*

Lossy Trapdoor Functions and Their Applications

Chris Peikert' Brent Waters?
Georgia Institute of Technology University of Texas at Austin

June 4, 2010

Abstract

We propose a general cryptographic primitive called lossy trapdoor functions (lossy TDFs), and use it
to develop new approaches for constructing several important cryptographic tools, including (injective)
trapdoor functions, collision-resistant hash functions, oblivious transfer, and chosen ciphertext-secure
cryptosystems (in the standard model). All of these constructions are simple, efficient, and black-box.

We realize lossy TDFs based on a variety of cryptographic assumptions, including the hardness of the
decisional Diffie-Hellman (DDH) problem, and the hardness of the “learning with errors” problem (which
is implied by the worst-case hardness of various lattice problems).

Taken together, our results resolve some long-standing open problems in cryptography. They give the
first injective trapdoor functions based on problems not directly related to integer factorization, and provide
the first chosen ciphertext-secure cryptosystem based solely on worst-case complexity assumptions.

* A preliminary version of this work appeared in the 40th ACM Symposium on Theory of Computing (STOC 2008).

T A majority of this work was performed while at SRI International. This material is based upon work supported by the National
Science Foundation under Grants CNS-0716786 and CNS-0749931. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

A majority of this work was performed while at SRI International. Supported by NSF Grants CNS-0524252, CNS-0716199,
CNS-0749931; the US Army Research Office under the CyberTA Grant No. W911NF-06-1-0316; and the U.S. Department of
Homeland Security under Grant Award Number 2006-CS-001-000001. The views and conclusions contained in this document are
those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the
U.S. Department of Homeland Security.

1 Introduction

A central goal in cryptography is to realize a variety of security notions based on plausible and concrete
computational assumptions. Historically, such assumptions have typically been concerned with problems
from three broad categories: those related to factoring integers, those related to computing discrete logarithms
in cyclic groups, and more recently, those related to computational problems on lattices.

For several reasons, it is important to design cryptographic schemes based on all three categories: first, to
act as a hedge against advances in cryptanalysis, e.g., improved algorithms for one class of problems or the
construction of a practical quantum computer; second, to justify the generality of abstract notions; and third,
to develop new outlooks and techniques that can cross-pollinate and advance cryptography as a whole.

In public-key cryptography in particular, two important notions are trapdoor functions (TDFs) and
security under chosen ciphertext attack (CCA security) [47} 155} 23]]. Trapdoor functions, which (informally)
are hard to invert unless one possesses some secret ‘trapdoor’ information, conceptually date back to the
seminal paper of Diffie and Hellman [21]] and were first realized in the RSA function of Rivest, Shamir, and
Adelman [58]]. Chosen-ciphertext security, which (again informally) guarantees confidentiality of encrypted
messages even in the presence of a decryption oracle, has become the de facto notion of security for public
key encryption under active attacks.

Known constructions of TDFs all rely upon the particular algebraic properties of the functions. For CCA
security, the main construction paradigm in the existing literature relies upon noninteractive zero-knowledge
(NIZK) proofs [10,26] (either for general NP statements or for specific number-theoretic problems). Such
proofs allow the decryption algorithm to check that a ciphertext is ‘well-formed,” and (informally speaking)
force the adversary to produce only ciphertexts for which it already knows the underlying messages, making
its decryption oracle useless.

Unfortunately, it is still not known how to realize TDFs and CCA security (in the standard model) based
on all the types of assumptions described above. Using NIZK proofs, CCA-secure cryptosystems have been
constructed based on problems related to factoring and discrete logs [47, 23,160, [19} 20], but not lattices. For
trapdoor functions, the state of the art is even less satisfactory: though TDFs are widely viewed as a general
primitive, they have so far been realized only from problems related to factoring [58) 54, 48]].

In this paper, we make the following contributions:

e We introduce a new general primitive called lossy trapdoor functions, and give realizations based on
the conjectured hardness of the decisional Diffie-Hellman (DDH) problem in cyclic groups, and the
conjectured worst-case hardness of certain well-studied lattice problems.

e We show that lossy trapdoor functions imply injective (one-to-one) trapdoor functions in the traditional
sense. This yields the first known trapdoor functions based on computational problems that are not
directly related to integer factorization.

e We present a conceptually simple black-box construction of a CCA-secure cryptosystem based on lossy
TDFs. In contrast to prior approaches, the decryption algorithm in our scheme is witness-recovering,
i.e., along with the message it also recovers the randomness that was used to create the ciphertext. It
then checks well-formedness simply by re-encrypting the message under the retrieved randomness,
and comparing the result to the original ciphertext. Until now, witness-recovering CCA-secure
cryptosystems were known to exist only in the random oracle model [8, 28]].

Our approach has two main benefits: first, the cryptosystem uses its underlying primitive (lossy TDFs)
as a “black-box,” making it more efficient and technically simpler than those that follow the general

NIZK paradigm [47} 23| 60][] Second, it yields the first known CCA-secure cryptosystem based
entirely on (worst-case) lattice assumptions, resolving a problem that has remained open since the
pioneering work of Ajtai [1] and Ajtai and Dwork [Z]EI

e We further demonstrate the utility of lossy TDFs by constructing pseudorandom generators, collision-
resistant hash functions, and oblivious transfer (OT) protocols, in a black-box manner and with simple
and tight security reductions. Using standard (but non-black box) transformations [34, 35|, our OT
protocols additionally imply general secure multiparty computation for malicious adversaries.

1.1 Trapdoor Functions and Witness-Recovering Decryption

Trapdoor functions are certainly a powerful and useful primitive in cryptography. Because they generically
yield passively secure (i.e., chosen plaintext-secure) cryptosystems that are witness-recovering, it is tempting
to think that they might also yield efficient CCA-secure encryption via witness recovery. Indeed, this approach
has borne some fruit [6} 8} 28], but so far only with the aid of the random oracle heuristic.

A related long-standing question is whether it is possible to construct (a collection of) trapdoor functions
from any cryptosystem that is secure under a chosen-plaintext attack (CPA-secure) [6]. A tempting approach
is to generate the function description as a public encryption key pk, letting its trapdoor be the matching
secret decryption key sk, and defining fyi(z) = Epi(x; x). That is, encrypt the input , also using x itself
as the random coins for encryption (for simplicity we ignore the possibility that encryption may require
more random bits than the message length). The cryptosystem’s completeness ensures that decrypting the
ciphertext with the secret key (i.e., the function’s trapdoor) returns z. The only remaining question is whether
this function is one-way, assuming that the cryptosystem is CPA-secure.

Unfortunately, we have no reason to think that the above function (or anything like it) is hard to invert,
because CPA security is guaranteed only if the randomness is chosen independently of the encrypted message.
For example, consider a (pathological, but CPA-secure) encryption algorithm E’, which is built from another
(CPA-secure) encryption algorithm E: the encryption algorithm E’(m; r) normally returns E(m;r), except
if m = r it simply outputs 7. Then our candidate trapdoor function fp(z) = E’(z;x) is simply the identity
function, which is trivial to invert.

While the above is just a contrived counterexample for one particular attempt, Gertner, Malkin, and
Reingold [31] demonstrated a black-box separation between injective (or even poly-to-one) trapdoor functions
and CPA-secure encryption. Intuitively, the main difference is that inverting a trapdoor function requires the
recovery of its entire input, whereas a decryption algorithm only needs to recover the input message, but not
necessarily the encryption randomness. For similar reasons, there is also some evidence that achieving CCA
security from CPA security (in a black-box manner) would be difficult [30].

Perhaps for these reasons, constructions of CCA-secure encryption in the standard model [47, 23] 160, (19}
20| have followed a different approach. As explained in [24], all the techniques used so far have employed a
“many-key” construction, where the well-formedness of a ciphertext is guaranteed by a (simulation-sound)
non-interactive zero knowledge (NIZK) proof that the same message is encrypted under two or more public
keys. A primary benefit of zero-knowledge is that the decryption algorithm can ensure that a ciphertext
is well-formed without needing to know a witness to that fact (e.g., the input randomness). The two-
key/NIZK paradigm has led to CCA-secure encryption based on general assumptions, such as trapdoor
permutations [23]], as well as efficient systems based on specific number-theoretic problems [19, [20]], such as

"We note that Cramer and Shoup [[19} [20]] gave efficient CCA-secure constructions based on NIZK proofs for specific number-
theoretic problems.
We also note that while NIZK proofs for certain lattice problems are known [51]], they do not appear to suffice for CCA security.

the decisional Diffie-Hellman (DDH) [13]] and decisional composite residuosity [48] problems. However,
the NIZK approach has two significant drawbacks. First, the constructions from general assumptions are
inefficient, as they are inherently non-black-box and require NIZK proofs for general NP statements. Second,
while CPA-secure public key cryptosystems based on worst-case lattice assumptions are known [2} 156 571,
there are still no known CCA-secure systems, because it is unknown how to realize NIZKs for all of NP (or
even for appropriate specific lattice problems) under such assumptions.

1.2 The Power of Losing Information

In this paper we revisit the idea of building trapdoor functions and witness-recovering CCA-secure encryption
in the standard model (i.e., without random oracles). As discussed above, past experience suggests that we
might need to build from a stronger base notion than chosen-plaintext security.

We introduce a new approach that is centered around the idea of losing information. Specifically, we
introduce a new primitive called a lossy trapdoor function, which is a public function f that is created to
behave in one of two ways. The first way corresponds to the usual completeness condition for an (injective)
trapdoor function: given a suitable trapdoor for f, the entire input x can be efficiently recovered from f(x).
In the second way, f statistically loses a significant amount of information about its input, i.e., most outputs
of f have many preimages. Finally, the two behaviors are indistinguishable: given just the public description
of f (i.e., its code), no efficient adversary can tell whether f is injective or lossy.

Using lossy trapdoor functions as a general tool, we develop new techniques for constructing standard
trapdoor functions and CCA-secure cryptosystems, and for proving their security. In essence, lossy TDFs
allow for proving security via indistinguishability arguments over the public parameters of a scheme (e.g.,
the public key of a cryptosystem), as opposed to the outputs of the scheme (e.g., the challenge ciphertext in a
chosen-ciphertext attack).

In more detail, the public parameters of our schemes will include some function f that is either injective
or lossy. In the injective case (typically corresponding to the real system), the trapdoor for f permits recovery
of its entire input and ensures correctness of the system. In the lossy case (typically corresponding to a
‘thought experiment’ in the security proof), one typically shows that the loss of information by f implies
statistical security of the system. An advantage of this approach is that when distinguishing between injective
and lossy f in the security reduction, the simulator can always create the adversary’s challenge ‘honestly,’
i.e., by choosing the function’s random input itself.

In the following, we demonstrate the utility of lossy TDFs by informally sketching constructions of
standard TDFs, CPA-secure encryption, and CCA-secure encryption. Later in the paper we also demonstrate
simple constructions of pseudorandom generators, collision-resistant hash functions, and oblivious transfer
protocols that enjoy tight and elementary security reductions. (Formal definitions, constructions, and proofs
are given in Sections [3|and [d])

1.2.1 Trapdoor Functions and CPA-Secure Encryption

Suppose we have a collection of lossy TDFs having domain {0, 1}", where the lossy functions ‘lose” k = n/2
bits of the input. Then the injective functions from this collection make up a collection of one-way trapdoor
functions. To see this, first consider the behavior of a hypothetical inverter Z for an injective function f. If
we choose = < {0,1}" uniformly and invoke Z on f(z), the inverter must output (with some noticeable
probability) the same value x, because f is injective and by hypothesis on Z. Now consider running the
same experiment when f is replaced by a lossy function f’. Observe that f’(x) statistically hides the value
of x, because there are on average about 28 = 2"/2 other values ' such that f’(z') = f’(x), and all are

equally likely. (Formally, « has large average min-entropy given f(x).) Therefore, even though a (potentially
unbounded) inverter might find one of these several preimages, it cannot guess the particular preimage x that
we have in mind (except with negligible probability). We conclude that no efficient inverter can exist for the
injective functions, unless the injective and lossy functions are distinguishable via the above test.

Using the fact that lossy TDFs imply standard injective TDFs, we can construct a CPA-secure cryptosys-
tem by standard techniques. For instance, a well-known folklore construction uses the generic Goldreich-
Levin hard-core predicate [33]] for f(x) to conceal a message bit, and uses the trapdoor in decryption to invert
f and recover the bit.

However, it is instructive (and a useful warm-up for our CCA-secure construction) to see that lossy
TDFs admit many-bit hard-core functions, via a very simple and direct proof of security (which should be
contrasted with the strong but complex machinery of the Goldreich-Levin theorem). Let H be a family of
universal hash functions from {0, 1}™ to {0, 1}, where {0, 1}" is the domain of the lossy TDFs and £ < n is
essentially the number of bits lost by the lossy functions. Then a hash function h chosen at random from H
is a hard-core function for the injective TDFs of the collection; i.e., h(x) € {0, 1}£ is pseudorandom given
f(z) (and the description of h), where f is injective and x < {0,1}" is uniformly random.

To see this, consider an adversary that attempts to distinguish h(x) € {0, l}f from a truly uniform and
independent string. A (computationally bounded) adversary’s advantage must be essentially the same if f is
replaced with a lossy function f’. In this case, the value of x is statistically well-hidden given f’(z). By a
suitable version of the leftover hash lemma [38|, 22l], h is a strong randomness extractor, so it follows that
h(z) is statistically close to uniform over {0, 1}* given f’(z) and h. Therefore, even an unbounded adversary
has negligible distinguishing advantage in this experiment, and our claim is established.

1.2.2 CCA-Secure Encryption

The construction of CCA-secure cryptosystems is more challenging, because the adversary is allowed to
make decryption (i.e., inversion) queries. In our construction above, if we replace an injective function with a
lossy function, then the simulator will not be able to answer (even well-formed) decryption queries, because
the plaintext information is lost. Therefore, we introduce a somewhat richer cryptographic abstraction called
an all-but-one (ABO) trapdoor function, which can be constructed generically from a collection of sufficiently
lossy TDFs, or more directly under the same concrete assumptions.

An ABO collection is associated with a large set B that we call branches. The generator of an ABO
function takes an extra parameter b* € B, called the lossy branch, and outputs a function g(-, -) and a trapdoor
t. The function g has the property that for any branch b # b*, the function g(b, -) is injective and can be
inverted with ¢, but the function g(b*, -) is lossy. Moreover, the lossy branch is hidden (computationally)
by the description of g. (Note that ABO trapdoor functions directly imply lossy trapdoor functions: simply
include with the ABO function the value of a branch that is either injective or lossy.)

Cryptosystem. For simplicity, and because it captures the main novelty of our approach, here we describe
a cryptosystem that is secure under a CCA1, or “lunchtime,” attack. In such an attack, the adversary has
access to a decryption oracle only before receiving its challenge ciphertext. A standard transformation can
then immunize the basic scheme against full CCA?2 attacks (see the remarks following the proof sketch).
Our construction uses a collection of lossy TDFs and a collection of ABO TDFs, both of which have
domain {0, 1}". Assume that the lossy functions from these collections individually lose (say) k > (2/3)n
of their input bits, so that when evaluated on the same input they still jointly lose at least n — 2(n — k) > n/3
bits. As in our CPA-secure scheme above, it also uses a universal family of hash functions # from {0,1}" to

{0, 1}4, where ¢ ~ n/3 is the length of the plaintext messages, determined by the joint lossiness. (We defer
the exact selection of parameters to Section 4})

As in the basic CPA-scheme, the cryptosystem’s key generator generates an injective function f from
the lossy TDF collection, along with its trapdoor f~!, and chooses a hash function h at random from #. In
addition, it generates an ABO function g whose lossy branch * € B is uniformly random (decryption will
not require the trapdoor for g, so it may be discarded). The public key is pk = (f, g, h), and the trapdoor f~*
is kept as the secret decryption key (along with pk itself).

The encryption algorithm encrypts a message m € {0, 1}1Z as follows: it chooses an input x € {0,1}"
and a branch b € B uniformly at random. The ciphertext is

c=(0b, ca=f(zx), ca=gbzx), cz=m®h(x)),

We emphasize that both f and g are evaluated on the same input z.

The decryption algorithm attempts to decrypt a ciphertext ¢ = (b, c1, 2, c3) as follows: it computes some
2’ = f~Y(cy) using its trapdoor for f, obtaining a witness x’. Then it simply recomputes the ciphertext to
verify that it is well-formed, by checking that ¢; = f(z’) and ¢ = g(b, 2’), and aborting if not. Finally, it
outputs the message m’ = h(z') & cs.

