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Abstract. Large-scale quantum computers capable of implementing Shor’s algorithm
pose a significant threat to the security of the most widely used public-key crypto-
graphic schemes. This risk has motivated substantial efforts by standards bodies
and government agencies to identify and standardize quantum-safe cryptographic
systems. Among the proposed solutions, lattice-based cryptography has emerged as
the foundation for some of the most promising protocols.

This paper describes FrodoKEM, a family of conservative key-encapsulation mecha-
nisms (KEMs) whose security is based on generic, “unstructured” lattices. FrodoKEM
is proposed as an alternative to the more efficient lattice schemes that utilize al-
gebraically structured lattices, such as the recently standardized ML-KEM scheme.
By relying on generic lattices, FrodoKEM minimizes the potential for future attacks
that exploit algebraic structures while enabling simple and compact implementations.
Our plain C implementations demonstrate that, despite its conservative design and
parameterization, FrodoKEM remains practical. For instance, the full protocol at
NIST security level 1 runs in approximately 0.97 ms on a server-class processor, and
4.98 ms on a smartphone-class processor.

FrodoKEM obtains (single-target) IND-CCA security using a variant of the Fujisaki—
Okamoto transform, applied to an underlying public-key encryption scheme called
FrodoPKE. In addition, using a new tool called the Salted Fujisaki-Okamoto (SFO)
transform, FrodoKEM is also shown to tightly achieve multi-target security, without
increasing the FrodoPKE message length and with a negligible performance impact,
based on the multi-target IND-CPA security of FrodoPKE.
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1 Introduction

Quantum computing research has had significant implications for cryptography [YNO5,
KBF*15]. Currently, the most widely used asymmetric (i.e., public-key) cryptographic
protocols rely on the conjectured intractability of number-theoretic problems like integer
factorization and computing discrete logarithms. However, these problems are known to
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be easy for large-scale quantum computers, so these computers (if they are ever built)
would be able to completely break the world’s most prevalent cryptography.

Motivated by this potentially catastrophic threat, standards bodies and govern-
ment agencies have initiated efforts to standardize quantum-safe, or “post-quantum,”
cryptography—i.e., systems that can be run on today’s ordinary computers and networks,
and are believed to be secure against quantum attacks. In 2017, the National Institute of
Standards and Technology (NIST) launched a large-scale project to select and standardize
quantum-safe algorithms for digital signature, encryption, and key-establishment proto-
cols [Nat17]. Among the candidates, schemes based on lattice problems—particularly the
learning with errors (LWE) [Reg09] and short integer solution (SIS) [Ajt96] problems, and
their variants—emerged as especially promising. A significant milestone was achieved in
2022 when NIST selected two lattice-based schemes for standardization: CRYSTALS-Kyber,
a key-encapsulation mechanism renamed as ML-KEM [Nat24b], and CRYSTALS-Dilithium,
a signature scheme renamed as ML-DSA [Nat24a]. Both of these schemes are based on the
Module-LWE problem, a variant of LWE with additional algebraic structure for efficiency
purposes. Additionally, NIST selected Falcon, another lattice-based signature scheme, and
SPHINCS*, a hash-based signature scheme.

Despite the promising security and efficiency profiles of the algorithms selected by
NIST, several government agencies have expressed a desire for more conservative op-
tions with less underlying algebraic structure. The two most notable examples are
Classic McEliece [ABC™24], from the code-based family, and FrodoKEM, from the lattice-
based family. FrodoKEM made it to Round 3 (as an alternate candidate) of the NIST
PQC standardization project, and Classic McEliece to Round 4. Both algorithms have
been recommended as conservative alternatives by the German BSI [Fed24], the French
ANSSI [Nat23], and the Dutch NLNCSA and AIVD [Gen22].! Notably, Classic McEliece
and FrodoKEM, alongside ML-KEM, are currently undergoing standardization by the
International Organization for Standardization (ISO) [Int24].

In this paper, we describe FrodoKEM, a family of IND-CCA secure key-encapsulation
mechanisms (KEMs). FrodoKEM is designed as a conservative yet practical post-quantum
construction whose security derives from cautious parameterizations of the well-studied
learning with errors (LWE) problem. In turn, LWE has close connections to conjectured-
hard problems on generic, algebraically unstructured lattices. This paper presents
FrodoKEM as of 2025, incorporating design and analysis updates.

1.1 Pedigree

The core of FrodoKEM is a public-key encryption scheme called FrodoPKE, whose IND-CPA
security is tightly related to the hardness of a corresponding learning with errors problem.
Here we briefly recall the scientific lineage of these systems. See the surveys [Mic10,Regl0,
Peil6a] for further details.

The seminal works of Ajtai [Ajt96] and Ajtai-Dwork [AD97] gave the first cryptographic
constructions whose security properties followed from the conjectured worst-case hardness
of various problems on point lattices in R™. In subsequent years, these works were
substantially refined and improved, e.g., in [GGH96, CN97, Mic02, Reg04, MR07]. Notably,
in work published in 2005, Regev [Reg09] defined the learning with errors (LWE) problem,
proved the hardness of (certain parameterizations of) LWE assuming the hardness of
various worst-case lattice problems for quantum algorithms, and defined a public-key
encryption scheme whose IND-CPA security is tightly related to the hardness of LWE.?

'In the latest edition of the PQC migration handbook [Gen24], the Dutch ATVD, CWI and TNO
describe FrodoKEM and Classic McEliece as more conservative options and “strongly support ongoing
initiatives aiming to standardise them”. The document classifies both algorithms as “acceptable” until
their standardization is completed.

2As pointed out in [Pei09b], Regev’s encryption scheme implicitly contains an (unauthenticated)
“approximate” key-exchange protocol analogous to the classic Diffie-Hellman protocol [DH76].
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Regev’s initial work on LWE was followed by much more, which, among other things:

o provided additional theoretical support for the hardness of various LWE parameteri-
zations (e.g., [Pei09a, ACPS09, BLPT13, DM13,MP13,PRS17]),

o extensively analyzed the concrete security of LWE and closely related lattice problems
(e.g., [MR09,CN11,LN13, AFG14, Chel3,ACFP15,AFFP14,Laal5a, KF15, APS15,
ADPS16,BCD*16,Alb17, AGVW17], among countless others), and

o constructed LWE-based cryptosystems with improved efficiency or additional func-
tionality (e.g., [PW08, PVW08, GPV08, CHKP12,BV11,GSW13,BGG*14, GVW15]).

In particular, in work published in 2011, Lindner and Peikert [LP11] gave a more efficient
LWE-based public-key encryption scheme that uses a square public matrix A € Zp*"
instead of an oblong rectangular one.

Cryptographic schemes named “Frodo”. Since there are now several cryptographic
schemes incorporating the name “Frodo”, we take a moment to clarify how they are related.

o “Frodo” / FrodoCCS. An LWE-based key exchange protocol called “Frodo” was
published at the 2016 ACM CCS conference [BCD'16], based on the Lindner-Peikert
scheme [LP11] with some modifications, such as: pseudorandom generation of the
public matrix A from a small seed, more balanced key and ciphertext sizes, and new
LWE parameters. For clarity, we refer to this as FrodoCCS.

o FrodoKEM (NIST submission versions). An LWE-based KEM called FrodoKEM
was submitted to the NIST Post-Quantum Cryptography standardization project
[NABT17, NAB*T19,NABT20]. At its heart is a public-key encryption scheme called
FrodoPKE, to which a Fujisaki-Okamoto-type transform [FO99a] is applied to obtain
a KEM with IND-CCA security. Some differences between FrodoCCS and FrodoKEM/
FrodoPKE (NIST submission versions) include:

— FrodoCCS was described as an unauthenticated key-exchange protocol, which
can equivalently be viewed as an IND-CPA-secure KEM, whereas FrodoKEM is
designed to be an IND-CCA-secure KEM.

— FrodoCCS used a “reconciliation mechanism” to extract shared-key bits from
approximately equal values (similarly to [DXL12, Peil4, BCNS15, ADPS16]),
whereas FrodoKEM used simpler key transport via public-key encryption (as
in [Reg09,LP11]).

— FrodoKEM used significantly “wider” LWE error distributions than FrodoCCS,
which conform to certain worst-case hardness theorems (see Section C.1.5).

— FrodoKEM used different symmetric-key primitives than FrodoCCS.

Note that FrodoPKE and FrodoKEM changed between the first and second rounds of
the NIST PQC standardization project.

o FrodoKEM and eFrodoKEM (ISO submission version [ABD7'25], and this
document). In response to concerns about multi-ciphertext attacks (see Section 1.3
below), a new version of FrodoKEM was defined that included a salt as a countermea-
sure. As of the ISO submission version, the name eFrodoKEM (with the “¢” meaning
“ephemeral”) refers to the un-salted version (which is equivalent to the NIST Round 3
version of FrodoKEM), and the name FrodoKEM refers to the salted version. The
FrodoPKE scheme remains unchanged since the NIST Round 2 version.

e We also use the name “FrodoKEM” to refer to the overall family of schemes consisting
of the ephemeral KEM eFrodoKEM and the salted KEM FrodoKEM.

1.2 Structured versus unstructured lattices

Problems that underlie the security of cryptographic protocols often have special structured
instances, whose use may offer better efficiency or other advantages, but may also introduce
security vulnerabilities that are not present in the general case. The presence and degree of
security loss from using structured instances often remains unknown or not well understood.
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In lattice-based cryptography, the (plain) LWE problem relates to solving a noisy linear
system (modulo a known integer); it can also be interpreted as the problem of decoding a
random unstructured lattice from a certain broad class. There are also several variants of
LWE where the linear system (and its associated lattice) has additional algebraic structure,
which offers advantages in terms of computational efficiency and size. These variants
include Ring-LWE [LPR13], Module-LWE [BGV12,LS15] and the NTRU problem [HPS98].

After a good deal of investigation, the state of the art for recommended parameteriza-
tions of algebraic LWE variants does not indicate any particular weaknesses in comparison
to plain LWE. However, at present there appear to be some gaps between the (quantum)
complexity of some related, seemingly weaker problems on certain kinds of algebraic lattices
and their counterparts on general lattices. (See the next paragraph for details.) Of course,
this only represents our current understanding of these problems, which could potentially
change with further cryptanalytic effort.

For recommended parameterizations of Ring- and Module-LWE, the current best
attacks perform essentially the same as those for plain LWE, apart from some obvious
linear-factor (in the ring dimension) savings in time and memory; the same goes for the
underlying worst-case problems on ideal and module lattices, versus generic lattices [CN11,
Sch13,TKMT14,BNvdP17,Laal5b].® However, some conventional NTRU parameterizations
admit specialized attacks with significantly better asymptotic performance than on generic
lattices with the same parameters [KF15, KF17]. In addition, a series of works [CGS14,
CDPR16,CDW17] has yielded a quantum polynomial-time algorithm for very large but
subezponential 2°(V™) approximations to the worst-case Shortest Vector Problem on ideal
lattices over a widely used class of rings (in contrast to just slightly subexponential
20(nloglogn/logn) factors obtainable for general lattices [LLL82,Sch87]). Similar results
were later obtained for arbitrary number fields, assuming some field-specific exponential-
time preprocessing [PHS19]. Note that these subexponential approximation factors are
still much larger than the small polynomial factors that are typically used in cryptography,
and the algorithms from [CGS14, CDPR16,CDW17,PHS19] do not yet have any impact
on Ring- or Module-LWE themselves.

1.3 Multi-target security

Multi-key security. Multi-key (also known as multi-user) attacks aim to break security
against any one of many available public keys.* In its call for proposals for the post-
quantum standardization process [Nat17], NIST lists “resistance to multi-key attacks” as
a “desirable property.”

FrodoKEM’s primary security target of IND-CCA considers only a single public key, so
multi-key attacks fall outside its immediate scope. However, multi-key security generically
follows from IND-CCA security by a routine hybrid argument, with linear concrete security
loss in the number of keys. In addition, all versions of FrodoKEM (and FrodoCCS before
it) include a specific countermeasure against multi-key attacks, namely, a distinct LWE
matrix A for each public key.

Multi-ciphertext security. Multi-ciphertext attacks target a single public key, but aim
to break any one of many ciphertexts produced under that key. As above, multi-ciphertext
security falls outside the scope of FrodoKEM’s primary security target of IND-CCA. In
contrast to multi-key security, NIST’s call for proposals did not mention multi-ciphertext

3Some unconventional parameterizations of Ring-LWE were specifically devised to be breakable by
certain algebraic attacks [ELOS15, CLS17, CIV16, CLS16]. However, it was later shown that their
error distributions are insufficiently “wide” relative to the ring, so they reveal errorless (or nearly so)
linear equations and can therefore be broken even more efficiently using elementary, non-algebraic
means [CIV16, Peil6b].

4In the literature, multi-key attacks are sometimes also known as multi-target attacks, but the latter
term can also refer to multi-ciphertext attacks. So, to avoid ambiguity, we eschew the term “multi-target.”
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security. However, it can be a desirable feature in applications where a large number of
ciphertexts will be encrypted under the same public key.

In 2021, a multi-ciphertext attack against the Round-3 FrodoKEM-640 parameters
(for NIST security level 1) and a proposed fix was identified by NIST [Per21]; the same
attack (but no fix) was also identified in [Ber22]. The attack exploits FrodoKEM-640’s
128-bit message length, and we additionally observed that a similar attack can exploit
the 128-bit secret random seedsg value (see below for details). Although these attacks do
not invalidate any of the security claims from the FrodoKEM submission, they may be of
concern for applications with long-lived public keys. For this reason, subsequent versions
of FrodoKEM specifically aim for multi-ciphertext security (and multi-target security more
generically; see below) via a salted version of the Fujisaki-Okamoto transform, and by
enlarging seedgg. For compatibility purposes, and for applications where the number
of ciphertexts produced under any single public key is fairly small, there is ephemeral
FrodoKEM, which is identical to Round-3 FrodoKEM.

The multi-ciphertext attack of [Per21, Ber22] stems from FrodoKEM-640’s message
length of 128 bits, and the fact that encryption is deterministic (which holds for any KEM
built from the Fujisaki-Okamoto transform). When there are n. challenge ciphertexts
available, an adversary can sample N distinct messages, and calculate their corresponding
ciphertexts and KEM keys. If there is a collision between a challenge ciphertext and a
generated ciphertext, the adversary breaks one-wayness, and thereby indistinguishability.
The probability of a collision is approximately n.N/|M|, where M is the message space
and ne, N < |M|. So, with FrodoKEM-640’s message space of size |M| = 2128 and (say)
ne = 2% challenge ciphertexts, an adversary can break multi-ciphertext security by doing
about N = 288 encryptions. A similar attack and analysis also applies to the secret 128-bit
seedgg value that is used to generate LWE secrets and errors in ciphertexts.

The fix for seedgg is trivial: simply increase its length to make collisions infeasible.
Similarly, one could use a larger message space, but this cannot be done in FrodoPKE
without substantially changing the LWE parameters. Instead, the new version of FrodoKEM
adds a public salt to make it infeasible for the adversary-generated ciphertexts to collide
with challenge ciphertexts.

Multi-target security. Multi-target security unifies both multi-key and multi-ciphertext
security. Here, the adversary is given potentially several public keys and ciphertexts, where
each ciphertext is generated under one of the public keys of the adversary’s choice.’
To obtain multi-target security, FrodoKEM uses the above-mentioned salted Fujisaki—
Okamoto (SFO) transform, and hashing of public keys. The efficacy of these techniques
was proven in [GHS25, Gla24].

1.4 Our contributions

In this work, we present and analyze FrodoKEM, a family of key-encapsulation mecha-
nisms that rely on the learning with errors problem to obtain security against known
quantum threats. Our focus is on members of the FrodoKEM family presented in the
ISO submission [ABD™25], namely: eFrodoKEM, the IND-CCA-secure KEM built from
FrodoPKE using the Fujisaki-Okamoto (FO’U) transform; and FrodoKEM, the multi-target-
IND-CCA-secure KEM built from FrodoPKE using the salted FO transform. Supporting
algorithms for FrodoKEM are presented in Section 3, FrodoPKE is presented in Section 4,
and FrodoKEM is presented in Section 5.

