two quantities determined by f: its
(arithmetic or geometric) mean over the coordinates of the error vector r — ¢, and (the square root of) its
sum over a certain two-dimensional integer lattice £,. So, for a particular decoding distance in a metric of
interest (or channel distribution, in the average case), the goal becomes to choose a suitable function f that
nearly maximizes this ratio. The proof of the theorem uses a mild generalization of Fourier-analytic results on
lattices from [Ban93, MR04], and is the source of our requirement that fAis non-negative, and ultimately the
restriction that 0 < p < 2 for £, (semi)metrics.

The bulk of the remaining work is then devoted to making a suitable choice of function f for the ¢,
(semi)metric (and corresponding channel distributions), and analyzing its summation over £,. In Section 4
we consider scalings of the function f®) () := exp(—|z[?), which is known to have non-negative Fourier
coefficients for 0 < p < 2 (but not for any other p). Then in Sections 5 and 6 we specialize to p = 2 and
p = 1, respectively, and give fairly tight upper bounds on f(£,) using Fourier-analytic techniques or direct
analysis. Finally, we use these bounds to optimize the distance-rate tradeoffs for which we can list decode
GRS codes in these ¢, metrics, and for Gaussian and Laplacian random channels as well.

2 Preliminaries

For a positive integer n, let [n] := {1,...,n}. For a positive integer ¢, define the quotient ring Z, := Z/qZ
and the additive quotient group R, := R/¢Z. For a prime power ¢, let [F; denote the finite field of size g.
When ¢ is prime, we identify Z, with the finite field [F; in the natural way.

For any = € R, (which is a coset of ¢Z), define its “lift” T € [—¢/2, ¢/2) to be the unique real number
such that T = x (mod q), i.e., the “zero-centered” distinguished representative of x. We also apply this
notation entry-wise to vectors over R,.

For any p > 0, define the ¢, (quasi)norm on R™ as ||x||, := (31 |zi[P) YP It is well known that this is
a norm if and only if p > 1, and is a quasinorm for any p > 0.> Similarly, we define the ¢, (semi)metric on
Ry by lifting, i.e., via ||x||, := [|X||,-* For p = 1, this generalizes the Lee metric over Z, to R,.

For two groups X, Y, their direct sum group X @ Y is their Cartesian product with the group operation
defined component-wise. This notation extends to the direct sum of group cosets, which is a coset of the
direct sum of the groups.

2For example, we take f to be a Gaussian function for decoding in the £2 metric, or under a Gaussian channel.

?A quasinorm relaxes the triangle inequality axiom to require only that |x 4+ y|| < K (||x|| + ||y||) for some fixed K. We do not
use the triangle inequality, or even this relaxation, so we can consider p < 1.

*Formally, this is not a norm because it is not defined on a vector space (since R, is not a field), and it does not satisfy homogeneity
due to the mod-q reduction. However, it does define a (semi)metric (where “semi” does not require the triangle inequality), with
distance function d(x,y) = ||x — y||»-



For any function f: D — C and countable subset X C D, we define f(X) := > _x f(x). We extend

the domain to D¥ multiplicatively, as
k

) =1 ). (2.1)

i=1
often omitting the superscript k£ when it is clear from context. When D = R", for any real s # 0 we define

fs(x) == f(x/s).

For any two vectors x = (z1,...,2,)andy = (y1, ..., yn) of the same dimension, their coordinate-wise
(or Hadamard) product is denoted by x © y := (1 - Y1, .., Tn * Yn)-
For a finite sequence X1, ..., X,, of real values, we denote their average by Avg;[X;] := % Yo X

We use the following special case of the well known Hoeftfding (lower-)tail bound.

Lemma 2.1 (Hoeffding’s Inequality). Let X1, ..., X,, be independent identically distributed random vari-
ables in [0, 1] with common expectation p = E[X;]. Then for any v > 0,

Pr|Avg[X;] < p— | < exp(—27°n) .
7

2.1 Linear Codes

A linear (error-correcting) code of (block) length n over the alphabet F; is a linear subspace of Fg. Asa
subspace, it has a dimension. In this paper, we consider the following family of codes.

Definition 2.2 ((Generalized) Reed—Solomon code). Let n < ¢ be positive integers, with ¢ a prime power.
For a non-negative integer k, a vector a € Fy with distinct entries, and a vector t € (IF, \ {0})" with
(not necessarily distinct) non-zero entries, the Generalized Reed—Solomon (GRS) code of dimension k with
evaluation points o and twist factors t is defined as

GRS, k(a,t) :={t © f(a) = (t1 - fla1),...,tn - flan)) : f € Fylz], deg(f) < k} .0

A special case is a Reed—Solomon (RS) code, which is obtained by using trivial twist factors t = (1,...,1).

2.2 Lattices

Definition 2.3 (Lattice, Basis). An (n-dimensional, full-rank) lattice L C R"™ is the set of all integer linear
combinations of some n linearly independent basis vectors B = {by,...,b,} C R™

L= L(B) ::{ Y zibi:ziEZ}.
i=1

Equivalently, it is a discrete additive subgroup of R™ whose R-span is R"; as such, it defines the quotient
group R"™ /L of lattice cosets x + L for x € R™. A sublattice of Z" is called an integer lattice.

In this work, all lattices are implicitly full rank. A lattice basis can equivalently be seen as an invertible
matrix B € R™*" whose columns are the vectors b1, ..., b,. Note that a given lattice has multiple different
bases, which are all related by right-multiplication by unimodular matrices in Z™*".

By convention, the zero polynomial has degree —oo.



Definition 2.4 (Determinant). The deferminant of a lattice £ generated by basis B is det(L£) := |det(B)].

Note that the determinant of a lattice is invariant under the choice of basis, by the above-mentioned relationship
between the bases of a lattice.

Definition 2.5 (Dual lattice). The dual lattice of a lattice £ C R™ is
L ={xeR":VveLl (v,x)eZ}.
If B is a basis of £, then its dual basis B* := B~" is a basis of £*, and hence det(L£*) = det(£)~!
Lemma 2.6. Let f: D — Rand X,Y C D be countable subsets of its domain (e.g., lattice cosets). Then
fXeY)=f(X) f{Y).

Proof. This follows directly from the definition of direct sum and multiplicativity (Equation (2.1)):

fX @)=Y fxay) = f6)-fy) = (D f60) (D F3) = FCO - f(¥). O
X,y X y

xeX
yey

2.3 Fourier Analysis

Let f: R™ — C be a (Borel) measurable function that satisfies [, |f(x)|dx < co. Its Fourier transform
f: R™ — C is defined as

~

flw) = f(x) - exp(—2mi(x, w)) dx .
R™
It satisfies the following standard properties, which follow by routine calculations.

Lemma 2.7 (Multiplicativity). For any function f as above, ﬁ = fk (where the exponent notation is as
defined in Equation (2.1)).

Lemma 2.8 (Time-scaling property). For any function f as above and real s # 0, f;(w) =s"- fl /s(W).

Lemma 2.9 (Time-shift property). For any function f as above and ¢ € R, let g(x) = f(x — ¢). Then
Glw) = F(w) - exp(~2mi(w, c)).