Sketch of security proof. The proof of security follows a hybrid two-key argument, but without zero
knowledge (due to the recovery of the encryption witness). The proof involves a few hybrid experiments
that are indistinguishable to any efficient adversary. In the first hybrid game, the challenge ciphertext is
computed using the lossy branch b = b* of the ABO function g; this game is indistinguishable from the
real attack because the description of g hides b*. In the next hybrid game, the decryption oracle extracts its
witness x’ using a trapdoor g~ for the ABO function, rather than with f~! (the validity test remains the
same). Because there is at most one witness x that satisfies the validity test for any ciphertext, the modified
decryption oracle behaves exactly as the real one does for all branches but one, namely, the b* branch — but
again the adversary cannot issue any query on branch b* because it is hidden. (Of course, once the adversary
receives its challenge ciphertext, the lossy branch b* is revealed, which is why this scheme’s security is
limited to lunchtime attacks.) In the final hybrid game, the injective function f is replaced with a lossy one.
At this point, we observe that the two components ¢; = f(x) and ca = g(b*,) of the challenge ciphertext
jointly lose about ¢ bits of x. Therefore, h(x) is statistically close to uniform (given the rest of the view of
the adversary), and even an unbounded adversary has only negligible advantage in this final game. It follows
that an efficient adversary’s advantage is also negligible in the real attack.

Remarks. We conclude this summary with a few notes. First, in practice one would likely use our
construction as a public-key key encapsulation mechanism (KEM), where the encapsulated key is simply
h(z). (A KEM does not encrypt messages directly; rather, it simply allows an encrypter and decrypter to
agree on a shared key that appears random to the attacker.)

Second, for a full CCA2 attack, the only remaining requirement is non-malleability of the challenge
ciphertext (ciphertexts in the above scheme are clearly malleable by just flipping bits of ¢35 = m @ h(x)). In
our CCA2-secure scheme, we employ the technique due to Dolev, Dwork, and Naor [23]] of signing each
ciphertext with a fresh key from a strongly unforgeable one-time signature scheme, and we use the public
verification key (or a hash of it) as the branch of the ABO functionE] The unforgeability property ensures that
the attacker cannot make a valid query on the lossy branch, even after learning its value. Note that depending

3Strongly unforgeable one-time signatures are implied by one-way functions, and in particular by lossy trapdoor functions.

on the implementation of the signatures scheme, the resulting decryption algorithm might no longer recover
the entire encryption witness (which now includes randomness for generating a key pair for the signature
scheme), but it still recovers the input « of the lossy and ABO functions f, g.

Finally, while our system falls outside the NIZK paradigm, we do rely on some techniques that are
reminiscent of previous CCA-secure constructions. Our construction uses a two-key strategy originally due
to Naor and Yung [47]], where during hybrid experiments the simulator uses one key to decrypt the ciphertext,
while it participates in a distinguishing experiment related to the other key. The major difference is that in the
NIZK paradigm, the distinguishing experiment is on a ciphertext encrypted under the other key, whereas our
simulation participates in a distinguishing experiment on the other key itself.

1.3 Realizing Lossy TDFs

We now sketch our basic approach for constructing lossy and all-but-one trapdoor functions. The starting
point is to rely on cryptographic assumptions that are amenable to linear (homomorphic) operations on
encrypted data. Informally, this means that one can apply linear operations (i.e., addition, multiplication by a
known scalar) directly on encrypted values, without first decrypting them.

A function f (whether injective or lossy) on {0,1}" is specified by an n x n matrix M that has been
encrypted in a suitable way. The underlying hardness assumption ensures that any two encrypted matrices are
computationally indistinguishable (for any n bounded by a polynomial in the security parameter), hence so
are injective and lossy functions.

To evaluate f(x), we view the input z € {0,1}" as an n-dimensional binary vector x, and simply
compute the encrypted linear product x - M by applying the appropriate homomorphic operations to the
encrypted entries of M.

An injective function is represented by an encrypted identity matrix M = I, and its trapdoor is the
matching decryption key. Briefly, the function f is invertible with the trapdoor (and therefore injective)
because f(x) is an entry-wise encryption of x - I = x, which can be decrypted to recover each bit of x
individually.

A lossy function is represented by an encrypted all-zeros matrix M = 0. Because x - 0 = 0 for all x, the
function value f(x) intuitively ‘loses’ z, at least from the point of view of an honest party who might try to
decrypt the output. However, this alone is not enough to guarantee statistical lossiness, because the output
ciphertexts still carry some internal randomness that might leak information about the input.

To ensure lossiness, we rely on a special method of encrypting the matrix IM. With this method, every row
of ciphertexts in an encrypted zero matrix lies in a low-dimensional subspace of the n-fold ciphertext space.
(Despite this fact, the plaintext matrix is still concealed.) The point of this property is to ensure that every
homomorphically computed linear combination of the rows (i.e., every value of f(x)) also lies in the same
subspace. By choosing the dimension n so that the number of inputs 2" significantly exceeds the cardinality
of the subspace, we can then ensure that the image of f is much smaller than its domain, as desired.

The construction of all-but-one trapdoor functions is just slightly more general. Each branch b of the
function simply corresponds to a different matrix M, whose encrypted version can be derived easily from
the function’s description. The function is generated so that M« = O for the desired lossy branch b*, while
M, is an invertible matrix (which is easily computable with the trapdoor) for all the other branches.

We note that it is tempting to think that the above approach could be made more space-efficient by
using an encrypted n-dimensional vector as the function description, and component-wise multiplication
for evaluation. While this presents no problem when inverting an injective function, it does not suffice for
lossiness (at least generically). The problem is that the encrypted output vector does not necessarily lie within
a particular subspace, so the number of outputs cannot be bounded appropriately.

Concrete assumptions. Using well-known techniques relating to the decisional Diffie-Hellman problem, it
is relatively straightforward to implement the above framework for constructing lossy and all-but-one TDFs
under the DDH assumption. One subtlety is that in order to support the needed additive homomorphisms,
encrypted values must appear ‘in the exponent,” so decryption would in general require computing discrete
logarithms. Fortunately, in our context all the encrypted values are guaranteed to be binary, so decryption is
easy. (See Section [5|for details).

Instantiating lossy TDFs under worst-case lattice assumptions via known lattice-based cryptosystems [2,
56, I57]] encounters some additional technical difficulties. While all these cryptosystems have a linear
structure that supports additive homomorphisms, their security (roughly speaking) is based on the difficulty
of distinguishing uniform points in an n-dimensional space from those that are ‘close to’ a subspace of
dimension n — 1. In our matrix framework, the lossiness argument encounters two significant problems:
first, the outputs of a lossy function are only guaranteed to lie ‘somewhat close’ to the subspace, and the
subspace itself may already have cardinality much larger than the number of function inputs. We address
these problems first by ‘lifting’ the underlying problem to that of distinguishing between uniform points and
points that are close to a subspace of much smaller dimension; and second, by fitting the function output itself
into a low-dimensional space to control the number of possible outputs in the lossy case (while retaining the
ability to invert in the injective case).

Technically, the techniques described above (especially the lifting step) seem easiest to implement using
the natural “learning with errors” (LWE) problem as defined by Regev [57], which is a generalization of the
well-known “learning parity with noise” problem to moduli larger than 2E] The LWE problem can be seen
as an average-case bounded-distance decoding problem on a certain natural family of random lattices, and
appears to be quite hard (the best known attack [9] requires exponential time and space). Moreover, Regev
gave a reduction showing that LWE is indeed hard on the average if standard approximation problems on
lattices are hard in the worst case for quantum algorithms [57]]. Quantum algorithms are not known to have
any advantage over classical algorithms for the worst-case lattice problems in question. In addition, following
the initial publication of this work, Peikert [S0] has shown that LWE is as hard as certain worst-case lattice
problems via a classical reduction.

1.4 Lossy Trapdoors in Context

It is informative to consider lossy trapdoors in the context of previous constructions. A crucial technique
in the use of lossy trapdoors is that security is typically demonstrated via indistinguishability arguments
over a scheme’s public key, as opposed to its outputs. For encryption, this style of argument goes back the
seminal work of Goldwasser and Micali [36]], and recently has been identified as an important notion (called
“message-lossy” [152] or “meaningful/meaningless” [42] encryption) in its own right. The style is inherent to
cryptosystems based on lattices [2, 156,57, but to our knowledge it has never been employed in the context
of trapdoor functions or chosen-ciphertext security.

The present approach can be contrasted with the (1-out-of-2) oblivious transfer (OT) construction of
Even, Goldreich, and Lempel [25]. They construct semi-honest oblivious transfer protocols from any public
key cryptosystem in which a public key can be sampled ‘obliviously,” i.e., without knowing a corresponding
decryption key. In the OT protocol, one of the messages is encrypted under such a public key, thereby
hiding it computationally from the receiver. Lossy TDFs can be employed to construct OT in a similar way,
but the security properties are reversed: one can sample a lossy public key that is only computationally

4Concurrently with the initial version of this work, Ajtai and Dwork [3] improved their original cryptosystem to include a lifting
argument that also appears amenable to our framework.

indistinguishable from a ‘real” one, but messages encrypted under the lossy key are statistically hidden.

Another interesting comparison is to the techniques used to construct CCA-secure cryptosystems from
identity-based encryption (IBE) [63] that were introduced by Canetti, Halevi, and Katz [17] and improved in
later work [[15, (16} [14)]. Our construction and simulation share some techniques with these works, but also
differ in important ways. In the constructions based on IBE, the simulator is able to acquire secret keys for all
identities but one special identity ID*, and can therefore answer decryption queries in the CCA experiment.
The special identity ID* is hidden statistically by the public key, while the challenge ciphertext encrypted
under ID* hides its message only computationally. In our simulation, the security properties are once again
reversed: the lossy branch b* is hidden only computationally by the public key, but the challenge ciphertext
hides its message statistically.

Our concrete constructions of lossy TDFs under the DDH assumption, which generate a matrix whose
rows lie in a small subspace, are technically similar to the ElGamal-like cryptosystems of Bellare et al. [3]]
that reuse randomness for efficiency, and to constructions of pseudorandom functions (via intermediate
objects called “synthesizers”) by Naor and Reingold [45]]. The novelty in our constructions is in the use of
additional homomorphic structure to compute encrypted linear products, and to bound the number of possible
outputs in the lossy case.

1.5 Subsequent Work

Since the initial publication of this work in [53]], there has been much additional work on lossy trapdoor
functions and related concepts.

Additional constructions and variations. One area of interest has been in finding additional realizations
of lossy trapdoor functions. Rosen and Segev [59] and Boldyreva, Fehr, and O’Neill [12] independently
described simple, compact constructions of lossy and ABO TDFs under the decisional composite residuosity
assumption, using the trapdoor function of Paillier [48]]. (The preliminary version of this work [S3]] constructed
somewhat more complex lossy and ABO TDFs under a variant of Paillier’s assumption.) More recently,
Freeman, Goldreich, Kiltz, Rosen and Segev [27] produced more constructions of lossy TDFs, from the
quadratic residuosity assumption and the family of k-linear assumptions [39, |62] (which are potentially
weaker generalizations of the DDH assumption). Boyen and Waters gave a technique to ‘compress’ the public
key of our matrix construction down to O(n) group elements in a ‘pairing-friendly’ group.

Another direction of research has been to give further applications and variations of lossiness. Boldyreva
et al. [12]] constructed CCA-secure deterministic encryption schemes for high-entropy messages, based on
lossy and ABO TDFs. Peikert, Vaikuntanathan, and Waters [S2] constructed efficient, universally composable
oblivious transfer protocols based on certain “message-lossy” encryption schemes, and Bellare, Hofheinz,
and Yilek [[7] proved that message-lossy encryption schemes are secure under “‘selective-opening attacks.”
Rosen and Segev [59] introduced a relaxation of lossiness, called security under “correlated inputs,” and
constructed a witness-recovering CCA-secure cryptosystem using that notion. Mol and Yilek [44]] recently
solved an open problem from an earlier version of this work, by constructing a CCA-secure encryption
scheme from any lossy TDF that loses only a noticeable fraction of a bit.

Trapdoors for lattices. Using very different techniques from ours, Gentry, Peikert, and Vaikuntanathan [[29]
recently constructed two different types of trapdoor functions that are secure under worst-case lattice
assumptions. One collection consists of injective functions that can be shown secure under correlated

inputs [S9] (they also can be modified to enjoy a mild degree of lossiness). Peikert [50] has adapted this
collection to construct a simple CCA-secure cryptosystem based directly on the LWE assumption.

1.6 Open Directions

This work leaves a number of open problems and directions, some of which we discuss briefly here.

e Are there constructions of lossy trapdoor functions (or even just lossy functions, without trapdoors)
based on other assumptions? All known constructions are based on specific algebraic problems; a
construction based on ‘general’ cryptographic assumptions would be quite interesting. A related
question is whether more efficient constructions based on the DDH and LWE problems are possible.

e [s it possible to ‘amplify’ lossiness in an unconditional way? That is, can one construct a ‘highly lossy’
function that loses a § fraction of its input, from a ‘moderately lossy’ one that loses only an € < ¢
fraction?

e What other cryptographic applications do lossy TDFs imply? For example, (single-server) private
information retrieval (PIR) is an ‘information-compressing’ primitive, but we do not know of a
construction from lossy TDFs (or vice-versa).

2 Preliminaries

Here we review some standard notation and cryptographic definitions. We also give relevant background
relating to entropy of distributions and extraction of randomness from weakly-random sources.

2.1 Basic Concepts

We let N denote the natural numbers. For any k& € N, [k] denotes the set {1, ..., k}.

Unless described otherwise, all quantities are implicitly functions of a security parameter denoted A € N
(except in Section [6] where we use d). The security parameter, represented in unary, is an input to all
cryptographic algorithms (including the adversary); for notational clarity we usually omit it as an explicit
parameter.

We use standard asymptotic notation O, o, €2, and w to denote the growth of functions. We say that
fO) = O(g(N) if £(A) = O(g(\)log®\) for some constant ¢. We let poly(\) denote an unspecified
function f(\) = O(\°) for some constant c.

We let negl(\) denote some unspecified function f(\) such that f = o(A™¢) for every constant ¢, saying
that such a function is negligible (in \). We say that a probability is overwhelming if it is 1 — negl()).
Throughout the paper, a probabilistic polynomial-time (PPT) algorithm is a randomized algorithm that runs
in time poly(A)..

For convenience, we often identify random variables with their probability distributions. Let X and Y be
two random variables over some countable set .S. The statistical distance between X and Y is defined as

AX,Y) =3 [Pr[X =s] - Pr[Y = |
seS

Statistical distance is a metric; in particular, it obeys the triangle inequality.

10

Let X = {X)\} oy and YV = {Y)},y denote two ensembles of random variables indexed by A\. We

say that X and Y are statistically indistinguishable, written X = Y, if A(Xy,Y)) = negl()\). Given an
algorithm A, define its advantage in distinguishing between X and) as

[PrlA(Xy) = 1] = PriA(Y)) = 1],

where the probability is taken over the random values X and Y),, and the randomness of .A. We say that X’
and) are computationally indistinguishable, written X ~ Y, if the advantage of any PPT algorithm A is
negl()\)E] It is routine to see that statistical indistinguishability implies computational indistinguishability.
When the ensembles of two random variables (indexed by \) are clear from context, we sometimes abuse
notation and say that the variables themselves are statistically/computationally indistinguishable.

It is a standard fact that the outputs of any algorithm (respectively, any PPT algorithm) on two statistically
(resp., computationally) indistinguishable variables are themselves statistically (resp., computationally)
indistinguishable. Moreover, it is straightforward to prove (via a hybrid argument) that statistical and
computational indistinguishability are transitive under polynomially many steps. More precisely, if A; 2
Xo & -+ & X, (respectively, X} ~ - -- ~ X)) is any sequence of k = poly()\) ensembles, then X} 2 X
(resp., X1 ~ XL).

2.2 Cryptographic Notions

Here we recall some standard cryptographic definitions. We frequently define security in terms of interactive
experiments (sometimes called “games”) involving an adversary algorithm A (formally, an interactive Turing
machine). The view of the adversary in such an experiment is the ensemble of random variables, indexed
by the security parameter A\, where each variable includes the random coins of .4 and all its inputs over the
course of the experiment when run with security parameter A.

2.2.1 Trapdoor Functions

We recall one definition of injective trapdoor functions. For generality, let n = n(\) = poly(\) denote
the input length of the trapdoor functions as a function of the security parameter. A collection of injective
trapdoor functions is given by a tuple of PPT algorithms (S, F, F'~!) having the following properties:

1. Easy to sample, compute, and invert with trapdoor: S outputs (s,t) where s is a function index and ¢
is its trapdoor, F'(s, -) computes an injective (deterministic) function fs(-) over the domain {0, 1}",
and F'~1(t,-) computes f;!(-). (Outside the image of f;, the behavior of F'~1(,-) may be arbitrary.)

