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Abstract. The well-studied task of learning a linear function with errors
is a seemingly hard problem and the basis for several cryptographic
schemes. Here we demonstrate additional applications that enjoy strong
security properties and a high level of efficiency. Namely, we construct:
1. Public-key and symmetric-key cryptosystems that provide security

for key-dependent messages and enjoy circular security. Our schemes
are highly efficient: in both cases the ciphertext is only a constant
factor larger than the plaintext, and the cost of encryption and
decryption is only n ·polylog(n) bit operations per message symbol in
the public-key case, and polylog(n) bit operations in the symmetric
case.

2. Two efficient pseudorandom objects: a “weak randomized pseudoran-
dom function” — a relaxation of standard PRF — that can be com-
puted obliviously via a simple protocol, and a length-doubling pseudo-
random generator that can be computed by a circuit of n · polylog(n)
size. The complexity of our pseudorandom generator almost matches
the complexity of the fastest known construction (Applebaum et al.,
RANDOM 2006), which runs in linear time at the expense of relying
on a nonstandard intractability assumption.

Our constructions and security proofs are simple and natural, and involve
new techniques that may be of independent interest. In addition, by
combining our constructions with prior ones, we get fast implementations
of several other primitives and protocols.
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1 Introduction

The problem of “learning a linear function with errors” (LWE) has found many
interesting cryptographic and complexity-theoretic applications in the last few
years (see [32, 36, 46, 37, 45, 25], to name a few). Informally, the LWE problem,
for a dimension n and modulus q, is to recover a secret vector s ∈ Znq given
arbitrarily many “noisy random inner products” (ai, bi ≈ 〈ai, s〉) ∈ Znq × Zq,
where the ai ∈ Znq are uniform and independent. The “learning parity with
noise” problem (LPN) is the special case where q = 2. These problems have been
studied extensively in several works, and their known best algorithms require
2O(n log q/ logn) time and space [11].

Much evidence suggests that no efficient algorithm can solve LWE/LPN with
better than negligible probability, even using quantum computation. In particular,
the LPN problem can be formulated as the famous problem of decoding a
random binary linear code, and therefore a successful attack would imply a
major breakthrough in coding theory. The LPN problem also occupies a central
position in learning theory: an efficient algorithm for it could be used to learn
several important concept classes, including 2-DNF formulas, juntas, and any
function with a sparse Fourier spectrum [21].

For the case of the LWE, hardness is supported by a remarkable connection
to worst-case lattice problems. Regev [46] showed that solving LWE (for certain
Gaussian-like error distributions) is as hard as quantumly solving some apparently
intractable lattice problems, such as the approximate shortest vector problem
GapSVP. Recently, Peikert [43] also gave a classical reduction from GapSVP
(and variants) to LWE.

The LWE/LPN problems provide an interesting combination of two useful
properties: efficiency, i.e., instances of the problem can be generated by “cheap”
operations such as (modular) addition and multiplication (or even simple bit
operations in the case of LPN), and simple algebraic structure, i.e., the noisy inner
products are computed by an “almost linear” function. Indeed, previous works
relied on these properties to obtain cryptography with low complexity [32, 4, 35,
6], and to derive desirable cryptographic features such as random self-reducibility
(with respect to the choice of a) and pseudorandomness [10]. Interestingly,
other problems that provide the latter feature, such as those from number
theory, typically require relatively expensive computational operations such as
exponentiation over large groups.

1.1 Our Results

In this paper, we further exploit the properties of LWE/LPN to obtain new
cryptographic constructions that are both efficient and enjoy desirable security
properties.

Circular-secure encryption schemes. One of our main applications is the
construction of efficient encryption schemes (in both the symmetric- and public-
key settings) that achieve security against certain key-dependent message (KDM)



attacks [9]; that is, they remain secure even when the adversary is allowed to
obtain encryptions of messages that depend on the secret keys themselves, via
any affine function of the adversary’s choice. Moreover, our schemes are “circular
secure” [15], that is, they remain secure even in the presence of key “cycles”
or even “cliques,” where any user’s secret key may be encrypted under any
user’s public key. Such usage arises in key-management systems, in anonymous
credential systems [15], and in the context of “axiomatic security” [1] (See [13]
for a detailed discussion).

In the last few years, the notions of KDM and circular security have been
studied extensively [29, 8, 14, 7, 31, 28]. Without resorting to the use of random
oracles, constructing a circular-secure encryption scheme (either in the private-
key or public-key setting) was a long-standing open problem. This question
was recently resolved by Boneh et al. [13], who constructed such a public-key
encryption scheme based on the DDH assumption. Their construction relies
on a clever use of the homomorphic properties of the DDH problem. However,
exploiting these properties incurs a large overhead in both computation and
communication. In contrast, our approach yields very natural encryption schemes
that have significant efficiency advantages over the prior scheme of [13].

The contrast is clearest when we compare the current “cost” of achieving
security for key-dependent messages against the cost of achieving ordinary se-
mantic security, for a given computational intractability assumption. Comparing
the scheme of [13] to other semantically secure encryption schemes based on
the DDH problem, the cost is dramatic: While standard encryption schemes
like ElGamal can encrypt their key, which is about k = log |G| bits (where G
is the underlying group of the DDH problem), using a single exponentiation
and one group element of overhead in the ciphertext, the scheme given in [13]
requires about k exponentiations and group elements of ciphertext overheard per
bit of the secret key. Encrypting key-independent messages is about k times more
efficient, but it still incurs a factor k loss over standard ElGamal. In contrast,
our constructions are essentially as efficient as prior semantically secure schemes
based on essentially the same hardness assumptions.

Specifically, our public-key schemes are variants of Regev’s LWE-based scheme
and the more-efficient amortized version of Peikert, Vaikuntanathan, and Wa-
ters [44], with several non-trivial modifications to facilitate the proof of security
for key-dependent messages. The most efficient version takes only Õ(n) amortized
time per message symbol for both encryption and decryption, and the ciphertext
is only a constant factor larger than the plaintext.

Our symmetric-key cryptosystem is based on the LPN problem. Its ciphertexts
are only a constant factor larger than the plaintexts, and both encryption and
decryption can be performed by Boolean circuits of quasi-linear size (in the
message length), which is almost optimal even for standard CPA-security. The
scheme is a close variant of the LPN-based encryption scheme of Gilbert et al. [26],
which was proved secure only in the standard sense (i.e., without key-dependent
messages), and did not achieve quasi-linear time efficiency. The scheme was
discovered independently by the first author and by Dodis et al. [19], who proved



security in the presence of key-leakage under a stronger version of the LPN
assumption. We stress that key-leakage security is incomparable to the notions
studied here.

Fast pseudorandom objects.