We say that f is nice if it satisfies conditions that are sufficient for the following formula to hold, e.g.,
those given in [Ser73, pages 106—107]. All of the specific functions f we use in this work are easily seen to
be nice.

Lemma 2.10 (Poisson Summation Formula (PSF)). For any lattice L and nice function f,
F(L) = det(L7) - F(L7).
We will use a more general version of the PSF for lattice cosets.

Lemma 2.11 (Generalized PSF). For any lattice L C R", nice function f, andy € R",

fly +£) = det(L") Z Flw) - exp(2mi(w,y)) .

weL*

6



Proof. Define the function g(x) := f(x +y). By Lemmas 2.9 and 2.10,
)

fly+£)=g(L
det
det

L7)-g(L%)
£ ) g(w)

weL*

= det(L") Z Flw) - exp(2mi(w,y)) . O
weL*

(
(

2.4 Lattice Roughness
Continuing from Section 2.3, for the rest of this work we require the following properties of f.
Assumption 2.12. The function f has range [0, 1] and is nice, and fis non-negative real with f(O) > 0.
Because f is real, its Fourier transform is conjugate symmetric, i.e., f( w) = f( )* for all w, where the
star denotes complex conjugation. Since f is also real, this implies that it is symmetric, i.e., f ( w)=f (w)
Finally, note that if f satisfies this assumption, then so does its multiplicative extension f*.
We now define an important Fourier-analytic quantity that plays an important role in our analysis. We

adopt the name “roughness” because it is the functional inverse of the “smoothing parameter” from [MR04],
which is the smallest s that makes the function f,(y + £) sufficiently “smooth” as a function of y.

Definition 2.13. For a function f, lattice £ C R", and real s > 0, the roughness is defined as
r * N *

fs(0) fs(0)
More generally, for a (linear) subspace H of R", the H-roughness is defined as
R\ HY) e
fs(L-NHL)  fo(L*nHL)

S T

ecs(H) =

—1<es(R") = e

(Both inequalities follow from the non-negativity of ]/"\s.)

Lemma 2.14 (adapted from [MR04, Lemmas 2.9 and 4.1]). For any lattice L C R", real s > 0, and
subspace H of R™ defining roughness ¢ := e ((H), and any 'y € H,

fs(y + L) edet(L*) - fo(L*NHY) - [1—e,1+¢],

with equality against the upper bound when'y = 0. In particular, f,(y + L) € fs(£) - [2=,1].

1+e?
Proof. By the generalized PSF (Lemma 2.11),
fs(y + £) = det(L") Z Fo(w) - exp(2mi(w, y))
weL*
= det(L") (ﬁ(z:* NHY+ Y Jw) - exp@rilw,y)
weL*\H+
= det(L") - (fs(z* NHY+ Y fu(w) - cos(2n(w, y>) .
weL*\H+



The last equation follows from the symmetry of f; and by pairing each (non-zero) element of £* \ H+ with
its negation, which cancels out the imaginary part of exp(27i(w,y)).

Now observe that fs(w) -cos(2m(w,y)) € [—ﬁ(w), fs(w)], with equality against the upper bound for
y = 0, because f; is non-negative. The claim then follows by the definition of roughness e, s(H ). O

3 List-Decoding Reed—Solomon Codes

3.1 Soft-Decision Decoding

To list-decode Reed—Solomon codes under various norms and probabilistic channel models, we use the
“weighted,” or soft-decision, list decoder of Guruswami and Sudan (hereafter GS) [GS98], as elaborated upon
in Guruswami’s thesis [GurO1, Section 6.2.10] and the work of Koetter and Vardy [KVO03]. A soft-decision
decoder takes a “weight vector” as input, and outputs a set of codewords.

Definition 3.1. A weight vector for a length-n code over F, is some W := (W1, ..., W,,) € [0,1]?" where
each block W; € [0, 1]7 is indexed by F; equivalently, each block is a function W;: F, — [0, 1].

Conceptually, each block W; of a weight vector may be thought of as specifying a (posterior) probability
distribution II; over F,, where II;(x) is proportional to the probability that the ith transmitted symbol was
x € [, given what was received from the channel (which need not be an element of ;). At a formal level,
this interpretation makes sense only when the channel is probabilistic (for average-case decoding), but it still
serves as useful intuition when the channel is adversarial (for worst-case decoding). We consider both types
of channels in our results below.

For ¢ € F,, define [¢] € [0,1]¢ to be the binary indicator vector indexed by F, that has a 1 in
coordinate ¢ and 0s elsewhere. Similarly, for any vector ¢ = (¢1,...,¢,) € F ;L, define the weight vector
[c] := ([e1],-- -, [en]) € ]0,1]9™. Observe that its Euclidean norm is ||[c]|| = /7.

Definition 3.2. The correlation between a weight vector W € [0, 1]9" and a word ¢ € [y is defined as their
length-normalized inner product (or the cosine of the angle between them):

(W, [e])
Wil v/n
Theorem 3.3 (adapted from [GS98, Theorem 18] and [Gur01, Theorem 6.21]). For a prime power q, let
C C Fy be a Generalized Reed-Solomon code of dimension k and adjusted rate R* := (k — 1)/n. There

is a deterministic algorithm that, given a weight vector W and a “tolerance” ™ > 0, outputs in time
poly(n,q,1/(7||W]|)) the set of all codewords c € C that satisfy

corr(W,c) > VR* + 7.

corr(W, c) :=

We remark that the above theorem is originally stated for rational weights, but the supporting argument
(from [GurO1, Lemma 6.20]) easily adapts to handle real-valued weights that can be lower bounded to any
needed precision in polynomial time, as all of ours can be.

3.2 From Received Words to Weight Vectors

Here we describe a general approach for translating a received word to a weight vector. This translation is
parameterized by a function that, conceptually, can be viewed as (proportional to) the channel’s probability
density function, even if the channel is not actually probabilistic.



Let f: R — [0, 1] be a function that satisfies Assumption 2.12, extended multiplicatively to R™ as in
Equation (2.1), and recall that f(x) := f(x/s) for any constant s > 0. Next let ¢ be a positive integer, and
recall that we identify Z, := Z/qZ with F; in the natural way when ¢ is prime. Let the set of possible received
values be R, = R/¢Z, and for any such value y € R,, define the weight function W, ,: Z, — [0, 1] by

Wsy(x) = fsly — x4+ qZ) .

Notice that here f; is applied to a coset of ¢Z, which represents an infinite series; for all our concrete choices,
these series converge and so the function W, , is well defined. This function can also be seen as the vector
Wiy = (Wsy(x))zez, € [0,1]9, indexed by Z,.

In line with the probabilistic conception of weight vectors from Section 3.1 above, the function W,
can be seen as follows. Suppose that a uniformly random symbol in Z, is sent over a channel, which adds
(modulo ¢) noise drawn from a distribution over R whose probability density function is proportional to f;.
Then the probability that the sent symbol was = € Z,, conditioned on receiving y, is proportional to W, , ().
This is because the coset y — x € R, is the set of all noise values that yield y if z is sent. Note that in the
definition of W, , we do not normalize by the total weight W, (Z,) = fs(y + Z) (which may vary based on
the received value y); this turns out to yield simpler analyses and tighter results in the end.