2. Hard to invert without trapdoor: for any PPT inverter Z, the probability that Z(s, fs(x)) outputs =
is negligible, where the probability is taken over the choice of (s,t) < S, z + {0,1}", and Z’s
randomness.

2.2.2 Collision-Resistant and One-Way Hash Functions

A collection of collision-resistant hash functions from length ¢(\) to length ¢'(\) < ¢(\) is modeled by a
pair of PPT algorithms (S, Fern), Where

SFor simplicity, throughout the paper we opt to define security against uniform adversaries; all our results can be easily adapted to
a non-uniform treatment.

11

1. S¢m outputs a function index i,
2. Fun(i,-) computes a (deterministic) function H; : {0, 1}** — {0, 1}”()‘),

3. for every PPT adversary A, the probability (over the choice of i and the randomness of .A) that A(7)
outputs distinct z, 2’ € {0, 1}**) such that H;(z) = H;(2') is negligible in A.

A collection of universal one-way hash functions (UOWHFs) [46] is similarly given by algorithms
(Suowhfs Fuowhf), with the following security property. Let A be a PPT adversary that participates in the
following experiment: A outputs an z € {0, 1}6(’\), then a function index 7 <— Syownf 1S chosen and given
to A, then A outputs some =’ € {0, 1}2(/\). Then the probability (over all the randomness of the game) that
' # x and Fyownt(i, 2) = Fuownt(7, 2) is negl()). It is easy to see that a collection of CRHFs is also a
collection of UOWHFs.

2.2.3 Public-Key Encryption

We recall the definition of a public-key cryptosystem and the standard notions of security, including security
under chosen-plaintext attack (CPA) and under chosen-ciphertext attack (CCA). A cryptosystem consists of
three PPT algorithms that are modeled as follows:

e G outputs a public key pk and secret key sk.

e &(pk,m) takes as input a public key pk and a message m € M (where M is some message space,
possibly depending on \), and outputs a ciphertext c.

e D(sk,c) takes as input a secret key sk and a ciphertext ¢, and outputs a message m € M U {L},
where | is a distinguished symbol indicating decryption failure.

The standard completeness requirement is that for any (pk, sk) < G and any m € M, we have
D(sk,E(pk,m)) = m. We relax this notion to require that decryption is correct with overwhelming
probability over all the randomness of the experiment.

A basic notion of security for a public key cryptosystem is indistinguishability under a chosen plaintext
attack, called CPA security (also sometimes referred to as semantic security). A cryptosystem is said to be
CPA-secure if the views of any PPT adversary A in the following two experiments indexed by a bitb € {0, 1}
are computationally indistinguishable: a key pair (pk, sk) < G is generated and pk is given to A. Then
A outputs two messages mg, m1 € M, and is given a ciphertext ¢* « £(pk, my), i.e., an encryption of
message myp.

A much stronger notion of security for a public key cryptosystem is indistinguishability under an adaptive
chosen ciphertext attack, or CCA security. This notion is similarly defined by two experiments as described
above, where the adversary A is additionally given access to an oracle O that computes D(sk, -) during
part or all of the game. In a variant called CCA1 (or “lunchtime”) security, the oracle O computes D(sk, -)
before the ciphertext c¢* is given to .4, and outputs L on all queries thereafter. In the stronger and more
standard notion of CCA2 security, the oracle O computes D(sk, -) throughout the entire experiment, with the
exception that it returns L if queried on the particular challenge ciphertext ¢* (this condition is necessary,
otherwise the definition is trivially impossible to realize).

12

2.2.4 Strongly Unforgeable One-Time Signatures

A signature scheme consists of three PPT algorithms Gen, Sign, and Ver, which are modeled as follows:
e Gen outputs a verification key vk and a signing key sk, .

e Sign(sk,, m) takes as input a signing key sk, and a message m € M (where M is some fixed
message space, possibly depending on \) and outputs a signature o.

e Ver(vk, m, o) takes as input a verification key vk, a message m € M, and a signature o, and outputs
either 0 or 1.

The standard completeness requirement is that for any (vk, sk,) < Gen and any m € M, we have
Ver(vk, m,Sign(sk,,m)) = 1. We relax this notion to require that Ver accepts (i.e., outputs 1) with
overwhelming probability over all the randomness of the experiment.

The security notion of strong existential unforgeability under a one-time chosen message attack is defined
in terms of the following experiment between a challenger and a PPT adversary algorithm A: the challenger
first generates a key pair (vk, sk,) < G, and gives vk to .A. Then A may query an oracle that computes
Sign(sk,,) on a single message m € M of its choice, receiving a signature o. Finally, A outputs a pair
(m/,¢"), and is said to succeed if Ver(vk, m’, o’) = 1 and, if a signature query was made, (m’, o’) # (m, o).
The advantage of A is the probability that .4 succeeds, taken over all the randomness of the experiment; a
signature scheme is strongly unforgeable under a one-time chosen message attack if every PPT adversary A
has only negligible advantage in the above game.

Strongly unforgeable one-time signatures can be constructed from any one-way function [32, Chapter 6],
and more efficiently from collision-resistant hash functions [41]. As we show later, both of these primitives
have black-box constructions from lossy trapdoor functions.

2.3 Randomness Extraction

The min-entropy of a random variable X over a domain S is the negative (base-2) logarithm of the pre-
dictability of X:
Hyo(X) = —lg(max Pr[X = s]).

SES

In many natural settings (including our applications), the variable X is correlated with another variable Y
whose value is known to an adversary. In such scenarios, it is most convenient to use the notion of average
min-entropy as defined by Dodis et al. [22]], which captures the average predictability of X conditioned on
the (random) value of Y:

] = — _HOO(X|Y:y) = — = =
Hoo(X|Y) = — g (ygy [2 D I (ygy [r;leagiPr[X S|y y]D .

(See [22] for further discussion and alternate notions.)
Lemma 2.1 ([22, Lemma 2.2]). IfY takes at most 2" possible values and Z is any random variable, then
Hoo(X|Y) > Hyo(X) — -

In our applications, we need to derive nearly uniform bits from a weakly random source X that has some
average min-entropy. This is accomplished via an appropriate type of randomness extractor.

13

Definition 2.2 ([22]). A collection H of functions from {0,1}" to {0, 1}" is an average-case (n, k, £, ¢)-strong
extractor if for all pairs of random variables (X,Y') such that X € {0,1}" and Hoo(X|Y) > k, it holds that
for h «— Hand r + {0,1},

A((h,h(X),Y), (h,7,Y)) <e.

Dodis et al. [22] showed that in general, any (worst-case) strong extractor is also an average-case strong
extractor, for an appropriate setting of parameters. However, the proof incurs some degradation in the number
of bits that may be extracted (and their quality) for a given amount of average min-entropy. We instead prefer
to use a tighter but more specialized result, which says that universal hash functions are good average-case
strong extractors. (Recall that a family of functions H = {h; : D — R} from a domain D to range R is said
to be universal if, for every distinct z, 2’ € D, Prj. 4 [h(z) = h(2")] = 1/|R|. Universal hash functions
admit very simple and efficient constructions [64].)

Lemma 2.3 ([22] Lemma 2.4]). Let X, Y be random variables such that X € {0,1}" and ﬁoo(X\Y) > k.
Let H be a family of universal hash functions from {0,1}" to {0, 1}", where ¢ < k — 21g(1/€). Then H is an
average-case (n, k, , €)-strong extractor.

3 Lossy and All-But-One Trapdoor Functions

3.1 Lossy TDFs

Here we define lossy trapdoor functions. Define the following quantities as functions of the security parameter:
n(A) = poly()\) represents the input length of the function and k() < n(\) represents the lossiness of the
collection. For convenience, we also define the residual leakage r(\) = n(\) — k(). For all these quantities,
we often omit the dependence on .

A collection of (n, k)-lossy trapdoor functions is given by a tuple of PPT algorithms (.Sinj, Stoss, Fidt: Flgi%)
having the properties below.

1. Easy to sample an injective function with trapdoor: Siy; outputs (s,t) where s is a function index and ¢
is its trapdoor, Fif(s, -) computes an injective (deterministic) function fs(-) over the domain {0, 1}",
and Fj ¢ (¢, -) computes f;!(-). If a value y is not in the image of fs, i.e., if £;!(y) does not exist, then
the behavior of Fl;j% (t,y) is unspecified (because of this, the output of F]El} may need to be checked
for correctness in certain applications).

2. Easy to sample a lossy function: Sjess outputs (s, L) where s is a function index, and Fjgs(s, -)
computes a (deterministic) function f4(-) over the domain {0,1}" whose image has size at most
2r =2k,

3. Hard to distinguish injective from lossy: the first outputs of Sj,; and S are computationally in-
distinguishable. More formally, let Xy denote the distribution of s from Si;;, and let Y) denote the

distribution of s from Sjss. Then { X} ~ {Y)\}.

Note that we make no explicit requirement that an injective function be hard to invert. As shown in
Lemma [3.3] this property is implied by combination of the lossiness and indistinguishability properties.

For our lattice-based constructions we need to consider a slightly relaxed definition of lossy TDFs,
which we call almost-always lossy TDFs. Namely, we require that with overwhelming probability over the
randomness of Sy, the index s of Sj;j describes an injective function f; that Flghl inverts correctly on all
values in the image of f. In other words, there is only a negligible probability (over the choice of s) that

14

fs(*) is not injective or that Fjt (¢, -) incorrectly computes f; '(-) for some input. Furthermore, we require
that with overwhelming probability, the lossy function f, generated by Sjoss has image size at most 2. In
general, the function sampler cannot check these conditions because they refer to “global” properties of the
generated function. The use of almost-always lossy TDFs does not affect security in our applications (e.g.,
CCA-secure encryption) because the adversary has no control over the generation of trapdoor/lossy functions.
Therefore the potential advantage of the adversary due to sampling an improper function is bounded by a
negligible quantity.

3.2 All-But-One TDFs

For our CCA applications, it is convenient to work with a richer abstraction that we call all-but-one (ABO)
trapdoor functions. In an ABO collection, each function has an extra input called its branch. All of the
branches are injective trapdoor functions (having the same trapdoor value), except for one branch which
is lossy. The lossy branch is specified as a parameter to the function sampler, and its value is hidden
(computationally) by the resulting function description.

We retain the same notation for n, k, 7 as above, and also let B = {B)} .y be a collection of sets whose
elements represent the branches. Then a collection of (n, k)-all-but-one trapdoor functions with branch
collection B is given by a tuple of PPT algorithms (Sypo, Gapo, Gop) having the following properties:

abo

1. Sampling a trapdoor function with given lossy branch: for any b* € B), Sypo(b*) outputs (s, t), where
s is a function index and ¢ is its trapdoor.

For any b € B, distinct from b*, Gpo(s, b, -) computes an injective (deterministic) function g, p(-)
over the domain {0, 1}", and G- (¢, b, -) computes g ; (-). As above, the behavior of Gy (¢, b,y) is

abo
unspecified if g, (y) does not exist.

Additionally, Gpo (s, b*, -) computes a function g, ;- (-) over the domain {0, 1}" whose image has size
at most 2" = 2",

2. Hidden lossy branch: the views of any PPT adversary A in the following two experiments, indexed by
abiti € {0, 1}, are computationally indistinguishable: A outputs (b§, b}) € By x B) and is given a
function index s, where (s, 1) <= Sapo(b)).

Just as with lossy TDFs, we also need to consider an “almost-always” relaxation of the ABO definition.
Specifically, the injective, invertible, and lossy properties need only hold with overwhelming probability
over the choice of the function index s. As with lossy TDFs, the use of almost-always ABOs does not affect
security in our applications.

3.3 Basic Relations

Lossy and ABO trapdoor functions are equivalent for appropriate choices of parameters and degrees of
lossiness. We first show an easy equivalence between the two notions for ABOs with binary branch sets.

Lemma 3.1. There exists a collection of (n, k)-ABO TDFs having exactly two branches if and only if there
exists a collection of (n, k)-lossy TDFss.

Proof. Suppose that (Sabo, Gabos G) give an (n, k)-ABO collection having branch set {0, 1} (without loss
of generality). We construct (Sinj, Sioss, Flud, F];ﬂ%) that give a collection of (n, k)-lossy TDFs as follows:

e The generator S, outputs (s,t) < Sapo(1), and S outputs (s, L) where (s,%) < Sapo(0).

15

e The evaluation algorithm Fjgr always evaluates on branch b = 0, i.e., Figr(s,) = Gapo(s, 0, x).
e The inversion algorithm F} i (,y) outputs z + G L (t,0,y).

It is clear by construction that Flt_df correctly inverts (using the trapdoor) any function generated by Siy;
because the underlying ABO function is evaluated on a non-lossy branch, whereas Sjoss generates a lossy
function having image size at most 2"~ * because the underlying ABO is evaluated on its lossy branch.
Moreover, injective and lossy functions are computationally indistinguishable by the hidden lossy branch
property of the ABO.
Now consider the converse direction, supposing that (Siyj, Sioss, Fitd, Flt_df) give a collection of (n, k)-

lossy TDFs. We construct (Subo, Gabo, Gy that give an (n, k)-ABO collection having branch set B = {0, 1}
as follows:

e The generator Sy, (b*) chooses (s{, L) <= Sioss, (87, t) <= Sinj» and outputs (s = (5., 5] _4x), 1).
e The evaluation algorithm Gapo(s = (S0, 51), b,) outputs Figs(sp,).
e The inversion algorithm G, (¢, b, y) outputs Fj i (,).

Using the properties of the lossy TDF collection, it may be verified that the function computed by Gy,
is lossy on branch b*, and injective (and invertible by G;)})) on branch 1 — b*. Finally, for either input
b* € {0, 1} to Sapo, the output function index s is computationally indistinguishable from one made up of
two indices independently generated by Sjy;, hence the ABO satisfies the hidden lossy branch condition. [

We can also construct an ABO collection for large branch sets from one with just a binary branch set.
Our construction involves some degradation in lossiness (i.e., additional leakage) because it invokes several
functions on the same input. It is an interesting question whether this can be improved.

Lemma 3.2. [f there exists an (n,n — r)-ABO collection with branch set B = {0, 1}, then for any { > 1
there exists an (n,n — { - r)-ABO collection with branch set B = {0,1}".

Proof. Suppose by hypothesm that (S, G, G~1) gives an (n,n — 7)-ABO collection with branch set {0, 1}.
We construct (Sabo, Gabos G) that give an (n,n — £ - 7)-ABO collection with branch set {0, 1}*.

e Sibo(b*) generates ¢ individual functions (s;, t;) <— S(b}) for i € [¢], where b} is the ith bit of b*. The
outputis (s = (s1,...,8¢),t = (b*,t1,...,t0)).

o Gabo(s,b,) computes y; = G(s;,b;, x) for each i € [¢] and outputs y = (y1,...,Y).

° Gabo(t b,y) finds an index i € [¢] such that b; # b}, and outputs = «— G~ 1(t;, b;, y;). (Af b = b*, G;)O
outputs L.)

One may check that G, .bo inverts correctly on any branch b # b*, because y; was computed on an injective
branch when b; # b}. To analyze the leakage of Gpo(s, b*,), note that all £ subfunctions G(s;, b;, -) are
evaluated on their lossy branches, so by hypothesis the total number of possible output values is at most
(27)¢ = 2°". Finally, the hidden lossy branch property follows by a routine hybrid argument over the
components of the function index s. O

16

3.4 Implications of Lossy TDFs

Here we show that lossy TDFs (having appropriate parameters) can be used for simple, black-box con-
structions of other important cryptographic primitives, including standard (injective) trapdoor functions,
pseudorandom generators, and collision-resistant hash functions. We stress that most of the applications in
this section do not require a trapdoor, but only indistinguishability between injective and lossy functions
(the only exception is the construction of standard trapdoor functions). It seems plausible that realizing this
weaker notion of “lossy (non-trapdoor) functions” could be achieved more simply or efficiently than the full
notion of lossy TDFs; we leave an investigation of this question to future work.

3.4.1 Trapdoor Functions

First we show that the injective functions from a lossy collection are indeed trapdoor functions in the standard
sense (i.e., easy to invert with a trapdoor, and hard to invert otherwise).

Lemma 3.3. Let (Siar, Fiuap Fl;l}) give a collection of (n, k)-lossy trapdoor functions with k > w(log \).