Given the existing work on past versions of Frodo in [BCDT16, NABT17, NAB'19,
NAB*20, ABD*25], the specific contributions of this work are as follows.

5For a finer-grained notion, one can limit the total number of ciphertexts that may be generated under
any single key.
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o We apply the analysis of the salted FO transform of [GHS25] to derive results on the
multi-target (i.e., multi-key and multi-ciphertext) security of FrodoKEM, addressing
the multi-ciphertext attack described in Section 1.3. These results, reported in
Section 7.1 and Appendix C, include bounds in the quantum random oracle model.

e In Section 6 and Section 7.2, we revisit the original FrodoKEM parameter sets and
incorporate recent cryptanalytic developments to verify security level estimates for
the three parameterizations Frodo-640, Frodo-976, and Frodo-1344.

e In Section 8, we provide updated implementations and performance measurements
for FrodoKEM and eFrodoKEM on Intel x64 and ARM platforms, with an optimized
C implementation taking advantage of AES-NI and AVX2 instructions on Intel x64.
These implementations are available at https://github.com/microsoft/PQCrypt
o-LWEKE.

2 Background

This section defines the cryptographic primitives and security notions that are relevant to
FrodoPKE and FrodoKEM. For the required mathematical background corresponding to
the LWE problem and lattices, refer to Appendix A.

2.1 Notation

Vectors are denoted by bold lower-case letters (e.g., a,b,v), and matrices are denoted
by bold upper-case letters (e.g., A, B,S). For a set D, the set of m-dimensional vectors
with entries in D is denoted by D™, and the set of m-by-n matrices with entries in D is
denoted by D™*™. For an n-dimensional vector v, its ith entry for 0 < i < n is denoted
by v;. For an m-by-n matrix A, its (i,j)th entry (i.e., the entry in the ith row and jth
column) for 0 < i < m and 0 < j < n is denoted by A; j, and its 7th row is denoted
by A; = (A;0,A;1,...,Ai—1). The transpose of a matrix A is denoted by AT.

An m-bit string k € {0,1}™ is written as a vector over the set {0,1}. The ring of
integers is denoted by Z, and, for a positive integer ¢, the quotient ring of integers modulo ¢
is denoted by Z, = Z/qZ. For a probability distribution or randomized algorithm x, the
notation e <—s x denotes drawing a value e according to x. The n-fold product distribution
of x with itself is denoted by x". For a finite set S, the uniform distribution on S is
denoted by U(S). The floor of a real number a, i.e., the largest integer less than or
equal to a, is denoted by |[a|. The closest integer to a real number a (with ties broken
upward) is denoted by |a] = |a + 1/2]. For a real vector v € R, its Euclidean (i.e., £2)
norm is denoted by ||v||. For two n-dimensional vectors a, b over a ring R, their inner
product is denoted by (a,b) = Z?gol a;b; € R. For a positive integer n, [n] denotes the
set {1,2,...,n}.

2.2 Cryptographic definitions

This section recalls definitions of cryptographic primitives that are relevant to FrodoKEM,
along with their correctness and security notions.

Definition 1 (Key encapsulation mechanism). A key encapsulation mechanism KEM is a
tuple of algorithms (KeyGen, Encaps, Decaps) along with a finite keyspace K:

o KeyGen() s— (pk, sk): A probabilistic key generation algorithm that outputs a public
key pk and a secret key sk.

o Encaps(pk) s— (c,ss): A probabilistic encapsulation algorithm that takes as input
a public key pk, and outputs an encapsulation ¢ and a shared secret ss € . The
encapsulation is sometimes called a ciphertext.
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e Decaps(c, sk) — ss’: A (usually deterministic) decapsulation algorithm that takes as
input an encapsulation ¢ and a secret key sk, and outputs a shared secret ss’ € K.

The notion of d-correctness gives a bound on the probability of a legitimate protocol
execution producing different keys in encapsulation and decapsulation.

Definition 2 (d-correctness for KEMs). A key encapsulation mechanism KEM is -correct
if Pr[ss’ # ss : (pk, sk) <—s KeyGen(); (¢, ss) «—s Encaps(pk); ss’ < Decaps(c, sk)] < 4.

The following defines indistinguishability under chosen-ciphertext attack (IND-CCA)
for a key encapsulation mechanism.

Definition 3 (IND-CCA for KEMs). Let KEM be a key encapsulation mechanism, and
let A be an algorithm. The security experiment for indistinguishability under adaptive
chosen ciphertext attack (IND-CCA2, or just IND-CCA) of KEM is Expiay-<*(A), as defined
in Figure 1. The advantage® of A in the experiment is

AdV:('\'ED,\},CCA(A) =2 |Pr [ExpwED,\;lCCA(A) = 1] _ ;‘ )

Note that A can be a classical or quantum algorithm. Even if A is a quantum algorithm,
we still require it to make classical queries to its Opecaps Oracle.

Experiment Expien— (A): Oracle Opecaps(€):
1: (pk, sk) <s KEM.KeyGen() 1. if ¢ = c¢* then
2: b+s{0,1} 2:  return 1
3: (c*,s80) s KEM.Encaps(pk) 3: else
4: ss1 s U(K) 4:  return KEM.Decaps(c, sk)
5: b s AOPecars() (k. sy, c*)
6: if ' = b then
7:  return 1
8: else
9 return 0

Figure 1: Security experiment for indistinguishability under adaptive chosen ciphertext
attack (IND-CCA2, or just IND-CCA) of a key encapsulation mechanism KEM for an
adversary A.

The key encapsulation mechanism presented in this work is obtained by transforming
a public-key encryption (PKE) scheme, which is formally defined as follows.

Definition 4 (Public-key encryption scheme). A public-key encryption scheme PKE is a
tuple of algorithms (KeyGen, Enc, Dec) along with a message space M:

o KeyGen() s— (pk, sk): A probabilistic key generation algorithm that outputs a public
key pk and a secret key sk.

o Enc(m, pk) s— ¢: A probabilistic encryption algorithm that takes as input a message
m € M and public key pk, and outputs a ciphertext c¢. The deterministic form is
denoted Enc(m, pk;r) — ¢, where the randomness r € R is passed as an explicit
input; R is called the randomness space of the encryption algorithm.

o Dec(c,sk) — m’ or L: A deterministic decryption algorithm that takes as input a
ciphertext ¢ and secret key sk, and outputs either a message m’ € M or a special
error symbol L ¢ M.

6Note that we define advantage as 2:|Pr[...] — 1/2|, whereas some FO literature defines it as |Pr[...]—1/2|.
Our definition normalizes the advantage to be in [0, 1], and is consistent with the definition of statistical
distance.
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Some results rely on the unpredictabilty (min-entropy) of the ciphertext (taken over
the randomness of the encryption algorithm), as captured by the following definition:

Definition 5 (y-spreadness). We say that a public-key encryption scheme PKE is ~y-spread
if for all key pairs (pk, sk) in the support of KeyGen and all messages m € M, it holds
that max. Pr[Enc(m,pk) = ¢] < 277, where the probability is taken over the internal
randomness of Enc.

The notion of §-correctness captures an upper bound on the probability of decryption
failure in a legitimate execution of the scheme.

Definition 6 (§-correctness for PKEs [HHK17]). A public-key encryption scheme PKE
with message space M is d-correct if

E max Pr [PKE.Dec(c, sk) # m : ¢ s PKE.Enc(m, pk)]| < 9§ , (1)
me

where the expectation is taken over (pk, sk) <—s PKE.KeyGen().

In FrodoPKE, the probability expression in Equation 1 has no dependence on m, so the
condition simplifies to

Pr [PKE.Dec(c, sk) # m : (pk, sk) + PKE.KeyGen(); ¢ +—s PKE.Enc(m,pk)] < 4§ , (2)

which is what we analyze when calculating the probability of decryption failure (see
Section 4.1).

The PKE scheme we use as the basis for the KEM transformation in Section 4.2 is
required to satisfy the notion of IND-CPA security, which is defined as follows.

Definition 7 (IND-CPA for PKE). Let PKE be a public-key encryption scheme, and let A
be an algorithm. The security experiment for indistinguishability under chosen plaintext
attack (IND-CPA) of PKE is Exppre *(A) shown in Figure 2. The advantage of A in the
experiment is

AdvilEPA(A) = 2.

1
Pr [ExpleKDgCPA(A) = 1} - 2'.

Experiment Exphie ™A (A):

1: (pk, sk) <—s PKE.KeyGen()
2: (mg, my, st) <s A(pk)
3: b+s{0,1}

4: c* +—s PKE.Enc(my, pk)
5: b «s A(pk, c*, st)
6
7
8
9

: if ¥ = b then
return 1
: else
return 0

Figure 2: Security experiment for indistinguishability under chosen plaintext attack (IND-
CPA) of a public-key encryption scheme PKE against an adversary .A.

In the multi-key (i.e., multi-user) setting, we need a suitably adapted definition of
correctness.
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Definition 8 (d(ny)-correctness for PKEs). A public-key encryption scheme PKE with
message space M is called d(n,)-correct if for all n,,

E {max max Pr[PKE.Dec(sk;, PKE.Enc(pk;,m)) # m]] < d(ny)

jE[n, meM
where the expectation is taken over (pki, ski1),..., (pkn,, skn,) <s PKE.KeyGen().

We note that in FrodoPKE, the probability of incorrect decryption does not depend on
the choice of message m € M, so the expression from Definition 8 simplifies to

E [m[ax] Pr[PKE.Dec(sk;, PKE.Enc(pk;, m)) # m]} )
J€[nu

where m € M is some arbitrary message. Also note that by restricting to n, = 1, the
above definitions simplify to merely single-user correctness [HHK17] (see Definition 6).
Because the maximum of several non-negative values is at most their sum, by linearity
of expectation, any d-correct PKE is d(ny)-correct for 6(n,) = 4 - n,. However, there is
strong evidence that for FrodoPKE and other natural lattice-based schemes, d(n,) < § - ny;
see [DHK ™21, Table 1].

In the multi-key security experiments, an oracle generates each ciphertext by encrypting
under one of several (properly generated) public keys, as specified by the adversary.
Formally, we define IND,,_j, -CPA security for a PKE, and IND,,_,,-CCA security for a
KEM. Note that IND-CPA and IND-CCA are simply the special cases of these notions,
respectively, for nc = n, = 1. Our multi-target definitions differ slightly from those
of [DHK"21], which allow the adversary to concentrate all its challenge queries on a single
user; we follow the approach of Bellare et al. [BBMO0O], where the adversary is limited
to n¢ challenge queries per user, so the total number of challenges is bounded by n, - nc.

Definition 9 (IND,,_,,-CPA for PKE [GHS25,Gla24]). Let PKE be a public-key encryption
scheme and let A be an algorithm. The IND,,_, -CPA security experiment for A attacking

PKE is EprF',\IKDE"C’"”_CPA(A) from Figure 3. The advantage of A in the experiment is
IND o,y -CPA IND,, ,n,-CPA 1
Advpyg (A):=2-|Pr {EXPPKE (A) = 1} - 2‘.
Experiment ExpLNK[E"“"”'CPA(A): Oracle chall;(mg,mq):
c b«s{0,1} 1: [may be called up to nc times]
. forj=1,...,n, do 2: ¢ <—s PKE.Enc(pk;, ms)

(pkj, skj) <—s PKE.KeyGen() 3: return ¢

1

2

3:

4: pk «+ (pka,...,Dkn,)

5 b s Achal|1 ..... chall,,, (p—];.)
6: if b =1 then

7 return 1

8: else

9 return 0

Figure 3: Security experiment for IND,,_,, -CPA security of a public-key encryption scheme
PKE against an adversary A.

Definition 10 (IND,,_,, -CCA for KEM [DHK*21]). Let KEM be a key encapsulation
mechanism, and let A be an algorithm. The IND,,_, -CCA security experiment for A
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attacking KEM is Expu\lEDl\;l‘c"”“_CCA (A) from Figure 4. The advantage of A in the experiment

is
AdV:L\IE?\;fC'"”_CCA(A) =2

} 1
Pr {Exp:yED,\Z"”“ CCA(A) = 1} — 2’.

Experiment Exp:l\lEE,’vT“’"”_CCA (A):

1: b<s{0,1} 1
2: for j=1,...,n, do 2

3. (pkj,sk;) s KEM.KeyGen()  3: else

a: pk <+ (pky,...,pky,) 4:  return KEM.Decaps(c, sk;)
5. b s .A(?])ecaps,challl,...,challnu (p_];;) Oracle Cha”]()
6
7
8
9

Oracle Opecaps (3, ¢):

: if c € £¢; then
return |

: if b=1 then 1: [may be called up to n. times]
. return 1 2: (¢, ko) +—s KEM.Encaps(pk;)
. else 3: Loy « Loy Uce
return 0 4: ky s K
5: return (c, ky)

Figure 4: Security experiment for IND,,_,,,-CCA security of a key encapsulation mechanism
KEM against an adversary A. Here £¢; denotes the list of ciphertexts encrypted under
pk;, and is initialized to be empty.

3 Auxiliary algorithms

This section describes the auxiliary algorithms used in FrodoPKE and FrodoKEM.

Notation. In this work, the algorithms are described in terms of the following parameters:

e X, a probability distribution on Z, and T}, the corresponding distribution table for
sampling;

o ¢ =2P a power-of-two integer modulus with exponent D < 16;

e n,m,n, integer matrix dimensions with n =0 (mod 8);

e B < D, the number of bits encoded in each matrix entry;

e ¢ = B -m-m, the length of bit strings that are encoded as m-by-7 matrices;

o lengeed, ; the bit length of seeds used for pseudorandom matrix generation;

o lengeedsy, the bit length of seeds used for pseudorandom bit generation for error
sampling.

3.1 Sampling from the error distribution

The error distribution x used in FrodoKEM is a discrete, symmetric distribution on Z,
centered at zero and with small support, which approximates a rounded continuous
Gaussian distribution.

The support of x is Sy, = {—s,—s+1,...,—1,0,1,...,s — 1, s} for a positive integer
s. The probabilities x(z) = x(—z) for z € S, are given by a discrete probability density
function, which is described by a table T, = (T}(0),Ty(1),...,T\(s)) of s + 1 positive
integers related to the cumulative distribution function. For a certain positive integer len,,
the table entries satisfy the following conditions:

T (0) =271 x(0) =1 and  Ty(2) = Ty(0) +2°™ Y x(i) for1<z<s.
=1
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Since the distribution x is symmetric and centered at zero, it is easy to verify that
Ty (s) = 2lem=1 — 1,

Sampling from x via inversion sampling is done as shown in Algorithm 1. Given
a string of len, uniformly random bits r € {0, 1}'*"x and a distribution table T, the
algorithm Frodo.Sample returns a sample e from the distribution x. (Note that T (s) is
never accessed.) We emphasize that it is important to perform this sampling in constant
time to avoid exposing timing side-channels, which is why Step 3 of the algorithm does
a complete loop through the entire table 7). The comparison in Step 4 needs to be
implemented in a constant-time manner.

Algorithm 1 Frodo.Sample
Input: A (random) bit string r = (ro,r1,...,Ten,—1) € {0, 1}, the table T}, =
(T (0), T (1), ..., T (s)).
Output: A sample e € Z.
e STy, L 0inl
e+ 0
for (z=0;2<s;2z4 2z+1) do
if ¢ > T\ (z) then
e<—e+1
e+ (=1)r-e
return e

An nq-by-ns matrix of nino samples from the error distribution is sampled on input of
a (nins - len, )-bit string, here written as a sequence (r(®, r() ... r(m1m2=1) of niny bit
vectors of length len, each, by sampling n1ny error terms through calls to Frodo.Sample
on a corresponding len,-bit substring r(#72+7) and the distribution table T\, to sample the
matrix entry E; ;. The algorithm Frodo.SampleMatrix is shown in Algorithm 2.

Algorithm 2 Frodo.SampleMatrix

Input: A (random) bit string (r(®, r(1) . r(m72=1)) ¢ {o 1}m172lenx (here, each r(®) is
a vector of len, bits), the table T, .