Definition 3.4. For a function fs as above and any received vector y = (y1,...,yn) € Ry, define the
corresponding weight vector as

WS,y = (WS,yN R WS,yn) € [07 1]nq .

In order to use the soft-decision algorithm (Theorem 3.3) for decoding under an adversarial channel, it
suffices to show that we can choose a suitable s so that for any received word y and any sufficiently close
codeword c (in the norm of interest), the correlation corr(W; y, c) satisfies (3.3). Similarly, for decoding
under a probabilistic channel, it suffices to show that with high probability over the channel noise e, the
transmitted codeword c has large enough correlation with the weight vector Wy 5 of the received word
y = c + e (again, for some suitably chosen s). To this end, in what follows we give a lower bound on
(W y, [c]) and an upper bound on ||W; y ||, in terms of f, and the difference y — c between the received word
and the codeword of interest.

3.3 Main Theorem

Here we state and prove the main result of this section. For this we define the two-dimensional integer
lattice £, that consists of all shifts of the lattice gZ? by (z, z) for an integer z, i.e.,

Ly = U (@)= U((z,z) + qZ*) D qZ2.

TEZLq 2€Z

We have that det(L;) = ¢, and so det(L}) = 1/q. We sometimes omit the g subscript when it is clear from
context or its value is unimportant.

Theorem 3.5. Forany s > 0andy € Ry defining W = Wiy, and any ¢ € Zj,

AV8icn) [fs(yi — ci)] > fs(y — C)l/n
f(Ly) VL)

corr(W, c) >



Proof. This follows immediately from the following lower and upper bounds on the numerator and denominator

of corr(W, ¢) = |<|VV[[//E|C/D\;’TLLL For the numerator, by the definitions of W and [c],

(W, [c])/n = Avg[Wiy, (c:)] = Avelfi(yi — e)] = foly — )"/,

i€[n] i€[n]

where the last step follows by the inequality of arithmetic and geometric means, and the non-negativity
and multiplicativity of f, over direct sums of cosets (Lemma 2.6). For the denominator, the upper bound

|W|/v/n < \/ fs(Lg) is proved in Lemma 3.7 below. O

Remark 3.6. If certain coordinates of y are “very far” from the corresponding entries of c, we may get a better
lower bound on corr(W, c) by restricting to “good” coordinates. Specifically, for any nonempty G C [n] of
cardinality g = |G/, by the non-negativity of f;,

Avelfe(yi — e)] > 2 - Avglfalyi — e)] > L - fulye — ca)/?

i€[n] n iea

SRS

where x¢ is the vector obtained by restricting x to the coordinates in G.

Lemma 3.7. Adopting the notation from Theorem 3.5, and letting é = e, s(H) where H = span(1, 1),

1-¢
W|?/n € fo(L [ ,1}
IWIE/n e fol) [
Proof. By definition of W,

IWIP/n = Avg| 3 filyi—2)?] -

i€[n] 2€Zq

To bound this, let y € R, be arbitrary. By Lemma 2.6,

Y fly—2 = flly—2) @ (y—2)

TE€ELq TE€Lq

=Y fllyoy) - (o)

TE€Zyq
= [s((,9) + Lg)

€ ko) [

where the last step follows by the latter part of Lemma 2.14 on the lattice £, with subspace H, and noting
that (y,y) € H. The claim follows by averaging over i € [n]. O

3.4 Average-Case Decoding

Here we consider list-decoding in the average case, where the channel is probabilistic (not worst case) and
the goal is to output a list of codewords that includes the transmitted one. We consider channels that add
independent, identically distributed random error (drawn from some specified distribution) to each coordinate
of the transmitted codeword; this is often known as a memoryless additive channel. Specifically, we assume

10



that the channel’s error distribution (for each coordinate) is proportional to f, for some r > 0, i.e., it has
probability density function
DT(IE) - f’l‘(x)

Fr(0)
For example, if f, is a Gaussian function, this is known as the additive white Gaussian noise (AWGN) channel
model. In some settings one may also consider a discrete channel distribution, e.g., over Z, in which case its
probability mass function is D, (z) := f,(x)/fr(Z). For any s > 0 (which may differ from r), define

Hr,s *= e<—ED7~[fs(e)] .

In Section 4 we will use the following bound for a specific family of functions f to show that the
transmitted codeword is recovered with high probability over the channel error.

Lemma 3.8. Forany r,s > 0and T defining v := pi,.s — T - \/fs(Ly) > 0, and any c € Z,

Pr [corr(Ws,che, c) < T] < exp(—272n) .

e« Dn

Proof. The error coordinates e; are drawn independently from D,., so by Assumption 2.12 the values fs(e;)
are independent and identically distributed random variables in [0, 1], with expected value /i, s. Then by
Theorem 3.5 and Hoeffding’s inequality (Lemma 2.1),

Pricorr(Wis,cqe,¢) < T] < P;r [Avg[fs(ei)] <T- fs(ﬁq)]

€ i€[n]

< exp(—272n) . O

4 General (, (Semi)Metrics

In this section we define weight vectors via Definition 3.4 using the function f: R — [0, 1] defined as

f(x) = fP(2) = exp(—(cplz])?) (4.1)
where ¢, :==2-T'(1+1/p),

zZ—

where the gamma function I'(z) = [ ! exp(—u) du for z > 0, and satisfies I'(1) = 1 and (1 + z) =
z-T'(z). As two important examples c1 = 2and cp = /7.
Note that by multiplicativity (Equation (2.1)),

Hf zi) = exp( - Z<cp|xir>p) = exp(— (e Ixl1p)") = F([IxIlp) -

Regarding the Fourier transform of f, the “normalizing constant” ¢, has been defined to make f(()) =1

= [ i@ =2 [T ar= 2 [Tutoppa= 202

D Cp D Cp
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by the change of variable u = (c,x)P. It is also known that fis non-negative for 0 < p < 2; this follows
immediately from an elegant lemma and proof due to Logan, given in [EOR91, Lemma 5].° So, f satisfies
Assumption 2.12 for such p. Another immediate consequence of Logan’s lemma is that as s grows, J?S(w) /s
strictly decreases and approaches zero for every w # 0.’

We will need the following simple lemma.

Lemma 4.1. Forany s > 0 and'y € R} defining W = Wy, we have that ||W |2 > /n/ exp(cp/(25)P).

Proof. Observe that each of the n blocks of TV has an entry indexed by some « € Z, for which |y; — z| < 1/2.
This entry’s contribution to | ||? is at least fs(1/2)? = exp(—2ch/(25)P). O

4.1 Worst-Case Decoding

We now address list-decoding in the ¢, (semi)metric for 0 < p < 2, under worst-case error. Consider
decoding distance d = & - n'/P, where n is the code length, and & can be seen as the relative decoding distance
(relative to nl/p , which is the most natural normalization factor for £,,). For s > 0, relative distance 6 > 0,
and positive integer modulus g, define

W(I;)(s) — fs(9) _ eXp(_(Cp ’ 5/5)p) >0
¢ fs(Lq) fs(Lq) B

By Theorems 3.3 and 3.5, to decode a GRS code of adjusted rate R* over a prime field I, to within ¢,

distance & - n!/P using the GS algorithm, it suffices to set s > 0 so that Wq(’?(s) > v/R*. In other words, we
can decode under relative distance 4 for any R* less than

4.2)

R;kv’c(,l;)((S) = sulg Wq(”;)(s)Q . 4.3)
s>

The following theorem makes this formal.