Then (Sinj, Fuuaps F};i}) give a collection of injective trapdoor functions. (The analogous result applies for
almost-always collections.)

Proof. By hypothesis, fs(-) = Fiuat(s, -) is injective for any s generated by Sip;j, and Flgl% inverts f4(-) given
the trapdoor ¢. Therefore the completeness condition holds.

Suppose by way of contradiction that Z is a PPT inverter for the collection, i.e., that Z(s, fs(z)) outputs
« with nonnegligible probability over the choice of (s,t) < Siyj, < {0,1}", and Z’s randomness. We
use 7 to build a distinguisher D between injective functions (those generated by .Sj,j) and lossy ones (those
generated by Sjoss). D works as follows: on input a function index s, choose x + {0,1}" and compute
y = Fuag(s,x). Let 2’ + Z(s,y). If 2/ = x, output 1 (“injective”), otherwise output 0 (“lossy”).

We now analyze D. First, if s is generated by Sy, then by assumption on Z, we have 2/ = z with
nonnegligible probability, and D outputs “injective.” Now, let s be any fixed function index generated by
Sloss- Then the probability (over the choice of x) that even an unbounded 7 predicts x is given by the average
min-entropy of « conditioned on f,(z), i.e., the predictability of = given fy(x) is at most 2~ oc(=lfs (@)
Because f(-) takes at most 2"~ * values, Lemmaimplies that

Hoo(w|fs(2)) > Hool) = (n— k) =1 — (n — k) = k.

Because £ = w(lg \), the probability that Z(s,y) outputs =, and D outputs “injective,” is negl(\). By
averaging, the same is true for s chosen at random by Sjss. We conclude that D distinguishes injective
functions from lossy ones with nonnegligible advantage, a contradiction of the hypothesis. O

Note that in general, the hypothesis that £ = w(log \) seems necessary for showing (strong) one-wayness.
The reason is that a lossy function may be injective on, say, a subset of size 2" %=1 of the input domain
{0,1}", and (2¥+! — 1)-to-1 on the remainder (one may check that such a function has image size 2").
On this type of function, an unbounded inverter could choose to invert only those values having unique
preimages, which occur with probability 2%, and to invert an injective function with the same probability.
However, for weak one-wayness (where an inverter must succeed with probability negligibly close to 1), the
proof of Lemma 3.3]is easily adapted to show that even k = 1/poly()) suffices.

17

3.4.2 Hard-Core Functions and Pseudorandom Generators

Here we show that lossy TDFs admit simple “hard-core” predicates (and more generally, multibit functions)
with tight and elementary security reductions. Informally, a hard-core function for a function f : {0,1}" —
{0,1}* is a function h : {0,1}" — {0,1}" such that h(z) is computationally indistinguishable from a
uniformly random r € {0, 1}, given the value f(z).

Our results here can be contrasted with that of Goldreich and Levin [33]], who demonstrated a “universal”
hard-core predicate for every one-way function. On one hand, their result applies to any one-way function (or
collection thereof), whereas ours relies crucially on lossy functions. On the other hand, their proof relies on a
sophisticated reduction whose running time depends on the distinguishing advantage of the distinguisher; our
proof is elementary and the security reduction is tight (i.e., the running time and distinguishing advantage for
lossy and injective functions are essentially the same as those for the distinguisher between h(z) and r).

In the following, let (Syar, Flar, Fh_d%) give a collection of (n, k)-lossy TDFs (in fact, we only need a
collection of lossy functions; Fl;i% is unnecessary). Let H be a universal family of hash functions from {0, 1}"
to {0, 1}, where ¢ < k — 21g(1/e) for some negligible ¢ = negl()\). Define the following distributions that
are generated by the experiments described below, which are implicitly indexed by the security parameter \.

Xo: choose (s,t) < Siyj, h < H, and z < {0, 1}". Output (s, h, Fyar(s, z), h(z)).

Xyt choose (s,t) < Sigss: h < H, z < {0,1}", and r + {0, 1}*. Output (s, h, Fiae(s, z), 7).

(s,1)
Xi: choose (s,t) < Siosss b < H, and = < {0, 1}". Output (s, h, Fiar(s, z), h(z)).
(s,1)
X3z choose (s,1) < Sinj, h < H, z + {0,1}", and r + {0, 1}*. Output (s, h, Fia(s, z), 7).

Lemma 3.4. Let Xy, X1, Xo, X3 be as defined above. Then

{Xo} = {X1} = {Xa} = {Xs}.
In particular, H is a family of hard-core functions for the lossy collection.

Proof. The fact that { X} & {X} follows immediately from the indistinguishability of injective and lossy
functions: a PPT algorithm, given as input an s generated either by Sj;j or Siess, can sample h < H,
x < {0,1}", and compute Fyt(s, z), h(x) on its own and output (s, h, Fie(s,), h(z)). Because the two
distributions of s are computationally indistinguishable by hypothesis, the resulting output distributions X
and X are likewise. A virtually identical argument shows that { X5} ~ {X3} as well.

It remains to show that { X } 2 {X2}. Let s be any fixed function index generated by Sjos. Because
fs(-) = Fiat(s, -) has at most 2"~ outputs, by Lemmawe have

Hw(x‘fS(aj)) > Hoo(z) = (n— k) = k.

Therefore, by Lemma the hypothesis that ¢ < k — 21g(1/e¢), and by averaging over all choices of
S < Sjoss, We have
A(Xl,XQ) < G(A) = negl()\),

as desired. t
’
A pseudorandom generator is a deterministic function G : {0,1}" — {0,1}" for some n’ > n > 1

such that the uniform distribution over {0, 1}"I is computationally indistinguishable from G(x), where

18

x < {0,1}" is chosen uniformly at random. Hard-core predicates (and hard-core functions) have played an
integral role in the construction of pseudorandom generators [[11, (65 [38]]. In particular, Hastad ez al. [38]]
constructed pseudorandom generators from any one-way function; their construction is much simpler (and
the security reduction is tighter) when the one-way function is also injective. Their approach is first to apply
the Goldreich-Levin hard-core predicate of an injective one-way function to construct an object called a
pseudoentropy generator, which, informally, is a deterministic function G such that G(x) is computationally
indistinguishable from some distribution having more entropy than x. They then construct a pseudorandom
generator from any pseudoentropy generator; see [38), Sections 4.3 and 4.6] for details. We observe that
because universal hash functions are hard-core for the injective functions of a lossy TDF collection, they can
be used in lieu of the Goldreich-Levin predicate in the construction of [38]], yielding a tight security reduction
for the resulting construction of pseudoentropy generators.

3.4.3 Universal One-Way and Collision-Resistant Hashing

We now construct UOWHFs and collision-resistant hash functions from lossy TDFs. The construction is
quite simple: the hash function H is defined as H(x) = h(f(x)), where f is (say) an injective function, and
h is selected at random from a universal family of hash functions. (As we will see, the construction and proof
work equally well regardless of whether H is defined using an injective or lossy f.) For an appropriate output
length of the universal hash functions, H shrinks its input, and for a sufficient amount of lossiness, finding
collisions implies the ability to distinguish injective functions from lossy ones.

The main idea behind the security proof (for both UOWHFs and CRHFs) is the following: if the function
H = ho f is constructed using an injective f, then all collisions in H must occur in the “outer” invocation of
h. Now consider the function H = ho f’, where f’ is sufficiently lossy. Then with overwhelming probability,
the function h contains no collisions, either with the selected target point (for UOWHFs) or over the entire
image of f’ (for CRHFs). Therefore all collisions in the alternate construction must occur in the “inner”
invocation of f’. We can therefore distinguish between injective and lossy functions by checking whether an
adversarially generated collision of H occurs in its outer or inner component. We now proceed more formally
with the construction of CRHFs, which are themselves UOWHFs (see also the discussion following the proof
of Lemma [3.5)).

Assume without loss of generality that the input length n(\) = X equals the security parameter. Let
(Siar, Fiar, Fl;i%) give a collection of (n, k)-lossy trapdoor functions { fs : {0,1}" — R} having arbitrary
range R and residual leakage n — k < n/2 — d for some d = w(log A). (We will not need the inversion
algorithm Fh_d%, and an almost-always collection of lossy functions also suffices.) Let H = {h; : R —
{0,1}"} be a universal family of hash functions where n — d < ¢ < nﬁ

The algorithms for the collection of collision-resistant hash functions are as follows:

e Generator S, chooses (s,t) <— Siyj and disposes of ¢. It also chooses h <— H. The index of the hash
function is i = (s, h).

e Evaluator Fip(i,) onindex i = (s, h) and input = € {0, 1}" outputs h(Fq(s, z)) € {0,1}".

Lemma 3.5. The algorithms (S¢, Fern) described above give a collection of collision-resistant hash func-
tions from {0,1}" t0 {0, 1}%.

STechnically, we require one family 7 of hash functions for each value of the security parameter A, but we omit this dependence
for clarity.

19

Proof. For the purpose of contradiction, let C be an adversary that finds collisions for the collection with
nonnegligible probability. Specifically, C takes an index ¢ = (s, h) and outputs some z, 2’ € {0,1}".
Consider the event that © # 2’ form a valid collision in Fi (3, -); because Fyqr(s, -) is injective, this is
equivalent to the event F that z, 2’ form a valid collision and Fyg¢(s,x) # Flae(s, 2'). (In the almost-always
case, F also includes the constraint that Fig¢(s, -) is actually injective, which fails to hold with only negligible
probability.) Then it suffices to show that py = Pr[E] when attacking the real construction is negligible, via
an alternate game.

The alternate game proceeds as follows: C is given an index ¢ = (s, h) where s is instead generated by
Sioss» and h <— H. Then by indistinguishability of lossy and injective functions, p; = Pr[E] in the alternate
game is only negligibly different from pg. We now show, via a statistical argument, that p; is negligible (even
if C is unbounded).

Fix any s chosen in the alternate game, and let Z = Fj(s, {0, 1}") be the image of the lossy function.
By lossiness, |Z| < 2"~*. Now consider any fixed distinct pair 3,3’ € Z: by universality of H, we have
Pr,[h(y) = h(y')] = 2~¢. Summing over all the (at most) 22("~*) = 27=2d gych pairs via a union bound,
we see that

P}’lr[EI distinct y, 5/’ € Z : h(y) = h(y)] < 27246 < 277 — negl()\).

Now consider the event E in the alternate game: for x, 2’ to be a valid collision and y = Fj¢(s,) and
y' = Fyat(s, 2') to be distinct requires h(y) = h(y’). By above, the probability of such an event is negligible,
and the proof is complete. O

Discussion. The crucial hypothesis in the above proof is that the residual leakage n — k of the lossy TDF
collection is significantly less than n/2, so as to circumvent the birthday bound. For UOWHFs, the exact
same proof goes through as long as the leakage is at most n — w(log \), because we only need to rule out
collisions for the specific input selected by the adversary before the hash function is generated.

We also note that alternate constructions, in which s is generated by Sjoss instead of Sy, can also yield
UOWHFs and CRHFs. These constructions might even seem more ‘natural,” because Fjqs(s, -) can be seen
as ‘compressing’ its input into a small image (of possibly long strings), followed by a ‘smoothing’ step in
which i maps the image to a set of short strings. The proof is symmetric to the one given above.

As described above, our constructions have the property that a trapdoor is known to (but supposedly
discarded by) whomever generates the hash function, which may make it easy for that party to find collisions
in the hash function. Formally, the construction should therefore be considered “private-coin,” in contrast to a
“public-coin” one for which it must remain hard to find a collision even given the random coins of the function
generator. (See [40] for a detailed study of these two notions.) We point out that the alternate construction
using Sjess also may not be public-coin, because knowing the random coins of .Sj,ss may also make it easy to
find collisions (and this is indeed the case for our concrete constructions in Sections [5| and [6)).

4 Cryptosystems and Oblivious Transfer

Here we show how to construct cryptosystems enjoying various notions of security using lossy and ABO
trapdoor functions. We start in Section .1 with a simple construction of a cryptosystem that is secure against
chosen-plaintext attacks, which illuminates some of the main ideas behind the main CCA-secure construction.
In Section 4.2 we sketch how the CPA-secure cryptosystem also implies oblivious transfer and multiparty
computation protocols. We conclude in Section i.3] with our CCA-secure construction and its security proof.

20

4.1 CPA-Secure Construction

Our CPA-secure cryptosystem may be seen as the result of applying the standard construction of an encryption
scheme from a collection of injective trapdoor functions, using a universal hash family to instantiate the
hard-core function that conceals the message. All the parameters in our CPA-secure system are functions of
the security parameter A; for notational convenience we usually omit this dependence.

Let (Suar, Fiar, Flghl) give a collection of (n, k)-lossy trapdoor functions (or almost-always lossy TDFs).
Let H be a universal family of hash functions from {0,1}" to {0, 1}, where ¢ < k — 21g(1/¢) for some
negligible ¢ = negl()). The message space is {0, 1}".

e Key generation. G generates an injective trapdoor function as (s,t) < Siyj, and chooses a hash
function h < H.

The public key pk = (s, h), and the secret key sk = (¢, h).

¢ Encryption. £ takes as input a public key pk = (s, h) and a message m € {0, 1}6.

It chooses - < {0, 1}" uniformly at random. The ciphertext is ¢ = (c1, c2), where
c1 = Fua(s,z), co2=m® h(x).

e Decryption. D takes as input a secret key sk = (¢, h) and a ciphetext ¢ = (cy, ¢2).
It computes = = Fyt (¢, c1) and outputs ¢y @ h(z).

Theorem 4.1. The algorithms (G, E, D) described above give a CPA-secure cryptosystem.

Proof. Correctness of decryption is immediate from correctness of Flgi% (If the lossy TDF collection is
almost-always, then decryption may fail with only negligible probability.)

Security under chosen plaintext attack essentially follows immediately from the fact that universal hash
functions are hard-core for lossy TDFs, as established by Lemma [3.4] in Section [3.4.2] We show that
the view of the adversary in either of the CPA experiments (in which my, is encrypted, for b € {0,1}) is
computationally indistinguishable from a common “hybrid” experiment, from which it follows that the two
CPA experiments are themselves computationally indistinguishable.

In more detail, consider a hybrid chosen-plaintext attack experiment in which pk = (s, h) is generated
by choosing (s, t) < Sioss and h <— H, and the ciphertext (c1, c2) = (Fiat(s, z),r ® mp) for z + {0,1}"
and r < {0, 1}Z. Note that the view of the adversary is identical for either value of b and any choice of
messages mg, m1, because r is uniform and independent of all other variables. By Lemma@ this hybrid
view is computationally indistinguishable from the view in the CPA experiment when my, is encrypted. This
completes the proof. O

4.2 Interlude: Oblivious Transfer and Multiparty Computation

One interesting property of our CPA-secure scheme is that it can be used to create an oblivious transfer
protocol (secure against semi-honest, or “honest-but-curious,” adversaries) in a manner that roughly follows
the approach of Even, Goldreich, and Lempel [25]]. This approach relies on a CPA-secure cryptosystem that
allows sampling a public key in two different but indistinguishable ways: first, in a “normal” way together
with the corresponding decryption key, and second, in an “oblivious” way so that messages encrypted under
the public key remain hidden even given the random coins of the sampler. Then the following is an d-out-of-¢

21

(semi-honest) oblivious transfer protocol: the receiver generates d public keys normally (with decryption
keys) and ¢ — d public keys obliviously, and delivers all ¢ public keys to the sender, ordered so that the normal
public keys correspond to the d desired messages. The sender encrypts each of the ¢ messages under the
corresponding public key and returns the ¢ ciphertexts, and the receiver decrypts exactly the desired d.

In our CPA-secure cryptosystem, one can sample a public key obliviously simply by generating a lossy
function rather than an injective one, letting (s, L) < Sioss instead of (s,t) < Siyj. By the proof of
Theorem [.1] public keys sampled in this way are computationally indistinguishable from normal ones, and
messages encrypted under such keys are statistically hidden. We note that the security properties in our
protocol are dual to those obtained previously in the EGL paradigm (using, e.g., trapdoor permutations), where
the receiver’s security is statistical and the sender’s security is only computational. We also point out that the
EGL paradigm can also be used to construct semi-honest OT with existing lattice-based cryptosystems [2}, 156,
57| for a similar reason: these cryptosystems are also proved secure by showing that it is possible to sample a
(malformed) public key that is indistinguishable from a valid public key, whose ciphertexts statistically hide
the encrypted messages.