Output: A sample E € Z"1*"2,

1: for (1 =0;i<mny;i<+i+1)do

2. for (j=0;j<mng;j«<j+1)do
3: E;; + Frodo.Sample(r(#"2%7) T, )
4: return E

3.2 Pseudorandom matrix generation

The algorithm Frodo.Gen takes as input a seed seeda € {0,1}"=<a and an implicit
dimension n € Z, and outputs a pseudorandom matrix A € Zg*". There are two
options for instantiating Frodo.Gen: using AES128 (Algorithm 3) and using SHAKE128
(Algorithm 4). Since the modulus ¢ is a power of 2, reducing uniform bit strings modulo ¢
introduces no bias.

3.3 DMatrix encoding and packing

FrodoKEM requires functions to encode and decode bit strings as mod-q integer matrices,
as well as packing and unpacking algorithms that transform matrices with entries in Z,
to bit strings and vice versa. The corresponding functions Frodo.Encode, Frodo.Decode,
Frodo.Pack and Frodo.Unpack are detailed in Appendix B.
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Algorithm 3 Frodo.Gen using AES128

Input: Seed seeds € {0, 1}e"seda
Output: Matrix A € Z;*".

cfor (i=0;i<n;i+i+1)do
for (j =0;j <n;j< j+8)do
b @00 € {0,112 where (i), () € {0,1}'¢
(i MCin)ll - a7}  AEST28seeqn (b) where cach (ciz) € {0, 1119
for (k=0,k<8 k< k+1)do
Ak < cij+rmod g
return A

Algorithm 4 Frodo.Gen using SHAKE128

Input: Seed seeds € {0, 1}/e"sa .
Output: Pseudorandom matrix A € Z;‘X”.

cfor (i=0;i<n;i+i+1)do
b « (i)||seeda € {0, 1}16Heneein where (i) € {0,1}'6
<c,'70>||<ci71>|| s ||<Ci,n—1> — SHAKE128(b, 16n) where each <C,‘7j> € {O, 1}16
for (j=0;7<n;j«<j+1)do
Ai,j < Cij mod q
return A

3.4 Deterministic random bit generation

FrodoKEM requires the deterministic generation of random bit sequences from a ran-
dom seed value. This is done using the SHA-3-derived extendable output function
SHAKE [Dwol5]. The function SHAKE is taken as either SHAKE128 or SHAKE256
(indicated in Table 1 for each parameter set of FrodoKEM), and takes as input a bit string
X and a requested output bit length L.

4 FrodoPKE: IND-CPA-secure public-key encryption

This section describes FrodoPKE, a public-key encryption scheme with fixed-length message
space, targeting IND-CPA security, that will be used as a building block for FrodoKEM.
FrodoPKE is based on the public-key encryption scheme by Lindner and Peikert [LP11].
The PKE scheme is given by three algorithms (FrodoPKE.KeyGen, FrodoPKE.Enc,
FrodoPKE.Dec), defined respectively in Algorithm 5, Algorithm 6, and Algorithm 7.
FrodoPKE is parameterized by the parameters defined in Section 3. Additional parameters
include the bit length len, = ¢ of messages, the message space M = {0, 1} and
the matrix-generation algorithm Frodo.Gen (either Algorithm 3 or Algorithm 4). In the
notation of [LP11], their n; and ny both equal n here, and their dimension ¢ is 7 here.

4.1 Correctness of FrodoPKE

The next lemma states bounds on the size of errors that can be handled by the decoding
algorithm.

Lemma 1. Let ec(:) and dc(-) denote the encoding and decoding functions (resp.) defined
in Appendiz B. Let ¢ = 2P, B < D. Then dc(ec(k) +e) = k for any k,e € Z such that
0<k<2B and —q/2B%! <e < q/2PFL.

Proof. This follows directly from the fact that dc(ec(k) + e) = |k + €28 /q] mod 28. O
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Algorithm 5 FrodoPKE.KeyGen.
Input: None. B B
Output: Key pair (pk, sk) € ({0, 1}®"=a x Zy™) X Ly

Choose a uniformly random seed seedp <—s U ({0, 1}1enseeda )

Generate the matrix A € Zy*" via A < Frodo.Gen(seeda )

Choose a uniformly random seed seedgg < U ({0, 1}eMsisr)

Generate pseudorandom bit string (r(®, r(M) . r@?7-1) « SHAKE(0x5F | seedsg,
2n7 - leny,)

Sample error matrix ST « Frodo.SampleMatrix((r(®,r™®) .. . r7=1) 7 n, Ty)
Sample error matrix E + Frodo.SampleMatrix((r("™) p7+1h)  p(@ni=1)) n 5 Ty)
Compute B=AS+ E

return public key pk < (seeda, B) and secret key sk < ST

Algorithm 6 FrodoPKE.Enc.
Input: Message 1 € M and public key pk = (seeda, B) € {0, 1}/e"seda x ZQXTL.
Output: Ciphertext ¢ = (Cy, Cy) € Zy™*" x Z7"™™.

1: Generate A < Frodo.Gen(seeda )

2: Choose a uniformly random seed seedgg <—s U ({0, 1}'eMs<dse )

3: Generate pseudorandom bit string (r(®,r() . pEmetmie-1))  SHAKE(0x96|
seedsg, (2mn + mn) - len,)

4: Sample error matrix S’ - Frodo.SampleMatrix((r(®, ™) ... r(™n=1) 73 p, Ty)

5: Sample error matrix E’ + Frodo.SampleMatrix((r(™") p(mn+1)  p(Gmn=1)) 77 4
Ty)

6: Sample error matrix E” « Frodo.SampleMatrix((r(?™7) p(2mntl) - p@mntmi—1)y
m,n, TX)

7: Compute B'=S’A+E and V=SB + E”
8: return ciphertext ¢ + (Cy,Cq) = (B’, V 4 Frodo.Encode(u))

Algorithm 7 FrodoPKE.Dec.
Input: Ciphertext ¢ = (Cy, Cy) € Z7"*" x Z7"™*™ and secret key sk = ST e Z7*".
Output: Decrypted message ' € M.

1: Computc M = C2 — 01S
2: return message y' < Frodo.Decode(M)

Correctness of decryption: The decryption algorithm FrodoPKE.Dec computes

M=0C; -C;S
=V + Frodo.Encode(u) — (S’A + E')S
= Frodo.Encode(u) + S'B + E” — S’AS — E'S
= Frodo.Encode(u) + S'AS + S'SE + E” — S’AS — E'S
= Frodo.Encode(n) + S'E + E” — E'S
= Frodo.Encode(p) + E"”

for some error matrix E”” = S'E + E” — E’S. Therefore, any B-bit substring of the
message [ corresponding to an entry of M will be decrypted correctly if the condition in
Lemma 1 is satisfied for the corresponding entry of E".
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Failure probability. Each entry in the matrix E” is the sum of 2n products of two
independent samples from x, and one more independent sample from y. Denote the
distribution of this sum by x’. In the case of a power-of-2 modulus ¢, the probability of
decryption failure for any single symbol is therefore the sum p = Zeg[fq/zgﬁyq/z,;“) X' (e).
The probability of decryption failure for the entire message can then be obtained using
the union bound.

For the distributions x we use, which have rather small support Sy, the distribution x’
can be efficiently computed exactly. The probability that a product of two independent
samples from x equals e (modulo ¢) is simply Z(a,b)esx XSy : abee mod g x(a)-x(b). Similarly,
the probability that the sum of two entries assumes a certain value is given by the standard
convolution sum. Section 6.2 reports the failure probability for each of the selected
parameter sets.

4.2 Transform from IND,_, -CPA PKE to IND,_,,-CCA KEM

The Fujisaki-Okamoto transform [FO99b] constructs an IND-CCA2-secure public-key
encryption scheme, in the classical random oracle model, from a one-way-secure public-key
encryption scheme (assuming the distribution of ciphertexts for each plaintext is sufficiently
“well spread”). Targhi and Unruh [TU16] gave a variant of the Fujisaki-Okamoto transform
and proved its IND-CCA2 security against a quantum adversary in the quantum random
oracle model under similar assumptions. The results of both [FO99b] and [TU16] proceed
under the assumption that the public-key encryption scheme has perfect correctness, which
is often not the case for lattice-based schemes (including ours). Hofheinz, Hévelmanns,
and Kiltz [HHK17] gave a variety of constructions, in a modular fashion, that in particular
allow for a small probability of incorrect decryption.

The FrodoKEM 2023 “annex” update document [ABD*23] adapted the FO* transform
from [HHK17] and proposed a variant called the Modified Salted Fujisaki-Okamoto with
implicit rejection (SFO’K ") transform. In this transform, encapsulation generates a uniformly
random, public salt of bit length ¢ = leng,, and includes it in the output ciphertext. The
security of the resulting KEM against multi-target attacks in the classical ROM was
proved in [GHS25] (and a QROM bound was also proved). Without the salt, and with nc
challenge ciphertexts and N ROM queries, an adversary can break IND,,_,, -CCA security
with advantage roughly n.N/|M|. By including a salt of suitable length, the advantage is
bounded according to Theorem 1 below.

FrodoKEM uses the SFO*/ transform, which constructs an IND,,_,, -CCA-secure key
encapsulation mechanism from an IND,,_,,-CPA public-key encryption scheme and three
hash functions; following [BDK 18], the transform also includes the following modifications
(see Figure 5 for notation):

o A single hash function (with longer output) is used to compute r and k.
e The computation of r and k also takes the public key pk as input.

Definition 11 (SFO’K' transform). Let PKE = (KeyGen, Enc, Dec) be a public-key encryp-
tion scheme with message space M and ciphertext space C, where the randomness space of
Enc is R. Let leng, lens, len, lenpin, lenss be parameters. Let Gy: {0, 1}* — {0, 1}!eneicn
Go: {0,1}* — R x {0,1}*™ and F: {0,1}* — {0,1}'*"= be hash functions. Define
KEMA' = SFOl’[PKE,Gl,Gg,F] to be the key encapsulation mechanism as shown in
Figure 5.

As observed by Guo, Johansson, and Nilsson [GJN20], a timing side-channel enables
key recovery if Step 5 of KEM*' Decaps is not performed in constant time.
Remark 1. If salt is removed from the SFO*' transform in Figure 5, the transform becomes
equivalent to the FO*' transform [BDK*18,NAB*20]. That transform is used in our
eFrodoKEM variant, which is intended for applications where only a small number of
ciphertexts are generated per public key (see Section 5 and Section 7.1).
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KEM*' KeyGen(): KEM*’ Decaps(c|[salt, (sk, s, pk, pkh)):

(pk, sk) <—s PKE.KeyGen() u' < PKE.Dec(c, sk)

s s {0, 1}'ens (r', k) < Ga(pkh| ' ||salt)

pkh + G (pk) ss(, « F(c||salt||k’)

sk’ « (sk,s, pk,pkh) ssj < F(c||salt]|s)

return (pk, sk’) (in constant time) ss’ < ssj if ¢ =
PKE.Enc(y/, pk; ') else ss’ < ss

6: return ss’

KEM*’ Encaps(pk):

s M, salt <—s {0, 1 }lensat
() < Ga (G (ph)u]salt)
¢ < PKE.Enc(u, pk;r)

ss « F(cl|salt||k)

return (c|salt,ss)

Figure 5: Construction of an IND-CCA-secure key encapsulation mechanism KEM* =
SFO’U[PKE, G1,Gs, F| from a public-key encryption scheme PKE and hash functions Gy,
G27 and F'.

5 FrodoKEM: IND-CCA-secure key encapsulation

This section defines FrodoKEM, a key encapsulation mechanism that is derived from
FrodoPKE by applying the SFO* transform. The KEM scheme is given by three algo-
rithms (FrodoKEM.KeyGen, FrodoKEM.Encaps, FrodoKEM.Decaps), defined respectively
in Algorithm 8, Algorithm 9, and Algorithm 10. FrodoKEM is parameterized by the
following:

o ¢=2P a power-of-two integer modulus with exponent D < 16;

e n,T,T, integer matrix dimensions with n =0 (mod 16);

e B < D, the number of bits encoded in each matrix entry;

e (= B -m -7, the length of bit strings to be encoded in an m-by-7 matrix;

o len, =/, the bit length of messages;

e M ={0,1}'*"= the message space;

o lengeed, ; the bit length of seeds used for pseudorandom matrix generation;

o lengeedsy, the bit length of seeds used for pseudorandom bit generation for error
sampling;

e Frodo.Gen, pseudorandom matrix generation algorithm, either Algorithm 3 or Algo-
rithm 4;

o T,, distribution table for sampling;

o leng, the length of the bit vector s used for pseudorandom shared secret generation in
the event of decapsulation failure in the SFO*’ transform;

e len,, the bit length of seeds used for pseudorandom generation of seeda ;

e leng,t, the bit length of salt;

e leny, the bit length of intermediate shared secret k in the SFO*! transform;

o lenpkn, the bit length of the hash G1(pk) of the public key in the SFO*' transform;

o lengs, the bit length of shared secret ss in the SFO*’ transform;

Correctness of IND-CCA KEM. For any KEM obtained from the FO transform, a
correctness error occurs only on messages that exhibit a decryption error. Therefore, the
failure probability § of FrodoKEM is the same as the failure probability of the underlying
FrodoPKE as computed in Section 4.1.
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Algorithm 8 FrodoKEM.KeyGen.

Input: None.

Output: Key pair (pk, sk') with pk € {0, 1}ensecaa #D - gpt ¢ £ 1} lenstlenseeas +Dnm o
ngn x {0, 1}enpin,

1: Choose uniformly random seeds s||seedgg ||z <—s U ({0, 1}ens+lenseeigp Flenz)

2: Generate pseudorandom seed seeda < SHAKE(z, lengeed, )

3: Generate the matrix A € Z7*" via A < Frodo.Gen(seeda )

4: Generate pseudorandom bit string (r(® r() ... r@""=1)  SHAKE(0x5F||seedsg,
2nm - leny,)
Sample error matrix ST < Frodo.SampleMatrix((r(®, r() ... r("=D) 7 n T,)
Sample error matrix E + Frodo.SampleMatrix((r("™) r("™+1)  y@nn=1)) ' 73 T )

Compute B < AS + E

Compute b + Frodo.Pack(B)

Compute pkh < SHAKE(seed 4 ||b, lenpkn )

10: return public key pk < seeda ||b and secret key sk’ < (s||seeda ||b, ST, pkh)

Algorithm 9 FrodoKEM.Encaps.

Input: Public key pk = seeda ||b € {0, li'e”seeiAjD‘”'ﬁ.
Output: Ciphertext c;||cz||salt € {0, 1} n+7m)DHenar and shared secret ss € {0, 1}/,

1: Choose uniformly random values p <s U ({0, 1}'*"+) and salt +s U ({0, 1}'e"ser)

2: Compute pkh + SHAKE(pk, lenpin)

3: Generate pseudorandom values seedsg||k <+ SHAKE(pkh||u||salt, lenseedss + lenk)

4: Generate pseudorandom bit string (r(®, ¢ .. p@7ntmn—1)) . SHAKE(0x96|
seedsg, (2mn + mn) - len,)

5: Sample error matrix S’ - Frodo.SampleMatrix((r®, v ... r(™=D) 73 n T, )
6: Sample error matrix E’ + Frodo.SampleMatrix((r(™™) p(mnt+1) - p@mn=1)) 77 n
Ty)

7. Generate A < Frodo.Gen(seeda )

8: Compute B’ + S’A + E/

9: Compute ¢; < Frodo.Pack(B’)

10: Sample error matrix E” < Frodo.SampleMatrix((r(™"), r
m, 7, Ty

11: Compute B <+ Frodo.Unpack(b,n,7)

12: Compute V «+ S'B + E”

13: Compute C < V + Frodo.Encode(u)

14: Compute cg < Frodo.Pack(C)

15: Compute ss < SHAKE(cq ||cz||salt|k, lengs)

16: return ciphertext c|ca|/salt and shared secret ss

2mn+1) r(2ﬁn+W71))
yere )

5.1 Cryptographic primitives

In FrodoKEM we use the following generic cryptographic primitives. We describe their
security requirements and instantiations with NIST-approved cryptographic primitives.

e Frodo.Gen in FrodoKEM.KeyGen: The security requirement on Frodo.Gen is that
it is a public function that generates pseudorandom matrices A; see Section C.1.3.
Frodo.Gen is instantiated using either AES128 (Algorithm 3) or SHAKE128 (Algo-
rithm 4).

e (G1, Go, and F in transform SFO*’: these are modeled as independent random oracles
(see below). We instantiate these using either SHAKE128 or SHAKE256 as indicated
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Algorithm 10 FrodoKEM.Decaps.