Pseudorandom generator. Based on the hardness of LPN, we construct a pseudo-
random generator (PRG) that doubles its input length and can be computed by a
Boolean circuit of size Õ(n) (i.e., quasilinear size). This is considerably faster than
previous constructions of linear-stretch PRGs (e.g., [18, 17, 24]), which suffer from
polynomial overhead. (Similar limitations also hold for previous coding-based
constructions [10, 22].) To the best of our knowledge, the only exception is the
construction of [5] which is computable by linear-size (NC0) circuits. This con-
struction is based on a plausible, yet non-standard, assumption of Alekhnovich [3].
Roughly speaking, that assumption says that a noisy random codeword of a
code with sparse generating matrix is pseudorandom. This assumption is rela-
tively new and, while seemingly reasonable, it has not been widely studied yet.
Moreover, unlike our LPN-based assumption, Alekhnovich’s assumption posits
pseudorandomness rather than just one-wayness, which is in general a stronger
notion.

Application. Typical cryptographic functions introduce a multiplicative compu-
tational overhead that grows with the desired level of security. Recently, Ishai et
al. [34] showed that many cryptographic tasks can be implemented while incurring
only a constant computational overhead compared to insecure implementations
of the same tasks.5 These results were based on the PRG construction of [5], and
hence on non-standard intractability assumptions.

By plugging our PRG into the reductions of [34], we get implementations with
polylogarithmic overhead for several primitives such as commitment schemes,
symmetric encryption schemes, and public-key encryption schemes (under the
assumption that the latter exist). This provides an interesting alternative to the
original suggestion of [34], as it relies on a standard assumption and still gives a
considerable improvement over typical (non-IKOS) schemes.6 We view this result
as an important support for the possibility of cryptography with low overhead.

Randomized weak pseudorandom function. We also obtain a simple construction
of randomized weak pseudorandom function family (RWPRFs). This primitive

5 We make the usual security requirement that the advantage of any polynomial-time
attacker must be negligible in the input length.

6 A trivial construction of primitives with polylogarithmic security can be achieved by
starting from an exponentially strong primitive (e.g., PRG) and applying it separately
on input blocks of polylogarithmic size. This construction results in primitives with
weak (quasi-polynomial) security. In contrast, our construction starts from a weaker
assumption (in particular, it does not require exponential hardness) and it results in
a primitive whose security is essentially the same as the security of the assumption
(up to standard polynomial loss).



relaxes the standard notion of pseudorandom function family [27] in two ways: it
provides security only when the function is evaluated on randomly chosen points,
and it uses secret internal randomness. To make this notion nontrivial we require
an efficient “equality-tester” that verifies whether different invocations of the
PRF (with independent internal randomness) correspond to the same preimage.
While this primitive is considerably weaker than PRFs, we argue that in some
scenarios RWPRFs can be used instead of standard PRFs. Moreover, the use of
internal randomness provably admits more efficient constructions.7

Our construction has several interesting syntactic properties: it is injective
and symmetric (one can replace the roles of the argument and the key without
violating security). Moreover, we describe a simple constant-round protocol for
obliviously evaluating the function. Such a protocol allows two parties, one
holding a point x and another holding a key k, to evaluate the function fk(x)
without learning each other’s inputs. Pseudorandom functions that allow oblivious
evaluation (OPRFs) were recently shown to be a useful cryptographic tool [23, 30].
An oblivious RWPRF can replace an OPRF in some settings (despite its weaker
cryptographic properties), and hence our construction provides an alternative to
the relatively small number of existing schemes (see [23] and references within).

Practical efficiency vs. asymptotic efficiency. In this paper, we treat effi-
ciency in asymptotic terms. Still, we believe that some of our results may turn
to be useful in practice as well. Indeed, our LPN-based constructions mainly
rely on addition and multiplication of large binary matrices. These operations
can be performed very fast in practice [12, 2] even if one does not employ the
asymptotically-fast algorithms used in our analysis (e.g., for matrix multiplica-
tion), which might not be applicable in practice. In particular, as in the case
of the HB protocol [32, 35], our schemes (or variants of them) might turn to be
useful for hardware implementation by computationally-weak devices. We leave
this direction for future study.

1.2 Techniques

Our LWE-based public key construction involves a few techniques that may be of
independent interest and application.

In the LWE-based cryptosystems of [46, 44], the secret key is a vector s ∈ Znq
chosen uniformly at random, while the message space is Zp for some p� q. An
important idea in the work of Boneh et al. [13] is the ability to generate, given
only a public key, a ciphertext that decrypts to a message related to s. Because
decryption in the LWE-based schemes of [46, 44] is essentially a linear operation,
it is easy to generate ciphertexts that are somehow related to s. However, because

7 For example, it can be shown that PRFs cannot be computed by constant-depth
circuits with unbounded fan-in AND and XOR gates [38]. In contrast, our construction
can be computed by such circuits of depth 2. Moreover, one can show that, under
plausible assumptions, RWPRFs can be constructed even in weaker classes such as
NC0.



the entries of s are taken modulo q � p, it is unclear how to “fit” the entries into
the message space.

We address this issue by instead drawing the entries of the secret key s from
the very same (Gaussian) error distribution as in the underlying LWE problem.
For a sufficiently “narrow” error distribution, each entry of s can take on at most
p different values (with overwhelming probability), allowing the entire entry to
fit unambiguously into the message space. Moreover, this change does not affect
the hardness of the LWE problem: we show a simple, tight reduction from the
standard LWE problem to the variant just described. Abstractly, the reduction
may be viewed as putting the LWE distribution into Hermite normal form (HNF);
interestingly, the HNF was also used by Micciancio [39] and Micciancio and
Regev [41] as a way to improve the efficiency of lattice-based cryptosystems.

The second important technique relates to the faithful simulation of key-
dependent messages. We modify the encryption algorithms of [46, 44] to ensure
that ciphertexts themselves have a “nice” distribution that supports the desired
homomorphisms. Essentially, our encryption algorithms apply Regev’s worst-
case to average-case reduction (from lattices to LWE) to the (already random)
public key itself; we also generalize Regev’s analysis to deal with the amortized
system of [44]. In addition, to support the homomorphisms we need to rely on
LWE with a prime power modulus q = pe, where p is the size of the message
space. Fortunately, a hybrid-argument extension of the usual pseudorandomness
proof [10, 46] for LWE also works for prime power moduli, as long as the error
distribution is sufficiently “narrow.”

A final interesting technique concerns a more general attack involving key
cycles/cliques, where every user’s secret key may be encrypted under every
user’s public key. Simulating such a scenario seems to require knowing a relation
between every pair of (unknown and independent) secret keys. Conveniently, the
above-described transformation for LWE (allowing the secret s to be drawn from
the error distribution) can also be used to produce many independent keys, and
happens to produce the desired linear relations among them as a side effect!