Oblivious transfer protocol secure against malicious adversaries can be constructed using the zero-
knowledge “compiler” paradigm of Goldreich, Micali, and Wigderson [34] or using a recent black-box
transformation of Haitner [37]], and secure multiparty computation can be obtained using the (non-black-box)
compilation paradigm of Goldreich, Micali, and Wigderson [35]]. However, these constructions are inefficient
and primarily of theoretical interest. A recent work by Peikert, Vaikuntanathan, and Waters [52] constructs
efficient (and “universally composable”) OT protocols against malicious adversaries under a variety of
assumptions, including those used in this work to instantiate lossy TDFs.

4.3 CCA-Secure Construction

We now describe our CCA-secure cryptosystem. Let (Gen, Sign, Ver) be a strongly unforgeable one-time
signature scheme where the public verification keys are in {0, 1}” Let (Siat, Flidt, F@%) give a collection of
(n, k)-lossy trapdoor functions, and let (Sapo, Gabos G;i)) give a collection of (n, k’)-ABO trapdoor functions
having branch set B = {0, 1}", which contains the set of signature verification keys. (Almost-always lossy
and ABO TDFs are also sufficient.)

We require that the total residual leakage of the lossy and ABO collections is

r+r’=m—k)+n-k)<n-—=x, (@)

for some x = k(n) = w(logn). Let H be a universal family of hash functions from {0, 1}" to {0, 1}¢, where
0 < £ < k — 21g(1/€) for some negligible € = negl()\). The message space is {0, 1}*.

e Key generation. G generates an injective trapdoor function via (s,t) < Siyj, an ABO trapdoor
function having lossy branch 0” via (s’,t’) < Sapo(0"), and a hash function h + H.

The public key consists of the two function indices and the hash function:

pk = (s,5',h).

The secret decryption key consists of the two trapdoors, along with the public key:

sk = (t,t',pk).

7As in prior schemes, we could also use a universal one-way hash function to hash the verification keys down to a smaller size;
this would reduce the number of branches needed in the ABO. For simplicity we do not include this in our description of the system.

22

(In practice, the ABO trapdoor ¢’ will never be used and may be discarded, but we retain it here for
convenience in the security proof.)

e Encryption. & takes as input a public key pk = (s, s, h) and a message m € {0, 1}*.

It generates one-time signature keypair (vk, sk,) < Gen, then chooses x < {0,1}" uniformly at
random. It computes

c1 = Fui(s,x), c2=Guwo(s,vk,z), c3=mo h(x).

Finally, it signs the tuple (c1, c2, c3) as o < Sign(sky, (c1,c2,¢3)).

The output ciphertext is
¢ = (vk,c1,c,c3,0).

e Decryption. D takes as input a secret key sk = (t,t',pk = (s,s',h)) and a ciphertext ¢ =
(/Uka 1, C2,C3, O-)‘

It first checks that Ver(vk, (c1, ca, c3),0) = 1; if not, it outputs L. It then computes = = F i (¢, c1),
and checks that ¢; = Flge(s, z) and co = Gapo(s', vk, x); if not, it outputs L.

Finally, it outputs m = ¢35 @ h(z).

Theorem 4.2. The algorithms (G, E, D) described above give a CCA2-secure cryptosystem.

4.3.1 Proof of Theorem 4.2

First we argue the correctness of the cryptosystem. Consider decryption of some properly generated ciphertext
¢ = (vk, ey, o, c3,0) of a message m. By completeness of the one-time signature, Ver(vk, (¢1,c2,c3),0) =
1. The function fs(-) = Fiat(s,-) is injective (with overwhelming probability over the choice of s, in
the almost-always case), therefore Fl;j% (t,c1) = x, where z is the randomness used in the encryption.
By construction, ¢; = Fjg(s,) and co = Gapo(s’, vk, z). Therefore the decryption algorithm outputs
c3® h(z) =m @ h(z) ® h(z) =m.

We prove CCA-security by describing a sequence of experiments Gamey, ..., Gameg, where Game;
is the real chosen ciphertext attack experiment in which m;, is encrypted, for (arbitrary) fixed b € {0, 1}.
Then we show that for all 7+ = 1, ..., 5, the adversary’s views in Game; and Game;; are indistinguishable
(either computationally or statistically). Finally, it follows immediately from the definition of Gameg that the
adversary’s view is identical for either value of b € {0, 1}. Then by transitivity, the two chosen-ciphertext
attack experiments for b € {0, 1} are computationally indistinguishable, hence the cryptosystem is CCA2-
secure.

We now define the sequence of games used to prove security. An experiment is entirely specified by three
algorithms (which keep joint state) that interact with the adversary in the manner described in the definition
of the CCA experiment:

e Setup. Outputs a public key pk.
e Decrypt. On input a ciphertext ¢ from the adversary, outputs an m € {0, 1}£ U{L}.

e Challenge. On input two messages mg, m1 € {0, 1}12 from the adversary, outputs a ciphertext c*.

23

When referring to an implementation of these algorithms in a specific experiment ¢, we use a subscript ¢,
e.g., Setup,. By default, each of these algorithms is unchanged from one game to the next, i.e., Decrypt; , ; =
Decrypt;, etc.

Before defining these algorithms for the individual experiments, we define one “global” aspect of
the algorithms that applies to all the games: Setup always first chooses a one-time signature keypair
(vk*, skk) < Gen, and then proceeds as described in the games below. Then whenever Challenge(mqg, m;)
produces a challenge ciphertext ¢* by calling &€(pk, my), instead of generating a one-time signature keypair
(vk, sky) on its own, it uses (vk, sk,) = (vk*, sk’) as generated in the first step of Setup. We stress that
Challenge operates this way in all the games we define.

When making these changes to the real CCA game (Game,), the view of the adversary remains identical,
because Challenge is invoked exactly once. We make these changes merely for the convenience of having
vk* defined throughout both query phases, which aids the analysis.

Game;: Algorithms Setup;, Decrypt;, and Challenge; are identical to those in the CCA2 experiment
described in Section [2.2.3 with the above-noted changes. That is, Setup; calls (pk, sk) <— G and
outputs pk; Decrypt, (c) outputs D(sk, ¢), and Challenge, (mg, m1) outputs c* < E(pk, mp).

In particular, note that G chooses the ABO lossy branch to be 0%, and D inverts ¢; using the injective
function trapdoor .

Game,: The only change is in Decrypt,, which is defined as follows: given a ciphertext ¢ = (vk, ¢1, ¢2, c3,0),
if vk = vk* (as chosen by Setup,), then output L. Otherwise return Decrypt; (c). (Note that by defin-
ing vk™* in Setup, this new rule is well-defined during both query phases.)

Game;: The only change is in Setups, in which the ABO function is chosen to have a lossy branch b* = vk*
rather than b* = 0”. Formally, in G we replace (s',t") <= Sapo(0V) with (s',t') < Sapo(vE™).
Note that Decrypts still decrypts using the injective function trapdoor ¢, and that the ABO function
trapdoor ¢’ is never used in this experiment.

Game,: The only change is in Decrypt,, in which witness recovery is now done using the ABO trapdoor
¢'. Formally, in D we replace © = F,t(t,c1) with © = G (¢, vk, c2). Note that Decrypt, still
performs all the consistency checks of D, and that the injective function trapdoor ¢ is never used in this

experiment.

The full and final description of Decrypt(c = (vk, c1, c2, c3,0)) is now: if vk = vk*, output L. Then
if Ver(vk, (¢1, c2,¢3),0) # 1, output L. Compute x = Gﬁ)(t’, vk, c2), and check that ¢; = Fjg(s, x)
and ca = Gapo (', vk, x); if so, output c3 & h(z) otherwise output L.

Game;: The only change is in Setups, in which we replace the injective function with a lossy one. Formally,
in G we replace (s, t) < Sinj With (s, L) <= Siogs.
The full and final description of Setup is now: choose (vk*,sk}) < Gen, (s',t') < Sapo(VE™®),
(s,t) < Sloss, h < H, and output the public key pk = (s, s', h).

Gameg: The only change is in Challengeg, where the c3 component of its output ciphertext c¢* is replaced by
a uniformly random and independent value c3 < {0, 1}5. Formally, in the call to £ by Challengeg, we
replace c3 = my, @ h(z) with ¢ < {0, l}g.

The full and final description of Challenge(mg, m1) is now: ignoring the messages (and the bit b), let
z < {0,1}", ¢1 = Fuae(s,), ¢ = Gabo(s', vk*,), c3 < {0,1}", o < Sign(sk,, (c1,c2, c3)), and
output ¢ = (vk*, ¢y, co,c3,0).

24

First observe that, as desired, the adversary’s view in Gameg is identical for either choice of b € {0, 1},
because b is never used in the experiment. We now state and prove a sequence of indistinguishability results
that establish the main theorem.

Claim 4.3. The adversary’s views in Game, and Gamey are computationally indistinguishable, assuming
the strong one-time existential unforgeability of the signature scheme.

Proof. We begin by observing that the views in Game; and Game, are identical unless a certain event F'
happens, which is that the adversary .A makes a legal (i.e., not equal to ¢*) decryption query of the form
¢ = (vk = vk* c1,co,c3,0), where Ver(vk, (c1,c2,c3),0) = 1. We show that event F' happens with
negligible probability, assuming the unforgeability of the signature scheme.

Consider a simulator S that mounts a one-time chosen message attack against the signature scheme as
follows: on input vk generated by Gen, it emulates Setup by letting vk* = vk and choosing (pk, sk) < G,
and gives pk to A. Upon any decryption query from A of the form ¢ = (vk = vk™*, ¢1, c2, c3,0) such that
Ver(vk, (c1,c2,c3),0) = 1 and (if after the challenge phase) ¢ # ¢*, S immediately outputs ((c1, c2,¢3),0)
as a forgery and returns L to A. Otherwise, S returns m < D(sk, c) to A.

When A asks to be challenged on two messages mg, m; € {0, 1}6, S creates the challenge ciphertext
¢ = (vk*, ¢}, c3, i, 0*) by running &(pk, my), except that the signature o* is generated by querying S’s
signing oracle on the message (cj, c3, ¢3), instead of running Sign. (Note that the signing oracle is queried at
most one time.)

It is clear by construction that S simulates Gamey perfectly to .A. We now show that event F' happens if
and only if S outputs a valid forgery. If F" happens during the first query phase (before A is challenged on
c*), then S outputs a valid signature without making any queries, which is a forgery. If F" happens during the
second query phase (after A receives ¢*) via a query ¢ = (vk™*, ¢1, c2, c3, 0), then because ¢ # ¢* we must
have ((c1,c2,¢3),0) # ((c}, ¢, ¢5),0"). Therefore S outputs a valid forgery.

Because the signature scheme is one-time strongly unforgeable, we conclude that event F' happens with
negligible probability, as desired. O

Claim 4.4. The adversary’s views in Games and Games are computationally indistinguishable, assuming
the hidden lossy branch property of the ABO TDF collection.

Proof. We define a PPT simulator S that interacts in the hidden lossy branch experiment of the ABO
collection. S generates (vk*, sk¥) < Gen, outputs (to the experiment) the two branches (0”, vk*), and
receives an ABO function index s’ generated by either Sypo(0V) or Sapo(vk™). S then interacts with the CCA2
adversary A, providing a view that is identical to either Game, or Gameg, respectively.

S implements Setup by executing the remainder of G, i.e., it lets (s,) < Siyj and h < H, and outputs
pk = (s,s', h). It implements Decrypt and Challenge exactly as in both Games and Gameg (each algorithm
is unchanged between the two games). Note that S can do this because it knows the signing key sk* the
injective function trapdoor ¢.

By construction, the view generated by S is exactly Games when s’ is generated by Sypo(0V), and is
exactly Gamez when s’ is generated by Sy, (vk*), and the proof is complete. O

Claim 4.5. The adversary’s views in Games and Game, are identical (or statistically close, if either the
lossy or ABO TDF collection is almost-always).

Proof. The only difference between Gamez and Game, is in the implementation of Decrypt. We show
that Decrypt; and Decrypt, produce identical outputs (with overwhelming probability, if the lossy or ABO
collections are almost-always).

25

First recall that if the lossy and ABO collections are almost-always, then the injectivity and invertibility
properties hold for all inputs simultaneously, with overwhelming probability over the choice of s and s'.
From now on we assume that this is so.

We now analyze Decrypt in both games on an arbitrary query ¢ = (vk, ¢1, ¢2, c3,0). Since Decrypt
always outputs | in both games if vk = vk™, we may assume that vk # vk*. Additionally, both implementa-
tions check that ¢; = Fiut(s, z) = fs(z) and o = Gapo (s, vk, z) = gy () for some x that they compute
(in different ways), and output L if not. Therefore we need only consider the case in which such x exists. It
suffices to show that this x is unique, and that both implementations of Decrypt find it.

In both games, (s,t) is generated by Siyj and (s',t') is generated by Sapo(vk*). Therefore f,(-) and
gs' vk () are both injective (in the latter case, because vk # vk*). Thus there is a unique x such that
(c1,¢2) = (fs(), g (). Decrypts finds that = by computing F, (¢, c1), while Decrypt, finds it by

computing G, (', ¢2), and the proof is complete. O

Claim 4.6. The adversary’s views in Gamey and Games are computationally indistinguishable, assuming
the indistinguishability of injective and lossy functions of the lossy TDF collection.

Proof. We prove this claim by describing a PPT simulator algorithm S that, on input a function index s,
simulates Game, perfectly if s was generated by Siy,;, and that simulates Games perfectly if s was generated
by Siess. By the indistinguishability of injective and lossy functions, the claim follows.

The simulator S(s) operates by implementing Setup, Decrypt, and Challenge. It completes the imple-
mentation of Setup as in Gamey, by choosing (vk*, sk%) < Gen, (s',t') < Sabo(vk™), and h < H, and
outputting a public key pk = (s, s’, h). (Note that the s part of the public key comes from S’s input.) We
also point out that S knows the ABO trapdoor ¢, but does not know the trapdoor ¢ corresponding to s (if it
even exists).

S implements Decrypt and Challenge just as in Game, and Games (the algorithms are unchanged
between the two games). Note that S can do this because it knows ¢’, which is the only secret information
Decrypt, needs. By construction, S therefore perfectly simulates Game4 or Games, depending on whether s
is the index of an injective or lossy function (respectively), as desired. O

Claim 4.7. The adversary’s views in Games and Gameg are statistically indistinguishable.

Proof. Fix all the randomness (including the adversary’s) in Games and Gameg, except for the choice of the
hash function h and the randomness = used by Challenge when producing the ciphertext ¢*. We show that
over the choice of i and z alone, the views in Games and Gameg are statistically indistinguishable; the claim
follows by averaging over the rest of the randomness in the experiment.

We first observe that f,(-) = Fiur(s, -) and gy y+ (-) = Gabo(s’, vk*, -) are lossy functions with image
sizes at most 2"~ % and 2", respectively. (When the lossy and/or ABO collections are almost-always,
then the claim holds with overwhelming probability over the choice of s, s’.) Therefore the random variable
(ct,¢5) = (fs(x), gs vk () can take at most 2"+ < 2"~ values by our hypothesis in ().

By Lemma [2.T] we have

Hoo(z|(¢],¢3)) > Hoo(z) — (n— k) =n — (n — K) = k.
Now by the hypothesis that £ < x — 21g(1/¢) and Lemma[2.3] we have
A((cl, 5, h, h(x)), (ci,c3, h,1")) < € = negl(N),

where 7/ < {0, 1} is uniform and independent of all other variables. In Games, we have c3 = h(z) & my,
whereas in Gameg, we have ¢35 = r < {0, 1}4, which is identically distributed to v’ & my, (because 7’ is

26

uniform and independent). Therefore the two games are statistically indistinguishable, and this completes the
proof. O

4.3.2 Discussion and Alternate Constructions

We stress that in all the games except the last (in which mg and m; are never used), the challenge ciphertext
c* is created in the same way by “honestly” running the encryption algorithm £ (pk, m;). The only difference
between games is instead in how the public key is formed and how decryption queries are answered. This is
in contrast to prior constructions, in which the hybrid experiments always involve valid public keys, but the
simulator does not know the underlying randomness of the challenge ciphertext it produces. This difference
is what allows our decryption algorithm to test well-formedness of a ciphertext by recovering an encryption
witness.

The use of a one-time strongly unforgeable signature scheme for full CCA2 security (and in particular,
non-malleability) dates back to the work of Dolev, Dwork, and Naor [23]], and is also technically similar
to its use in the work of Canetti, Halevi, and Katz [[17] in their construction of CCA2-secure encryption
from identity-based cryptosystems. As discussion in the introduction, for weaker CCA1 (“lunchtime”)
security, the one-time signature in our encryption algorithm is not needed, and vk can simply be replaced by
a uniformly random choice of branch (from a branch set of super-logarithmic size). The proof of security
remains essentially the same, where Game; and Game, now become statistically indistinguishable because
the value of vk™ is statistically hidden (it is uniform and independent of the adversary’s view) during the
query phase, before the challenge ciphertext c* is produced.