Theorem 4.2. Forany 0 < p < 2, 6 > 0, and prime q, the GS soft-decision algorithm using weight vector
given by fs(p ) for any s > 0 list-decodes, up to l,, distance d = 0 - n'/?, any GRS code C C Iy with adjusted

rate R* < Wq(fs)(s)Q, in time polynomial in n, q, and exp(l/sp)/(Wq(S)(s) —VR*).8

Proof. We invoke the GS algorithm on the weight vector W = Wjy given by the choice of s and the

received word y, and tolerance 7 = Wq(pé) (s) — V/R* > 0.° The running time is polynomial in n, ¢, and
1/(7]|W]|2) < exp(ch/(25)P)/(Ty/n), by Lemma 4.1.

SFor p > 2, by contrast, fcan have negative values, which prevents our framework from supporting ¢, metrics for such p.

et 0 < p < 2 and h(z) = exp(—|z|?); since f(x) = h(cpz), it suffices to prove the claimed property for hs. Logan
shows that h(z) can be expressed as a non-negative linear combination of Gaussians, as hs(x) = [ exp(—t(z/ 5)%) da(t),
where a(t) is bounded and non-decreasing. For every t > 0, the Fourier transform (with respect to x) of exp(—t(x/s)?)/s is
exp(—(msw)?/t) - \/7/t. As s increases, this strictly decreases and approaches zero for any w # 0. Since «(t) is bounded and
non-decreasing, the same goes for i/L:(w) /s.

8We remark that in many cases, the bound on the polynomial running time can be improved using a better lower bound for ||V |)2,
such as the one given by Lemma 3.7.

°To be more precise, we can invoke GS on any approximation of 7 in [r/2, 7], say. This can be computed by approximating
fs(Lq) from above to the needed precision, by enumerating sufficiently many points of £, near the origin, and upper-bounding the
contribution of the remaining points in the “tails” using, e.g., Lemma 5.3.

12



Now let ¢ € C be acodeword within distance d of y, i.e., ||y — c||, < d. By Theorem 3.5, Assumption 2.12,
and Equation (4.2),

_ ~\1/n ALAL
corr(W, c) > Jsy —¢) > Sl " _ Wé’?(s) =VR*+71.
fs(Lq) fs(Ly) ’
So, by Theorem 3.3, the output of the GS algorithm includes c, as needed. O

Remark 4.3. Following Remark 3.6, suppose that the received word y is within relative distance ¢ of a
codeword c on some subset G C [n] of g = |G| coordinates, i.e., ||yg — cq|| < & - g*/?, and the remaining

coordinates of y may be arbitrary. Then corr(Wsy,c) > (g/n) - Wq(? (s). So, we can list-decode all such

codewords as long as the adjusted rate R* < (g/n)? - W’C(Z:]) (9).

Remark 4.4. Interestingly, as ¢, ¢/d, and n grow (and the other parameters remain fixed), the product of the
relative distance ¢ and the adjusted rate R* for which we can decode approaches the relative radius of a
unit-volume £, ball. To see this, first observe that as g/s grows, fs(L,) approaches

fo(Lg Mspan(1,1)) =Y ful(2,2) = Y foyqim(2) = foyqiin(Z) = fopqrin(Z)

2€7 2EZL

where the last equality is by the PSF (Lemma 2.10). Then as s grows, the above approaches s/2'/?, because
f(0) = 1 and hence f, /21 w(0)=s/ 21/P by Lemma 2.9, and the other Fourier coefficients approach zero.

So, as s and g/ s grow, the bound W(p)( )2 on the adjusted rate approaches 2/ - exp(—(2Y/7¢, -6/s)P)/s.
A straightforward calculation using the change of variable ¢ = (21/ Pc, - §/s)P shows that this is maximized

for t = 1/p (and hence s = (2p)"/ Pep, - 0), so we can decode to w1th1n relative /,, distance ¢ for an adjusted

rate R* approaching
1

(ep)l/P “Cp S5
By comparison, it is known that the volume of an n-dimensional ¢,, ball of unit relative radius (i.e., radius
n'/P) has nth root
2-T(1+1/p) _
(1 +n/p)t/n
using Stirling’s approximation for the denominator as n grows. So, the relative radius of a unit-volume ¢, ball
is the reciprocal of this, which is what R* - § approaches.

n'? —s (ep)V/? - ¢,

4.2 Average-Case Decoding

We now consider average-case decoding under a memoryless additive (continuous or discrete) channel whose
density function is proportional to a scaling of f = f(). Specifically, we consider the continuous distribution
with probability density function D, (x) := f.(z)/r, and the discrete distribution over Z with probability
mass function D, (z) := f.(z)/fr(Z). Following Section 3.4, for any r, s > 0 define

For these channel distributions we derive suitable bounds on ,ug’ s) , then reach the conclusion via Lemma 3.8

and Theorem 3.3.
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Lemma 4.5. Forany 0 < p < 2, any r > 0 defining a continuous or discrete distribution D,, and s > 0,
P ~>__ 5
,LL - )
A (G] %
with equality in the continuous case and strict inequality in the discrete case.
Proof. First note that for ¢ := (rs)/(r? 4 sP)1/P, we have f,.(x) - fs(x) = fi(x), since 1/t? = 1/rP + 1/sP.
For the continuous case,
S

1(r, $)llp

For the discrete case, since t < r, we have that f;(w)/t > f,(w)/r for all w € Z, so by Lemma 2.10,

1
= [ Do) peyde=" [ feyae=" =

(p) _ o). e:ft(Z):E_ﬁ(Z)/t t
My g %Dr( ) fs( ) fr(Z) , ﬁ(Z)/r > o ]

Now, for any channel parameter > 0 and for s > 0, define

(p)
P)(5) == —ht > i , 4.4)

VIs(Lq) (s 8)llp -/ fs(Lq)

where the inequality is by Lemma 4.5. By Theorems 3.3 and 3.5, to decode (with high probability) a GRS
code of adjusted rate R* over a prime field IF, under a channel with parameter r, it suffices to set s > 0 so

A

(
q

that A((f 7), (s) > Vv R*. In other words, we can decode under channel parameter  for any R* less than

R®) () = sup AP ()2 (4.5)
s>

See Theorem 4.6 below for the formal statement.

Theorem 4.6. Let0 <p < 2,7 >0, a € (0,1), and q be prime. Under a memoryless additive (continuous
or discrete) channel with distribution D,., the GS soft-decision algorithm, using weight vector given by fs(p )
Jor any s > 0, list-decodes any GRS code C C ¥y with adjusted rate R* < A((f ,2(5)2, in time polynomial in n,

q, and exp(l/sp)/(Ag{’r) (s) — vV R*), except with probability less than
exp(—2n - fs(Ly) - o? - (Aéﬂz(s) — \/R*)2) .