2 Preliminaries

For a probability distribution X over a domain D, let Xn denote its n-fold
product distribution over Dn. The uniform distribution over a finite domain D is
denoted U(D). We write Un to denote the special case of the uniform distribution
over {0, 1}n and (by abuse of notation) the uniform distribution over Zn2 . Let
Berε denote the Bernoulli distribution over {0, 1} that is 1 with probability ε
and 0 with probability 1− ε.

We write negl(n) to denote an arbitrary negligible function, i.e., one that
vanishes faster than the inverse of any polynomial. We say that that a probability
is overwhelming if it 1− negl(n).

The statistical distance between two distributions X and Y over a count-
able domain D (or two random variables having those distributions) is de-
fined as ∆(A,B) = maxA⊆D |fX(A)− fY (A)|. We write X ≡ Y if the two



random variable are identically distributed. We say that two ensembles {Xn}
and {Yn} of distributions indexed by n are statistically indistinguishable if
∆(Xn, Yn) = negl(n). The ensembles are computationally indistinguishable if for
every probabilistic polynomial-time adversary A, the distinguishing advantage
|Pr[A(Xn) = 1]− Pr[A(Yn) = 1]| = negl(n). A distribution ensemble {Xn}n∈N
is pseudorandom if Xn is computationally indistinguishable from U(Dn) where
Dn is the domain of Xn (which is usually clear from the context).

2.1 Noisy Learning Problems

We recall the learning with error (LWE), due to Regev [46], for which learning
parity with noise (LPN) is a special case.

For positive integers n and q ≥ 2, a vector s ∈ Znq , and a probability
distribution χ on Zq, define As,χ to be the distribution over Znq × Zq obtained
by choosing a vector a ∈ Znq uniformly at random, an error term x ← χ, and
outputting (a, 〈a, s〉+ x).

Definition 1. For an integer function q = q(n) and an error distribution χ
over Zq, the learning with errors problem LWEq,χ in n dimensions is defined as
follows: given access to an oracle that produces independent samples from As,χ

for some arbitrary s ∈ Znq , output s with noticeable probability, e.g., 1/2, over all
the randomness of the oracle and the algorithm.

The learning parity with noise problem LPNε is the special case of LWEq,χ
for q = 2 and χ = Berε.

We say that LWEq,χ is hard (or intractable) for a class of adversaries (by
default, probabilistic poly(n)-time algorithms) if there does not exist an algorithm
in the class that can solve it for infinitely many n.

Note that LWE as defined above is a “worst-case” style of problem in that
the value of s ∈ Znq is arbitrary, not random as is typical in cryptography. This
is not too important of a distinction, because LWE is amenable to randomized
self-reduction and amplification techniques [10, 46]. In particular, here we give
a reduction from the form of the problem in Definition 1 to an average-case
decision problem, for prime power moduli and “narrow enough” error distributions.
In other words, under the hypotheses of the lemma, the LWE distribution is
pseudorandom if the search problem is hard.

Lemma 1. Let q = pe be a prime power with p = poly(n), and let χ be a
distribution over Zq that produces an element in {−p−1

2 , . . . , p−1
2 } ⊂ Zq with

overwhelming probability. There is a probabilistic polynomial-time reduction from
solving LWEq,χ to distinguishing (with non-negligible advantage) between As,χ for
uniformly random s ∈ Znq and the uniform distribution U = U(Znq × Zq).

Proof (sketch). The proof is a simple extension of prior ones for prime moduli
(see, e.g., [46, Lemma 4.2]), therefore we sketch only the new elements. The idea
is to use a distinguisher to recover the least significant digit (in base p) of each
entry of s, after which the error distribution can be made narrow enough to solve



for all the remaining digits of s via rounding and linear algebra. Due to space
limitations, the entire proof is deferred to the full version.

For i = 0, . . . , e, define the hybrid distribution Ais,χ that is obtained by
drawing a sample (a, b) from As,χ and outputting (a, b + pi · r) ∈ Znq × Zq
for a uniformly random r ∈ Zq (freshly chosen for each sample). By a hybrid
argument and standard amplification techniques, we can use an algorithm D
that distinguishes between As,χ and U to solve for s′ = s mod p. Having done so,
we can then transform As,χ into Ap·t,χ, where p · t = s− s′ ∈ Znq . A sample from
the latter distribution is of the form (a, b = p · 〈a, t〉 + x) for x ← χ; because
x ∈ {−p−1

2 , . . . , p−1
2 } with overwhelming probability, we may round b to the

nearest multiple of p and learn the value of 〈a, t〉 mod p exactly. With enough
samples of this form, we may then solve for t by linear algebra.

We are interested in error distributions χ over Zq that are derived from
Gaussians. For any r > 0, define the one-dimensional Gaussian probability
distribution by its density function Dr(x) = exp(−π(x/r)2)/r. For α > 0, define
Ψ̄α to be the distribution on Zq obtained by drawing y ← Dα and outputting
bq · ye mod q. Regev [46] demonstrated strong evidence for the hardness of the
LWE problem with such a Gaussian error distribution, by giving a quantum
reduction from approximating well-studied lattice problems to within Õ(n/α)
factors in the worst case to solving LWEq,Ψ̄α , when (say) α · q ≥ n. Recently,
Peikert [43] also gave a related classical reduction for similar parameters.

For our public-key encryption algorithms, we also need the discrete Gaussian
distribution DZm,r over the integer lattice Zm, which assigns probability propor-
tional to

∏
i∈[m]Dr(xi) to each x ∈ Zm. It is possible to sample efficiently from

DZm,r for any r > 0 [25].

2.2 Key-Dependent Message Security

We now define key-dependent message security for encryption, following the
presentation of Boneh et al. [13], which generalizes the definition of Black et
al. [9]. In this definition, an adversary plays a game with a challenger that
answers encryption queries for functions of the users’ secret keys. The adversary
is restricted to queries for functions from a certain family, which we will denote
F ⊂ {f | f : K` →M}, where K and M are the keyspace and message space
of the encryption scheme. Strictly speaking, F is a family of sets of functions
parameterized by the security parameter n and the number of users `.

Let us fix a public-key encryption scheme, and let A be an adversary. We
will write Enc(pk,m) to denote encrypting message m under public key pk. The
game proceeds as follows:

1. The challenger chooses a bit b← {0, 1}. It also chooses (pk1, sk1), . . . , (pk`, sk`)
by running the scheme’s key generation algorithm ` times. It gives pk1, . . . , pk`
to the adversary.

2. A makes encryption queries of the form (i, f), where 1 ≤ i ≤ ` and f ∈ F .
To process a query, if b = 0, the challenger computes m ← f(sk1, . . . , sk`)



and c← Enc(pki,m). If b = 1 it instead sets c← Enc(pki, 0|m|). It returns c
to A.