Input:  Ciphertext cifcoflsalt € {0, 1}(mntmmDHenae - secret  key sk/ =
(s||seeda ||b, ST, pkh) € {0, 1}!enstlenseen #0700 Zhxn 5 {() 1 }lenpicn,

Output: Shared secret ss € {0, 1}e"s.

: B’ + Frodo.Unpack(cy, i, n)

: C « Frodo.Unpack(cs, M, )

: Compute M + C — B’S

: Compute p' <+ Frodo.Decode(M)

: Parse pk < seeda||b

: Generate pseudorandom values seedsg’||k’ < SHAKE(pkh||z/||salt, lenseedsy + lenk)

. Generate pseudorandom bit string (r(®, ¢ . p@ontmn-1)y . SHAKE(0x96||
seedsy’, (2mn + mn) - len, )

N oo W e

8: Sample error matrix S’ - Frodo.SampleMatrix((r®, v ... r(™=D) 73 n T, )
9: Sample error matrix E’ + Frodo.SampleMatrix((r(™™) p(mnt+1) - pEmn=1)) 77 n
Ty)

10: Generate A < Frodo.Gen(seedp)

11: Compute B” < S’A + E’

12: Sample error matrix E” < Frodo.SampleMatrix((r(2?7™") p@mntl) pEmntme—1))
m, 7, Ty)

13: Compute B « Frodo.Unpack(b,n,n)

14: Compute V «+ S'B + E”

15: Compute C’ + 'V + Frodo.Encode(y')

16: (in constant time) k < k' if (B||C = B”||C’) else k +— s

17: Compute ss +— SHAKE(cy||cz||salt||k, lengs)

18: return shared secret ss

in Table 1 for each parameter set.

Domain separation for SHAKE. Each distinct use of SHAKE in FrodoKEM should
be cryptographically independent, which is achieved via one of two forms of domain
separation.

For uses of SHAKE where the inputs are of different lengths, we rely on Keccak’s
internal padding for domain separation, which pads the input string to a multiple of the
rate using the string 10*1.

For uses of SHAKE with inputs of the same length (i.e., Step 4 in FrodoKEM.KeyGen
and FrodoKEM.Encaps, and Step 7 in FrodoKEM.Decaps), we prepend distinct bytes
as domain separators. These domain separators have bit patterns (0x5F = 01011111,
0x96 = 10010110) that were chosen to make it hard to use individual or consecutive
bit-flipping attacks to turn one into the other.

5.2 FrodoKEM variants

FrodoKEM is parameterized by the pseudorandom generator (PRG) that is used for the
generation of the matrix A in Frodo.Gen. As explained in Section 3.2, there are two
options: using AES128 (Algorithm 3) and using SHAKE128 (Algorithm 4).

In addition, FrodoKEM consists of two main variants: an “ephemeral” variant, called
eFrodoKEM, that is intended for applications in which the number of ciphertexts produced
relative to any single public key is fairly small (e.g., less than 2%), and a “salted” variant,
simply called FrodoKEM, that does not impose any restriction on the reuse of key pairs.

In contrast to eFrodoKEM, the salted KEM FrodoKEM is constructed by applying
the SFO*’ transform and incorporates some changes to protect against multi-ciphertext
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attacks; see Section 4.2. Specifically, salted FrodoKEM doubles the length of the seedsg
value and incorporates a public random value salt into encapsulation (see Table 2).

6 Parameters

We propose the same parameter sets for FrodoPKE as those in the round-3 NIST submis-
sion [NAB™20], i.e., the concrete parameter sets remain unchanged. They were originally
selected by a process framed as a combinatorial optimization problem, where the objective
function was the ciphertext size, and the constraints were dictated by the target security
level, probability of decryption failure, and computational efficiency. The optimization
problem was solved by sweeping the parameter space, subject to simple pruning techniques.”

6.1 Parameter constraints

This section recalls the constraints for the original parameter selection in [NAB*20].
Implementation considerations limit ¢ to be at most 2'® and n to be a multiple of
16. The sum of the bit lengths of FrodoPKE’s ciphertext and its public key, which is
D-(n-(M +7)+MN) + leNseed, , is used as the cost function.

The width of the Gaussian error distribution is taken to exceed the smoothing parame-
ter [MROT7] n-(Z) of the integers, for a very small € > 0. The specific values of ¢ are chosen
following the methodology in Section C.1.5, which demonstrates that these choices conform
to a nontrivial reduction from the worst-case BDDwDGS problem to the corresponding
average-case LWE decision problem.

The complexity of the error-sampling algorithm (Section 3.1) depends on the support
of the distribution and the number of uniformly random bits per sample, which is bounded
by 16. Since the distribution is symmetric, the sample’s sign (ro in Algorithm 1) can
be chosen independently from its magnitude e, which leaves 15 bits for sampling from
the non-negative part of the support. For each setting of the variance o2, a discrete
distribution is found subject to the above constraints that minimizes its Rényi divergence
(for several integral orders) from the target “ideal” distribution, which is the rounded
Gaussian V5.

The concrete security of the parameter sets was originally estimated based on cryptan-
alytic attacks as outlined in [NAB'20], closely following the methodology in [SAB*20]
accounting for the loss due to substitution of a rounded Gaussian with its discrete approx-
imation (Section 7.1.1). The probability of decryption failure was computed according to
the procedure outlined in Section 4.

In case of ties, i.e., when different parameter sets resulted in identical ciphertext sizes
(i.e., the same ¢ and n), the smaller o was chosen for FrodoKEM-640 and FrodoKEM-1344
(minimizing the probability of decryption failure), and the larger o for FrodoKEM-976
(prioritizing security).

We renew the analysis of concrete cryptanalytic attacks and their cost estimation
in Section 7.2 to account for cryptanalytic results that appeared in the meantime and by
using a different cost estimator. We conclude that all three parameter sets can still be
recommended at their intended security levels.

6.2 Selected parameter sets

The three core parameter sets for FrodoKEM are:

¢ Frodo-640, matching or exceeding the brute-force security of AES128,
¢ Frodo-976, matching or exceeding the brute-force security of AES192, and
e Frodo-1344, matching or exceeding the brute-force security of AES256,

"The original Python scripts accompanied the round-3 NIST submission (folder
Parameter_Search_Scripts): https://frodokem.org/files/FrodoKEM-20200930.zip.
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which target Levels 1, 3 and 5, respectively, in the NIST call for proposals [Nat17].

We parameterize each core set by the PRG that is used for the generation of matrix A.
As described in Section 3.2, FrodoKEM allows two options for the PRG: AES128 and
SHAKE128. In addition, FrodoKEM consists of two main variants: a salted variant simply
called FrodoKEM that does not impose any restriction on the reuse of key pairs, and an
ephemeral variant called eFrodoKEM that is intended for applications in which the number
of ciphertexts produced relative to any single public key is small (see Section 5.2).

Thus, in total, we propose twelve parameter sets: the variant FrodoKEM includes the
parameter sets FrodoKEM-640-AES, FrodoKEM-976-AES, FrodoKEM-1344-AES, FrodoKEM-
640-SHAKE, FrodoKEM-976-SHAKE and FrodoKEM-1344-SHAKE; the variant eFrodoKEM
includes the parameter sets eFrodoKEM-640-AES, eFrodoKEM-976-AES, eFrodoKEM-1344-
AES, eFrodoKEM-640-SHAKE, eFrodoKEM-976-SHAKE and eFrodoKEM-1344-SHAKE.

Table 1 and Table 2 summarize the cryptographic parameters for all the parameter
sets. The corresponding error distributions appear in Table 3. Table 4 summarizes security
claims we can make about FrodoKEM and its components. The columns under IND-CPA
and IND-CCA security denote security, in bits, for estimates using the beyond-core-SVP
method under the C-LSF-Sieve cost model (B), using the core-SVP method under the
C-LSF-Sieve cost model (C), and using the core-SVP method under the Q-RW-Sieve cost
model (Q) on 7 +7 instances of the normal-form (decisional) LWE problem with Gaussian
error distribution (Section A.1), as estimated by the methodology of Section 7.2.

Table 1: Cryptographic parameters for FrodoKEM-640, FrodoKEM-976, FrodoKEM-1344,
and their corresponding ephemeral variants. For each set, len, = leng = leny = lenpin =
leng = 4.

| (e)FrodoKEM-640 | (e)FrodoKEM-976 | (e)FrodoKEM-1344

D 15 16 16
q 32768 65536 65536
n 640 976 1344
m=n 8 8 8
B 2 3 4
leNseed o 128 128 128
len, 128 128 128
l 128 192 256
len, 16 16 16
X XFrodo-640 XFrodo-976 XFrodo-1344
SHAKE SHAKE128 SHAKE256 SHAKE256

Table 2: Size (in bits) of lenseedgy and leng,.

‘ FrodoKEM—640‘ FrodoKEM—976‘ FrodoKEM-1344

leNseeds e 256 384 512
lengaie 256 384 512

‘ eFrodoKEM-640 ‘ eFrodoKEM-976 ‘ eFrodoKEM-1344
leNseeds g 128 192 256
lengaic 0 0 0

Table 5 summarizes the sizes, in bytes, of the different inputs and outputs of FrodoKEM.
Note that the secret key sizes include the size of the public key, in order to comply with
NIST’s API guidelines. Specifically, since NIST’s decapsulation API does not include an
input for the public key, it needs to be included as part of the secret key.
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Table 3: Error distributions.

Probability of (in multiples of 2716)
0 +1 £2 +3 £4 £5 +£6 £7 £8 +£9 +10 £11 +12

Rényi
order divergence

XFrodo-640 | 2.8 | 9288 8720 7216 5264 3384 1918 958 422 164 56 17 4 1] 200 0.324 x 1074
XFrodo-976 | 2.3 |11278 10277 7774 4882 2545 1101 396 118 29 6 1 500 0.140 x 10~*
XFrodo-1344 | 1.4 | 18286 14320 6876 2023 364 40 2 1000 0.264 x 10=*

Table 4: Single-user, single-ciphertext security estimates, following the process outlined
in Section 6.2, and detailed for Frodo-640 parameters in Section C.1.1. Numbers under
B (resp. C, Q) were obtained using the beyond-core-SVP /C-LSF-Sieve cost model (resp.
core-SVP /C-LSF-Sieve, core-SVP/Q-RW-Sieve). IND-CPA numbers are obtained by taking
the cheapest corresponding attacks in Section 7.2 and subtracting log(n + m) = 4 bits lost
due to Theorem 3.

target failure | IND-CPA sec. | IND-CCA sec. (ROM)

level rate B C Q B C
(e)FrodoKEM-640 1 271887 1 145 134 119 | 140 130
(e)FrodoKEM-976 3 271996 1 908 195 173 | 204 192
(e)FrodoKEM-1344 5 272525 | 262 250 223 | 258 246

Table 5: Size (in bytes) of inputs and outputs of FrodoKEM and eFrodoKEM.

Scheme secret key  public key  ciphertext shared secret
sk pk c ss
FrodoKEM-640 19,888 9,616 9,752 16
FrodoKEM-976 31,296 15,632 15,792 24
FrodoKEM-1344 43,088 21,520 21,696 32
eFrodoKEM-640 19,888 9,616 9,720 16
eFrodoKEM-976 31,296 15,632 15,744 24
eFrodoKEM-1344 43,088 21,520 21,632 32

7 Justification of security strength

This section discusses the security of FrodoKEM, which is justified both by security reduc-
tions (Section 7.1) and by analysis of the best known cryptanalytic attacks (Section 7.2).
A summary of the bit-security estimates based on these two methodologies is shown in
Table 4.

7.1 Security reductions

In this section, we provide the main theorems supporting the security of FrodoKEM in the
ROM and QROM. Refer to Appendix C for a full overview of the reductions.

7.1.1 IND,, ,,-CCA security in the random oracle model

The following theorem says that the SFO*’ transform, which we use to construct FrodoKEM
from FrodoPKE, generically yields an IND,,_,, -CCA-secure KEM (in the classical random
oracle model) from an IND,,_,, -CPA-secure public-key encryption scheme, even if the KEM
and PKE are parameterized by different distributions, provided that those distributions
are sufficiently close in terms of Rényi divergence. We present multi-target security bounds,
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parameterized by the number of challenge ciphertexts n., and the number of users n,. A
detailed description of the proof steps is given in Section C.1.

To specialize this result to obtain an ordinary (single-key, single-ciphertext) IND-CCA
security bound, one merely sets n. = n, = 1. In this case, the final additive term in
the security bound from (3) is zero, and the overall bound matches what was obtained
in [NABT20].

Theorem 1 (IND,,,,-CPA PKE = IND,_,,-CCA KEM in classical ROM, with
distribution switch).

Let PKEx = (KeyGen, Enc, Dec) be a §(ny)-correct public-key encryption scheme with
message space M that is parameterized by a distribution X, and let s be an upper bound
on the total number of samples drawn from X by KeyGen and Enc combined. Let Gy, Go
and F be independent random oracles, and let KEM}K(' = SFO’U[PKEX, G1,Gs, F| be the
KEM obtained by applying the SFO*/ transform from Definition 11 to PKEx. Let P,Q be
any discrete distributions. There exists a classical algorithm (a reduction) B against the
IND,, n,-CPA security of PKEg, which uses as a “black box” subroutine any A against the
IND,,, ., -CCA security of KEMﬁ’ that makes at most qro oracle queries, for which

_ 6 R
Ady'NPremCA(4) < 2. ((( 4RO + o5 T g R0 0(nu) +2- Adv pREs " CPA(B))

e M o
1=t/ gdrRO nyne(ne — 1)
eXp(SDa(P”Q)) +6( )+ |M‘ +W

3)

for any o > 1, where the Rényi divergence D, is defined in Definition 24, and A > 512
for all FrodoKEM parameter sets. The total running time of B is about that of A plus the
time needed to simulate the random oracles.

We point out that when P = @ are the same distribution, we have exp(s-D,(P|Q)) = 1
for any a > 1 and hence can take « to be arbitrarily large, making the exponent 1 — 1/«
approach 1 in the limit. This special case is a main theorem from [HHK17], and it relates
the IND-CCA security of FrodoKEM to the IND-CPA security of FrodoPKE when they use
the same error distribution, e.g., XFrodo-

The proof of Theorem 1 combines components from three separate works: the modular
analysis of the Fujisaki-Okamoto transform by Hofheinz, Hovelmanns and Kiltz [HHK17],
the work on tight multi-key and multi-ciphertext security for key encapsulation in [Gla24,
GHS25], and the work of Langlois, Stehlé and Steinfeld [LSS14] relating the security of
search problems when one distribution is substituted by another via analysis of the Rényi
divergence. More specifically, the proof of the theorem proceeds in the following steps:

1. We apply [GHS25, Theorem 23], which shows that the ST transform converts an
IND,,, »,-CPA-secure public-key encryption scheme PKEg to an OW,,_,, -PCA-secure
public-key encryption scheme with deterministic encryption (in the random oracle
model). Note that [GHS25, Theorem 23] is adapted from [HHK17, Theorem 3.2].

2. Next, we apply distribution substitution for the OW-PCA security experiment (which
represents a search problem), to switch from distribution @ to P.

3. Finally, we apply [GHS25, Theorem 24], which shows that their modified U* trans-
form converts a salted OW,,_,, -PCA-secure public-key encryption scheme to an
IND,,, n,-CCA-secure KEM (in the random oracle model).