Proof. Throughout the proof let A(s) := A((f,?(s). We invoke the GS algorithm on the weight vector
W = Wj y given by the choice of s and the received word y, and tolerance 7 = T' — vV R* > 0, where

T = A(s) — a(A(s) — VRY) (4.6)
= VR* 4+ (1 - a)(A(s) — VR*) € (VR*, A(s)) .

The running time is polynomial in n, g, and 1/(7||W||2) < exp(ch/(2s)P)/(74/n), by Lemma 4.1.
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Now suppose that y = ¢ + e, where ¢ € C is the transmitted codeword and e <— D} is the channel error.
To show that the list output by the GS algorithm contains ¢ with the claimed probability, by Theorem 3.3 it
suffices to show that corr(W,c) > v R* + 7 = T'. Following the setup of Lemma 3.8, let

Y= prs — T fS(Eq)

=1/fs(Ly) - (A(s) = T) (Equation (4.4))
=1/fs(Ly) - a(A(s) —VR*) >0 (Equation (4.6)).
So, by Lemma 3.8, Pr[corr(W, ¢) < T] < exp(—27y2n), which yields the claim. O

Remark 4.7. Theorem 4.6 outperforms Theorem 4.2 (for worst-case decoding) by a factor that approaches
(¢/2)'/7 in the adjusted rate R* it can handle, as r and q/r grow. Specifically, consider a channel with
parameter 7. A calculation reveals that its relative error (in £,,, relative to n'/?) is tightly concentrated around
b=r/ (pl/ P.¢,), so following the analysis in Remark 4.4, Theorem 4.2 applies for R* that approaches
1/(r - €}/?). By comparison, Theorem 4.6 applies for R* that approaches 1/(r - 21/7).

Remark 4.8. Following Remark 3.6, and similarly to Remark 4.3, suppose that there exists a subset G C [n]
of g = |G| “good” coordinates for which the channel generates the received word y from the transmitted
codeword c by adding independent noise from distribution D, on those coordinates, and sets the remaining
coordinates arbitrarily. Then our lower bound on corr(W; y, ¢) from Theorem 3.5 involves an extra g/n
factor, and an average over just the coordinates in GG. So, we can correctly list-decode for any adjusted rate
R* < (g/n)?- Ag’f ) (5)2. More precisely, the statement and proof of Theorem 4.6 hold with every occurrence
of A<(1,7)= (s) having an additional g/n factor, and with an extra n/g factor inside the exp expression for the
failure probability.

5 The /5 Metric and Gaussian Error

In the remainder of the paper we instantiate our general list-decoding results for £, (semi)metrics (Theorems 4.2
and 4.6) for specific metrics of interest and memoryless additive channels. In this section, we consider the /5
metric and Gaussian channels.

We specialize Equation (4.1) to p = 2, i.e., the Gaussian function

f(z) = f®(2) = exp(—ma?) .

By a straightforward calculation it can be seen that this function is its own Fourier transform: J?: f. Note
that fs = s - f1/, by the time-scaling property of the Fourier transform (Lemma 2.8). Finally, recalling that
f(x) = f(||x]|2), we get that f is invariant under rotations.

5.1 Bounds

In this subsection we derive fairly tight bounds on the factor f,(L,) that appears in the quantities that govern the
adjusted rates under which we can decode in the worst and average cases (Equations (4.2) and (4.4), respectively).
For this purpose we need to define a suitable “fudge factor.” For r > ry := /In(4) /7 ~ 0.66428, define

B(r) :=1—2exp(—mr?/2) €[0,1).
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Notice that E(r) is positive for r > r, is strictly increasing, and rapidly approaches 1 as r increases. Next,
for real s, g such that s € [rg, ¢/ro], define

Ey(s) = VE(afs) - E(s) € [0,1).
Similarly, F,(s) is positive for s € (19, q/70), and rapidly approaches 1 as both s, ¢/s increase.

Lemma 5.1. For any real s and positive integer q such that s € (g, q/T0),

Y,
fo(Zy) ~ s

Proof. This follows directly from Lemmas 5.2 and 5.4 below. Specifically, let ¢’ = ¢, a/(sv/2) and
€ =¢r,,s(H). By Lemma 5.4 (applied twice, with r = ¢/s and r = s, which are both greater than r),

Eq(5)2-

1

—(1 T+ > Eq(s)Z .

The result then follows by Lemma 5.2. O

Lemma 5.2. For any real s > 0 and positive integer g, let €' = ¢, q/(sy/2) Gnd € = €r,,s(H) where
H = span(1,1). Then
s
L)=—-(14+&)-(1+2).
FE) =5 (14 (1+9)

Proof. Recall that £ = L, has determinant det(L£) = g, hence its dual has determinant det(L*) = 1/g¢.
A basis for £ consists of the vectors (1, 1) and (g, 0), and its dual basis consists of the vectors (0, 1) and
(1, _1)/ q.

Since H+ = span(1, —1), we have that £* N H~ consists merely of all the integer multiples of the dual
basis vector (1, —1) /g, which has Euclidean norm v/2/q. Therefore, £* N H= is a rotation of (v/2/q)Z. So,

fs(£)=(1/q) - E(ﬁ* NHY) - (148 (Lemma 2.14 and definition of &)
= (s%/q) - ff/s(ﬁ* NHY) - (1+¢) (Lemma 2.8)
= (s%/q) - Sojsvn) (L) - (14 ) (rotational invariance of f2, rescaling)
=(s/V2)-(1+€)- (148 (Lemma 2.14 and definition of ). O

Next we bound the roughness quantities &', £ from Lemmas 5.1 and 5.2, using the following classic tail
inequality.

Lemma 5.3 (adapted from [Ban95, Lemma 2.4]). For any lattice L, unit vector u, and s,t > 0, let
Tut = {x: [(x,u)| > t}. Then

f(LNTyuy) < 2exp(—7t?/s%) - fo(L) .

Lemma 5.4. Letr > rg and H = span(1,1). Then

1 1

; > E(r) =1 —2exp(—nr?/2).
ey, 1+ec, (H)
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Proof. We firstbound e,/ . Lets =r /V2 > /In(2) /. By the definition of roughness (Definition 2.13)
and the facts that Z* = Z, ﬁ =5 fi1/s (Lemma 2.8), and f,/,(0) = 1,

1+ ez,s = fo(2)/Fs(0) = f/5(Z) .