3. A attempts to guess b and outputs b̂ ∈ {0, 1}.

The scheme is KDM-CPA secure with respect to F if for every efficient
adversary A, the probability of guessing b is at most 1

2 + negl(n) for some
negligible function negl(·).

We can define KDM-CPA security for symmetric key encryption similarly: in
phase one, the challenger generates secret keys and gives the adversary nothing,
and in phase two it uses the secret keys to encrypt (and as input to f). Everything
else is exactly the same. Finally, the definition of CCA-KDM security is similar
except that the adversary has also an oracle access to the decryption function
Dec(k, ·) (but cannot query this oracle on any output given to him by the
encryption oracle).

If all constant functions (that is, functions fm such that fm(k1, . . . , k`) = m for
somem ∈M) are contained in F , then security with respect to F implies standard
CPA security. If the projection functions (fj such that fj(k1, . . . , k`) = kj for
some j) are contained in F , then security with respect to F implies (and is
actually stronger than) circular security.

3 Public-Key Encryption

In this section we design a public-key cryptosystem based on the LWEq,χ problem,
where as usual, the error distribution χ is the discretized Gaussian Ψ̄α for
parameter α = α(n) ∈ (0, 1), and the modulus q is chosen to satisfy various
constraints.

3.1 A Generic Transformation

We start with a useful transformation that reduces the LWE problem to one in
which the secret itself is chosen from the error distribution χ, essentially putting
the LWE distribution into “Hermite normal form.”

Lemma 2. Let q = pe be a prime power. There is a deterministic polynomial-
time transformation T that, for arbitrary s ∈ Znq and error distribution χ, maps
As,χ to Ax̄,χ where x̄← χn, and maps U(Znq × Zq) to itself. The transformation
also produces an invertible square matrix Ā ∈ Zn×nq and b̄ ∈ Znq that, when
mapping As,χ to Ax̄,χ, satisfy x̄ = −ĀT s + b̄.

Proof. The transformation T is given access to some distribution D over Znq ×Zq
(where D may be either As,χ or U = U(Znq × Zq)), and proceeds in two stages.

In the first stage, T performs some initial processing to obtain Ā, b̄. It does
this by drawing several pairs (a, b) from D, and keeping certain of them until it
has accumulated a set of n pairs {(āi, b̄i)} that will make up Ā, b̄ in the natural
way. With each new sample (a, b), T checks whether a is linearly independent



modulo q of all those āi that have been kept so far; if so, (a, b) is kept, otherwise
it is discarded. Note that the probability of keeping a particular sample is at
least ϕ(q)/q ≥ 1/2 (where ϕ denotes the Euler totient function), so with high
probability, T accumulates the required n samples after drawing O(n2) samples
from D. Now by construction, Ā is invertible modulo q. Also observe that each
sample is kept or discarded based only on its a component, so when D = As,χ,
we have b̄ = ĀT s + x̄ where x̄ is drawn from χn.

The second stage actually transforms (fresh) samples from D into samples
from a possibly different distribution. Given a draw (a, b) ∈ Znq × Zq from D, T
outputs (a′, b′) ∈ Znq × Zq, where

a′ = −Ā−1a and b′ = b+ 〈a′, b̄〉.

Observe that because Ā is invertible modulo q and a ∈ Znq is uniform, a′ ∈ Znq is
uniform as well. We now consider the two cases for D. If D = U , then (a′, b′) is
also distributed according to U , because b ∈ Zq is uniform and independent of a.
If D = As,χ, then b = 〈a, s〉+ x for some x← χ, so we have

b′ = 〈a, s〉+ x− 〈Ā−1a, ĀT s〉+ 〈a′, x̄〉 = 〈a′, x̄〉+ x.

Therefore, (a′, b′) is distributed according to Ax̄,χ, as desired.

3.2 The Cryptosystem

We now define a KDM-secure cryptosystem based on the LWE problem. For
technical reasons, our construction uses a prime power modulus q = p2 of a
certain size, with messages taken over Zp. (Other choices of q = pe are possible,
but q = p2 seems to correspond to the mildest underlying assumption.) Note
that any element v ∈ Zq may be written as v = (v1, v0) ∈ Zp × Zp, where v1

and v0 are the most and least significant digits in the base-p representation of
v, respectively, with the digits chosen from the set of residues {−p−1

2 , . . . , p−1
2 }.

Recall that by Lemma 1, the LWE distribution As,χ (for uniform s ∈ Znq ) is
pseudorandom if the search problem LWEq,χ is hard, and if the error distribution
χ is concentrated on {0} × Zp (which will be the case in our system, by design).

For simplicity, we start with a scheme that encrypts a single element of Zp at
a time, later extending it to an amortized version in Section 3.4. Our scheme is
very similar to Regev’s cryptosystem [46], with two main differences. First, the
entries of the secret key s ∈ Znq are chosen from the (narrow) error distribution
χ (rather than uniformly), so that they may be represented unambiguously as
elements of the message space Zp (see Lemma 3); this is secure due to Lemma 2.
Second, we modify the encryption algorithm so that it induces a ‘nice’ distribution
over ciphertexts (see Lemma 4). Specifically, the encryption algorithm chooses
a random vector r ∈ Zm from a discrete Gaussian distribution (rather than
from {0, 1}m), and adds a small extra term e to ‘smooth out’ the ciphertext
distribution. These steps may be seen as applying Regev’s main worst-case to
average-case reduction [46] to the (already random) public key.



Construction 1 The construction is parametrized by q = p2 for some prime p,
and an error parameter α; we instantiate these parameters below. Let χ = Ψ̄α,
the discretized Gaussian over Zq.

– Key generation: The secret key is s ← χn. The public key is (A,b) ∈
Zn×mq × Zmq , which is made up of m ≥ 2(n+ 1) lg q draws (ai, bi) from As,χ.
That is, b = AT s + x for independent A← Zn×mq and x← χm.

– Encryption: Before specifying the encryption algorithm, we define a dis-
tribution EA,b over Znq × Zq, which has parameters r = ω(

√
logm) and

r′ = r ·
√
m · (α+ 1

2q ). The distribution is obtained by choosing r← DZm,r

and e← Ψ̄r′ and outputting

(Ar, 〈r,b〉+ e) ∈ Znq × Zq.

To encrypt a message z ∈ Zp given the public key (A,b), draw a sample
(u, v) from EA,b and output the ciphertext (u, c = v + z · p) ∈ Znq × Zq.

– Decryption: To decrypt a ciphertext (u, c) given the secret key s, output the
z ∈ Zp such that z · p is closest to c− 〈u, s〉 modulo q.