Hofheinz et al. [HHK17] denote the composition of the T and U* transforms as the
FO* transform. As described in Section 4.2, we use a variant of this transform called
SFO*', which differs from FO* as follows:

e The T transform is replaced with the ST transform.
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o SFO*’ uses a single hash function (with longer output) to compute r and K, whereas
FO* uses two separate functions, but these are equivalent when the hash functions
are modeled as independent random oracles and have appropriate output lengths.

o The SFO*/ computation of r and K also takes the hash G (pk) of the public key pk
as input, whereas FO* does not; this change preserves the relevant theorems (with
trivial changes to the proofs), and has the potential to provide stronger multi-key
security.

If we apply all the above changes except for the replacement of T by ST, this results in
the FO*' transform [BDK*18 NAB*20]. The FO*' transform is applied to FrodoPKE to
build eFrodoKEM.

7.1.2 IND-CCA security in the quantum random oracle model

Jiang et al. [JZCT18] show that the FO* transform yields an IND-CCA-secure KEM from
an OW-CPA-secure public-key encryption scheme, in the quantum random oracle model.
In [GHS25, Theorems 17, 18, 22], this result was extended to show that the SFO* transform
generically yields an IND,,_,, -CCA-secure KEM from a y-spread IND,,_,, -CPA secure PKE
in the QROM, and this result extends to the SFO*’ transform. This result is established
in two parts:

1. a tight PKE-to-KEM IND,,_, -CPA security reduction, and
2. a well established result about the simulatability of decapsulation oracles for KEMs
built using a deterministic encryption scheme.

The second part of the proof of [GHS25, Theorems 17, 18, 25, 27] also introduces a
new correctness notion, bounding correctness errors by the advantage of an adversary
in an experiment called FFP (find failing plaintext). This advantage is upper bounded
in [GHS25, Theorem 29] by 10(q + gp + 1)? - §(ny).

Theorem 2 (IND,,_ ,,-CPA PKE = IND,,_,,-CPA KEM in quantum ROM).

Let PKE = (KeyGen, Enc,Dec) be a ~y-spread and d(ny)-correct public-key encryption
scheme with message space M. Let Gy, G2 and F' be independent random oracles, and let
KEM* = SFO’U[PKE, G1,G3] be the KEM obtained by applying the SFO*' transform from
Definition 11 to PKE. Let A be a quantum algorithm against the IND,,_,, -CCA security
of KEM?*' that issues at most q many queries in total to Gy and G2, with a total depth
of d. There exists a quantum algorithm (a reduction) B against the IND,,_ ,,-CPA security
of PKE, which uses A as a “black box” subroutine, for which

IND ., -CPA IND,, 1, -CPA nync(ne — 1) 6q 1
Advyey i/ (A) < 4\/d - Advpye (B) + TIM] - 2lensac +44/d <|/Vl|) + B3 (4)

+10(¢4qp + 1) - 6(ny) +12qp(q + 4gp) - 277/% (5)

where A > 512 for all FrodoKEM parameter sets. The total running time of B is about that
of A plus the time needed to simulate the random oracles.

Remark 2. Glabush et al. [GHS25, Section 5.2] note that for many real world schemes, the
additive loss in advantage due to 7 is small enough to be neglected. In [HHM22, Lemma 6],
it was shown that FrodoPKE is ~-spread for

~v = 10240 (FrodoPKE-640), ~ = 15616 (FrodoPKE-976), ~ = 10752 (FrodoPKE-1344) .

7.2 Cryptanalysis

In this section, we provide a renewed cryptanalysis of the LWE instances underlying the
FrodoKEM parameter sets. Originally proposed as part of the FrodoKEM submission to the
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NIST PQC standardization process in [NABT20], these LWE instances received a thorough
cryptanalysis in the style of ML-KEM [Nat24b, SABT20]. Such analysis proposes two
computational models, following either the core-SVP or the beyond-core-SVP methodology,
to estimate the cost of lattice-reduction attacks on the LWE problem. The specific
estimates were then generated using the pgsec.py script attached to the third-round
submission archive® for core-SVP, and using the “leaky-LWE-estimator” script introduced
in [DDGR20]? for beyond-core-SVP.

To revalidate our security claims with a different attack-optimizer codebase and to
extend the analysis to account for results published since [NABT20], we evaluate the cost
of lattice attacks using the popular “lattice-estimator” script.'® Overall, we keep the
internals of the estimator unmodified, and only customize the cost models in order to
capture different hypothetical attack scenarios. Our cryptanalysis estimation scripts are
available at https://github.com/microsoft/PQCrypto-LWEKE (folder estimates).

When estimating the cost of solving the FrodoKEM LWE instances, the adversary
can choose to attack those defined by the public key, or those defined by a ciphertext.
They only differ in that the ciphertext contains n more LWE samples than the public key,
making a public key instance always at least as hard as a ciphertext instance. For this
reason, we estimate only the hardness of attacking the ciphertext. Because n is a small
integer, the difference in hardness is very small.

7.2.1 Estimating the Cost of Lattice Reduction

Relevant lattice-reduction attacks for our analysis are the primal and dual attacks. Both
require strong lattice reduction, capable of producing lattice bases of significantly better
quality than the ones given as input. State-of-the-art solutions use block reduction, where
only adjacent subsets of basis vectors, or blocks, are considered during each step. Oracles for
solving the SVP or approximate-SVP [LN24] problems are called on orthogonal projections
of these blocks, and the short vectors output are then integrated into the original basis.

The general approach just described is behind most strong lattice reduction algorithms,
such as BKZ [SE91, SE94], Progressive-BKZ [AWHT16], Self-dual BKZ [MW16], and
G6K [ADH™19]. The leading term in the cost (in terms of runtime, memory, or energy) in
all of these algorithms is the cost of the (approximate) SVP solver. Assessing the cost of
lattice reduction hence reduces to determining the cost of SVP solving, and the number
of times the SVP solver must be called before good reduction is achieved, i.e., before
a basis of good enough quality is output. The targeted notion of reduction is that of
BKZ-S-reducedness [SE91,SE94], which requires that every first vector of a block of rank
in a reduced lattice basis is a shortest nonzero vector in the projected lattice generated by
that block.

Given LWE distribution parameters and an attack strategy, identifying optimal attack
parameters and their implied cost requires a model for the cost and quality of lattice
reduction and SVP solving (and, if lattice sieving is used, a model for the number of short
vectors returned by the SVP solver). We proceed to describe two possible methodologies
for carrying out such estimates, core-SVP and beyond-core-SVP.

7.2.2 Core-SVP Methodology

The core-SVP methodology [ADPS16] is based on the observation that if a BKZ-S-reduced
basis has been achieved, the shortest vector problem must have been solved on blocks of
rank 3. Because the cost of solving the SVPs is the leading term in the cost of lattice

8https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/s
ubmissions/FrodoKEM-Round3.zip
9https://github.com/lducas/leaky-LWE-Estimator/tree/NIST-round3
Ohttps://github.com/malb/lattice-estimator, commit 5ba00£5.
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reduction, the overall cost can be approximated by considering only the smaller cost of
a single call to an SVP solver. This is a conservative choice, but it also adds a margin
against possible improvements in block reduction that could reduce the number of SVP
calls required to obtain a BKZ-S-reduced basis.

The advantage of core-SVP estimates resides in the security margins they provide. For
this reason, we make various simplifying assumptions to obtain a likely lower bound for
the cost of lattice reduction when attacking FrodoKEM.

o We exclusively consider algorithms in the RAM model, where read/write access to
memory is essentially free.

¢ We consider known asymptotic quantum speedups to classical algorithms, where a
quantum computation can be run for an arbitrarily long time, and does not incur
any quantum memory costs.

o We consider that operations on rank-g vectors cost 3 arithmetic operations. While
cost models targeting ring-based lattices somewhat ignore this cost factor to hedge
against any use of possible rotation symmetry in the ring elements, we consider this
to be an inherent overhead when working with unstructured lattices.

These concessions to the adversary suggest the use of the asymptotically fastest available
SVP solvers, lattice sieves. In particular, we consider sieves from [BDGL16] using locality-
sensitive filtering, and proposed quantum speedups using Grover’s algorithm [Laal5a] and
quantum random walks [CL21]. Due to our focus on lattice sieving, we make two further
considerations when estimating the cost of the primal and dual attacks.

o We assume that the “dimensions-for-free” speedups [Ducl8] can be used at all times,
meaning that in order to solve an SVP in rank §, it suffices to perform lattice sieving

in rank 3 - dffg, where dffg = (1 — %) < 1 whenever g > 23.

« We assume that lattice sieves in rank 7 return 2°-207" vectors of norm /4/3 - A\
in the lattice, where Ay is the minimum distance of the rank-r lattice being sieved,
which is relevant when estimating the cost of dual attacks.

With these simplifications, we obtain three cost models for lattice reduction outputting
BKZ-B-reduced bases. They correspond directly to three models for the cost of solving
SVP in rank 3:

o C-LSF-Sieve, where SVP in rank 3 costs 20-292:8-dffs+log, (8-dffs) by counting the number
of arithmetic operations required to solve SVP-3 using a classical sieve augmented
using locality-sensitive filtering (LSF) [BDGL16].

o Q-Grover-Sieve, where SVP in rank 3 costs 20-265-8-dffs+logs (8-dffs) 1y applying Grover’s
algorithm for quantum search to LSF-based sieving [Laalba].

o Q-RW-Sieve, where SVP in rank 3 costs 20-257-8-dffs+logz(8-dffs) 1y applying quantum
random walk (RW) algorithms for search [MNRS07] to LSF-based sieving [CL21].

With these cost models, we estimate the cost of the uSVP and BDD primal attacks,
the dual attack described above, as well as the dual-sieve-FFT variant [GJ21, MAT22]
that recently received new experimental validation in an update of [CMHST25]. The
resulting cost estimates are reported in Table 6, where only estimated lattice reduction
costs are shown, meaning that for the dual attacks, the cost of the distinguishing step is
not included.

7.2.3 Beyond Core-SVP Methodology

While the core-SVP methodology gives us confidence on the baseline hardness of lattice
reduction attacks, it is quite pessimistic about the effective security of lattice-based
schemes. Having a large security margin is important since it is not possible to exclude
future improvements in cryptanalysis. However, relying only on core-SVP estimates may
lead to an unnecessary performance penalty by over-specifying parameters required to
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Table 6: Attack costs (log,) against FrodoKEM’s underlying LWE instance in the core-SVP
methodology (§ 7.2.2).

SVP model | Primal (uSVP) | Primal (BDD) | Dual | Dual-sieve-FFT

Frodo-640
Q-RW-Sieve 123.0 124.0 129.3 128.3
Q-Grover-Sieve 126.5 127.5 133.1 132.1
C-LSF-Sieve 138.5 139.5 145.7 144.4
Frodo-976
Q-RW-Sieve 177.0 178.0 184.1 183.3
Q-Grover-Sieve 182.2 183.2 189.5 187.8
C-LSF-Sieve 199.8 200.8 207.9 205.4
Frodo-1344
Q-RW-Sieve 231.6 232.6 239.6 227.6
Q-Grover-Sieve 238.5 239.5 246.8 233.3
C-LSF-Sieve 261.8 262.8 270.9 254.8

obtain such a large margin over hypothetical attack improvements. It can also penalize
cryptanalysis by not acknowledging improvements in practical attack costs that do not
affect their core-SVP cost.

In Round 3 of the NIST PQC standardization process, the designers of ML-KEM
introduced a beyond-core-SVP methodology [SABT20], which was also adopted by the
FrodoKEM team [NABT20]. They make various further assumptions on the practical
hardness of lattice reduction, such as the difference between the costs of BKZ and progressive
BKZ, the number of gates required to implement arithmetic operations, and the possibility
that lower-than-expected block sizes still lead to successful attacks.

In this section, we make similar assumptions. They are not a strict subset or superset
of the ones made in [SAB*20], with our intention being to propose a complementary look
at possible attack overheads. In short, we consider the following:

e Ignoring the number of SVP solver calls leads to a significant underestimate of the
cost of lattice reduction, when most algorithms will need to call the solver in the
order of thousands of times to reduce the primal and dual lattice bases. We instead
consider that BKZ requires 8(d — f3) calls to an SVP solver on rank-5 blocks to reduce
a d-dimensional lattice. Progressive BKZ instead requires Zg/:e;o(d — ') calls, where
we consider SVP calls in rank < 60 to be of negligible cost.

o Lattice sieving is a highly memory-intensive algorithm. Accounting for the extra
memory cost requires more than a naive area-time multiplication, since [BDGL16]
optimizes its filters for the RAM model. We adopt the recent analysis of the area-
time cost of lattice sieving using two-dimensional (2D) memory architectures by
Jaques [Jaq24], which re-calibrates locality-sensitive filtering and recursive sieving to
optimize costs. This results in the C-2D-Sieve cost model, where SVP in rank 3 costs
90.3113-B-dff s +log, (B-dffs)

e Due to the significant cost of memory in sieving, we also estimate the cost of SVP
solving via parallel pruned enumeration as a sanity check. For a fair comparison
with the C-2D-Sieve model, we compute the amount of memory required by C-
2D-Sieve, and use Assumption 1 in [Jaq24] together with their case-study of the
CoORES/MEMORY ratio for an NVIDIA GeForce RTX 4090 graphics card, to es-
timate the number of cores available for enumeration on a computer that would
alternatively be able to run lattice sieving as the SVP solver. We then take the
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Table 7: Attack costs (log,) against FrodoKEM, beyond-core-SVP methodology (§ 7.2.3).

SVP model Reduction uSVP BDD Dual-sieve-FFT

Frodo-640
C-LSF-Sieve BKZ 154.7 149.8 155.5
C-2D-Sieve BKZ 163.6 158.6 164.4
C-Para-Enum BKZ 201.9 196.1 —
C-LSF-Sieve PBKZ 154.3 150.5 155.1
C-2D-Sieve PBKZ 163.0 159.1 163.8
C-Para-Enum PBKZ 200.8 195.9 —

Frodo-976
C-LSF-Sieve BKZ 218.6 212.6 217.6
C-2D-Sieve BKZ 231.6 225.4 228.9
C-Para-Enum BKZ 313.1 305.0 —
C-LSF-Sieve PBKZ 218.2 213.1 217.2
C-2D-Sieve PBKZ 231.0 225.8 228.4
C-Para-Enum PBKZ 311.8 304.3 —

Frodo-1344
C-LSF-Sieve BKZ 282.9 275.4 267.2
C-2D-Sieve BKZ 300.1 292.3 282.4
C-Para-Enum BKZ 438.3 426.9 —
C-LSF-Sieve PBKZ 282.4 276.0 266.8
C-2D-Sieve PBKZ 299.5 292.8 281.8
C-Para-Enum PBKZ 436.9 426.2 —

asymptotically cheapest approximate-SVP solver known based on pruned enumera-
tion [ABLR21], and obtain the C-Para-Enum cost model, where SVP solving in rank (3
costs 20-12508 log, 5—0.6545-+25.84+log, 64 /90.20753-dffs+log, (5-dffa) +log, (CoRes/MEMORY)

We also include the dual-sieve-FFT attack in our cost estimates. The authors
of [CMHST25] recently updated their paper with a version of the dual attack that does
not rely on the controversial assumptions made in [MAT22]. The paper additionally
provides some experimental results supporting the attack with cost estimates close
to those claimed in [MAT22]. Despite the fact that many of the recently proposed
improvements are controversial [DP23a,PS24, DP23b], and despite the small amount
of positive experimental results, we believe it is prudent to assume that the attack is
valid and include its cost estimates.

It is currently unclear how feasible long-running quantum computations in the style of
Grover’s search or quantum random walks will be. Limiting circuit depth is believed
to incur a sharp loss of the quantum computing advantage [JNRV20], severely limiting
the resulting speedups [SHRS17, ANS18] on pruned enumeration [BBTV24]. Similar
loss of quantum advantage has also been predicted for Grover and quantum-random-
walk-based lattice sieving [AGPS20,DGLM24], due to memory access and correction
costs, as well as limitations on circuit depth. We therefore ignore conjectured quantum
speedups for lattice sieving and enumeration.