Now, by Lemma 5.3 and rearranging (where the denominator is positive due to the lower bound on s),

1
1 —2exp(—7s?)’

f1/s(Z) = f175(0) + f17s(ZNT1p) <1+ 2 exp(—ms?) - fiys(Z) <

which yields the claim.
For e (H) where £ = L, again by Definition 2.13 and Lemma 2.8,

~

_ fr(ﬁ*) . fl/r(ﬁ*)
tece i) = f(csnHY)  fye(LrnHE)

Because H+ = span(1, —1) and the vectors (0, 1), (1, —1)/q form a basis of L£*, every point in £* lies one
of the lines (i.e., affine subspaces) Ly, = k - (1,0) + H~ for some k € Z. The unit vector u = (1,1)/1/2is
orthogonal to H*, so for any x € Ly, we have that (x,u) = k/+/2, and hence |(x,u)| > 1/v/2if k # 0.
Therefore, £* can be partitioned as the disjoint union

L= (L"NH)U (L ﬂTuJ/ﬂ) .
So, by Lemma 5.3 and rearranging (where again the denominator is positive due to the bound on r),
fl/r(‘C*) = fl/r(‘C* N H) + fl/r(‘C* a Tu,l/ﬁ)
< f1/7(£* N H) + ZQXP(*TWQ/Q) ’ fl/r(c*)

Fue(£ 0 )
~ 1—2exp(—mr2/2)

The result follows by dividing f;,.(£* N H) by both sides. O

5.2 Worst-Case Decoding

We now address list-decoding in the {2 metric, under worst-case error of bounded distance, by specializing the
material of Section 4.1 to p = 2 and using our bounds on fs(£,) from Section 5.1. So, we consider decoding
distance d = §+/n, where n is the code length and 0 is the relative decoding distance. Then by Equations (4.2)
and (4.3), we can list-decode for any R* less than
(2 2 V2 - exp(—2m62 /s
ch(,q) () = sup W )(s)2 > sup ( /%) By (s)?,

0
s>0 ¢ s€(r0,9/70) §

where the inequality follows by Lemma 5.1.

Corollary 5.5 below is obtained by nearly maximizing the right-hand side of (5.2). More specifically,
a standard calculation shows that taking s = §/47 maximizes the “main term” v/2 - exp(—2md2/s2)/s,
to have value 1/(5v/2me). For moderate or larger values of & (and hence s), this very nearly maximizes
the entire expression, because F,(s) > FE(s) since ¢/s > s, and E(s) rapidly approaches 1 as s grows.
For example, E (5)2 >1-—10"8ford > 1. So, as § grows, the R* for which we can list-decode rapidly
approaches 1/(5v/2me).
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Corollary 5.5. For any 6 > +/In(4)/(27) ~ 0.1874 and prime q > 4762, the GS algorithm using weight
vector given by fs for s = 0+/4w list-decodes, up to {2 distance d+/n in time poly (n, g, 1/( ﬁfw@q) (0)—VR*)),
any GRS code with adjusted rate

* ¥, 1
R* < ch(,%])((s) = 5\/7276 . Eq((s\/ 47T)2 .

Proof. For s = §+/4, the lower bounds on ¢ and g imply that s = §v/4w € (r¢, q¢/79). Then by hypothesis
and Lemma 5.1 and Equation (4.2),

~ 1 exp(—27m62/s?) )
R* < Ry (6) = CBy(6VArm)? < S0 10 @ g2
SR A7 00
The claim then follows directly by Theorem 4.2. O

Comparison to [MP22]. The previous best result for list-decoding (Generalized) Reed—Solomon codes in
the ¢, metric was given by Mook and Peikert [MP22].!°

Proposition 5.6 ((MP22, Theorem 3.4]). For any GRS code C C FZ with any adjusted rate R* < 1
and any € > 0, there is a poly(n,q,1/e)-time algorithm that list-decodes C up to {9 distance d =

Vn(l—R*(1—¢)/2.

Equivalently, for a relative decoding distance § = d/+/n > 0, the result from [MP22] works for adjusted
rates R* approaching 1 — 262, so it applies only for

§<+v(1-R")/2<1/V2.

By contrast, our Theorem 4.2 works for any (arbitrarily large) 6 > 0 (and Corollary 5.5 gives a simpler
and more explicit rate bound for any 6 > 0.1875). Moreover, for those § for which both Theorem 4.2

and Proposition 5.6 apply, our result works for a larger R* as long as Ri:,’c(?q) (6) > 1 — 242 (see (4.3)). For
typical (moderate or larger) g, this holds for all § £ 0.51797, which corresponds to R* < 0.46342. (For tiny
0 ~ 0, Theorem 4.2 works for R* ~ 0.93700, whereas [MP22] works for R* ~ 1, so the latter is better for
very small distances.)

We also point out that [MP22] proves that for any 6 < 1/2, which corresponds to R* > 1/2, its (very
simple) choice of weight vector gives an optimal tradeoff between § and R* for the GS/KV soft-decision
algorithm and analysis. However, the optimality argument breaks down for 6 > 1/2 (equivalently, for
R* < 1/2). And indeed, as we have just seen, we obtain a better distance-rate tradeoff than [MP22] for almost
all such 9. This highlights the interesting question of determining an optimal choice of weights for the GS
soft-decision algorithm for § > 1/2 (especially at the low end of this range).

5.3 Unique Decoding for a Subclass of GRS Codes

For a certain natural subclass of GRS codes, and certain rates and decoding distances covered by our
list-decoding algorithm, decoding is in fact unique (i.e., the list size is at most one). We show this by giving a
lower bound on the 5 minimum distance of such codes, and then observing that our list-decoding algorithm
can decode to beyond half this distance for all small enough rates.

0By a standard reduction, the result from [MP22] also applies to GRS codes, not just RS codes as was originally stated.
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Lemma 5.7 (adapted from [RS94, Theorem 4]). Any prime-field GRS code GRS, (o, ) C Fy (whose
twist factors t equal the nonzero evaluation points ) of rate R = k/n has squared {9 minimum distance at

least ( )2 ) )
n+1)2—k 1-R
D> e

Proof. Any codeword of GRS, 1, (cx, o) consists of the evaluations at o of a polynomial of degree at most &
whose constant term is zero. Consider any non-zero codeword ¢ € GRS, ;.(a, &) and let u(x) € Fy[z] be
its defining polynomial. Since u(z) is nonzero with degree at most k, it evaluates to any particular element
of F, at no more than £ evaluation points. Hence, any non-zero element of I, appears with multiplicity at
most k in ¢, and zero appears with multiplicity at most & — 1, because «(0) = 0 and zero is not an evaluation
point. So, ¢ has at most k£ — 1 zeros, and at most k each of £1,4+2,...,+¢, where ¢ :== |(n+1—k)/(2k)];
the remaining r := n + 1 — k(2¢ + 1) or more coordinates all have magnitudes greater than ¢. Thus,

y4
lell3 > 2k - i% (L + 1)
=1
=(l+1)-(k-0204+1)/3+7(l+1)).

Now define 5 := (n+1—k)/(2k) = £ + -, whose fractional part is v := r/(2k) € [0,1), sor = 2k - 7.
Then the above bound is

kB=v+1)-(B=7QB -1 +1/3+29B-7+1) 2k-BB+1)(26+1)/3,

where the inequality follows from the fact that the minimum over v € [0, 1) is obtained at y = 0. (This can
be seen by the closed interval method on [0, 1], i.e., differentiating with respect to 7, and evaluating at the
critical and boundary points.) Substituting 3(8+ 1) = ((n+1)? — k?)/(4k*) and k- (26 + 1) = n+ 1, the
claim follows. 0

Lemma 5.7 gives a relationship between the code rate R and (a lower bound on) half the {5 minimum
distance, for which decoding to that distance yields a unique solution. By taking the functional inverse of half
this minimum-distance bound, we see that decoding to relative distance ¢ yields a unique solution as long as

1
VARZ +1°

which approaches 1/(4+/30) as § grows. This curve is shown in Figure 1. Observe that for any d for which our
list-decoding algorithm outperforms the one of [MP22], we have that Rfv’c@) (0) > R (0). In other words,

uniq

< RZ6) =

we can efficiently list decode to relative distance § for all rates up to R? (6) (and beyond), thus yielding

uniq
a unique decoder for these parameters. Alternatively, as the rate 12 approaches zero, we can efficiently list

decode to a multiple of the unique-decoding distance bound that approaches 4/3/v/2me ~ 1.6764.