Finally, we point out that the choice of the hash function h < H can be deferred from the key generation
algorithm to the encryption algorithm, with a fresh choice of h chosen for (and included in) each ciphertext,
with straightforward changes to the proof. (In this case the description of h must also be signed under
vk.) The same also holds for our basic CPA-secure construction. Because in most systems it is typical to
encrypt many messages under a single public key, this alternate construction is less efficient in terms of
communication (but it may have other applications).

5 Realization from DDH-Hard Groups

In this section we present constructions of lossy and all-but-one TDFs using groups in which the decisional
Diffie-Hellman (DDH) problem is conjectured to be hard. The construction is a direct instantiation of the
approach laid out informally in Section[I.3] and serves as a warm-up for the lattice-based constructions in the
next section.

We proceed by recalling the DDH assumption and some basic operations on cyclic groups. Then we
develop a special “matrix encryption” mechanism, and use it to construct lossy and all-but-one TDFs.

5.1 Background and Notation

Let G be a an algorithm that takes as input a security parameter \ and outputs a tuple G = (p, (G), g) where
p is a prime, (G) is a description of a cyclic multiplicative group G of order p (i.e., an efficient algorithm for
performing the group operation in (&), and g is a generator of G.

Our construction will make use of groups for which the DDH problem is conjectured to be hard. The
DDH problem for G is to distinguish (with non-negligible advantage) between the ensembles

{(679“,9b79“b)} and {(G,ga,gb,gc)}

AEN AeN’

27

where G = (p, (G), g) < G()\), and a, b, c < Z,, are uniform and independent; the DDH assumption for
G is that these ensembles are computationally indistinguishable. Particular families of groups in which the
DDH assumption is conjectured to hold include the subgroup of quadratic residues in the group Z; where
q = 2p + 1 for prime p, and certain groups defined over elliptic curves.

For the remainder of this section, we implicitly assume that G = (p, (G), g) < G is fixed and known to
all algorithms. (In our TDF constructions, the group will be generated by the function sampler Sjqr and made
part of the function description.)

We now define some notation that will be useful for our constructions and analysis. For a matrix
Y = (yi;) € ZZX“’, we let g¥ = (g¥i) € G"*" be the matrix obtained by entry-wise exponentiation with
base g. Then we can efficiently perform certain linear (homomorphic) operations on Y ‘in the exponent,

namely:

>

1. Given gY and any matrix g* € G"*™, we can compute
gX-l-Y — (ga:i,j—&-yi,j) — (gxm- _gym) c thw
by component-wise multiplication of ¢* and g¥.

2. Given g¥ and any matrix X € Zg’xh, letZ = XY ¢ ZZ/Xw, where 2 j = e @ik * Yk,js We can

g = <H (gyk,j)w> ca.

kelh]

compute ¢gZ by its entries

As special cases, we can left-multiply by a row vector x € Z;’ = Z}?Xh, or by any scalar ¢ € Z,,.

5.2 Matrix Concealer

In this subsection we describe the foundation for our DDH-based lossy and ABO TDF constructions. This is
a method for generating a pseudorandom “concealer” matrix (together with a trapdoor) that enjoys certain
useful linearity properties. Namely, all the rows of the matrix lie in a one-dimensional subspace, and the
trapdoor is a description of the subspace.

The algorithm GenConceal(h, w) works as follows: given positive integer dimensions h, w = poly(\),

e Chooser = (r1,...,m) < Zl and s = (s1,..., 5y, 1) « ZY x {1} uniformly at random.

e LetV=r®s=rlse ZZX(wH) be the outer product of r and s.
e Output C = gV € G"*(w+1) a5 the concealer matrix, and s as the trapdoor.

We point out that if one truncates s to s’ = (s1, ..., sy) € Z;, then g*® = (¢"i%i) € GM*W is exactly
the DDH-based construction of a pseudorandom synthesizer due to Naor and Reingold [45]. (A synthesizer is
a function f(r, s) whose outputs are jointly pseudorandom on all pairs of r and s ranging over a polynomial
number of uniformly random values 71, ..., and sy, . .., Sy, respectively. Here and in [45]], the function
f 2y x Zy, — Gisdefined as f(r,s) = g¢g"°.)

Lemma 5.1. Let h, w = poly()\). Under the DDH assumption for G, the concealer matrix C = gV output
by GenConceal(h, w) is pseudorandom over G"*%, i.e., computationally indistinguishable from the uniform
distribution.

28

Proof. We give a reduction from solving the DDH problem to distinguishing between C = ¢V and uniform.
For the sake of simplicity and self-containment, we give a somewhat loose reduction; a tight reduction is also
possible using the random self-reducibility of the DDH problem; see [45]].

We first show a simpler fact that under the DDH assumption, (¢°%,y = ¢"®) is computationally indis-
tinguishable from (¢%,y = ¢%), where r < Z,, s + Ly % {1}, and t «+ Z};"H are uniformly random and
independent. To do so, define hybrid distributions Hy, . .., H,,, where (informally) in H; the first j entries
of y (and the last) are from g, while the remainder are uniform. More precisely, each H; is generated as
follows: choose uniform and independent 1 <— Zp, s < Z; X {1}, and generate y € G¥* as y, 11 = ¢",
yr = g%k for k € [j], and yy, < G is uniform otherwise; output (¢°,y). It can be seen that H,, is distributed
as (g%, g"%), whereas Hj is distributed as (g%, g*).

We now show that for each j € [w], H; and H;_; are computationally indistinguishable under the
DDH assumption, which by transitivity proves the claim. To do so, we give a reduction from distinguishing
(G,g",g°,¢"°) from (G, g", g%, g") (where r, s, t < Z, are uniform and independent) to distinguishing H;
from H;_1. On input (G, g¢",¢%,y € G), construct and output (x € GV y € G¥1) as follows: let
ZTw+1 = G, Yw+1 = g3 for k € [j — 1] choose s, <— Zy and let 2, = ¢°%, yp, = (¢")*F;fork = j+1,...,w
choose s, < Z, and let x;, = g°F, y, <= G uniformly; finally, let z; = ¢°, y; = y. It may be verified by
inspection that the reduction is correct, i.e., it maps (G, ¢", ¢°, ¢"*) to H; and (G, ¢", ¢°, ¢") to H,_1.

We now prove the lemma. Define (new) hybrid distributions Hy, . .., Hy over matrices C € Gh*(wt1),
In distribution H;, the first ¢ rows of C are computed as in GenConceal, while the remaining rows are
uniformly random in G¥*! (and independent of all other rows). Clearly Hj, coincides with the output
distribution of GenConceal, and Hj is the uniform distribution.

We now show that for all ¢ € [h], H; and H,_; are computationally indistinguishable under the DDH
assumption, which by transitivity proves the lemma. To do so, we give a reduction from distinguishing
(g%,g"%) from (g%, g*) (where 7, s, and t are as above) to distinguishing H; from H; 1. Given (¢%,y €
G 1), generate a matrix C as follows: for each k € [i — 1], choose 7, «— Z,, uniformly and let the kth
row of C be ¢ = (¢g°)"* = g"+S. Let the ith row of C be ¢; = y, and let the remaining rows be uniformly
random and independent of all other rows. Clearly if y = ¢g"®, then the reduction’s output is distributed as
H;, whereas if y is uniformly random then the output is distributed as H;_1, as the proof is complete. [J

We remark that according to the above proof, gV remains pseudorandom even if the adversary is also
given g°; this fact will not be needed by our construction.

5.3 Lossy TDF

We now describe our lossy TDF construction.

e Sampling an injective/lossy function. The function generators (for both the injective and lossy cases)
first generate G = (p, (G), g) < G, then invoke GenConceal(n,n) to generate a concealer matrix
C =gV € G and trapdoor s € Z!+1.

The injective function generator Sj,; outputs function index g¥ = gVH/, where I’ € ng(nﬂ) is the
n x n identity matrix extended by a zero column, i.e., the ith row of I’ is the standard basis vector
e; € Z"*1. The trapdoor for the function is s.

The lossy function generation algorithm S}, outputs function index C = ¢V There is no trapdoor
output.

29

e Evaluation algorithm. Fyys takes as input (g% ,x), where g¥ € G™*(n+1) i a function index and
x € {0,1}" C Zy,, is an n-bit input interpreted as a vector. The output is z = g*Y € G"1, computed
as described in Section[5.11

Note that if the function index g¥ was generated by Sinj (e, Y = rl's + T), then 2,11 = g" where
1" = xr! € Z,, and for each j € [n] we have z; = g" %%,

In contrast, if g¥ was generated by Sjss (i.€., Y = r’s), then z = ¢"'s where ' = xrt € Z,,.

o [nversion algorithm. F]t_d} takes as input (s, z) where s is the trapdoor information and z is the function
output. The output x € {0, 1}" is computed as follows: for each j € [n], compute a; = z;/z,’, |, and
let z; € {0,1} be such that a; = g%i.

Theorem 5.2. Under the DDH assumption for G, the algorithms described above give a collection of
(n,n —lgp)-lossy TDFs.

Proof. For a function generated by .Sj,; (the injective case), correctness of the inversion algorithm is apparent
from the above remarks accompanying the evaluation and inversion algorithms.

For a function generated by Sjoss (the lossy case), by the above remarks every output z is of the form g"/s
where 1’ € Z,. Because s is fixed by the function index, there are at most p = 2n—(n=1gp) distinct outputs of
any particular lossy function, as desired.

Finally, indistinguishability of injective and lossy functions follows directly from Lemmal5.1} a lossy
function index gV is computationally indistinguishable from a uniformly random matrix over G"*("*1)_ The

same is true for an injective function index gV*T via the elementary reduction that adds I’ in the exponent to
its input matrix. This concludes the proof. O
Remarks.

1. Note that computing Fiar(gY,x = 0) always outputs z = ¢g°. This presents no problem, because it
does not distinguish injective and lossy functions; the property holds for any function index ¢¥ .

2. Our basic construction takes an n-bit input as a binary string and has an output of n + 1 group elements,
using an n X (n + 1) matrix of group elements as the function index. It is possible to achieve somewhat
smaller indices and outputs by using an n’ x (n’ + 1) matrix and treating the input as an n’-dimensional
vector of elements from a subset of Z, of size 2%, where n’ = [n/«]. However, this increases the
running time of the inversion algorithm by about a 2% factor, due to the enumeration over all possible
values for each input block. Therefore, this generalization remains polynomial-time only for small
values of a, i.e., a = O(log \).

5.4 All-But-One TDF

For a cyclic group of order p, the residual leakage of our lossy TDF is at most lg p bits. For large enough
values of 72, we can use the generic transformation (see Section [3.3) from lossy to all-but-one TDFs to obtain
an ABO collection with many branches, based on the DDH assumption. However, the generic transformation
is rather inefficient, and increases the leakage somewhat. Here we demonstrate a more efficient ABO
collection where the number of branches can be as large as p. (It is also straightforward to combine this ABO
construction with the generic one to get more than p branches.) The construction is a simple generalization of
our lossy TDF construction.

30

Let the set of branches B = Zpﬂ

e Sampling an ABO function. The function generator Sy, (b* € Z)) first generates G = (p, (G),g) « G,
then invokes GenConceal(n, n) to generate a concealer matrix C = gV € G (n+1) and trapdoor s.

The function index is ¥ = ¢gV—"T, where I’ € ZZXWH) is exactly as above in Section The

trapdoor information for the function is t = (s, b*).

e Evaluation algorithm. Gap, takes as input (g¥,b,x) where gY is a function index, b € Z, is the
desired branch, and x € {0,1}" C Zj is an n-bit input interpreted as a vector. The output is

z = g<(Y+I) ¢ gntl] computed using the homomorphisms as described in Section

Note that for Y = V — b*T’ = rts — b*T’, we have z = ¢*(V+=0I) p particular, 2,41 = ¢"
where ' = xr! € Z,, and for each j € [n] we have z; = g7 % +(b=b")z;,

e [nversion algorithm. G;J}) takes as input (¢, b, y) where t = (s, b*) is the trapdoor information, b # b*
is the evaluated branch, and z is the function output. The output x € {0,1}" is computed as follows:
for each j € [n], compute a; = z;/z,/,,, and let z; € {0, 1} be such that a; = g(®=")es.

Theorem 5.3. Under the DDH assumption for G, the algorithms described above give a collection of
(n,n — lg p)-all-but-one TDFs.

Proof. Correct inversion for b # b* and lossiness for b = b* follow directly from the above remarks and the
same arguments as in the proof of Theorem[5.2]

The hidden lossy branch property (under the DDH assumption) also follows directly from Lemma 5.1}
by an elementary reduction, for any branch b* € Z, the first output of Sy, (b*) is computationally indistin-

guishable from uniform over Zg ™ (1), O

6 Realization from Lattices

Here we construct lossy and all-but-one TDFs based on the hardness of the learning with errors (LWE)
problem, as defined by Regev [57]]. The LWE problem is a generalization to larger moduli of the learning
parity with noise problem (see, e.g., [[9]). It can be viewed as an (average-case) “bounded-distance decoding”
problem on a certain family of random lattices under a natural error distribution. Interestingly, Regev showed
that LWE is indeed hard on the average if standard lattice problems (like approximating the length of the
shortest nonzero vector) are hard in the worst case for quantum algorithms [S7]. Very recently, Peikert [50]
gave a similar result via a classical reduction. No efficient (or even subexponential-time) quantum algorithms
are known for the lattice problems in question, despite significant research efforts. Our constructions are
based entirely on the LWE problem, and treat the connections to worst-case lattice problems [57, [50] as
“black boxes.”

Our lossy TDF based on LWE uses the same basic ideas as our DDH-based construction of Section [5}
using linear homomorphisms, the function computes an encrypted linear product xM, where M = 0 in the
lossy case. However, we must overcome additional technical challenges stemming mainly from the fact that
LWE involves extra random error terms that increase the leakage of the functions. Addressing this requires

8Strictly speaking, this does not conform to the ABO definition because the branch set should depend only on the security
parameter A. This issue can be addressed by letting the set of branches By = [g], where ¢ does not exceed the smallest value of p
produced by G, and by interpreting a branch value b € By modulo p when using a function defined over a group of order p.

31

some additional construction techniques, and some careful trade-offs between the lossy and injective cases.
(See Section [6.3|for the lossy TDF construction.)

By calibrating the parameters appropriately, we can obtain lossy TDFs that lose any desired constant
fraction (e.g., 99%) of the input. By itself, this is not enough to obtain all-but-one TDFs having more than
a constant number of branches via the parallel black-box construction of Section [3.3] because the residual
leakage of the parallel construction is multiplied by the logarithm of the number of branches. Fortunately, we
can also construct ABO TDFs directly from the LWE assumption by generalizing the lossy TDF construction
with some additional ideas (see Section for details).

6.1 Background

We start by introducing the relevant notation and computational problems, for the most part following [S7].

For x € R, |x] = |z + 1/2] denotes the nearest integer to = (with ties broken upward). Define
T = R/Z, i.e., the additive group of reals [0, 1) with modulo 1 addition. We define an absolute value || on T
as |z| = min {z,1 — z}, where T € [0, 1) is the unique real-valued representative of = € T.

Probability distributions. The Gaussian distribution Ds with mean 0 and parameter s (sometimes called
the width) is the distribution on R having density function exp(—mx?/s?)/s. It is a standard fact that the sum
of two independent Gaussian variables with mean 0 and parameters s; and sg (respectively) is a Gaussian
variable with mean 0 and parameter \/s$ + s5. We also need a standard tail inequality: for any t > 1, a
Gaussian variable with parameter s has magnitude less than ¢ - s, except with probability at most exp(—t2).
Finally, it is possible to sample efficiently from a Gaussian distribution to any desired level of accuracy.

For a € RT we define ¥, to be the distribution on T obtained by drawing z € R from D, and
outputting mod 1. For any probability distribution ¢ on T and integer ¢ € Z™ (often implicit) we define its
discretization ¢ to be the discrete distribution over Zq given by |q - ¢] mod q.

Learning with errors (LWE). Letd > 1 be an integer dimension and ¢ > 2 be an integer modulus. For a
vector s € Zg and a probability distribution x over Zg, define A, to be the distribution on Zg X Z4 obtained
by choosing a < ZZ uniformly at random, e < x, and outputting (a, (a,s) + ¢).