We then proceed to re-estimate the primal uSVP and BDD attacks, using the C-LSF-

Sieve, C-2D-Sieve and C-Para-Enum SVP cost models, assuming BKZ and Progressive BKZ
lattice reduction. The results can be found in Table 7.

The results in Table 7 confirm the significant gap between the predictable practical

cost of FrodoKEM’s LWE instances in a memory-aware model such as C-2D-Sieve, and the
estimates obtained via the core-SVP analysis reported in Table 6.
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7.3 Additional KEM properties

Besides confidentiality (shared-secret indistinguishability), there are several other security
properties that have been considered for KEMs.

o Anonymity, also known as key privacy, meaning that a ciphertext does not reveal
anything about which public key was used to create it: Grubbs et al. [GMP22]
show that FrodoPKE is ANO-CPA and that eFrodoKEM is ANO-CCA (in both cases,
assuming decision-LWE).

e Robustness, meaning that a recipient (with a given public key) can be certain they were
the intended recipient of a ciphertext: Grubbs et al. [GMP22] show that eFrodoKEM
is SCFR-CCA (in the random-oracle model).

e Binding: Cremers et al. [CDM24] introduce a hierarchy of security properties capturing
the degree to which a KEM’s outputs determine (or “bind”) other values. The notation
X-BIND-P-@ means that value P binds value @), in one of three attack scenarios:
honestly generated key pairs (X=HON), honestly generated key pairs where the
secret key is given to the adversary (X=LEAK), and adversarially generated key pairs
(X=MAL). They show that eFrodoKEM satisfies the properties LEAK-BIND-K-CT,
LEAK-BIND-K-PK, LEAK-BIND-K,CT-PK, and LEAK-BIND-K,PK-CT (in the
random-oracle model); but, like all implicitly rejecting KEMs, eFrodoKEM does not
provide X-BIND-CT-K or X-BIND-CT-PK for any of X=HON,LEAK MAL.

8 Implementation and performance analysis

An important feature of FrodoKEM is that it is easy to implement and naturally facilitates
writing implementations that are compact and run in constant-time. This latter feature aids
to avoid common cryptographic implementation mistakes which can lead to key-extraction
based on, for instance, timing differences when executing the code.!!

Our compact implementation of the FrodoKEM scheme consists of slightly more than
250 lines of plain C code.'? This same code is used for all three security levels to implement
FrodoKEM-640, FrodoKEM-976, and FrodoKEM-1344, with parameters changed by a small
number of macros at compile-time. Moreover, most of the code is either shared or reused for
our implementation of eFrodoKEM. We remark that the separation in two implementations,
one for FrodoKEM and one for eFrodoKEM, is only done to provide a simpler and cleaner
codebase supporting each API. In particular, the API for eFrodoKEM has been customized
to perform a single key generation per encapsulation execution.

Computing on matrices—the basic operation in FrodoKEM—allows for easy scaling to
different dimensions n. In addition, FrodoKEM uses a modulus ¢ that is always equal or
less than 2'6. These two combined aspects allow for the full reuse of the matrix functions
for the different security levels by instantiating them with the right parameters at build
time. Since the modulus ¢ used is always a power of two, implementing arithmetic modulo
q is simple, efficient and easy to do in constant-time in modern computer architectures: for
instance, computing modulo 2'¢ comes for free when using 16-bit data-types. Moreover,
the dimension values were chosen to be divisible by 16 in order to facilitate vectorization
optimizations and to simplify the use of AES128 for the generation of the matrix A.

Also the error sampling is designed to be simple and facilitates code reuse: for any
security level, FrodoKEM requires 16 bits per sample, and the tables T}, corresponding to

HNonetheless, care must be taken to avoid timing leaks. In 2020, Guo, Johansson, and Nilsson [GJN20]
demonstrated a key-recovery attack on the reference implementation in the Round 2 submission of
FrodoKEM by exploiting branching in the computation of ss in FrodoKEM.Decaps. This attack can be
avoided by ensuring the implementation reads both k’ and s, compares B’||C and B”||C’ in a constant-time
way that avoids early termination, and sets k using data-independent evaluation.

120ur reference and optimized implementations in C are available at: https://github.com/microsoft
/PQCrypto-LWEKE.
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the discrete cumulative density functions always consist of values that are less than 21°.
Hence, a simple function applying inversion sampling (see Algorithm 1) can be instantiated
using precomputed tables T,. Moreover, due to the small sizes of these precomputed tables
constant-time table lookups, needed to protect against attacks based on timing differences,
can be implemented almost for free in terms of effort and performance impact.

All our implementations avoid the use of secret address accesses and secret branches
and, hence, are protected against timing and cache attacks at the software level.

Performance analysis on x64 Intel. Table 8 summarizes the results of our performance
evaluation using a machine equipped with a 3.2GHz Intel Core i7-8700 (Coffee Lake)
processor and running Ubuntu 22.04.2 LTS. Following standard practice, TurboBoost was
disabled during the tests. For compilation we used GNU GCC version 15.0.1 with the
command gcc -03 -march=native.

For the case of generating the matrix A using AES128, we present the results
when using an AES implementation that exploits the cryptographic extension set AES-
NI. The corresponding running times for FrodoKEM-640-AES, FrodoKEM-976-AES and
FrodoKEM-1344-AES are 0.67 ms, 1.28 ms and 2.17 ms, respectively, obtained by adding
the times for encapsulation and decapsulation. This performance is expected to be typical
in static key exchange applications where the cost of key generation is amortized across
many key encapsulation executions. For the full KEM, the running times are 0.97 ms,
1.91 ms and 3.22 ms, respectively. These timings roughly match the cost of eFrodoKEM in
an ephemeral setting (the overhead is about 1% or less).

Our implementation also includes the optional use of AVX2 intrinsic instructions.
In our experiments, we observed that this optimization offers a very small performance
improvement compared to the plain C implementation. This illustrates that FrodoKEM’s
algorithms, which are mainly based on matrix operations, facilitate automatic paralleliza-
tion using vector instructions. Hence, the compiler is able to achieve close to “optimal”
performance with little intervention from the programmer.

We note that the performance of FrodoKEM using AES on Intel platforms greatly
depends on AES-NI instructions. For example, when turning off the use of these instructions
the computing cost of the optimized implementations suffers a more than 20-fold increase.

Table 8 also outlines the performance figures of our implementation when using
SHAKE128 for the generation of A. In this case, we use a 4-way implementation of
SHAKE that exploits AVX2 instructions. In our tests, we observed that this approach
results in a two-fold speedup when compared to a version using a SHAKE implementation
written in plain C.

Comparing the use of AES128 and SHAKE128, FrodoKEM using AES, when imple-
mented with AES-NI instructions, is around 3x faster than FrodoKEM using SHAKE with
a vectorized implementation. Nevertheless, this comparative result may change drastically
if hardware-accelerated instructions such as AES-NI are not available on the targeted
platform, or if support for hardware-accelerated instructions for SHA-3 is added in the
future.

Performance analysis on ARM. Table 9 details the performance of our implementa-
tions on a device powered by a 1.992GHz 64-bit ARM Cortex-A72 (ARMv8) processor and
running Ubuntu 24.04.2 LTS. We provide three options which, again, are determined by the
way we generate matrix A. The first option uses OpenSSL’s AES engine for implementing
and accelerating AES128 with the AES cryptographic extensions available on the targeted
ARMyvS processor. This implementation uses OpenSSL version 3.0.13 and was compiled
with GNU GCC version 14.2.0. The other two options use plain C implementations of AES
and SHAKE for generating A with AES128 and SHAKE128, respectively. For these cases,
we use OpenSSL version 3.0.2 and compiled the implementations with GNU GCC version
13.1.0. For all the options we used the command gcc -03 -march=native. Similar to the
case of the x64 Intel platform, the overall performance of FrodoKEM is highly dependent
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Table 8: Performance (in thousands of cycles) of FrodoKEM on a 3.2GHz Intel Core i7-8700
(Coffee Lake) processor. For the variants using AES128, results are reported using an AES
implementation that exploits AES-NT instructions. For the variants using SHAKE128,
results are reported using a 4-way vectorized implementation of SHAKE using AVX2
instructions. Cycle counts are rounded to the nearest 103 cycles.

Cycles (x10%)

Sch

cheme KeyGen Encaps Decaps Total (E+D)
AES using AES-NI
FrodoKEM-640-AES 938 1,105 1,044 2,149
FrodoKEM-976-AES 2,017 2,105 1,983 4,088
FrodoKEM-1344-AES 3,353 3,597 3,326 6,923
Vectorized SHAKE using AVX2
FrodoKEM-640-SHAKE 2,806 2,941 2,877 5,818
FrodoKEM-976-SHAKE 6,026 6,096 5,994 12,090
FrodoKEM-1344-SHAKE 10,725 10,643 10,497 21,140

on the performance of the primitive that is used for the generation of the matrix A.
Hence, the best performance in this case is achieved when using an AES implementation
that exploits the hardware acceleration provided by the ARMvS8 cryptographic extensions.
The respective running times for the full KEM are 4.98 ms, 9.99 ms and 17.24 ms for
FrodoKEM-640-AES, FrodoKEM-976-AES and FrodoKEM-1344-AES, respectively (as above,
these timings only have a negligible overhead in comparison to the cost of eFrodoKEM in
an ephemeral setting). On the other hand, SHAKE performs significantly better when
there is no support for specialized instructions in the targeted platform: using a plain C
version of SHAKE is more than 3x faster than using a plain C version of AES.

8.1 Comparison with other algorithms

In this section, we compare the performance profile of FrodoKEM with two other quantum-
safe KEMs that are also expected to be deployed and adopted for real-world appli-
cations: CRYSTALS-Kyber [BDK™18], which was recently standardized by NIST as
ML-KEM [Nat24b], and Classic McEliece [ABCT24]. As stated before, these two KEMs,
alongside FrodoKEM, are currently undergoing standardization by ISO.

Table 10 shows that CRYSTALS-Kyber offers the best performance in terms of both
speed and bandwidth. In contrast, FrodoKEM exhibits significantly larger key and
ciphertext sizes, as well as substantially slower runtimes, often exceeding CRYSTALS-
Kyber’s figures by more than an order of magnitude. These performance advantages
strongly influenced NIST’s choice of CRYSTALS-Kyber for standardization.

However, for security-sensitive applications, it can be argued that Classic McEliece
provides a more relevant comparison to FrodoKEM. In this case, the significantly larger
public key sizes of Classic McEliece, which exceed FrodoKEM’s by more than an order of
magnitude, may render it impractical for many use cases. Similarly, the high computational
cost of the full Classic McEliece protocol presents additional challenges. For example, the
runtime of Classic McEliece at NIST level 5 is approximately 65.5 ms on a server-class
processor (compare to FrodoKEM’s 3.29 ms). Nonetheless, Classic McEliece offers an
advantage in certain static key exchange scenarios in which its substantial key generation
cost can be amortized over multiple key encapsulation executions.
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Table 9: Performance (in thousands of cycles) of FrodoKEM on a 1.992GHz 64-bit ARM
Cortex-AT72 (ARMv8) processor. Results are reported for three test cases: (i) using an AES
implementation exploiting cryptographic extensions, (ii) using an AES implementation
written in plain C, and (iii) using a SHAKE implementation written in plain C. Results
have been scaled to cycles using the nominal processor frequency. Cycle counts are rounded
to the nearest 10% cycles.

Scheme Cycles (x10?)

KeyGen Encaps Decaps Total (E+D)
AES using cryptographic extensions
FrodoKEM-640-AES 3,109 3,402 3,414 6,816
FrodoKEM-976-AES 6,515 6,702 6,678 13,380
FrodoKEM-1344-AES 11,010 11,796 11,527 23,323
Plain C AES
FrodoKEM-640-AES 47,776 48,007 47,958 95,965
FrodoKEM-976-AES 109,922 110,695 110,387 221,082
FrodoKEM-1344-AES 207,752 209,724 209,164 418,888
Plain C SHAKE
FrodoKEM-640-SHAKE 11,902 12,197 12,219 24,416
FrodoKEM-976-SHAKE 26,334 26,618 26,713 53,331
FrodoKEM-1344-SHAKE 47,506 48,169 48,505 96,674
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A LWE and lattices
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lattices that is necessary to analyze the security of FrodoPKE and FrodoKEM.

A.1 Learning with errors
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With Errors (LWE) problem, a generalization of the classic Learning Parities with Noise
problem (see, e.g., [BFKL94]) first defined by Regev [Reg09]. This section defines the
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Definition 12 (LWE distribution). Let n, ¢ be positive integers, and let x be a distribution
over Z. For an s € Zy, the LWE distribution As y is the distribution over Z; x Z, obtained
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by choosing a € Zy uniformly at random and an integer error e € Z from yx, and outputting
the pair (a, (a,s) +emod q) € Z x Z,.

There are two main kinds of computational LWE problem: search, which is to recover
the secret s € Z; given a certain number of samples drawn from the LWE distribution As y;
and decision, which is to distinguish a certain number of samples drawn from the LWE
distribution from uniformly random samples. For both variants, one often considers two
distributions of the secret s € Zj: the uniform distribution, and the distribution x" mod ¢
where each coordinate is drawn from the error distribution y and reduced modulo ¢q. The
latter is often called the “normal form” of LWE.

Definition 13 (LWE Search Problem). Let n,m,q be positive integers, and let x be
a distribution over Z. The uniform-secret (respectively, normal-form) learning with
errors search problem with parameters (n,m, g, x), denoted by SLWE,, ,, 4. (respectively,
nf-SLWE,, 1.4, ), is as follows: given m samples from the LWE distribution As, for
uniformly random s (resp, s s x" mod ¢), find s. More formally, for an adversary A,
define (for the uniform-secret case)

Advill\:\f:“q’X(A) =Pr [.A(((al, bi))izl,m,m) = S:S<s U(ZZ), (E:li7 bz) s As,x7i =1,... ,m] .

nf-slwe

Similarly, define (for the normal-form case) Advy >""

of s +—s U(Z7).

(A), where s < x" mod ¢ instead

Definition 14 (LWE Decision Problem). Let n,m,q be positive integers, and let x
be a distribution over Z. The uniform-secret (respectively, normal-form) learning with
errors decision problem with parameters (n,m, g, x), denoted DLWE,, ,,, 4., (respectively,
nf-DLWE,, 1. 4.y ), is as follows: distinguish m samples drawn from the LWE distribution
As x from m samples drawn from the uniform distribution U(Zy x Z,). More formally, for
an adversary A, define (for the uniform-secret case)

Adydive (A) = ’Pr[A((ai,bi)izl m) = l:s+s U(Z;’), (a5,bi)) s Asy,i=1,... ,m]

n,m,q,x \¥Y ) — |+ [V Dey P )a=1,..,

— Pr[A((a5, bi)ic1,. m) = 15 (a5, b;) s U(ZD X Zg),i = 1,.. .,m]‘ .
Similarly, define (for the normal-form case) Advfﬂ‘j";x (A), where s <—s x"™ mod ¢ instead
of s s U(Zy).

For all of the above problems, when x = W, is the continuous Gaussian of parameter ag,
rounded to the nearest integer (see Definition 16 below), we often replace the subscript x
by a.

A.2 Gaussians

For any real s > 0, the (one-dimensional) Gaussian function with parameter (or width) s
is the function p,: R — Rt defined as p4(x) := exp(—7||x||?/s?).

Definition 15 (Gaussian distribution). For any real s > 0, the (one-dimensional) Gaussian
distribution with parameter (or width) s, denoted Dy, is the distribution over R having
probability density function Dg(z) = ps(z)/s.

Note that Dy has standard deviation o = s/v/27.

Definition 16 (Rounded Gaussian distribution). For any real s > 0, the rounded Gaussian
distribution with parameter (or width) s, denoted Wy, is the distribution over Z obtained
by rounding a sample from Dy to the nearest integer:

U(x) :/ Dy(z)dz .
{21 [s]=2}
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A.3 Lattices

Here we recall some background on lattices that will be used when relating LWE to lattice
problems.