The main constraints on the parameters are given by the correctness require-
ment (α cannot be too large) and the hardness requirement (α should be large
enough to invoke the worst-case lattice connections of [46, 43]). These constraints
are satisfied if the following inequalities hold true:

n

q
=

n

p2
≤ α ≤ 1

p ·
√
m · ω(log n)

(1)

By routine calculations, it is possible to satisfy the above inequalities for m =
O(n log n), p = Õ(

√
mn), and α = 1/Õ(m ·

√
n). This yields an underlying

worst-case approximation factor of Õ(n/α) = Õ(n2.5) for lattice problems such
as GapSVP.

Theorem 2. For parameters satisfying Equation (1), the above cryptosystem is
KDM-secure with respect to the set of affine functions over Zp, assuming that
LWEq,χ is hard.

3.3 Proof of Security

Overview. The proof of Theorem 2 has the following structure. First we show
completeness, including correct decryption of key-dependent messages. Next we
prove KDM security in two main steps.

The first step is to show that the view of the adversary in the real attack
game may be generated faithfully, up to negligible statistical distance, via an
alternate game: starting from the distribution As,χ (for uniformly random s ∈ Znq ),
the game invokes the transformation from Lemma 2 several times to produce
independent distributions As1,χ, As2,χ, . . . for each user (where each si ← χn),
and generates the users’ public keys from these distributions in the natural way.



The transformation additionally outputs an invertible linear relation modulo q
(hence modulo p as well) between each si and s, thus linking every pair si, sj in a
known way. The game answers the adversary’s (key-dependent) message queries
using these relations and the linear homomorphisms of the cryptosystem; this is
where we use the fact that the system has a ‘nice’ ciphertext distribution. The
crucial property of this game is that, aside from oracle access to As,χ, the game
works without needing to know any of the secret vectors s, s1, s2, . . ..

The second (and final) step is to consider a game that proceeds in exactly
the same way as above, except that the original distribution As,χ is replaced by
the uniform distribution U(Znq × Zq). Because the game uses only oracle access
to its given distribution, the two games are computationally indistinguishable
under the assumption that LWEq,χ is hard (and by Lemma 1). Moreover, all the
public keys in this game are uniform and independent, which implies that all
the simulated ciphertexts are as well (up to negligible statistical distance). It
follows that the adversary has negligible advantage in this game, and the scheme
is KDM-secure.

Abstract Properties. Here we state a few technical facts about the cryptosys-
tem. The proof of security relies only on these abstract properties, which can
be shown via routine application of Gaussians over lattices from prior works
(e.g., [40, 46, 25]). Due to space limitations, we defer the proofs to the full version.

The first fact is that the entries of the secret key may be represented unam-
biguously in the message space Zp. For convenience in dealing with key-dependent
messages, from now on we view the secret key s as an element of Znp ⊂ Znq .

Lemma 3. An s ← χ is of the form s = (0, s0) ∈ Zp × Zp with overwhelming
probability.

Proof. This follows directly from the upper bound on α from Equation (1) and
the exponential tail bound on the Gaussian distribution.

The following lemmas characterize the ciphertext distribution, which is
needed for showing correctness, and (more importantly) for producing proper
key-dependent ciphertexts using the scheme’s homomorphisms.

Lemma 4. With overwhelming probability over the choice of the public key (A,b)
for secret key s, the distribution EA,b is within negligible statistical distance of
As,Ψ̄β for some β ≤

√
2r′.

Lemma 5. Let t ∈ Znp and y ∈ Zp be arbitrary. With overwhelming probability
over the choice of the public key (A,b) for arbitrary secret key s ∈ Znp , the
following holds: for (u, v)← EA,b, the distribution of

(u− t · p, v + w · p) ∈ Znq × Zq

is within negligible statistical distance of a (properly generated) encryption of the
message 〈t, s〉+ w ∈ Zp.



Finally, the next lemma is used for showing statistical security in the final
hybrid game.

Lemma 6. With overwhelming probability over the choice of a ‘malformed’ public
key (A,b) from the uniform distribution U(Zn×mq × Zmq ), the distribution EA,b

is within negligible statistical distance of the uniform distribution U(Znq × Zq).

Proof Details.

Correctness. By Lemma 4, the noise in the c component of a ciphertext is
distributed according to Ψ̄β for some

β ≤
√

2r′ ≤ 4α
√
m · ω(

√
log n) ≤ 1

p · ω(
√

log n)
,

by Equation (1). By the exponential tail inequality for Gaussians and the defini-
tion of Ψ̄β , the noise term does not exceed q/2p = p/2, except with negligible
probability. We remark that the scheme can be made correct with probability 1
by modifying the key generation and encryption schemes to reject and re-sample
values of x, r, e that are ‘too long;’ however, this comes at the cost of an extra
Õ(
√
n) factor in the noise parameter α and the underlying approximation factor

for lattice problems.

The first hybrid game. We now describe an alternate game that faithfully simulates
the true KDM attack game, up to negligible statistical distance. The game starts
with access to the distribution As,χ for uniformly random s ∈ Znq . For each user i,
it applies the transformation described in Lemma 2 (using fresh draws from As,χ)
to produce the distribution Asi,χ, where si is distributed according to χn. As a
side-effect, the transformation also outputs invertible square matrices Āi ∈ Zn×nq

and vectors b̄i ∈ Znq such that for all i,

s = Ā−Ti (b̄i − si) mod q.

Note that by setting the right-hand sides equal for any i, j and reducing modulo
p, we have

Ā−Ti (si − b̄i) = Ā−Tj (sj − b̄j) mod p ⇐⇒ si = ĀT
i,j · sj + b̄i,j mod p, (2)

where Āi,j = Ā−1
j Āi and b̄i,j = b̄i− ĀT

i,j · b̄j . The game then generates a public
key (Ai,bi) for each user i in the usual way by drawing m samples from Asi,χ.

We now describe how the game answers (key-dependent) message queries.
Suppose the adversary requests an encryption, under the jth user’s public key
(Aj ,bj), of the function ft,w(si) = 〈t, si〉 + w ∈ Zp (for some t ∈ Znp , w ∈ Zp)
applied to the ith user’s secret key si. Observe that

ft,w(si) = 〈t, si〉+ w = (Āi,j · t︸ ︷︷ ︸
t′∈Znp

)T · si + 〈t, b̄i,j〉+ w︸ ︷︷ ︸
w′∈Zp

.



The game therefore draws a sample (u, v)← EAj ,bj and outputs

(u− t′ · p, v + w′ · p) ∈ Znq × Zq.

This completes the description of the game.
By the above description and Lemmas 2 and 5, the following claim is apparent.

Claim. The views of the adversary in the real attack game and in the hybrid
game are within negligible statistical distance.