The learning with errors problem LWE, ,, in its search version, is defined as follows. Given access
to arbitrarily many independent samples from the distribution A, for some arbitrary s € 74, find s. The
(average-case) decision version is to distinguish, with at least 1 /poly(d) advantage, between the distribution
As y (for uniformly random s € Zg) and the uniform distribution over Zg X Zg, given arbitrarily many
samples.

In this paper we restrict our attention to the case of prime ¢ = poly(d), for which the (worst-case) search
and (average-case) decision versions of LWE, , are equivalent (up to a polynomial factor in the number of
samples consumed) [57]]. The LWE, , assumption is that these problems are hard; as shorthand, we can say
that Ag , is pseudorandom (for uniformly random s <— Zfll).

For reasons that will become apparent below, the complexity of the LWE problem is measured primarily
by the dimension d. Therefore, in this section we let d be the security parameter (rather than A as before),
and let all other parameters (e.g., ¢, o, n, and others) implicitly be functions of d.

Connection to lattices. A (full-rank) d-dimensional lattice A C R? is a discrete additive subgroup of R<.
Equivalently, it is the set of all integer linear combinations of some d linearly independent basis vectors

32

B = {by,...,by} C R%:

A= {Zze[d] cb; ¢ € Z} .

In computational settings, it is standard to represent a lattice by a basis.
Regev showed that for certain normal error distributions, the LWE problem is as hard as several standard
worst-case lattice problems, for quantum algorithms. We state a version of the main theorem here:

Proposition 6.1 ([37)). Let a = «(d) € (0,1) and let ¢ = q(d) be a prime such that o - g > 2v/d. There
is a quantum polynomial-time reduction from solving either of the following two lattice problems in the
worst-case to solving LWE, g _:

e SIVP: In any lattice of dimension d, find a set of d linearly independent lattice vectors, the longest of
which has Euclidean norm within an O(d/«) factor of optimal.

e GapSVP: In any lattice of dimension d, approximate the Euclidean length of a shortest nonzero lattice
vector to within a O(d/«) factor.

Proposition [6.1 has since been strengthened by Peikert in two ways: first [49], it also applies to the
SIVP and GapSVP problems in any £, norm, 2 < p < oo, for essentially the same O(d /) approximation
factors. Second [50], for ag > +/dlog d there is also a classical (non-quantum) reduction from a variant of
the GapSVP problem to LWE (and from GapSVP itself to LWE with modulus ¢ = 2¢, but such a large value
is not useful for our purposes).

The SIVP and GapSVP problems appear to be quite hard in the worst case (even for quantum algorithms):
to obtain a poly(d) approximation factor, known algorithms require time and space that are exponential
in d [4]]; known polynomial-time algorithms obtain approximation factors that are only slightly subexponential
in d [43][61]].

We define our lossy and ABO functions in terms of the LWE problem, without explicitly taking into
account the connection to lattices (or the hypotheses on the parameters required by Proposition[6.1)). Then
in Section [6.5| we instantiate the parameters appropriately, invoking Proposition [6.1]to obtain a worst-case
hardness guarantee.

6.2 Matrix Concealer

Here (as in Section we describe a method for generating a special kind of pseudorandom “concealer”
matrix (with trapdoor) that is the foundation for our lossy and ABO TDFs. Similarly to our DDH-based
construction, the trapdoor is a description of a low-dimensional subspace, but unlike it, the rows of the
concealer matrix only lie near the subspace.

The algorithm GenConceal, (h, w) works as follows: given positive integer dimensions h, w = poly(d),

e Choose A < Z"*? and S +— Z¥** uniformly at random, and E < x/**.

e Output
C=(A,B=AS'+E) ¢ z/*(dv)

as the concealer matrix, and S as the trapdoor.

Lemma 6.2. Let h,w = poly(d). Under the LWE, ,, assumption, the concealer matrix C = (A, B) output

by GenConceal, is pseudorandom over ng(d+w), i.e., computationally indistinguishable from the uniform

distribution.

33

Proof. The proof proceeds by a simple hybrid argument over the w columns of B. We define a sequence of
hybrid distributions Hy, ..., H,, over ZZ <(wtd) 1 experiment [, the first j columns of B are as produced
by GenConceal, (h, w), while the remainder are uniformly random and independent. Clearly H,, is the
output distribution of GenConceal, (h,w) and H is the uniform distribution.

We now show that for each j € [w], H; and H;_; are computationally indistinguishable under the
LWE,,,, assumption, which by transitivity proves the claim. To do so, we give a reduction from distinguishing
Ag y, (for uniformly random s < Zg) from the uniform distribution U over Zg X Zq to distinguishing H;
from H;_;. The reduction works as follows: given access to an unknown distribution D over Zg X Zq, draw
h samples (a;, b;) from D; form the matrix A € Zf; *d whose ith rows is a; and the column vector b € Zg x1
whose ith entry is b;.

Choose S + Z};’Xd uniformly at random and E < y"*®_ and let B’ = AS? + E. Form the matrix B
that agrees with B’ on its first ; — 1 columns, whose jth column is b, and whose remaining columns are
uniformly random and independent. Output C = (A, B).

It should be clear by inspection that if the reduction’s unknown distribution D is As ., then the reduction’s
output is distributed as H;, whereas if D is uniformly random then the reduction’s output is distributed as
H;_1. This completes the proof. 0

We now show a technical lemma that is needed for both the correctness and lossiness properties of our
constructions.

Lemma 6.3. Let h,w, p be positive integers. Let ¢ > 4ph, let 1/a > 8p(h + g) for some g > 0, and let
x = V. Then except with probability at most w - 279 over the choice of E < x"*, the following holds:
for every x € {0,1}", each entry of (XE)/q € T® has absolute value less than %.

Proof. By a union bound over all w columns of E, it suffices to show that for each column e’ € ZZXI of E,
we have |(x,e) /q| < ﬁ for all x € {0, 1}" simultaneously, except with probability at most 279 over the
choice of e.

Below we show that for any fixed x € {0,1}",

Pr. [[(x.€) /gl > &] <279, @)
e<—x
Taking a union bound over all x € {0, 1}", we conclude that |(x, e) /q| < ﬁ for all x € {0,1}" simultane-
ously, except with probability at most 279.

We now prove (2)). By definition, e; = |qy;| mod ¢ where y; < D,, are independent for all i € [h].
Then by the triangle inequality, the distance (modulo 1) between (x,e) /g € T and (x,y) € T is at most
h/(2q) < 1/8p. Therefore, it suffices to show that |(x, y)| < 1/8p except with probability at most 2~ (*+9),

Because the y; are independent and x is binary, (x, y) is distributed as D, for o/ < Vh-a < Vh+ g-a.
Then by hypothesis on « and the tail inequality on Gaussian variables,

1 . . — —(h+g)
P llevizg] < Pr oyl z Vg (Vi g-a)] sew(-(itg) <2, O

6.3 Lossy TDF
6.3.1 Overview

Our LWE-based lossy TDF is built upon the same main ideas as the DDH-based construction of Section
In particular, a function index is a concealed matrix M, and the function is evaluated on x € {0,1}" by
homomorphically computing an encrypted linear product xM (where M = 0 in the lossy case).

34

However, the use of LWE introduces several additional technical challenges. The chief difficulty is that the
function outputs now also include accumulated error terms, so there are many more outputs than there would
otherwise be if the error terms were not present. (The errors, of course, are necessary to securely conceal the
underlying matrix M.) The main challenge, therefore, is to limit the number of possible accumulated error
vectors, while simultaneously ensuring (in the injective case) that all n bits of the input x can be recovered
from the function output.

To start, it is helpful to see why the straightforward approach taken in our DDH-based construction does
not yield a lossy function here. Recall that a lossy function index is simply an (unmodified) concealer matrix,
which in the case of LWE is C = (A, B = AS'+E) € Z;~ (@) Then given the first component xA of the
function output (and even ignoring its ¢ possible values), the second component xB = (xA)S! + xE ¢ Ly
uniquely determines x whenever E is invertible modulo ¢, which occurs often. Note that we do not have the
luxury of restricting the rows of E to a low-dimensional subspace, because our proof of pseudorandomness
(Lemma [6.2) requires the columns of E to be independent.

Our solution instead conceals suitably chosen nonsquare matrices of dimension n X w, where n > d +w,
to limit the number of outputs in the lossy case while still ensuring invertibility in the injective case. For the
lossy case, the number of outputs xC = (xA,xB) € Zg*w is bounded by ¢¢ times the number of possible
values for xE, which we can bound using Lemma|[6.3] In principle, the input length n can then be made as
large as needed to obtain the desired amount of lossiness. (However, correct inversion will impose additional
constraints.)

Of course, in the injective case we cannot conceal the identity matrix I because we are no longer using
square matrices. Instead, we conceal a (suitably encoded) special matrix G € Z™*", whose rows are
increasing power-of-2 multiples of each standard basis vector e; € Z". The idea is that we can easily recover
x € {0,1}" from xG via its base-2 representation. Of course, G is actually hidden by a concealer matrix
over Zg, and we need to be able to compute xG homomorphically and then decrypt it correctly. Computing
xG involves at most n row additions, and the entries of xG are bounded by 2(n/ w), so we need to choose the
parameters of the scheme to support such bounded homomorphism and message sizes. In the end, with a
careful balancing of the parameters we can support any constant lossiness rate with a poly(d) input length n
and modulus ¢, and a 1/poly(d) noise rate . (See Theorem [6.4|and Section 6.5|for the precise instantiation).

6.3.2 Construction

We now describe the lossy TDF construction, which involves several parameters. The dimension d is the main
security parameter. As discussed above, our lossy TDF needs to support homomorphic operations resulting
in encrypted integers as large as some p. We consider the modulus p > 2 (for simplicity, a power of 2) and
matrix width w > 1 to be free variables, which will largely determine the lossiness of the functions. The
input length of the functions is n = w lg p. Finally, the modulus g and parameter « of the error distribution
x = U, of the underlying LWE problem will be instantiated later to ensure correct inversion. Looking ahead,
the quantity 1/« (which determines the worst-case approximation factor for lattice problems) will grow with
p, so our goal will be to make p as small as possible while still ensuring lossiness.
Let I € Z"*™ be the w x w identity matrix over the integers, and define a special row vector

p=(20,2" ... 218()=1 = /9) ¢ 7ZleP

consisting of increasing powers of 2. Define the matrix G = I ® p’ € Z"*%, where ® denotes the tensor
(or Kronecker) product. Essentially, the tensor product replaces each entry e; ; of I with the column vector
e; ;- pt € Z!8P*1 Thus, the ((i — 1)(lgp) + j)throw of G is 2071 - ¢;, for i, j € [w].

35

To encrypt and operate homomorphically on integers as large as p using the LWE problem, we need to
encode elements of Z,, suitably as elements of Z,. Define the encoding function ¢ : Z, — Zg as

em) = |- 2] €z,

where 22 € T, and extend ¢ coordinate-wise to matrices over Z;,. We also define a decoding function
-1.
c Ly — Ly as
~1
c (v)= [p-g—‘ € Ly,

where again % € T and we extend ¢! coordinate-wise to matrices over Zg4. (Formally, ¢~ is not the inverse
function of ¢, but this abuse of notation evokes the intended use of the functions. For example, it can be
verified that ¢~ 1(c¢(m)) = m for appropriate choices of p, q.)

-1

e Sampling an injective/lossy function. The function generators (for both the injective and lossy cases)

first invoke GenConcealy (n, w) to generate a concealer matrix C = (A,B = AS' + E) € ZZX(der)
and trapdoor S.

The injective function generator Sj,j outputs function index Y = (A, B + M) € ZZX(der) and
trapdoor S, where M = ¢(G mod p).

The lossy function generation algorithm Sjo simply outputs function index Y = C. There is no
trapdoor output.

e Evaluation algorithm. Fys takes as input (Y, x) where Y is a function index and x € {0,1}" is an
n-bit input interpreted as a vector. The outputis z = xY € Zg“”.

Note that if the function index Y was generated by Sjyj, i.e., Y = (A, AS'+E + M), then
z = (xA, (xA)S" + x(E + M)).

In contrast, if Y was generated by Sjoss, i.€., Y = (A, AS! + E), then z = (xA, (xA)S! + xE).

o Inversion algorithm. Fy; takes as input (S, z), where S is the trapdoor and z = (z1,2z2) € Zg X Ly
is the function output. It computes v = zy — z1S', and lets m = ¢~!(v) € Z¥. Finally, the output
x € {0,1}" is computed as the unique binary solution to xG = m, where m € Z" is the unique
integral vector congruent to m modulo p having entries in {0,...,p — 1}. (The solution x may be
found efficiently by computing the base-2 representation of m.)

Theorem 6.4. Let ¢ > 4pn = 4wplg p and x = ¥, where 1/a > 16pn = 16wplg p. Then the algorithms
described above define a collection of almost-always (n, k)-lossy TDFs under the LWE, ,, assumption, where

the residual leakage r = n — k is
d d
<n-|— —+1]1 .
r<n (w + (w + > ogp(q/p)>

Note that in order for the residual leakage rate to be less than 1, we need both w > d and q < p?.

36

Proof. First, it follows directly from Lemma [6.2] that lossy function indices are computationally indistin-
guishable from injective ones, because both types are indistinguishable from uniform.

Now we show that with overwhelming probability over the choice of Y = (A, B = AS! + E + M) by
Sinj, the inversion algorithm is correct for all z = (z;,2z2) = Far(Y,x) = xY where x € {0,1}". By the
remarks accompanying the evaluation and inversion algorithms, we have

V=Z2—Z1St:X(E+M)=XE+XLQ'%W.

Define the closed interval I = [—1, 1] C R. We have

') = |p (xB+x|q-€|) /]

€ |p-xE)/a+ (p/a)-x (1" +q-S)]

€ |51+ (p/q) - xI"" + xG| 3)
€ [2-1"+xG] @)
= xG mod p,

where (3)) holds for all x simultaneously except with probability at most w - 2~™ over the choice of E by
Lemma and (@) is by the triangle inequality (yielding xI"*" € n - I*) and by the hypothesis that
q > 4pn. Then because all the entries of xG € Z" are in {0, ...,p — 1} by definition of G, the inversion
algorithm successfully recovers xG: and outputs the correct x € {0,1}".

We now analyze the lossy functions. Let Y = (A, B = AS! + E) be a function index produced by Sjoss.
Then for any input x € {0,1}",

Fiuae(Y,x) = (2z1,22) = (xA, (xA)S' + xE) € Zg X Ly -

The number of possible values for z; € Zg is at most ¢¢, and given z1, the number of possible values for z,
is exactly the number of possible values for xE (recall that S is fixed by the function index). By Lemma[6.3]
the latter quantity is at most (1 + ¢/2p)"™ < (¢/p)™. The total number of outputs of the function is therefore
at most ¢% - (q/p)®. The base-2 logarithm of this quantity is a bound on the residual leakage r = n — k:

r < d-lgg+w-1g(q/p)

dlgq n
n-—=—+—-lg(q/p
wlgp lgp (/)

d d
= n- (w + (w + 1) logp(q/p)) . O
6.4 All-But-One TDF

Our all-but-one TDF construction relies on all the ideas from the prior constructions, plus one additional
technique. As always, evaluating the ABO function on x € {0, 1}" involves computing an encrypted product
xM, where M depends on the branch of the function being evaluated (and M = 0 on the lossy branch).

In our DDH-based ABO function, the matrix M is some scalar multiple (b — b*)I of the identity matrix,
where b, b* € Z,. Because the matrices M are over the very large cyclic group Z,, (where p is the order of the
DDH-hard group), the construction naturally supports a very large (super-polynomial) number of branches.

37

In the LWE setting, our matrices M may also be viewed over a group Z,. For correctness, however,
the inverse error parameter 1/« of the relevant LWE problem needs to grow with p, and the strength of the
underlying complexity assumption (specifically, the approximation factor for worst-case lattice problems)
in turn grows with 1/a. Consequently, simply using scalar multiples of the identity matrix I to get a large
number of branches would induce a strong assumption, which is undesirable.

Instead, we generalize the set of branches to be a certain large linear family of integral matrices, for which
every nonzero matrix in the family has full rank (i.e., its rows are linearly independent). The construction
of such a family involves a simple linear encoding trick (a variant of which was used in [18] for different
purposes) that maps a vector v € Z¥ to a matrix V € Zg** such that V.= 0 when v = 0, and V
is full-rank whenever v # Oﬂ The full-rank property allows us to (efficiently) recover x from xV and
knowledge of v. Just as in the lossy TDF, the ABO function index conceals an “expanded” version of V,
namely V ® pt € Z¥18PX% o achieve lossiness by way of increasing the input length. A final small detail
is that for binary x, the entries of xV can be as large as w(p — 1), rather than just p — 1 when V = I ® p!,
so we must enlarge the message space of the scheme accordingly.