Definition 17 (Lattice). A (full-rank) n-dimensional lattice L is a discrete additive subset
of R™ for which spang(£) = R™. Any such lattice can be generated by a (non-unique)
basis B = {by,...,b,} C R” of linearly independent vectors, as £L = L(B) := B -Z" =
{Z?:l zi+bi:z; € Z}. The volume, or determinant, of L is defined as vol(L) := |det(B)].
An integer lattice is a lattice that is a subset of Z™. For an integer ¢, a q-ary lattice is an
integer lattice that contains ¢Z™.

Definition 18 (Minimum distance). For a lattice £, its minimum distance is the length
(in the Euclidean norm) of a shortest non-zero lattice vector: A;(£) = minyez o3 (V||-
More generally, its ith successive minimum X\;(L) is the smallest real » > 0 such that £
has i linearly independent vectors of length at most r.

Definition 19 (Discrete Gaussian). For a lattice £ C R™, the discrete Gaussian distribution
over £ with parameter s, denoted D s, is defined as D,(x) = ps(x)/ps(L) for x € £ (and
D,(x) = 0 otherwise), where ps(L) = >, ps(V) is a normalization factor.

We now recall various computational problems on lattices. We stress that these are
worst-case problems, i.e., to solve such a problem an algorithm must succeed on every
input (and not just on a randomly chosen input from some probability distribution). The
following two problems are parameterized by an approzimation factor v = ~y(n), which is
a function of the lattice dimension n.

Definition 20 (Decisional approximate shortest vector problem (GapSVP,)). Given a
basis B of an n-dimensional lattice £ = £(B), where A;(£) < 1 or A;(£) > 7(n), determine
which is the case.

Definition 21 (Approximate shortest independent vectors problem (SIVP,)). Given a
basis B of an n-dimensional lattice £ = £(B), output a set {vy,...,v,} C L of n linearly
independent lattice vectors where ||v;|| < v(n) - A\, (L) for all 4.

The following problem is parameterized by a function ¢ from lattices to positive real
numbers.

Definition 22 (Discrete Gaussian Sampling (DGS,,)). Given a basis B of an n-dimensional
lattice £ = £(B) and a real number s > ¢(L), output a sample from the discrete Gaussian
distribution D .

B Additional algorithms

This section details the algorithms for matrix encoding and packing required by FrodoPKE
and FrodoKEM.

Matrix encoding of bit strings. This subsection describes how bit strings are encoded
as mod-q integer matrices. Recall that 28 < q. The encoding function ec(-) encodes an
integer 0 < k < 2B as an element in Z, by multiplying it by ¢/28 = 2P=B: ec(k) := k-q/25.
This encoding function can be found in early works on LWE-based encryption, for example
[KTX07,PW08,PVWO08|. Using this function, the function Frodo.Encode encodes bit
strings of length ¢ = B - T - 0 as T-by-Ti-matrices with entries in Z, by applying ec(-) to
B-bit sub-strings sequentially and filling the matrix row by row entry-wise. Each B-bit
sub-string is interpreted as an integer 0 < k < 2% and then encoded by ec(k), which means
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that B-bit values are placed into the B most significant bits of the corresponding entry
modulo q.

The corresponding decoding function Frodo.Decode decodes the m-by-n matrix K into
a bit string of length ¢ = B -m - n. It extracts B bits from each entry by applying the
function de(+): de(c) = |e-28/q] mod 28. That is, the Z,-entry is interpreted as an
integer, then divided by ¢/2” and rounded. This amounts to rounding to the B most
significant bits of each entry. With these definitions, it is the case that dc(ec(k)) = k for
all 0 < k < 2B,

Packing matrices modulo ¢q. This subsection specifies packing and unpacking algo-
rithms to transform matrices with entries in Z, to bit strings and vice versa. The algorithm
Frodo.Pack packs a matrix into a bit string by simply concatenating the D-bit matrix
coefficients, as shown in Algorithm 11. Note that in the software implementation, the
resulting bit string is stored as a byte array, padding with zero bits to make the length a
multiple of 8. The reverse operation Frodo.Unpack is shown in Algorithm 12.

Algorithm 11 Frodo.Pack Algorithm 12 Frodo.Unpack
Input: Matrix C € Zj+*"2. Input: Bit string b € {0,1}P™ 72 ny,
Output: Bit string b € na.
{0,1}Pmimz, Output: Matrix C € Zg**"2.
1: for (i=0;i<mni;i<i+1)do 1: for (i=0;i<ng;i+i+1)do
2: for (j=0;j<mne;j+j+1)do 2. for (j=0;j<ng;j+j+1)do
3: Cij =10 ci-2" where ¢ € 3 Cij + S0 Blimasjypas - 20711
{0,1} 4: return C
4: for (1=0;1<D;l<+1+1)do
5: b (inytj)Dyi ¢ €D-1-1

6: return b

C Security reductions

FrodoKEM depends on the hardness of plain learning with errors. A summary of the
reductions supporting the security of FrodoKEM is as follows:

1. FrodoKEM, using the concrete error distributions Xfrdo specified in Table 3, is an
IND-CCA-secure KEM against classical attacks in the classical random oracle model,
under the assumption that FrodoPKE using a rounded Gaussian error distribution is
an IND-CPA-secure public-key encryption scheme against classical attacks. This is
Theorem 1, and the reduction is tight.

2. FrodoKEM, using any error distribution, is an IND-CCA-secure KEM against quantum
attackers in the quantum random oracle model, under the assumption that FrodoPKE
using the same error distribution is an IND-CPA-secure public-key encryption scheme
against quantum attackers. This is Theorem 2, and the reduction is non-tight. We
view this theorem as supporting the security of general constructions of LWE-based
KEMs in the style of FrodoKEM against quantum adversaries, but it does not
give meaningful concrete quantum bit-security estimates for the twelve FrodoKEM
instantiations in this document, which is why we omit the corresponding column from
Table 4.

3. The IND,,_,,-CCA security of FrodoKEM reduces tightly to the IND,,_,, -CPA security
of FrodoPKE. The argument is found in [GHS25].

4. Changing the distribution of matrix A from a truly uniform distribution to one
generated from a public random seed in a pseudorandom fashion does not affect the
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security of FrodoKEM or FrodoPKE, provided that the pseudorandom generator is
modeled either as an ideal cipher (when using AES128) or a random oracle (when
using SHAKE128). This is shown in Section C.1.3.

5. FrodoPKE, using any error distribution and a uniformly random A, is an IND,,_,, -CPA-
secure public-key encryption scheme under the assumption that the uniform-secret
learning with errors decision problem is hard for the same parameters (except for
a small additive loss in the number of samples), for either classical or quantum
adversaries. This is a consequence of Theorem 3 and Theorem 4, and the result is
tight.

6. The uniform-secret learning with errors decision problem, using a rounded Gaussian
distribution with parameter o from Table 3 and an appropriate bound on the number
of samples, is hard under the assumption that the worst-case bounded-distance
decoding with discrete Gaussian samples problem (BDDwDGS, Definition 25) is hard
for related parameters. Theorem 5 gives a non-tight classical reduction against
classical or quantum adversaries (in the standard model).

C.1 IND,, ,,-CCA security reduction

Here we give a detailed description of the proof steps for Theorem 1.

Step 1: IND,,_ ,,-CPA PKE to OW,,_,,-PCA deterministic PKE;. For completeness, we
recall the definition of OW,,_,,,-PCA, following the presentation of Hofheinz et al. [HHK17,
Ho6v21], and extended in [GHS25].

Definition 23 (OW,,_,,-PCA for PKE [OP01]). Let PKE be a public-key encryption
scheme and let A be an algorithm. The OW,,_, -PCA security experiment for A attacking

PKE is ExpngE"c"”“_PCA(A) from Figure 6. The advantage of A in the experiment is

Advgr/éLc,,Lu-PCA(A) — Pr [EXPSKWE”C,W—PCA(A) N 1]

Experiment ExpngE"c'"“'PCA(A): Oracle Opco(j,m, ¢):

1: for j=1,...,n, do 1. if PKE.Dec(c, sk;) = m then

2:  (pkj,sk;) + PKE.KeyGen() 2:  return 1

3: pk = (pk1, ..., pkn,) 3: else

4 (]7 m/) - AOPCO(-,-),Cha"(')(p_]%) 4: return 0

5. if m' € £y, then Oracle chall(j) :

6: return 1 [may be called up to n. times]

7. else m s M

8 return 0 Lo, = Loy, U {m}
¢* < PKE.Enc(m, pk;)
return c*

Figure 6: Security experiment for OW,,_,, -PCA.

The ST transform converts a public-key encryption scheme PKE to a deterministic
public-key encryption scheme PKE;; see Figure 7. Glabush’s Theorem 4.2.3 tightly
establishes the OW-PCVA-security of PKE; under, among others, the assumption that PKE
is IND-CPA secure and y-spread. (In the OW-PCVA security game, the attacker additionally
has a ciphertext-validity oracle, which checks whether a queried ciphertext has a valid
decryption.) These results were adapted to the multi-target setting in [GHS25]. However,
they note that OW,,_, -PCA security follows (tightly) without the ~-spread assumption,
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PKE; .KeyGen(): PKE;.Dec(c||salt, sk):
1: return PKE.KeyGen() 1: ¢’ < PKE.Dec(c, sk)
2. if ' = 1 or ¢ # PKE.Enc(y/, pk; Go(p/||salt))
PKE;.Enc(u, pk): then
1: salt <—s {0, 1}1ensr 3:  return L
2: 1 Ga(p||salt) 4: else
3: ¢ + PKE.Enc(u, pk; 1) 5. return p
4: return c||salt

Figure 7: Construction of deterministic public-key encryption scheme PKE; = ST[PKE, G3]
from a public-key encryption scheme PKE and hash function Gs.

because in the security bounds v-spreadness is relevant only to ciphertext-validity queries.
We state that adapted version here.

Lemma 2 ([GHS25], Theorem 23, OW,,_,, -PCA version). Let PKE be a d(n,)-correct
public-key encryption scheme with message space M. For any OW-PCA adversary A that
issues at most qg queries to the random oracle Go and qp queries to the plaintext-checking
oracle, there exists an IND-CPA adversary B such that,

6gc INDig g -CPA
Advpe™ "N A) < g6 8(ma) + T ox g T2 Advpg e T (B)
PKE |M| |M| PKE
where X > 512 for all FrodoKEM parameter sets; and the running time of B is about that
of A plus the time needed to simulate the random oracle.

It is straightforward to verify from the proof that B uses A solely as a “black box”
subroutine.

Step 2: Approximating the error distribution. The rounded Gaussian distribution
(Definition 16), which is important to the worst-case-to-average-case reduction, is difficult to
sample on a finite computer (and impossible to sample in constant time). Following Langlois
et al. [LSS14], we replace this infinite-precision distribution with a finite approximation,
and quantify the OW,,_,, -PCA security loss using their Rényi divergence.

Definition 24 (Rényi divergence). The Rényi divergence of positive order a # 1 of a
discrete distribution P from a distribution @ is defined as

DQ(PHQ):ailln Y Pl ( g)al

x€supp P

Note that our definition differs from that of [LSS14] in that we take the logarithm
of the sum, and that Rényi divergence is not symmetric. The following result relates
probabilities of a certain event occurring under two distributions as a function of their
Rényi divergence.

Lemma 3 ([LSS14, Lemma 4.1]). Let S be an event defined in a probabilistic experiment
Ggq in which s samples are drawn from distribution Q). Then the probability that S occurs
in the same experiment but with Q replaced by P is bounded as follows:

Pr[Gp(S)] < (Pr[Gq(S)] - exp(s - Da(P]Q)))" /™. (6)

It immediately follows that reductions from any search problem, such as the one
represented by the OW,,_, -PCA game, are preserved up to the relaxation in (6). For any
given security relationship, and any concrete choice of the two distributions P and @, the
loss can be minimized by choosing an optimal value of the order a.
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Corollary 1 (Distribution substitution for OW,,_ ,,-PCA). Let PKEx be a public-key
encryption scheme that is parameterized by a distribution X, and let s be an upper bound
on the total number of samples drawn from X by PKEx .Enc and PKEx .KeyGen combined.
Let A be an OW-PCA adversary against PKEx, and let P and Q be discrete distributions.
Then for any a > 1,

OWo, 1, -PCA OW,,, n,-PCA 1-1/c
AdVPKE;Y ! (A) S (AdVPKEQC, " (A) . exp(s . Da(P”Q))) .

Proof. This follows immediately from Lemma 3, with S being the event that .4 “wins” the
OW-PCA experiment from Figure 6, i.e., causes it to output 1. O

We use Corollary 1 to relate the OW-PCA security of T[FrodoPKEp, G2] to the OW-PCA
security of T[FrodoPKEy,G2] where FrodoPKEy is the same as FrodoPKE but with the
error distribution P = Xfdo replaced by a rounded Gaussian distribution @ = ¥ (see
Definition 16).

Step 3: OW,,_,,-PCA deterministic PKE; to IND,,_,,-CCA KEM. Hofheinz et
al. [HHK17] define the U* transform from a deterministic public-key encryption scheme
PKE; to a key encapsulation mechanism KEM?*: see Figure 8. Hofheinz et al’s Theorem 3.4
shows the IND-CCA security of KEM# = U*[PKE,, F] assuming the OW-PCA security
of the underlying PKE;. This result was adapted to the target setting in Theorem 24
from [GHS25]. This result is stated below in Lemma 4.

KEM* KeyGen(): KEM?* Decaps(c||salt, (sk, s)):

1: (pk, sk) <—s PKE; . KeyGen()

2 545 M 1. ' + PKE.Dec(c||salt, sk)

3: sk' « (sk,s) 2: if ¢/ # 1 then

4: return (pk, sk’) 3:  return ss’ <+ F(y/,c|salt)
Y 4: else

KEM~ .Encaps(pk): 5. return ss’ < F(s,c|salt)

salt <—s {0, 1}!ens

c||salt <~ PKE;.Enc(u, pk)
88 + F(u,c||salt)

return (c|salt, ss)

Figure 8: Construction of key encapsulation mechanism KEM* = U*[PKE,, F] from a
deterministic public-key encryption scheme PKE; and hash function F'.

Lemma 4 ([GHS25, Theorem 24]). Model F as a random oracle. Then if PKE; is
d1-correct, so is KEM*. For any IND-CCA adversary A against KEM* issuing at most qp
queries to I, there exists an OW-PCA adversary B against PKE; that makes at most qp
queries to its plaintext-checking oracle, and for which

AdleDnc,nu-CCA(A) 2nyne(ne — 1)  2qp

OW,.. ., -PCA
KEMZ = IM2lnar * M| +200n) + 2AdveiE; o

where the running time of B is about that of A, plus the time to simulate the random oracle
and decapsulation queries.

It is straightforward to verify from the proof that B uses A solely as a “black box”
subroutine. Together, Lemma 2, Corollary 1, and Lemma 4 establish Theorem 1.
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C.1.1 Applying Theorem 1 in the single-public key, single-ciphertext setting

For an application of Theorem 1 to our schemes, consider the relation between the IND-CCA
security of FrodoKEM-640 and the IND-CPA security of FrodoPKE-640g, where the error
distribution of the latter is taken to be the rounded Gaussian VU, &— as defined in
Section A.2. To extract exact bounds on the IND-CCA security (in the classical ROM) of
FrodoKEM-640, we use Theorem 1 setting n. = n, = 1, meaning IND-CCA = IND, ;-CCA,

and we make a number of assumptions about the underlying cost model. Specifically,

e We ignore the overhead of running the reduction of Theorem 1, including the cost of
simulating random oracles.

e We bound the cost to the adversary of making an oracle query as > classical gates.
This bound is based on the NIST Call for Proposals, Section 4.A.5, which estimates
the cost of finding collisions in SHA-3 at all security levels. (Here we ignore the small
performance differences between SHAKE128, SHAKE256, and SHA3-256.)

o We interpret “b bits of classical security” as a statement that the advantage in the
corresponding game of a uniform t-gate classical adversary is bounded by ¢/2°. For
some tasks, such as collision finding, this upper bound can be quite loose for smaller
values of ¢ (and thus beneficial to the adversary).

o We assume the IND-CPA bit-security of FrodoPKE-640y to be given by the smaller of
the costs of the primal and dual attacks on the LWE problem (Table 6), discounted
by the reduction factor of 7 + M = 16 (Theorem 3), yielding 2134 in the single-user,
single-ciphertext setting.