The final hybrid game. The last hybrid game proceeds exactly as the one above,
except that the initial distribution As,χ is replaced with U(Znq × Zq). Note that
the game above only treats As,χ as an oracle (it never uses s directly), so As,χ

may be replaced in this way.
Now by Lemma 2, all the public keys (Ai,bi) generated by the game are

uniform and independent. Moreover, by Lemma 6, all the (key-dependent) message
queries are answered by ciphertexts that are uniform and independent of the
message. The next claim follows, and the proof of Theorem 2 is complete.

Claim. Assuming that LWEq,χ is hard, the two hybrid games are computationally
indistinguishable. Moreover, the adversary’s advantage in the final hybrid game
is negligible.

3.4 Amortized Extension

The system described in Section 3.2 encrypts only a single element z ∈ Zp per
syndrome u ∈ Znq , so the ciphertext is a factor at least n larger than the message,
and the encryption algorithm performs at least n ·m operations per message
element. Peikert, Vaikuntanathan, and Waters [44] proposed a significantly more
efficient amortized version of the cryptosystem, which can encrypt ` = O(n)
symbols using only about twice the time and space as the basic scheme. We can
show that a variant of that system is also KDM-secure.

Construction 3 Just as in Construction 1, the scheme is parametrized by q = p2

and α ∈ (0, 1).

– Key generation: The secret key is S ← χn×`. The public key is (A,B) ∈
Zn×mq × Zm×`q for m ≥ 2(n+ `) lg q, where B = ATS + X for independent
A← Zn×mq and X← χm×`.

– Encryption: first define the distribution EA,B over Znq × Z`q, obtained as
follows: choose r ← DZm,r where r = ω(

√
logm), choose e ← Ψ̄ `r′ where

r′ = r ·
√
` ·m · (α + 1

2q ), and output (u,v) = (Ar,BT r + e). Note that
the parameter r′ is a

√
` factor larger than in Construction 1. To encrypt a

message z ∈ Z`p, draw (u,v)← EA,B and output (u, c = v + z · p).
– Decryption: output the z ∈ Z`p such that z · p is closest to c− STu modulo q.



The proof of security extends to this construction in a straightforward way,
with the exception of Lemma 4, which characterizes the ciphertext distribution
and allows the simulator to answer key-dependent message queries faithfully. By
generalizing the techniques from [46, Corollary 3.10] to higher dimensions, we can
prove the following fact about EA,B, which suffices for proving KDM security.

Lemma 7. With overwhelming probability over the choice of the public key
(A,B) for secret key S, the distribution EA,B is within negligible statistical
distance of (u,STu + v), where u ∈ Znq is uniform and v ∈ Z`q is drawn from
some distribution that depends only on B (and not on u).

Proof (Proof sketch). We need to show that the distribution of XT r + e ∈ Z`q
conditioned on Ar = u is essentially the same for every fixed u. We can show
that the distribution is a (discretized) non-spherical Gaussian whose covariance
matrix depends only on r′ and the positive semidefinite Gram matrix XTX. The
proof relies on the fact that a (continuous) Gaussian can be decomposed into
the sum of two Gaussians whose covariance matrices sum to that of the original,
and also uses the partial ordering of positive semidefinite matrices to establish a
sufficient lower bound for r′ (this is where the extra

√
` term arises).

4 Linear-Stretch PRG in Quasi-Linear Time

4.1 Overview

Our starting point is a simple pseudorandom generator which was originally
suggested in [10]. Let G(A, s, r) = (A,As + e(r)), where A ∈ Zm×n2 , s ∈ Zn2
and e(·) is a noise sampling procedure that uses a random input r to sample a
random error vector from Bermε . It was shown in [10] that, assuming the hardness
of LPNε, the output distribution of G is pseudorandom. (See also [10, 22, 46, 36,
6]). In order to get expansion the noise-sampling algorithm should use a seed r of
length shorter than m. Indeed, the noise vector can be sampled by using a seed
r whose length is roughly H2(ε) ·m, where H2 is the binary entropy function.
This gives an additive expansion of m(1−H2(ε))− n which is positive when the
rate n/m is smaller than 1−H2(ε).

The resulting PRG is quite efficient as it mainly uses bit-operations rather
than costly arithmetic operations over large fields. However, it still does not
bring us to our goal (quasilinear time PRG). The main problem is that the
matrix-vector product requires Ω(mn) operations, and so the time complexity of
the generator is (at least) proportional to the product of the output length m
and the security parameter n.

To solve this problem, we exploit the fact that the matrix A is public and
hence can be reused with many different information words s1, . . . , s`. Hence,
the modified generator will compute the product of an m × n matrix A with
an n× ` matrix S, and will add a noisy bit to each of the entries of the matrix
AS. By choosing ` carefully, we can use algorithms for fast rectangular matrix
multiplication to speed up the computation.



We should also show how to sample the noise vector in quasilinear time
without using too many random bits. At first glance, this seems to be hard, and
indeed, we are not aware of any such sampling procedure8. However, we can
bypass this problem by using a fast sampling procedure suggested in [5]. This
procedure Sam samples an m-length noise vector e by using more than m random
bits. To compensate this loss Sam also outputs a “leftover” vector – a vector v
which is almost-random even when e is given. This allows us to concatenate v to
the output of the PRG.

4.2 The Construction

The following lemma shows that for a random matrix A, the mapping (s, e) 7→
As + e is pseudorandom even when it is applied to polynomially-many random
strings s1, . . . , s`. The proof combines the ideas of [10] with a standard hybrid
argument and is therefore omitted from this version.

Lemma 8. Let 0 < ε < 1
2 be a noise parameter and let m(n), `(n) be arbitrary

polynomials. If LPNε is hard, then the distribution (A,A·S+E) is pseudorandom,
where A← Um(n)×n, S← Un×`(n), and E← Berm(n)×`(n)

ε .

The following fact is based on [16].

Fact 4 For every r ≤ 0.172 the product of a matrix in Zm×m
r

2 and a matrix in
Zm

r×m
2 can be computed by a circuit of size Õ(m2).

We will use a sampling procedure due to [5].

Lemma 9 (implicit in [5]). There exist positive integers k > 1 and c > 2k,
and a sampling algorithm Sam that uses (k + k/c)N random bits and outputs
a pair of strings (e, v) whose joint distribution is 2−Ω(N) statistically-close to
(BerN2−k ,Ukn). Moreover, Sam can be implemented in NC0 and therefore by a
circuit family of size O(N).

We can now present our construction.

Construction 5 Let N = n12. Let k, c and Sam : {0, 1}(k+k/c)N → {0, 1}N ×
{0, 1}kN be the constants and sampling algorithm promised by Lemma 9. Let e(r)
and v(r) denote the first and second entries of Sam(r). Define the function

G(A,S, r) def= (A,A · S + e(r), v(r))

where, A ∈ Zn
6×n

2 , S ∈ Zn×n
6

2 , r ∈ {0, 1}(k+k/c)N , e(r) is parsed as a matrix in
Zn

6×n6

2 , and matrix addition is computed entry-wise.