Construction. Let the parameters p > 2 and w > 2 be free, assuming for simplicity that both p and w are
powers of 2, and let n = wlg p as before. Again, the parameters g and o will be instantiated later to ensure
correctness. The branch set B = By = {0,1}".

For an integral vector v = (v1,...,v,) € Z*, define the “anti-cyclic” shift operation

$(V) = (=, V1, ..., Uy—1) € Z®.

(Note that the element v,, is negated in the output.) Also define the (anti-cyclic) shift matrix V.= S(v) €
7% whose ith row v; = s(—1) (v) is the vector v shifted i — 1 times. Clearly s (and hence S) is a linear
operation, i.e., s(v + v') = s(v) + s(v/) and s(c - v) = ¢ s(v), so in particular s(0) = 0. It is also
the case that for any nonzero v € Z", the matrix S(v) is full-rank. The proof is as follows: because w
is a power of 2, the polynomial f(x) = z* + 1 is irreducible over Q[z]. (This may be seen by applying
Eisenstein’s criterion with prime p = 2 to the shifted polynomial f(x + 1), or by noting that f(z) is the 2mth
cyclotomic polynomial.) Then the vectors v € Z" are in bijective correspondence with the polynomials
v(x) = v1 + vex + - - + v,x¥ "L € Z[z]/f(7), and s(v) corresponds to x - v(x) mod f(x). Because the
rows of S(v) correspond to v(z),x - v(z)...,z*~! - v(x) mod f(z) and f(x) is irreducible, the rows are
linearly independent when v # 0.

As in the lossy TDF construction from Section above, let p = (1,2,...,p/2) € Z'8P have
increasing power-of-2 entries. Similarly, let ¢ : Z,, — Z, and Tt Zy — Z,y be (respectively) the
encoding and decoding functions, where we now use the modulus p’ = 2pw. For notational simplicity, let
r:{0,1}" — Zy ™" be the function mapping a branch value to its encoded matrix over Zg:

r(v) = ¢(S(v) ® p’ mod p').

e Sampling an ABO function. The function generator Sy, takes as input the desired lossy branch v* €

{0,1}". It runs GenConceal, (n, w) to generate a concealer C = (A,B = AS' + E) € zo ()
and trapdoor S.

The function index is Y = (A, B — r(v*)) € Zo*“™)_ The trapdoor information is ¢ = (S, v*).

“We thank Daniele Micciancio for pointing out this avenue, which simplifies and slightly tightens the ABO construction from
prior versions of this work.

38

e Evaluation algorithm. G, takes as input (Y, v,x) where Y = (A, B’) is a function index, v €
{0,1}" is the desired branch, and x € {0,1}" is an n-bit input interpreted as a vector. The output is
x(A,B' +r(v)) € ZIt.

Note that if 'Y was generated to have lossy branch v*, then we have
(A,B' +7(v)) = (A, AS' + E+ (r(v) = r(v¥))) = (A,AS' + E + r(v — v¥)),

with equality when v = v*. (We may have only a close approximation otherwise, because the function
¢ : Ly — Zgq is not quite linear due to rounding.)

o Inversion algorithm. G, takes as input (¢ = (S,v*),v,z), where ¢ is the trapdoor information,

v # v* is the evaluated branch, and z = (z;,22) € Zg X Zg is the function output. It computes
v =12y —z S andletsm = ¢! (v) € Zy,. The output x € {0, 1}" is computed as the unique binary
solution to x - (S(v — v*) ® p') = m, where m € Z" is the unique integral vector congruent to m
modulo p’ = 2pw having entries in {—w(p — 1),...,0,...,w(p —1)}.

(The solution x may be found efficiently by solving the full-rank system w - S(v — v*) = m, whose
solution will be some integral w € {0,...,p — 1}", and then computing w in base 2.)

Theorem 6.5. Let ¢ > 8p'n = 16w?plgp and x = Y, where 1/a > 16p'n = 32w?plgp. Then the
algorithms described above define a collection of almost-always (n, k)-ABO TDFs with branch set {0,1}"
under the LWE, ., assumption, where the residual leakage r = n — k is

r<n- <Z - <Z + 1) 1ogpf(Q/p’)> -

Proof. The hidden lossy branch property (under the LWE, ,, assumption) follows directly from Lemma
by an elementary reduction, for any branch v* the first output of Sapo(v*) is computationally indistinguishable
from the uniform distribution over Zg ™ (dw),

Proving correct inversion on branch v # v* is very similar to the correctness proof for Theorem[6.4] Let

Y = (A,B’ = AS! + E — r(v*)) be a function index generated by Sypo(v*), and let
z = (21,22) = Gapo(Y,v,X) = x(A, AS' + E +r(v) — r(v¥)).
Then we have
v=12y—2:8' =xE+x(r(v) —r(v")) exE+ {-n,....n}" +x-r(v—-v") €LY,

where we have used the fact that r(v) — r(v*) € 7(v — v*) + {0,£1}"*" and the triangle inequality.
Following the analysis from the proof of Theorem [6.4] (with the additional error terms of magnitude at most
n < 8%,), it can be shown that

cl(v)=x-r(v—-v*) modp/
except with negligible probability over the choice of E. Because v — v* has entries from {0, £1}, the integer
entries of x - (v — v*) liein {—w(p — 1),...,w(p — 1)}, so the inversion algorithm successfully recovers
x - r(v — v*) € Z" and outputs the correct x.

Finally, the analysis of the residual leakage on the lossy branch is essentially identical to that in the proof
of Theorem 6.4} with p replaced by p'. O

39

6.5 Instantiation and Worst-Case Connection

We now instantiate our schemes’ parameters, and relate their security to worst-case lattice problems. The main
outcome of this section is a connection between any desired lossiness rate K € (0, 1) (larger & means more
information is lost) and the associated approximation factor for lattice problems. This involves somewhat
tedious (but otherwise routine) calculations to ensure that the parameters satisfy the various hypotheses of
our theorems and Proposition The dominating factor in the inverse error parameter 1/« is plg p, so our
main goal is to make p as small as possible subject to all the constraints.

Theorem 6.6. Let K € (0, 1) be any fixed constant. For any constant ¢ > ﬁ, there exist w = O(d),

p = O(d°), prime g = O(d“*®/?), and 1/oc = O(d°*1) with aq > \/dlog d such that the construction of
Section yields a family of almost-always (n, Kn)-lossy TDFs (for all sufficiently large values of the
security parameter d) under the LWE g, ~assumption.

The same applies for the construction in Section of almost-always (n, Kn)-all-but-one TDFs, with
p' = O(d°) replacing the condition on p.

In particular, by Proposition the constructions are secure assuming that either SIVP or GapSVP are
hard for quantum algorithms to approximate to within O(d2+c) factors.

Proof. We select parameters that simultaneously satisfy all the constraints of Theorem|[6.4]and Proposition[6.1
(and its subsequent variants). First, let

1/a = 16pn = 16wplg p,
for w and p to be determined. For the worst-case connection to lattices, we let ¢ be a prime in the range
g e[1,2]-\/dlogd/a = 6(d*?) - plgp.

Next, we can let w = O(d) such that % > 0 is arbitrarily small. Then to obtain a residual leakage rate at
most R = 1 — K, it suffices to choose p such that

log,(q/p) < R~ 0 <= (q/p) = O(d*?) 1gp < p"~°

for some constant 6 > 0. For any constant ¢ > %, there exists p = O(d°) for which the above is satisfied.
The analysis for the all-but-one TDF construction is identical, with p’ replacing p. O

Acknowledgments

We are grateful to Dan Boneh for offering important insights in the early stages of this work, to Cynthia
Dwork and Salil Vadhan for helpful comments, to Daniele Micciancio for suggesting a simpler construction
of the LWE-based ABO, and to the anonymous STOC’08 and SICOMP reviewers for many helpful comments
on the presentation.

References

[1] Miklés Ajtai. Generating hard instances of lattice problems. Quaderni di Matematica, 13:1-32, 2004.
Preliminary version in STOC 1996.

40

[2] Miklés Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-case equivalence.
In STOC, pages 284-293, 1997.

[3] Miklés Ajtai and Cynthia Dwork. The first and fourth public-key cryptosystems with worst-case/average-
case equivalence. Electronic Colloquium on Computational Complexity (ECCC), 14(97), 2007.

[4] Miklds Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem.
In STOC, pages 601-610, 2001.

[5] Mihir Bellare, Alexandra Boldyreva, K. Kurosawa, and Jessica Staddon. Multirecipient encryption
schemes: How to save on bandwidth and computation without sacrificing security. IEEE Transactions
on Information Theory, 53(11):3927-3943, 2007.

[6] Mihir Bellare, Shai Halevi, Amit Sahai, and Salil P. Vadhan. Many-to-one trapdoor functions and their
relation to public-key cryptosystems. In CRYPTO, pages 283298, 1998.

[7] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility results for encryption
and commitment secure under selective opening. In EUROCRYPT, pages 1-35, 2009.

[8] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In ACM Conference on Computer and Communications Security, pages 62—73, 1993.

[9] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and the
statistical query model. J. ACM, 50(4):506-519, 2003.

[10] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive zero-knowledge.
SIAM J. Comput., 20(6):1084-1118, 1991. Preliminary version in STOC 1998.

[11] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of pseudo-random
bits. SIAM J. Comput., 13(4):850-864, 1984.

[12] Alexandra Boldyreva, Serge Fehr, and Adam O’Neill. On notions of security for deterministic encryption,
and efficient constructions without random oracles. In CRYPTO, pages 335-359, 2008.

[13] Dan Boneh. The decision Diffie-Hellman problem. In ANTS, pages 48—63, 1998.

[14] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-
based encryption. SIAM J. Comput., 36(5):1301-1328, 2007.

[15] Dan Boneh and Jonathan Katz. Improved efficiency for CCA-secure cryptosystems built using identity-
based encryption. In CT-RSA, pages 87-103, 2005.

[16] Xavier Boyen, Qixiang Mei, and Brent Waters. Direct chosen ciphertext security from identity-based
techniques. In ACM Conference on Computer and Communications Security, pages 320-329, 2005.

[17] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryption.
In EUROCRYPT, pages 207-222, 2004.

[18] Ronald Cramer and Ivan Damgard. On the amortized complexity of zero-knowledge protocols. In
CRYPTO, pages 177-191, 2009.

41

[19] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In CRYPTO, pages 13-25, 1998.

[20] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In EUROCRYPT, pages 45-64, 2002.

[21] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, IT-22(6):644-654, 1976.

[22] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput., 38(1):97-139, 2008. Preliminary
version in EUROCRYPT 2004.

[23] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM J. Comput.,
30(2):391-437, 2000. Preliminary version in STOC 1991.

[24] Edith Elkind and Amit Sahai. A unified methodology for constructing public-key encryption schemes
secure against adaptive chosen-ciphertext attack. Cryptology ePrint Archive, Report 2002/042, 2002.
http://eprint.iacr.org/l

[25] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing contracts.
Commun. ACM, 28(6):637-647, 1985.

[26] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge proofs under
general assumptions. SIAM J. Comput., 29(1):1-28, 1999. Preliminary version in FOCS 1990.

[27] David Mandell Freeman, Oded Goldreich, Eike Kiltz, Alon Rosen, , and Gil Segev. More constructions
of lossy and correlation-secure trapdoor functions. In PKC, 2010.

[28] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. In CRYPTO, pages 537-554, 1999.

[29] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In STOC, pages 197-206, 2008.

[30] Yael Gertner, Tal Malkin, and Steven Myers. Towards a separation of semantic and CCA security for
public key encryption. In TCC, pages 434-455, 2007.

[31] Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of basing trapdoor functions on
trapdoor predicates. In FOCS, pages 126—135, 2001.

[32] Oded Goldreich. Foundations of Cryptography, volume II. Cambridge University Press, 2004.

[33] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In STOC, pages
25-32, 1989.

[34] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP-statements in zero-knowledge,
and a methodology of cryptographic protocol design. In CRYPTO, pages 171-185, 1986.

[35] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. In STOC, pages 218-229, 1987.

42

http://eprint.iacr.org/

[36] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270-299,
1984.

[37] Iftach Haitner. Semi-honest to malicious oblivious transfer - the black-box way. In TCC, pages 412-426,
2008.

[38] Johan Héstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator
from any one-way function. SIAM J. Comput., 28(4):1364-1396, 1999.

[39] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key encapsulation. In
CRYPTO, pages 553571, 2007.

[40] Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do secure hash functions
need secret coins? In CRYPTO, pages 92—-105, 2004.

[41] Qiong Huang, Duncan S. Wong, and Yiming Zhao. Generic transformation to strongly unforgeable
signatures. In ACNS, pages 1-17, 2007.

[42] Gillat Kol and Moni Naor. Cryptography and game theory: Designing protocols for exchanging
information. In 7CC, pages 320-339, 2008.

[43] Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and Laszl6 Lovasz. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261(4):515-534, December 1982.

[44] Petros Mol and Scott Yilek. Chosen-ciphertext security from slightly lossy trapdoor functions. In PKC,
2010.

[45] Moni Naor and Omer Reingold. Synthesizers and their application to the parallel construction of
pseudo-random functions. J. Comput. Syst. Sci., 58(2):336-375, 1999.

[46] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic applications. In
STOC, pages 3343, 1989.

[47] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks.
In STOC, pages 427437, 1990.

[48] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EURO-
CRYPT, pages 223-238, 1999.

[49] Chris Peikert. Limits on the hardness of lattice problems in ¢, norms. Computational Complexity,
17(2):300-351, May 2008. Preliminary version in CCC 2007.

[50] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In STOC, pages
333-342, 20009.

[51] Chris Peikert and Vinod Vaikuntanathan. Noninteractive statistical zero-knowledge proofs for lattice
problems. In CRYPTO, pages 536553, 2008.

[52] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In CRYPTO, pages 554-571, 2008.

43

[53]

[54]

[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In STOC, pages
187-196, 2008.

Michael O. Rabin. Digitalized signatures and public-key functions as intractable as factorization.
Technical report, Massachusetts Institute of Technology, Cambridge, MA, USA, 1979.

Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack. In CRYPTO, pages 433-444, 1991.

Oded Regev. New lattice-based cryptographic constructions. J. ACM, 51(6):899-942, 2004.

Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM, 56(6),
2009. Preliminary version in STOC 2005.

Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM, 21(2):120-126, 1978.

Alon Rosen and Gil Segev. Chosen-ciphertext security via correlated products. In TCC, pages 419—436,
20009.

Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In
FOCS, pages 543-553, 1999.

Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput.
Sci., 53:201-224, 1987.

Hovav Shacham. A Cramer-Shoup encryption scheme from the Linear Assumption and from pro-
gressively weaker Linear variants. Cryptology ePrint Archive, Report 2007/074, February 2007.
http://eprint.iacr.org/.

Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages 47-53, 1984.

Mark N. Wegman and Larry Carter. New hash functions and their use in authentication and set equality.
J. Comput. Syst. Sci., 22(3):265-279, 1981.

Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In FOCS,
pages 80-91, 1982.

44

http://eprint.iacr.org/

	Introduction
	Trapdoor Functions and Witness-Recovering Decryption
	The Power of Losing Information
	Trapdoor Functions and CPA-Secure Encryption
	CCA-Secure Encryption

	Realizing Lossy TDFs
	Lossy Trapdoors in Context
	Subsequent Work
	Open Directions

	Preliminaries
	Basic Concepts
	Cryptographic Notions
	Trapdoor Functions
	Collision-Resistant and One-Way Hash Functions
	Public-Key Encryption
	Strongly Unforgeable One-Time Signatures

	Randomness Extraction

	Lossy and All-But-One Trapdoor Functions
	Lossy TDFs
	All-But-One TDFs
	Basic Relations
	Implications of Lossy TDFs
	Trapdoor Functions
	Hard-Core Functions and Pseudorandom Generators
	Universal One-Way and Collision-Resistant Hashing

	Cryptosystems and Oblivious Transfer
	CPA-Secure Construction
	Interlude: Oblivious Transfer and Multiparty Computation
	CCA-Secure Construction
	Proof of Theorem 4.2
	Discussion and Alternate Constructions

	Realization from DDH-Hard Groups
	Background and Notation
	Matrix Concealer
	Lossy TDF
	All-But-One TDF

	Realization from Lattices
	Background
	Matrix Concealer
	Lossy TDF
	Overview
	Construction

	All-But-One TDF
	Instantiation and Worst-Case Connection