5.4 Average-Case Decoding

We now consider average-case decoding under a memoryless additive (continuous or discrete) Gaussian
channel, by specializing the material of Section 4.2 to p = 2 and using our bounds on f,(L,) from Section 5.1.
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Consider a Gaussian channel of parameter » > 0. Then by Equations (4.4) and (4.5), we can list-decode for

any R* less than
* 2
RED () —sup AR 5P > sup 22

D) 32,
>0 s€(ro,q/ro) T +32 q( )

where the inequality is by Lemma 5.1.

Corollary 5.8 below is obtained by nearly maximizing the right-hand side of (5.4). More specifically,
setting s = r maximizes the “main term” sv/2/(r? + s2), to have value 1/(rv/2). As above, for moderate
or larger values of 7 (and hence s), this very nearly maximizes the entire expression, because E(s) rapidly
approaches 1 as s grows.!! So, as 7 grows, the rate R* for which we can list-decode rapidly approaches

1/(rv/2).
Corollary 5.8. Foranyr € (r9,q/r0), « € (0, 1), and prime q, the GS algorithm using weight vector given
by f, list-decodes, in time poly(n,q,1/(\/ R ac(g)( ) — V' R*)), any GRS code with adjusted rate

1

R < ac — T =
Raca' )= 07

Eq(r)2 )

except with probability less than exp(—v/2n - o* -7 - ( Rac ( )— VR ) )-

Proof. By hypothesis, Lemmas 5.1 and 4.5 and Equation (4.4),

2
iy
R < —— 2 < = AP
~E E < gl = A
The claim then follows directly by Theorem 4.6, and the fact that f,.(£,) > r/+/2 by Lemma 5.2. O

6 The ¢, Metric and Laplacian Error

In this section, we consider the ¢; metric and Laplacian channels. We specialize Equation (4.1)top = 1, i.e.,
the Laplacian function

f(z) = fV(2) = exp(-2Jz]) .
(The Fourier transform of this function is given by f( ) = 1/(1+ (7w)?), but we will not use this; as already
noted earlier, f(!) satisfies Assumption 2.12.)
Throughout this section we use the hyperbolic tangent function
ef—e T l—e 2 ¥

tanh(l‘) = er +e—x = 1 +e—2x - 621' + 1 < 1

and its reciprocal coth(z) = 1/ tanh(x) > 1. Observe that tanh(z) approaches 1 as x grows; it also satisfies
tanh(x) < x for all > 0, and approaches x as x approaches zero.'

"By contrast, E,(s) < 1 for values of s very close to 7, in which case the bound is maximized by taking s somewhat larger
than r.
'2Both facts can be seen from the Taylor series tanh(z) = x — 23 /3 + - - -, valid for || < 7/2.
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6.1 Bounds

In this subsection, we analyze the exact value of fs(£,) and derive an asymptotic bound. This appears
in the quantities that govern the adjusted rates under which we can decode in the worst and average cases
(Equations (4.2) and (4.4), respectively). For this purpose, we define a suitable “fudge factor”. For any real
x > 0, define

4 - €2 1
where the upper bound comes from the fact that coth(z) > 1. Note that, as x grows, the first term in the sum
rapidly approaches one, and the second term rapidly approaches zero. More precisely, a brief calculation

reveals that
E(x)=1-0(z-e ). (6.2)

Lemma 6.1. For any s > 0 and positive integer q,

1
x> > tanh(2/s) - E(q/s) .

Note that by Equation (6.2), for any fixed s > 0, as ¢ (or equivalently, q/s) grows, 1/ fs(L,) rapidly
approaches tanh(2/s). In turn, this approaches 2/s as s grows.

Proof. This follows directly from Lemma 6.2 below and Equation (6.1). By Lemma 6.2, the bound
coth(2/s) > s/2, and the definition of E(x),

2q - 24/5 2) _coth(2/s)

fo(£q) < coth(2/s)(coth(q/s) + @12 5) = E(g)s)

The claim then follows by taking reciprocals. O

Lemma 6.2. For any s > 0 and positive integer q,

2q - e24/5
fs(Lq) = coth(2/s) - coth(q/s) + (@1
Proof. By Lemma 2.6, we can write
q-1 q—1
fs(Ly) = Z fs(v) = ZfS((x7x) +qZ%) = Zfé‘(x +4qz)*.
veLy =0 =0
We first rewrite fs(z + ¢gZ) as a sum of two geometric series:
fs(x+qZ) = Zexp(—2]m + qz|/s)
Z€EZ
= Zexp(—Q(a: +qz)/s) + Zexp(Q(:c +qz)/s)
2>0 z<0
= Zexp(—2(:c +qz)/s) + Zexp(2(x —q(z+1))/s)
z>0 z>0
= Z(exp(—Q(m + qz)/s) + exp(—2(q(z +1)— x)/s))
220
e—2x/s + e—2(q—=)/s
- 1— e 24/s
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Substituting this into the summation, we get that

—_

(1 - 672(]/8)2 . fs(ﬁq) — (672x/s + 672(q7:p)/3)2

_Q

8
= o

L)

(6—4:1:/5 +6—4(q—z)/s +2e—2q/s)

I
(]

z=
= 11__66_4://: (14 e V) 4 2q- 72/
= coth(2/s) - (1 — e 49/%) 4+ 2. e72/*
14 e 2/
1—e /s

= coth(2/s) - coth(g/s) - (1 — e 24/%)2 4 2¢ . ¢=24/5

= coth(2/s) (1 — e 20/%)2 4 2q. ¢ %/5

The claim follows by dividing both sides by (1 — e2a/ $)2, and multiplying both the numerator and denominator
of the final term by e*?/%. 0

6.2 Worst-Case Decoding

Now we address list-decoding in the ¢1 metric, under worst-case error of bounded distance, by specializing
the material of Section 4.1 to p = 1 and using our bound on fs(L£,) from Lemma 6.1. We consider decoding
distance d = dn, where n is the code length and 4 is the relative decoding distance. Then by Equations (4.2)
and (4.3) and Lemma 6.1, we can list-decode for any R* less than

RTV’C(}q) (0) = sup V[/q(l(;)(s)2 > supexp(—44/s) - tanh(2/s) - E(q/s) . (6.3)
>0 ’

s>0

Corollary 6.3 below is obtained by maximizing the “main term” exp(—449/s) - tanh(2/s) of the right-hand
side of (6.3). By calculus, this is done by taking s = 4/In(D(d)) > 0, where

/ 1 1

Substituting, this means we can list-decode for any R* less than

We consider this quantity’s asymptotic behavior for large and small §:

* As 6 grows, D(6) = 14 1/6 4+ O(1/6%) and D(5)? approaches e, hence ﬁ;kvc(z) (6) approaches 1/(2¢d)
as ¢/6 also grows. This is consistent with Remark 4.4.