Theorem 6. Assuming that LPN2−k is hard, the function G defined in Con-
struction 5 is a PRG with linear-stretch that can be computed by a circuit family
of size quasilinear in the output length.
8 For example, the time complexity of the noise-sampling procedure of [22] is quadratic

in the length of the error vector (for a constant error rate).



Proof. It can be easily verified that G takes less than (k + 0.6)N input bits and
outputs more than (k + 1)N bits, and therefore, the stretch is linear in the input
length. Pseudorandomness follows by Lemmas 9 and 8 as the tuple (A,A · S +
e(r), v(r)) is statistically-indistinguishable from the tuple (A,A · S + e(r),Ukn7),
which, in turn, is computationally-indistinguishable from Un4.5+n7+kn7 . Finally,
by Fact 4, Lemma 9, and since entry-wise addition of two matrices is computable
by linear-size circuits, the generator G can be computed by a circuit-family of
size Õ(N). ut

5 Weak Randomized PRF

An efficiently computable randomized function family F : {0, 1}n × {0, 1}m(n) →
{0, 1}s(n) is called a randomized weak pseudorandom function (RWPRF) if it
satisfies the following:

– (weak pseudorandomness) For every polynomial p(·) the sequence(
A1, FS(A1), . . . , Ap(n), FS(Ap(n))

)
is pseudorandom,

where S ← Un and (A1, . . . , Ap(n))← (Um)p(n) and fresh internal randomness
is used in each evaluation of FS .

– (verifiability) There exists an efficient equality-tester algorithm V such that

Pr[V (Y1, Y2) = equal] > 1− negl(n)
Pr[V (Y1, Y

′
2) = not-equal] > 1− negl(n),

where S ← Un, A ← Um, A
′ ← Um, Y1 ← FS(A), Y2 ← FS(A), and Y ′2 ←

FS(A′).

The PRG construction from the previous section, suggests a simple implemen-
tation of RWPRF. We let S ∈ Zn×`(n)

2 be the secret key of the function family,
and let A ∈ Zm(n)×n

2 be the argument on which the function is being evaluated.
The randomized function is defined as fS(A) = AS + E where E ∈ Berm(n)×`(n)

ε

is a secret error vector which is randomly chosen in each invocation. By Lemma 8,
the resulting function family is pseudorandom when it is evaluated on randomly
chosen inputs A1, . . . ,Aq. Also, given y = fS(A) and y = fS(B), one can easily
check, with overwhelming probability, whether A and B are equal, even without
knowing the key S.

Note that now we have no limitation on the amount of randomness used to
generate the error matrix E. Hence, we can rely on the hardness of, say LPN1/4,
and generate the error matrix E by taking the entry-wise product of 2 random
matrices. The resulting function is quite efficient, and can be computed by a
depth two Boolean circuit of size O(n`m), or, by a circuit of size Õ(m`) for a
proper choice of the parameters. (The first option uses the trivial circuit for
matrix multiplication, and the latter relies on Fact 4.)

When `(n) = m(n) the function is symmetric, that is, one can replace the role
of the argument and the key without violating the pseudorandomness property.



We also note that when `(n) is sufficiently large (e.g., `(n) > n/(1 − H2(ε))),
then, except with negligible probability, S forms an error correcting code whose
distance is larger than ε. In this case, the function fS is injective and the equality-
tester works well with respect to every input (as long as the collection-key and
the internal randomness are random). By symmetry this is also true when the
argument A is viewed as the key of the function. Hence, a random pair (A, fS(A))
forms a commitment to the collection key S, which might be useful in some
contexts.

Oblivious evaluation protocol. In an oblivious evaluation protocol for a collection
of functions fS, one party (Alice) holds a key S and another party (Bob) holds
a point A. At the end of the protocol, Bob learns the value fS(A), while Alice
learns nothing. One can also consider the symmetric variant of the problem in
which Alice learns fS(A) and Bob learns nothing. In our setting, we also assume
that the party who does not get the output selects the internal randomness of
the function. That is, we consider the task of securely computing the following
functionalities g((S,E),A)) = (λ,AS+E) and h(S, (A,E)) = (AS+E, λ) where
λ denotes the empty string. We give an efficient and secure protocol for evaluating
both g and h Our protocol employs one-out-of-two oblivious transfer (OT) [20]
for strings of length m. Such a protocol allows a receiver to receive one of two
m-bit strings held by the sender in an oblivious way, that is, without revealing
which string is selected.

Lemma 10. There exists a constant-round protocol for securely evaluating f
which uses circuits of size O(m`n) with `n oracle gates to oblivious transfer which
supports strings of length m.

Proof. The protocol is similar to the protocol suggested in [23] for obliviously
evaluating the Naor-Reingold PRF [42].

We begin with the version in which Alice receives the value of fS(A). Let S
be Alice’s input and A,E be Bob’s input. For each i ∈ [`] invoke in-parallel the
following sub-protocol where s (resp. e) is the i-th column of S (resp. E):

– Bob chooses a random matrix R← Zm(n)×n
2 .

– For each j ∈ [n] Alice and Bob call the string-OT oracle with Alice as the
receiver and Bob as sender in the following way. Alice’s input is sj , the j-th
bit of s, and Bob’s input is the pair (Rj ,Rj + Aj), where Rj and Aj are the
j-th columns of R and A. In addition, Bob sends the sum t = e +

∑
j Rj .

– Alice sums up (over Zm(n)
2 ) the n+ 1 vectors she received and outputs the

result which is equal to
∑

sj=1 Aj + e.

It is not hard to see that the protocol securely evaluates the functionality h.
Indeed, the view of Alice which consists of the values learned by the OT and the
vector t can be easily sampled given fS(A; E). A protocol in which Bob receives
the output can be derived by slightly changing the previous protocol. Details
omitted. ut



Comparison to the OPRF of [23]. Let us briefly compare the efficiency of our
scheme to the standard instantiation of OPRF [23] which is based on the Naor-
Reingold function [42]. Our scheme uses large number of OT calls – if we set
` to be 1, which does not affect the security of the construction, this number
is linear in the security parameter n. In contrast, the FIPR scheme uses only
O(m) calls where m is the length of the input. On the other hand, the additional
overhead of FIPR is m modular multiplications and a single exponentiation, where
our protocol performs only m vector additions (O(mn) bit-wise XORs). This
tradeoff is interesting as, by using the batch-OT protocol of [33], OT operations
cost almost as little as symmetric operations. Furthermore, by using standard
techniques one can compute all the OT operations in a preprocessing stage. In
such case, it seems that the current scheme has the potential to obtain better
performance, at least in some usage scenarios. (This possibility deserves further
study.)