218

Under these assumptions, if an adversary B has uniform gate complexity ¢, then it has
advantage Advmo ke, 6405 (B) = AdVIPI\IKDE1 - CPA(B) bounded by ¢ - 271345,

The Rényi divergence of Xfrodo-640 from the rounded Gaussian distribution is given
by Da(XFrodo—64oH‘I’2,g.\/ﬁ) < 0.0000324 for a = 200 (Table 3). The number of samples
drawn from the error distribution by FrodoPKE.KeyGen is 2n7n, and by FrodoPKE.Enc is
2mn + mn, which for n = 640 and ™ =71 = 8 totals s = 2 X (8 + 8) x 640 + 64 = 20544.

We now recall Equation 3 from Theorem 1:

IND,,, 1, -CCA 6qro IND . ., -CPA
AdVKEMﬁ/ (A) S 2. (( (M/” + ﬁ + — |M| + qrO * (S(nu) + 2- Ad PKEQ (B))

1-1/«
Nnune(ne — 1
(s Da(PIQ)) o)+ 150+ BT ),

IND . n,-CCA
KEME A)/t.
We proceed to do this by observing that due to the gate complexity of implementing
random oracles, for any adversary running in time < ¢, we have gro < t-27'8, and by
assuming that any realistic IND,,_,,-CCA adversary A must run in time ¢ > 232, Making
these two observations, we obtain

To obtain an IND,,_,,-CCA bit-security value, we would upper-bound Adv

518 1-1/a
6|2_/\/[| + 92— 32 25112
INDp,, ., -CCA 239 ne _
AdVKEMw (A) +27% \;\L/t\ +271%0(ny) exp(s - Dy (P|Q))
it <2 INDyy.c, 1y -CPA
t AdVPKEQ (B)
+2- %
—32 32 nunc(nc—1)
+ 2 N 6(nu) + ‘Ml + 2 * ‘M‘-Qle”salt

For a single user and single challenge ciphertext, we set n. = n, = 1, and the above
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simplifies to

AdVINDLl—CCA(A) e o Ady!ND11-CPA
KEM?%’ 2 + 2 _ 1 _ dvpye (B)
P <2 ((F—F— 4232 12718 .5(1)+2 <
(P g )
1-1/a 9—18
(s Da(PIQ)) 2+ T ) (7)

We can bound the advantage in EprF'\:c?dlc;ll(_Ec,\iim for an adversary A against FrodoKEM-640

with gate count ¢ > 232 by substituting |M| = 2128 and §(1) < 271387 into Equation 7, as
follows: '3

Adv::'\:cliilc;ll(_lichig4o(“4) 2715 4 27% 51232 | 5—18 —138.7 ~134.5
Sl (252 oy e 097

0.995 2718
- exp(20544 - 0.0000324)> +2752. 071987 2128)

< 27130‘876.

Similarly, computed bounds on the advantage of a classical single-user, single-ciphertext
IND-CCA adversary for other parameter settings appear in Table 4.

C.1.2 Multi-user multi-ciphertext concrete security

Concrete bit-security estimates can be obtained in a similar manner to Section C.1.1, using
larger values for n. and n,. It is less clear what the “target” bit-security values would
be for each NIST security category. In the single-user, single-ciphertext setting, NIST’s
suggestion [Nat17] was to compare bit-security with the gate-cost of key-search on AES
given message-ciphertext pairs. One natural possibility would be to compare FrodoKEM’s
bit security against the multi-key, multi-evaluation security of a block cipher (such as AES)
as a PRF.

Single-key, multi-ciphertext security. Applying the PRP-PRF switching lemma
to AES, the multi-ciphertext advantage upper-bound degrades by an additive term

q(q —1)/2'28, where ¢ is the number of AES evaluations. In the case of FrodoKEM,

IND,,.,1-CCA . IND,,..,1-CPA
the Adve, v ea0 advantage upper-bound in Theorem 1 degrades from AdVPKEC;’1

by an additive term bounded above as a function of n. by

o ne(ne—1)\ _ ne
@ (W . exp(s : Da(‘PHQ)) + '/\/l|.2|emsa|t) =0 (WI'QIenSE“) .

The advantage degrades further at the IND-CPA level, as the adversary is given n. different
LWE challenges, one per encapsulation. While this implies a linear degradation in the
advantage upper bound, Adv:l\'KDElé"c'CPA < Ne- Adv:l\lKDElél'CPA, we are not aware of any attack
on LWE, lattice reduction or otherwise, that gains such an advantage by being able to
pick among n. different instances.

Overall for eFrodoKEM, this degradation is similar to that of AES as a PRF, with the
multi-ciphertext advantage upper bound growing as O(n?2/|M|) in n.. Consequently, a salt
has been added to the definition of FrodoKEM, in order to achieve better-than-birthday-
bound security in the single-key, multi-ciphertext setting (c.f. Table 2).

13This bound on §(1) was obtained during parameter search for Frodo, and can be computed with our
code release.
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Multi-key security. Generic multi-key security bounds for PRFs see the advantage
degrade by a linear factor k, where k is the number of keys under which the adversary can
request PRF evaluations [BCK96]. In the case of FrodoKEM, due to hashing the public key

at the moment of generating seedgg ||k within encapsulation, the advantage in Theorem 1

degrades from Adv:;NKDE”g’"”'CPA by an additive term bounded above as a function of n, by

O ((aro - exp(s - Da(PIQ)) + 1)+ 8l + "ok m).
|M‘ . Dleng,e
The gap is linear in n, as d(n,) < §(1) - n, [DHK'21], and is practically tight when using
a long enough salt and whenever §(n,) < 0(1) - ny; as mentioned in Section 2.2, there is
evidence for the latter for KEMs built from lattice-based PKE (see [DHK ™21, Table 1]).
At the IND-CPA level, similarly to the single-key, multi-ciphertext setting, degradation
is linear in n, since n, different LWE challenges are provided to the adversary in the form
of public keys. Again, we are not aware of any practical improvement of attacks on LWE
achievable by considering multiple independent instances.

C.1.3 Deterministic generation of A

The matrix A in FrodoKEM and FrodoPKE is deterministically expanded from a short
random seed in the function Frodo.Gen either using AES128 or SHAKE128. In order
to relate FrodoKEM and FrodoPKE’s security to the hardness of the learning with errors
problem, it was argued in the Round 3 submission of FrodoKEM [NAB*20] that one can
replace a uniformly sampled A € Z;*" with matrices sampled according to Frodo.Gen.
Although the matrix appears pseudorandom under standard security assumptions to an
adversary without access to the seed, [NABT20] argues security of this step against a
stronger (and more realistic) adversary via the indifferentiability framework [MRHO04,
CDMPO05]. Refer to [NAB*20] for complete details.

C.1.4 IND-CPA security

In this section we show that FrodoPKE, using any error distribution x and uniformly
random A, is an IND-CPA-secure public-key encryption scheme based on the hardness of
the learning with errors decision problem with the same error distribution. We first tightly
relate the IND-CPA security of FrodoPKE to the normal-form DLWE problem, where the
secret coordinates have the same distribution as the errors.

Theorem 3 (normal-form DLWE = IND-CPA security of FrodoPKE). Let n,q,m,7 be
positive integers, and x be a probability distribution on Z. There exist classical algorithms
By, By that use as a “black box” subroutine any (quantum or classical) algorithm A against
the IND-CPA security of FrodoPKE (with a uniformly random A ), for which

IND-CPA — f-dl —_ f-dl
AdvFrodoPKE(A) <n- Advz,n,‘zl]v,ex (Bl) +m- Adv?L,nJ‘:I%,q,X (Bz) .

The running times of By and Bs are approximately that of A.

The proof of Theorem 3 is the same as that of [LP11, Theorem 3.2] or [BCDT16,
Theorem 5.1].

The following theorem relates the LWE decision problem in its normal form to one
where the secret is uniformly random over Z,. We need this only for connecting the latter
variant, which arises in the reduction from worst-case lattice problems described in the
next subsection, to the normal form as used in FrodoPKE. (In particular, our cryptanalysis
and concrete security bounds are for the normal form.) The theorem is specialized to
power-of-two modulus ¢ (our case of interest), and the stated bounds in the advantage and
number of LWE samples are more precise than those given in the original work. These
bounds follow from the fact that, by a straightforward calculation, a uniformly random
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n-by-(n + k) matrix over Z, has an invertible n-by-n submatrix except with probability at
most 2%,

Theorem 4 (uniform-secret DLWE — normal-form DLWE; [ACPS09], Lemma 2).
Let n,m, k,q be positive integers with q > 2 a power of two, and let x be a probability
distribution on Z. There exists a classical algorithm B that uses as a “black box” subroutine

any (quantum or classical) algorithm A against the normal-form LWE decision problem,
for which

Advnfawe (4) < Advdive (B) +27F .

n,m,q,x n,m+n-+k,q,x

The running time of B is approxzimately that of A.

C.1.5 Reductions from worst-case lattice problems

When choosing parameters for LWE, one needs to choose an error distribution, and in
particular its “width.” Certain choices (e.g., sufficiently wide Gaussians) are supported
by reductions from worst-case lattice problems to LWE; see, e.g., [Reg09, Pei09a, BLP 13,
PRS17]. At a high level, such a reduction transforms any algorithm that solves LWE on the
average—i.e., for random instances sampled according to the prescribed distribution—into
an algorithm of related efficiency that solves any instance of certain lattice problems (not
just random instances).

The original work of [Reg09] and a follow-up work [PRS17] gave quantum polynomial-
time reductions, from the worst-case GapSVP., (Definition 20), SIVP,, (Definition 21), and
DGS, (Definition 22) problems on n-dimensional lattices, to n-dimensional LWE (for an
unbounded polynomial m = poly(n) number of samples) with Gaussian error of standard
deviation o > ¢y/n. The constant factor ¢ was originally stated as ¢ = /2/m, but can
easily be improved to any ¢ > 1/(27) via a tighter analysis of essentially the same proof.'4
However, for efficiency reasons our choices of o (see Table 3) are somewhat smaller than
what is required by these reductions.

Instead, following [Reg09, Section 1.1], below we obtain an alternative classical (i.e.,
non-quantum) reduction from a variant of the worst-case bounded-distance decoding (BDD)
problem to our LWE parameterizations. In contrast to the quantum reductions described
above, which requires Gaussian error of standard deviation o > c¢y/n, the alternative
reduction supports a smaller error width—as small as the “smoothing parameter” [MR07]
of the lattice of integers Z. For the BDD variant we consider, which we call “BDD with
Discrete Gaussian Samples” (BDDwDGS), the input additionally includes discrete Gaussian
samples over the dual lattice, but having a larger width than known algorithms are able
to exploit [LLMO06,DRS14]. This gives the problem a “hybrid” worst-case/average-case
nature: it is worst case over the choice of the lattice, but average-case over the choice of
the DGS samples. Details follow.

Bounded-distance decoding with discrete Gaussian samples. We first define a
variant of the bounded-distance decoding problem, which is implicit in prior works that
consider “BDD with preprocessing,” [AR05, LLM06, DRS14] and recall the relevant aspects
of known algorithms for the problem.

Definition 25 (Bounded-distance decoding with discrete Gaussian samples). For a
lattice £ C R™ and positive reals d < A\1(£)/2 and r > 0, an instance of the bounded-
distance decoding with discrete Gaussian samples problem BDDwDGS, 4, is a point t € R™
such that dist(t, £) < d, and access to an oracle that samples from D, ¢ for any (adaptively)
queried s > r. The goal is to output the (unique) lattice point v € L closest to t.

14The approximation factor ~ for GapSVP and SIVP is O(qn/o) = (qn/o) log®™ n, and the parameter ¢
for DGS is ©(qy/n/o) times the “smoothing parameter” of the lattice.
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Remark 3. For a given distance bound d, known BDDwDGS algorithms use discrete
Gaussian samples that all have the same width parameter s. However, the reduction to
LWE will use the ability to vary s. Alternatively, we mention that when r > 7.(L*) for
some very small € > 0 (which will always be the case in our setting), we can replace the
variable-width DGS oracle from Definition 25 with a fixed-width one that samples from
D4z~ » for any queried coset w + L*, always for the same width . This is because we
can use the latter oracle to implement the former one (up to statistical distance 8¢), by
sampling e from the continuous Gaussian of parameter v/s2 — r2 and then adding a sample
from Dg+_e . See [Peil0, Theorem 3.1] for further details.

The state-of-the-art algorithms for solving BDDwDGS [AR05, LLM06, DRS14] employ
a certain L-periodic function fz ;/.: R™ — [0,1], defined as

L pl/'r(x + E) -

feap(x) = W = WNEEL*’,,,[COS(QMW’ x))] , (8)
where the equality on the right follows from the Fourier series of fz 1/, (see [AR05]). To
solve BDDwDGS for a target point t, the algorithms use several discrete Gaussian samples
w; ~ D, to estimate the value of f. 1/, at t and nearby points via Equation 8, to “hill
climb” from t to the nearest lattice point. For the relevant points t we have the (very
sharp) approximation fg 1/,(t) = exp(—mr? - dist(t, £)?), so by the Chernoff-Hoeffding
bound, approximating f. ;/.(t) to within (say) a factor of two uses at least

1
feam(t)?

samples.!® Note that without enough samples, the “signal” of fr,)r(t) is overwhelmed by
measurement “noise,” which prevents the hill-climbing from making progress toward the
answer.

In summary, when limited to N discrete Gaussian samples, the known approaches to
solving BDDwDGS are limited to distance

~ exp(2nr? - dist(t, £)?)

dist(t, £) < r~1y/In(N)/(27) . (9)

Having such samples does not appear to provide any speedup in decoding at distances
that are larger than this bound by some constant factor greater than one. In particular, if
d-r > w(y/logn) (which is the smoothing parameter of the integer lattice Z for negligible
error €), then having N = poly(n) samples does not seem to provide any help in solving
BDDwDGS, 4, (versus having no samples at all).

Reduction from BDDwDGS to LWE. We now recall the following result from [PRS17],
which generalizes a key theorem from [Reg09] to give a reduction from BDDwDGS to the
LWE decision problem.

Theorem 5 (BDDwDGS hard = decision-LWE hard [PRS17, Lemma 5.4]). Let e = (n)
be a negligible function and let m = poly(n) and C = C(n) > 1 be arbitrary. There is a
probabilistic polynomial-time (classical) algorithm that, given access to an oracle that solves
DLWE,, 1 q,o with non-negligible advantage and input a number a € (0,1), an integer
q > 2, a lattice L C R™, and a parameter r > Cq - n.(L*), solves BDDWDGS. 4., using

N =m - poly(n) samples, where d = /1 —1/C?-aq/r.

Remark 4. The above statement generalizes the fixed choice of C' = v/2 in the original
statement (inherited from [Reg09, Section 3.2.1]), using [Reg09, Corollary 3.10]. In
particular, for any constant ¢ > 0 there is a constant C' > 1 such that d = (1 —§) - ag/r.

151n fact, the algorithms need approximation factors much better than two, so the required number of
samples is even larger by a sizable constant factor. However, the above crude bound will be sufficient for
our purposes.
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In particular, by Equation 9, if the Gaussian parameter aq of the LWE error sufficiently
exceeds 1/In(N)/(27) (e.g., by a constant factor greater than one), then the BDDwWDGS 4.
problem is plausibly hard (in the worst case), hence so is the corresponding LWE problem
from Theorem 5 (on the average). An interesting direction is to obtain a more precise
bound on, and improve, the “sample overhead” of the reduction, i.e., the poly(n) factor
connecting the number of LWE samples m and the number of DGS samples V.
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