« As ¢ approaches zero, D(4) approaches 2/ and D(0)® approaches 1, hence ﬁ:,c(lq) (0) approaches 1 as

q/0 also grows.
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Alternatively, we can get a simpler but cruder bound by replacing tanh(2/s) in Equation (6.3) with its
upper bound of 2/s. Then the resulting “main term” of 2 exp(—49/s)/s is maximized at s = 44; substituting,
this means we can list decode for any R* less than

e~ 1. tanh(1/(26)) - E(q/(46)) .

This bound approaches 1/(2ed) as ¢ and ¢/d grow, which matches the behavior of ]%if,c(lq) (6) as described

above. However, as 0 approaches zero (and ¢/d grows), the above bound merely approaches 1/e, which is

much worse than the limit of 1 for E:;,c(%]) (0).

Corollary 6.3. For any § > 0 and prime q, the GS algorithm using weight vector fs for s = 4/1In(D(J))
list-decodes, up to {1 distance on in time poly(n,q,1/( -ﬁij’c(,}]) (0) — vV R*)), any GRS code with adjusted
rate R* < Efvc(}])(é) (see Equation (6.4)).

Proof. By hypothesis and Lemma 6.1 and Equation (4.2),

« _ 30, o tanh(Iny/D(4)) . exp(—49/s) (1), \2
R < ch,q (5) - D((;)é E(Q/S) < fs (/Cq) - Wqﬁ (S) .
The claim then follows directly by Theorem 4.2. O

Comparison to [RS94, WKUO03]. To our knowledge, the only prior algorithms for (unique or list) decoding
Reed-Solomon codes in the /1 (Lee) metric are [RS94, Section 5] and [WKUO03]. We note that both of these
require discrete (integer) error, whereas our algorithm works for continuous error.

For a certain subclass of GRS codes (and BCH codes more generally), [RS94] gives a unique decoding
algorithm for up to half (a lower bound on) the £; minimum distance, using Euclid’s algorithm for polynomials.
This algorithm decodes up to any relative distance § < 1 — R < 1 — R*. For any prime-field GRS
code, [WKUO3] gives a list-decoding algorithm that uses GS as a subroutine, and has a piecewise distance-rate
tradeoff due to its optimization over an integer parameter. (The algorithm works by putting equal weight on a
range of alphabet symbols centered at the received symbol, optimizing over the range size for a given rate.)

By contrast with [RS94], and like [WKUO3], our Corollary 6.3 works for any GRS code, and for any
(arbitrarily large) relative decoding distance § > 0, for sufficiently small R* > 0. Our rate-distance trade-off
surpasses that of both [RS94, WKUO03] for all § g 0.78988, which corresponds to rates R* S 0.21012; see
Figure 1.

6.3 Unique Decoding for a Subclass of GRS Codes

As in Section 5.3, for the same subclass of GRS codes and certain parameters covered by our list-decoding
algorithm, the decoding output is in fact unique. To show this, we give a lower bound on the ¢; minimum
distance of such codes, and then observe that our list-decoding algorithm can decode to beyond half this
distance for all small enough rates.

Lemma 6.4 (adapted from [RS94, Theorem 4]). Any prime-field GRS code GRS, (o, o) C Fy (whose
twist factors t equal the nonzero evaluation points o) of rate R = k/n has {1 minimum distance at least

(n+1)% — k2 . 1 — R?
4k 4R

n.
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Proof. Define 5 := (n + 1 — k)/(2k) and write it in terms of its integer and fractional parts as 5 = ¢ + 7,
where ¢ := [(n+ 1 —k)/(2k)] and y := r/(2k) for r := n + 1 — k(2¢ + 1). Following the same reasoning
as in the proof of Lemma 5.7, and using the fact that v < 1, the ¢; distance of any nonzero ¢ € GRS, (c, ox)
is
l
ey > 2k i+ rE+1)
i=1
=(kl+7r)(l+1)
= (k(B =) +2k7)(6 =7+ 1)

O]

Lemma 6.4 gives a relationship between the code rate R and (a lower bound on) half the £; minimum
distance, for which decoding to that distance yields a unique solution. By taking the functional inverse of half
this minimum-distance bound, we see that decoding to relative distance J yields a unique solution as long as

R <R (8) =46+ /(48)2 + 1,

which approaches 1/(80) as ¢ grows. This curve is shown in Figure 1. Observe that for any ¢ for which our
list-decoding algorithm outperforms the unique decoder of [RS94] (or for which [RS94] does not apply), we

have that R:';,’c(l)(5) > R&?q
(1)

rates up to Runiq(é ) (and beyond), thus yielding a unique decoder for these parameters. Alternatively, as the
rate R approaches zero, we can efficiently list decode to a multiple of the unique-decoding distance bound
that approaches 8/(2¢) ~ 1.4715.

(6). In other words, we can efficiently list decode to relative distance ¢ for all

6.4 Average-Case Decoding

We now consider average-case decoding under a memoryless additive (continuous or discrete) Laplacian
channel, by specializing the material of Section 4.2 to p = 1 and using our bound on f,(£L,) from Lemma 6.1.
Consider a Laplacian channel of parameter > 0. Then by Equations (4.4) and (4.5), we can list-decode for
any R* less than ,
" s* - tanh(2/s
Rad (r) = sup AQ)(s)? > sup — === 8()2/ :
where the inequality is by Lemma 6.1.
Corollary 6.5 below is obtained by nearly maximizing the right-hand side of (6.4), at least for moderate or
large values of 7. Specifically, we use the bound tanh(2/s) < 2/s to approximate the “main term” of (6.4)
by 2s/(r + s)?. This is maximized at s = r, which makes the original main term equal to tanh(2/r)/4.

-E(q/s) ,

Note that R;C’% ) (r) does indeed approach this value as r and ¢/r grow, because tanh(2/r) approaches 2/r,
and F(q/r) rapidly approaches 1 (see Equation (6.2)).

However, for small values of r, the expression in (6.4) is maximized for s significantly larger than 7, to
have value much larger than tanh(2/7)/4 < 1/4. This maximization can be computed numerically, and

indeed, R:{;%)(T) approaches 1 as r approaches 0; see Figure 1.
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Corollary 6.5. Foranyr > 0, a € (0,1), and prime q, the GS algorithm using weight vector given by f,
list-decodes, in time poly(n,q, 1/(1/ RZ;%) — vV R*)), any GRS code with adjusted rate

. s tanh(2/r
R < BilD(r) = P g

except with probability less than exp(—n - o2 - 7 - ( EZ(@%)(r) — R*)Q).

Proof. By hypothesis, Lemmas 6.1 and 4.5 and Equation (4.4),

~ tanh(2/r) 1
R* < R (r) = == B(gfr) < -2 = A0 (r)?
ac,q (T) 4 (q/r) fr (ﬁq) q,r (r)
The claim then follows directly by Theorem 4.6, and (for the probability bound) the fact that f,.(£,) >
coth(2/r) > r/2 by Lemma 6.2. O
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