Application. Oblivious evaluation of pseudorandom function was recently used
by Hazay and Lindell [30] to obtain an efficient two-party protocol for secure
set-intersection (an explicit version for the semi-honest model appears in [23]).
Our construction can be used in their protocol whenever the inputs of the parties
are randomly distributed. This restriction is natural in some scenarios (e.g., when
the inputs are names of entities or keys that were randomly selected by some
authority) and can be always obtained at the expense of using a random oracle.
We also note that RWPRF can be used to derive an identification scheme: we let
parties share a key for the RWPRF and verify the identity of a party by querying
the value of the function on a random point. When this protocol is instantiated
with our function we get the well known HB protocol [32]. (This view is implicit
in [36].)

6 Fast Circular-Secure Symmetric Encryption

6.1 The Construction

We now construct a symmetric encryption scheme. Our construction can be
viewed as using the previous weak, randomized PRF in an analogous way to
the standard construction of symmetric encryption from PRF, except that to
deal with the error introduced by the PRF randomization we need to make the
message redundant. This is done by employing an additional efficiently decodable
error correcting code. As mentioned before, a similar construction was suggested
in [26].

Let ` = `(n) be a message-length parameter which is set to be an arbitrary
polynomial in the security parameter n. (Shorter messages are padded with
zeroes.) Let ε = 2−k and 0 < δ < 1 be constants. We will use a family of
good binary linear codes with information words of length `(n) and block length
m = m(n), that has an efficient decoding algorithm D that can correct up to
(ε+ δ) ·m errors. We let G = G` be the m× ` binary generator matrix of this
family and we assume that it can be efficiently constructed (given 1n).



Construction 7 Let N = N(n) be an arbitrary polynomial (which controls the
tradeoff between the key-length and the time complexity of the scheme). The
private key of the scheme is a matrix S which is chosen uniformly at random
from Zn×N2 .

– Encryption: To encrypt a message M ∈ Z`×N2 , choose a random A← Zm×n2

and a random noise matrix E← Berm×Nε . Output the ciphertext

(A,A · S + E + G ·M).

– Decryption: Given a ciphertext (A,Z) apply the decoding algorithm D to
each of the columns of the matrix Z−AS and output the result.

Observe that the decryption algorithm errs only when there exists a column
in E whose Hamming weight is larger than (ε+ δ)m, which, by Chernoff Bound,
happens with negligible probability.

Quasilinear-time implementation. To get a quasilinear time implementation
(for sufficiently long messages), we instantiate the above scheme with the error-
correcting codes of Spielman [47, Thm. 19] which maps ` bits to m = Θ(`) bits
with constant relative-distance and with the property that the encoding can
be computed via a circuit of size O(`) and the decoding can be decoded by a
circuit of size O(` log `). Hence, the complexity of encryption (and decryption) is
dominated by the complexity of the product A · S. (The error matrix E can be
generated in linear time by taking the entry-wise product of k random matrices
R(1), . . . ,R(k) ← Zm×N2 .) To compute this product in quasilinear time we set
N = n6 and assume that m = Ω(n6), i.e., assume that the message length N · `
is at least Ω(n12). In this case, by Fact 4, the encryption and decryption can be
computed by a circuit of size Õ(N`).

Useful properties. The scheme enjoys several useful “homomorphic properties”
which follow from its linear structure. In particular, given an encryption (A,Y)
of an unknown message M under an unknown key S, one can transform it to an
encryption (A′,Y′) of M+M′ under the key S+S′, for any given M′,S′. This is
done by letting A′ = A and Y′ = Y + AS′ + GM′. Furthermore, if the message
M is the all zeroes string, then it is possible to convert the ciphertext (A,Y) to be
an encryption (A′,Y′) of the key S itself or, more generally, to be an encryption
of T · S for an arbitrary linear transformation T ∈ Z`×n2 . This is done by letting
Y′ = Y and A′ = A + G · T. Indeed, in this case Y′ = A′S + E + G(TS).
By choosing T to be the

(
In

0`−n×n

)
, we can get an encryption of the key itself

(padded with zeroes). We summarize these properties in the following lemma.

Lemma 11. There exist efficiently computable transformations f, g, h such that
for every unknown S ∈ Zn×N2 and M ∈ Z`×N2 and known S′ ∈ Zn×N2 ,M′ ∈
Z`×N2 and T ∈ Z`×n2 : f(M′,EncS(M)) ≡ EncS(M + M′), g(S′,EncS(M)) ≡
EncS+S′(M), and h(T,EncS(0`×N )) ≡ EncS(TS), where EncK(A) denotes a
random encryption of the message A under the key K.



6.2 KDM Security

From now on, we fix the parameters N(·), `(·), m(·) and ε of our scheme. We
consider the class of affine transformations that map the i-th column of the key S
to the i-th column of the message M. Let t = t(n) be some arbitrary polynomial
and let N = N(n) and ` = `(n). For a matrix T ∈ Z`×n2 , a matrix B ∈ Z`×N2

and an integer i ∈ [t] we define the function fT,B,i which maps a tuple of t keys
(S1, . . . ,St) ∈ (Zn×N2 )t to a message M ∈ Z`×N2 by letting M = T ·Si+B. We let
F`,N,t = {fT,B,i|T ∈ Z`×n2 ,B ∈ Z`×N2 , i ∈ [t]}. We will prove KDM-CPA-security
with respect to the class F`,N,t. Formally,

Theorem 8. Suppose that the LPNε is hard. Then Construction 7 is CPA-KDM
secure with respect to F`,N,t for every polynomial t(·).

The proof uses the properties described in Lemma 11 in a straightforward
way. A similar proof outline is used in [13].

Proof (Sketch). CPA security follows easily from Lemma 8. To prove KDM
security, we show how to transform an adversary that wins the KDM game (with
respect to F`,N,t) into an adversary that wins the standard CPA-game. Let S
be the key of the scheme that was chosen by the challenger in the CPA game.
The idea is to choose t random offsets S′i ← Un×N and emulate the KDM game
where the i-th key is Si = S′i + S. Now, by using the properties of Lemma 11, we
can transform a ciphertext EncS(0`×N ) into a ciphertext EncSj (T · Si + B) for
any given i, j,T and B. Hence, we can perfectly emulate answers to the queries
asked by the KDM adversary. ut

As shown in [8], we can use the standard encrypt-then-MAC transformation
to upgrade the security to KDM-CCA security (with respect to F`,N,t). In [34],
it is shown that the existence of a linear-time computable MAC scheme follows
from the existence of any one-way function. Hence, the intractability of LPNε
allows us to construct a KDM-CCA-secure symmetric cryptosystem in which
encryption and decryption are performed in quasilinear time, and the length of
the ciphertext is linear in the message length.
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